251
|
Shen X, Howard DM, Adams MJ, Hill WD, Clarke TK, Deary IJ, Whalley HC, McIntosh AM. A phenome-wide association and Mendelian Randomisation study of polygenic risk for depression in UK Biobank. Nat Commun 2020; 11:2301. [PMID: 32385265 PMCID: PMC7210889 DOI: 10.1038/s41467-020-16022-0] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 04/02/2020] [Indexed: 12/15/2022] Open
Abstract
Depression is a leading cause of worldwide disability but there remains considerable uncertainty regarding its neural and behavioural associations. Here, using non-overlapping Psychiatric Genomics Consortium (PGC) datasets as a reference, we estimate polygenic risk scores for depression (depression-PRS) in a discovery (N = 10,674) and replication (N = 11,214) imaging sample from UK Biobank. We report 77 traits that are significantly associated with depression-PRS, in both discovery and replication analyses. Mendelian Randomisation analysis supports a potential causal effect of liability to depression on brain white matter microstructure (β: 0.125 to 0.868, pFDR < 0.043). Several behavioural traits are also associated with depression-PRS (β: 0.014 to 0.180, pFDR: 0.049 to 1.28 × 10−14) and we find a significant and positive interaction between depression-PRS and adverse environmental exposures on mental health outcomes. This study reveals replicable associations between depression-PRS and white matter microstructure. Our results indicate that white matter microstructure differences may be a causal consequence of liability to depression. Depression is correlated with many brain-related traits. Here, Shen et al. perform phenome-wide association studies of a depression polygenic risk score (PRS) and find associations with 51 behavioural and 26 neuroimaging traits which are further followed up on using Mendelian randomization and mediation analyses.
Collapse
Affiliation(s)
- Xueyi Shen
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK
| | - David M Howard
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK.,Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Mark J Adams
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK
| | - W David Hill
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK.,Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Toni-Kim Clarke
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK
| | | | - Ian J Deary
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK.,Department of Psychology, University of Edinburgh, Edinburgh, UK
| | | | - Andrew M McIntosh
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK. .,Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK. .,Department of Psychology, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
252
|
Wu Y, Li X, Liu J, Luo XJ, Yao YG. SZDB2.0: an updated comprehensive resource for schizophrenia research. Hum Genet 2020; 139:1285-1297. [DOI: 10.1007/s00439-020-02171-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 04/25/2020] [Indexed: 12/11/2022]
|
253
|
Abstract
Despite evidence that deleterious variants in the same genes are implicated across multiple neurodevelopmental and neuropsychiatric disorders, there has been considerable interest in identifying genes that, when mutated, confer risk that is largely specific for autism spectrum disorder (ASD). Here, we review the findings and limitations of recent efforts to identify relatively “autism-specific” genes, efforts which focus on rare variants of large effect size that are thought to account for the observed phenotypes. We present a divergent interpretation of published evidence; discuss practical and theoretical issues related to studying the relationships between rare, large-effect deleterious variants and neurodevelopmental phenotypes; and describe potential future directions of this research. We argue that there is currently insufficient evidence to establish meaningful ASD specificity of any genes based on large-effect rare-variant data.
Collapse
|
254
|
Levchenko A, Nurgaliev T, Kanapin A, Samsonova A, Gainetdinov RR. Current challenges and possible future developments in personalized psychiatry with an emphasis on psychotic disorders. Heliyon 2020; 6:e03990. [PMID: 32462093 PMCID: PMC7240336 DOI: 10.1016/j.heliyon.2020.e03990] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 10/31/2019] [Accepted: 05/12/2020] [Indexed: 12/13/2022] Open
Abstract
A personalized medicine approach seems to be particularly applicable to psychiatry. Indeed, considering mental illness as deregulation, unique to each patient, of molecular pathways, governing the development and functioning of the brain, seems to be the most justified way to understand and treat disorders of this medical category. In order to extract correct information about the implicated molecular pathways, data can be drawn from sampling phenotypic and genetic biomarkers and then analyzed by a machine learning algorithm. This review describes current difficulties in the field of personalized psychiatry and gives several examples of possibly actionable biomarkers of psychotic and other psychiatric disorders, including several examples of genetic studies relevant to personalized psychiatry. Most of these biomarkers are not yet ready to be introduced in clinical practice. In a next step, a perspective on the path personalized psychiatry may take in the future is given, paying particular attention to machine learning algorithms that can be used with the goal of handling multidimensional datasets.
Collapse
Affiliation(s)
- Anastasia Levchenko
- Theodosius Dobzhansky Center for Genome Bioinformatics, Saint Petersburg State University, 7/9 Universitetskaya nab., Saint Petersburg, 199034, Russia
| | - Timur Nurgaliev
- Institute of Translational Biomedicine, Saint Petersburg State University, 7/9 Universitetskaya nab., Saint Petersburg, 199034, Russia
| | - Alexander Kanapin
- Theodosius Dobzhansky Center for Genome Bioinformatics, Saint Petersburg State University, 7/9 Universitetskaya nab., Saint Petersburg, 199034, Russia
| | - Anastasia Samsonova
- Theodosius Dobzhansky Center for Genome Bioinformatics, Saint Petersburg State University, 7/9 Universitetskaya nab., Saint Petersburg, 199034, Russia
| | - Raul R. Gainetdinov
- Institute of Translational Biomedicine, Saint Petersburg State University, 7/9 Universitetskaya nab., Saint Petersburg, 199034, Russia
| |
Collapse
|
255
|
Bryois J, Skene NG, Hansen TF, Kogelman LJA, Watson HJ, Liu Z, Brueggeman L, Breen G, Bulik CM, Arenas E, Hjerling-Leffler J, Sullivan PF. Genetic identification of cell types underlying brain complex traits yields insights into the etiology of Parkinson's disease. Nat Genet 2020; 52:482-493. [PMID: 32341526 PMCID: PMC7930801 DOI: 10.1038/s41588-020-0610-9] [Citation(s) in RCA: 206] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 03/06/2020] [Indexed: 12/12/2022]
Abstract
Genome-wide association studies have discovered hundreds of loci associated with complex brain disorders, but it remains unclear in which cell types these loci are active. Here we integrate genome-wide association study results with single-cell transcriptomic data from the entire mouse nervous system to systematically identify cell types underlying brain complex traits. We show that psychiatric disorders are predominantly associated with projecting excitatory and inhibitory neurons. Neurological diseases were associated with different cell types, which is consistent with other lines of evidence. Notably, Parkinson's disease was genetically associated not only with cholinergic and monoaminergic neurons (which include dopaminergic neurons) but also with enteric neurons and oligodendrocytes. Using post-mortem brain transcriptomic data, we confirmed alterations in these cells, even at the earliest stages of disease progression. Our study provides an important framework for understanding the cellular basis of complex brain maladies, and reveals an unexpected role of oligodendrocytes in Parkinson's disease.
Collapse
Affiliation(s)
- Julien Bryois
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Nathan G Skene
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- UCL Institute of Neurology, Queen Square, London, UK
- Division of Brain Sciences, Department of Medicine, Imperial College, London, UK
- UK Dementia Research Institute at Imperial College, London, UK
| | - Thomas Folkmann Hansen
- Danish Headache Center, Dept of Neurology, Copenhagen University Hospital, Glostrup, Denmark
- Institute of Biological Psychiatry, Copenhagen University Hospital MHC Sct Hans, Roskilde, Denmark
- Novo Nordic Foundations Center for Protein Research, Copenhagen University, Copenhagen, Denmark
| | - Lisette J A Kogelman
- Danish Headache Center, Dept of Neurology, Copenhagen University Hospital, Glostrup, Denmark
| | - Hunna J Watson
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- School of Psychology, Curtin University, Perth, Western Australia, Australia
- Division of Paediatrics, School of Medicine, The University of Western Australia, Perth, Western Australia, Australia
| | - Zijing Liu
- Division of Brain Sciences, Department of Medicine, Imperial College, London, UK
- UK Dementia Research Institute at Imperial College, London, UK
| | - Leo Brueggeman
- Department of Psychiatry, University of Iowa Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Gerome Breen
- Institute of Psychiatry, MRC Social, Genetic and Developmental Psychiatry Centre, King's College London, London, UK
- National Institute for Health Research Biomedical Research Centre, South London and Maudsley National Health Service Trust, London, UK
| | - Cynthia M Bulik
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Nutrition, University of North Carolina, Chapel Hill, NC, USA
| | - Ernest Arenas
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Jens Hjerling-Leffler
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.
| | - Patrick F Sullivan
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
256
|
Affiliation(s)
- Myrna M Weissman
- Departments of Epidemiology and Psychiatry, Vagelos College of Physicians and Surgeons and Mailman School of Public Health, Columbia University, New York; and Division of Translational Epidemiology, New York State Psychiatric Institute, New York
| |
Collapse
|
257
|
Rees E, Owen MJ. Translating insights from neuropsychiatric genetics and genomics for precision psychiatry. Genome Med 2020; 12:43. [PMID: 32349784 PMCID: PMC7189552 DOI: 10.1186/s13073-020-00734-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 04/03/2020] [Indexed: 12/30/2022] Open
Abstract
The primary aim of precision medicine is to tailor healthcare more closely to the needs of individual patients. This requires progress in two areas: the development of more precise treatments and the ability to identify patients or groups of patients in the clinic for whom such treatments are likely to be the most effective. There is widespread optimism that advances in genomics will facilitate both of these endeavors. It can be argued that of all medical specialties psychiatry has most to gain in these respects, given its current reliance on syndromic diagnoses, the minimal foundation of existing mechanistic knowledge, and the substantial heritability of psychiatric phenotypes. Here, we review recent advances in psychiatric genomics and assess the likely impact of these findings on attempts to develop precision psychiatry. Emerging findings indicate a high degree of polygenicity and that genetic risk maps poorly onto the diagnostic categories used in the clinic. The highly polygenic and pleiotropic nature of psychiatric genetics will impact attempts to use genomic data for prediction and risk stratification, and also poses substantial challenges for conventional approaches to gaining biological insights from genetic findings. While there are many challenges to overcome, genomics is building an empirical platform upon which psychiatry can now progress towards better understanding of disease mechanisms, better treatments, and better ways of targeting treatments to the patients most likely to benefit, thus paving the way for precision psychiatry.
Collapse
Affiliation(s)
- Elliott Rees
- MRC Centre for Neuropsychiatric Genetics and Genomics, Neuroscience and Mental Health Research Institute and Division of Psychological Medicine and Clinical Neuroscience, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ UK
| | - Michael J. Owen
- MRC Centre for Neuropsychiatric Genetics and Genomics, Neuroscience and Mental Health Research Institute and Division of Psychological Medicine and Clinical Neuroscience, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ UK
| |
Collapse
|
258
|
Halvorsen M, Huh R, Oskolkov N, Wen J, Netotea S, Giusti-Rodriguez P, Karlsson R, Bryois J, Nystedt B, Ameur A, Kähler AK, Ancalade N, Farrell M, Crowley JJ, Li Y, Magnusson PKE, Gyllensten U, Hultman CM, Sullivan PF, Szatkiewicz JP. Increased burden of ultra-rare structural variants localizing to boundaries of topologically associated domains in schizophrenia. Nat Commun 2020; 11:1842. [PMID: 32296054 PMCID: PMC7160146 DOI: 10.1038/s41467-020-15707-w] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 03/24/2020] [Indexed: 01/13/2023] Open
Abstract
Despite considerable progress in schizophrenia genetics, most findings have been for large rare structural variants and common variants in well-imputed regions with few genes implicated from exome sequencing. Whole genome sequencing (WGS) can potentially provide a more complete enumeration of etiological genetic variation apart from the exome and regions of high linkage disequilibrium. We analyze high-coverage WGS data from 1162 Swedish schizophrenia cases and 936 ancestry-matched population controls. Our main objective is to evaluate the contribution to schizophrenia etiology from a variety of genetic variants accessible to WGS but not by previous technologies. Our results suggest that ultra-rare structural variants that affect the boundaries of topologically associated domains (TADs) increase risk for schizophrenia. Alterations in TAD boundaries may lead to dysregulation of gene expression. Future mechanistic studies will be needed to determine the precise functional effects of these variants on biology.
Collapse
Affiliation(s)
- Matthew Halvorsen
- Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Ruth Huh
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Nikolay Oskolkov
- Department of Biology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Lund University, 22362, Lund, Sweden
| | - Jia Wen
- Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Sergiu Netotea
- Department of Biology and Biological Engineering, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Chalmers University of Technology, 41258, Göteborg, Sweden
| | | | - Robert Karlsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Julien Bryois
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Björn Nystedt
- Department of Cell and Molecular Biology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Uppsala University, 75237, Uppsala, Sweden
| | - Adam Ameur
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, 75185, Uppsala, Sweden
| | - Anna K Kähler
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 17177, Stockholm, Sweden
| | - NaEshia Ancalade
- Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Martilias Farrell
- Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - James J Crowley
- Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599, USA
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, 27599, USA
- Department of Clinical Neuroscience, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Yun Li
- Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599, USA
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Patrik K E Magnusson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Ulf Gyllensten
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, 75185, Uppsala, Sweden
| | - Christina M Hultman
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Patrick F Sullivan
- Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599, USA.
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 17177, Stockholm, Sweden.
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, 27599, USA.
| | - Jin P Szatkiewicz
- Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599, USA.
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
259
|
Fernando MB, Ahfeldt T, Brennand KJ. Modeling the complex genetic architectures of brain disease. Nat Genet 2020; 52:363-369. [PMID: 32203467 PMCID: PMC7909729 DOI: 10.1038/s41588-020-0596-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 02/21/2020] [Indexed: 12/12/2022]
Abstract
The genetic architecture of each individual comprises common and rare variants that, acting alone and in combination, confer risk of disease. The cell-type-specific and/or context-dependent functional consequences of the risk variants linked to brain disease must be resolved. Coupling human induced pluripotent stem cell (hiPSC)-based technology with CRISPR-based genome engineering facilitates precise isogenic comparisons of variants across genetic backgrounds. Although functional-validation studies are typically performed on one variant in isolation and in one cell type at a time, complex genetic diseases require multiplexed gene perturbations to interrogate combinations of genes and resolve physiologically relevant disease biology. Our aim is to discuss advances at the intersection of genomics, hiPSCs and CRISPR. A better understanding of the molecular mechanisms underlying disease risk will improve genetic diagnosis, drive phenotypic drug discovery and pave the way toward precision medicine.
Collapse
Affiliation(s)
- Michael B Fernando
- Graduate School of Biomedical Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Alper Neural Stem Cell Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tim Ahfeldt
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Alper Neural Stem Cell Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kristen J Brennand
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Alper Neural Stem Cell Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Ronald M. Loeb Center for Alzheimer's disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
260
|
Rodriguez-López J, Arrojo M, Paz E, Páramo M, Costas J. Identification of relevant hub genes for early intervention at gene coexpression modules with altered predicted expression in schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2020; 98:109815. [PMID: 31715283 DOI: 10.1016/j.pnpbp.2019.109815] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/25/2019] [Accepted: 11/08/2019] [Indexed: 01/20/2023]
Abstract
Genetic risk for schizophrenia is due to the joint effect of multiple genes acting mainly at two different processes, prenatal/perinatal neurodevelopment and adolescence/early adulthood synapse maturation. Identification of important genes at the second process is of relevance for early intervention. The aim of this work was to identify gene co-expression modules with altered expression in schizophrenia during adolescence/early adulthood. To this goal, we predicted frontal cortex gene expression in one discovery sample, the largest GWAS of schizophrenia from the Psychiatric Genomics Consortium, using S-prediXcan, and in one target sample, consisting of 625 schizophrenic patients and 819 controls from Spain, using prediXcan. Prediction models were trained on GTEx frontal cortex expression dataset. In parallel, we identified brain co-expression modules from BrainSpan using WGCNA. Then, we estimated polygenic risk scores based on predicted expression (PE-PRS) for each co-expression module in the target sample, based on PE-PRS model from the discovery sample. This analysis led to the identification of a module with mainly adolescence/adulthood expression whose PE-PRS was significantly associated with schizophrenia. The module was significantly enriched in synaptic processes. Several hub genes at this module are drugabble, according to the drug-gene interaction database, and/or involved in synaptic transmission, such as the voltage-gated ion channels SCN2B and KCNAB2, the calcium calmodulin kinases CAMK2A and CAMK1G, or genes involved in synaptic vesicle cycle, such as DNM1, or SYNGR1. Therefore, identification of this module may be the first step in patient stratification based on biology, as well as in drug design and drug repurposing efforts.
Collapse
Affiliation(s)
- Julio Rodriguez-López
- Instituto de Investigación Sanitaria (IDIS) de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), Servizo Galego de Saúde (SERGAS), Santiago de Compostela, Galicia, Spain; Grupo de Medicina Xenómica, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Manuel Arrojo
- Instituto de Investigación Sanitaria (IDIS) de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), Servizo Galego de Saúde (SERGAS), Santiago de Compostela, Galicia, Spain; Servizo de Psiquiatría, Complexo Hospitalario Universitario de Santiago de Compostela, Servizo Galego de Saúde (SERGAS), Santiago de Compostela, Galicia, Spain
| | - Eduardo Paz
- Instituto de Investigación Sanitaria (IDIS) de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), Servizo Galego de Saúde (SERGAS), Santiago de Compostela, Galicia, Spain; Servizo de Psiquiatría, Complexo Hospitalario Universitario de Santiago de Compostela, Servizo Galego de Saúde (SERGAS), Santiago de Compostela, Galicia, Spain
| | - Mario Páramo
- Instituto de Investigación Sanitaria (IDIS) de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), Servizo Galego de Saúde (SERGAS), Santiago de Compostela, Galicia, Spain; Servizo de Psiquiatría, Complexo Hospitalario Universitario de Santiago de Compostela, Servizo Galego de Saúde (SERGAS), Santiago de Compostela, Galicia, Spain
| | - Javier Costas
- Instituto de Investigación Sanitaria (IDIS) de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), Servizo Galego de Saúde (SERGAS), Santiago de Compostela, Galicia, Spain.
| |
Collapse
|
261
|
Affiliation(s)
- Jordan W Smoller
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, and Department of Psychiatry, Massachusetts General Hospital, Boston; and Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Mass
| |
Collapse
|
262
|
Abstract
Identifying structural variation (SV) is essential for genome interpretation but has been historically difficult due to limitations inherent to available genome technologies. Detection methods that use ensemble algorithms and emerging sequencing technologies have enabled the discovery of thousands of SVs, uncovering information about their ubiquity, relationship to disease and possible effects on biological mechanisms. Given the variability in SV type and size, along with unique detection biases of emerging genomic platforms, multiplatform discovery is necessary to resolve the full spectrum of variation. Here, we review modern approaches for investigating SVs and proffer that, moving forwards, studies integrating biological information with detection will be necessary to comprehensively understand the impact of SV in the human genome.
Collapse
Affiliation(s)
- Steve S Ho
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Alexander E Urban
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Ryan E Mills
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA.
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
263
|
Mahmuda NA, Yokoyama S, Munesue T, Hayashi K, Yagi K, Tsuji C, Higashida H. One Single Nucleotide Polymorphism of the TRPM2 Channel Gene Identified as a Risk Factor in Bipolar Disorder Associates with Autism Spectrum Disorder in a Japanese Population. Diseases 2020; 8:4. [PMID: 32046066 PMCID: PMC7151227 DOI: 10.3390/diseases8010004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/31/2020] [Accepted: 02/05/2020] [Indexed: 12/11/2022] Open
Abstract
The transient receptor potential melastatin 2 (TRPM2) is a non-specific cation channel, resulting in Ca2+ influx at warm temperatures from 34 °C to 47 °C, thus including the body temperature range in mammals. TRPM2 channels are activated by β-NAD+, ADP-ribose (ADPR), cyclic ADPR, and 2'-deoxyadenosine 5'-diphosphoribose. It has been shown that TRPM2 cation channels and CD38, a type II or type III transmembrane protein with ADP-ribosyl cyclase activity, simultaneously play a role in heat-sensitive and NAD+ metabolite-dependent intracellular free Ca2+ concentration increases in hypothalamic oxytocinergic neurons. Subsequently, oxytocin (OT) is released to the brain. Impairment of OT release may induce social amnesia, one of the core symptoms of autism spectrum disorder (ASD). The risk of single nucleotide polymorphisms (SNPs) and variants of TRPM2 have been reported in bipolar disorder, but not in ASD. Therefore, it is reasonable to examine whether SNPs or haplotypes in TRPM2 are associated with ASD. Here, we report a case-control study with 147 ASD patients and 150 unselected volunteers at Kanazawa University Hospital in Japan. The sequence-specific primer-polymerase chain reaction method together with fluorescence correlation spectroscopy was applied. Of 14 SNPs examined, one SNP (rs933151) displayed a significant p-value (OR = 0.1798, 95% CI = 0.039, 0.83; Fisher's exact test; p = 0.0196). The present research data suggest that rs93315, identified as a risk factor for bipolar disorder, is a possible association factor for ASD.
Collapse
Affiliation(s)
- Naila Al Mahmuda
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan; (N.A.M.); (S.Y.); (T.M.); (C.T.)
- Faculty of Business Administration, Eastern University, Dhaka 1205, Bangladesh
| | - Shigeru Yokoyama
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan; (N.A.M.); (S.Y.); (T.M.); (C.T.)
| | - Toshio Munesue
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan; (N.A.M.); (S.Y.); (T.M.); (C.T.)
| | - Kenshi Hayashi
- Division of Cardiovascular Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa 920-8641, Japan; (K.H.); (K.Y.)
| | - Kunimasa Yagi
- Division of Cardiovascular Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa 920-8641, Japan; (K.H.); (K.Y.)
| | - Chiharu Tsuji
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan; (N.A.M.); (S.Y.); (T.M.); (C.T.)
| | - Haruhiro Higashida
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan; (N.A.M.); (S.Y.); (T.M.); (C.T.)
- Laboratory for Social Brain Studies, Research Institute of Molecular Medicine and Pathobiochemistry, Department of Biochemistry, Krasnoyarsk State Medical University named after Prof. V. F. Voino-Yasentsky, Krasnoyarsk 660022, Russia
| |
Collapse
|
264
|
Takahashi N, Harada T, Nishimura T, Okumura A, Choi D, Iwabuchi T, Kuwabara H, Takagai S, Nomura Y, Takei N, Tsuchiya KJ. Association of Genetic Risks With Autism Spectrum Disorder and Early Neurodevelopmental Delays Among Children Without Intellectual Disability. JAMA Netw Open 2020; 3:e1921644. [PMID: 32031653 PMCID: PMC11076129 DOI: 10.1001/jamanetworkopen.2019.21644] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Importance Autism spectrum disorder (ASD) is highly heritable, and modest contributions of common genetic variants to ASD have been reported. However, the association of genetic risks derived from common risk variants with ASD traits in children from the general population is not clear, and the association of these genetic risks with neurodevelopment in infants has not been well understood. Objective To test whether a polygenic risk score (PRS) for ASD is associated with neurodevelopmental progress at age 18 months and ASD traits at age 6 years among children from the general population. Design, Setting, and Participants In this cohort study, 876 children in the Hamamatsu Birth Cohort for Mothers and Children in Hamamatsu, Japan, underwent testing for the association of an ASD PRS with neurodevelopmental progress and ASD traits. Data collection began in December 2007 and is ongoing. Data analysis was conducted from April to December 2019. Main Outcomes and Measures Summary data from the largest genome-wide association study were used to generate ASD PRSs, and significance of thresholds was calculated for each outcome. The Autism Diagnostic Observation Schedule 2 was used to measure ASD traits at age 6 years, and the Mullen Scales of Early Learning was used to measure neurodevelopmental progress at age 18 months. Results Of 876 participants (mean [SD] gestational age at birth, 38.9 [1.6] weeks; 438 [50.0%] boys; 868 [99.1%] Japanese), 734 were analyzed. The ASD PRS was associated with ASD traits (R2 = 0.024; β, 0.71; SE, 0.24; P = .03). The association of ASD PRS with infant neurodevelopment was most pronounced in gross motor (R2 = 0.015; β, -1.25; SE, 0.39; P = .01) and receptive language (R2 = 0.014; β, -1.19; SE, 0.39; P = .02) scores on the Mullen Scales of Early Learning. Gene set enrichment analyses found that several pathways, such as cell maturation (R2 = 0.057; β, -5.28; SE, 1.40; P < .001) and adenylyl cyclase activity and cyclic adenosine monophosphate concentration (R2 = 0.064; β, -5.30; SE 1.30; P < .001), were associated with ASD traits. Gene sets associated with inflammation were commonly enriched with ASD traits and gross motor skills (eg, chemokine motif ligand 2 production: R2 = 0.051; β, -6.04; SE, 1.75; P = .001; regulation of monocyte differentiation: R2 = 0.052; β, -6.63; SE, 1.90; P = .001; and B-cell differentiation: R2 = 0.051; β, 7.37; SE, 2.15; P = .001); glutamatergic signaling-associated gene sets were commonly enriched with ASD traits and receptive language skills (eg, regulation of glutamate secretion: R2 = 0.052; β, -5.82; SE, 1.68; P = .001; ionotropic glutamate receptor signaling pathway: R2 = 0.047; β, 3.54; SE, 1.09; P = .001; and negative regulation of glutamate secretion: R2 = 0.045; β, -5.38; SE, 1.74; P = .002). Conclusions and Relevance In this study, the ASD PRS was associated with ASD traits among children from the general population. Genetic risks for ASD might be associated with delays in some neurodevelopmental domains, such as gross motor and receptive language skills.
Collapse
Affiliation(s)
- Nagahide Takahashi
- Research Center for Child Mental Development, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Taeko Harada
- Research Center for Child Mental Development, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Tomoko Nishimura
- Research Center for Child Mental Development, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Akemi Okumura
- Research Center for Child Mental Development, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Damee Choi
- Research Center for Child Mental Development, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Toshiki Iwabuchi
- Research Center for Child Mental Development, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hitoshi Kuwabara
- Department of Psychiatry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Shu Takagai
- Department of Psychiatry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yoko Nomura
- Research Center for Child Mental Development, Hamamatsu University School of Medicine, Hamamatsu, Japan
- Queens College and Graduate Center, City University of New York, New York
| | - Nori Takei
- Research Center for Child Mental Development, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kenji J Tsuchiya
- Research Center for Child Mental Development, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
265
|
Hoffmann A, Ziller M, Spengler D. Focus on Causality in ESC/iPSC-Based Modeling of Psychiatric Disorders. Cells 2020; 9:E366. [PMID: 32033412 PMCID: PMC7072492 DOI: 10.3390/cells9020366] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/31/2020] [Accepted: 02/03/2020] [Indexed: 12/14/2022] Open
Abstract
Genome-wide association studies (GWAS) have identified an increasing number of genetic variants that significantly associate with psychiatric disorders. Despite this wealth of information, our knowledge of which variants causally contribute to disease, how they interact, and even more so of the functions they regulate, is still poor. The availability of embryonic stem cells (ESCs) and the advent of patient-specific induced pluripotent stem cells (iPSCs) has opened new opportunities to investigate genetic risk variants in living disease-relevant cells. Here, we analyze how this progress has contributed to the analysis of causal relationships between genetic risk variants and neuronal phenotypes, especially in schizophrenia (SCZ) and bipolar disorder (BD). Studies on rare, highly penetrant risk variants have originally led the field, until more recently when the development of (epi-) genetic editing techniques spurred studies on cause-effect relationships between common low risk variants and their associated neuronal phenotypes. This reorientation not only offers new insights, but also raises issues on interpretability. Concluding, we consider potential caveats and upcoming developments in the field of ESC/iPSC-based modeling of causality in psychiatric disorders.
Collapse
Affiliation(s)
| | | | - Dietmar Spengler
- Department of Translational Research in Psychiatry, Max-Planck Institute of Psychiatry, 80804 Munich, Germany; (A.H.); (M.Z.)
| |
Collapse
|
266
|
Novel Approaches for Identifying the Molecular Background of Schizophrenia. Cells 2020; 9:cells9010246. [PMID: 31963710 PMCID: PMC7017322 DOI: 10.3390/cells9010246] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/06/2020] [Accepted: 01/16/2020] [Indexed: 12/20/2022] Open
Abstract
Recent advances in psychiatric genetics have led to the discovery of dozens of genomic loci associated with schizophrenia. However, a gap exists between the detection of genetic associations and understanding the underlying molecular mechanisms. This review describes the basic approaches used in the so-called post-GWAS studies to generate biological interpretation of the existing population genetic data, including both molecular (creation and analysis of knockout animals, exploration of the transcriptional effects of common variants in human brain cells) and computational (fine-mapping of causal variability, gene set enrichment analysis, partitioned heritability analysis) methods. The results of the crucial studies, in which these approaches were used to uncover the molecular and neurobiological basis of the disease, are also reported.
Collapse
|
267
|
Berkowitz A. Playing the genome card. J Neurogenet 2019; 34:189-197. [PMID: 31872788 DOI: 10.1080/01677063.2019.1706093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
In the 1990s, prominent biologists and journalists predicted that by 2020 each of us would carry a genome card, which would allow physicians to access our entire genome sequence and routinely use this information to diagnose and treat common and debilitating conditions. This is not yet the case. Why not? Common and debilitating diseases are rarely caused by single-gene mutations, and this was recognized before these genome card predictions had been made. Debilitating conditions, including common psychiatric disorders, are typically caused either by rare mutations or by complex interactions of many genes, each having a small effect, and epigenetic, environmental, and microbial factors. In such cases, having a complete genome sequence may have limited utility in diagnosis and treatment. Genome sequencing technologies have transformed biological research in many ways, but had a much smaller effect than expected on treatments of common diseases. Thus, early proponents of genome sequencing effectively "mis-promised" its benefits. One reason may be that there are incentives for both biologists and journalists to tell simple stories, including the idea of relatively simple genetic causation of common, debilitating diseases. These incentives may have led to misleading predictions, which to some extent continue today. Although the Human Genome Project has facilitated biological research generally, the mis-promising of medical benefits, at least for treating common and debilitating disorders, could undermine support for scientific research over the long term.
Collapse
Affiliation(s)
- Ari Berkowitz
- Department of Biology and Cellular & Behavioral Neurobiology Graduate Program, University of Oklahoma, Norman, OK, USA
| |
Collapse
|
268
|
Catusi I, Recalcati MP, Bestetti I, Garzo M, Valtorta C, Alfonsi M, Alghisi A, Cappellani S, Casalone R, Caselli R, Ceccarini C, Ceglia C, Ciaschini AM, Coviello D, Crosti F, D'Aprile A, Fabretto A, Genesio R, Giagnacovo M, Granata P, Longo I, Malacarne M, Marseglia G, Montaldi A, Nardone AM, Palka C, Pecile V, Pessina C, Postorivo D, Redaelli S, Renieri A, Rigon C, Tiberi F, Tonelli M, Villa N, Zilio A, Zuccarello D, Novelli A, Larizza L, Giardino D. Testing single/combined clinical categories on 5110 Italian patients with developmental phenotypes to improve array-based detection rate. Mol Genet Genomic Med 2019; 8:e1056. [PMID: 31851782 PMCID: PMC6978242 DOI: 10.1002/mgg3.1056] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/23/2019] [Accepted: 10/28/2019] [Indexed: 01/09/2023] Open
Abstract
Background Chromosomal microarray analysis (CMA) is nowadays widely used in the diagnostic path of patients with clinical phenotypes. However, there is no ascertained evidence to date on how to assemble single/combined clinical categories of developmental phenotypic findings to improve the array‐based detection rate. Methods The Italian Society of Human Genetics coordinated a retrospective study which included CMA results of 5,110 Italian patients referred to 17 genetics laboratories for variable combined clinical phenotypes. Results Non‐polymorphic copy number variants (CNVs) were identified in 1512 patients (30%) and 615 (32%) present in 552 patients (11%) were classified as pathogenic. CNVs were analysed according to type, size, inheritance pattern, distribution among chromosomes, and association to known syndromes. In addition, the evaluation of the detection rate of clinical subgroups of patients allowed to associate dysmorphisms and/or congenital malformations combined with any other single clinical sign to an increased detection rate, whereas non‐syndromic neurodevelopmental signs and non‐syndromic congenital malformations to a decreased detection rate. Conclusions Our retrospective study resulted in confirming the high detection rate of CMA and indicated new clinical markers useful to optimize their inclusion in the diagnostic and rehabilitative path of patients with developmental phenotypes.
Collapse
Affiliation(s)
- Ilaria Catusi
- Lab. di Citogenetica Medica, Istituto Auxologico Italiano, IRCCS, Milano, Italy
| | | | - Ilaria Bestetti
- Lab. di Citogenetica Medica, Istituto Auxologico Italiano, IRCCS, Milano, Italy
| | - Maria Garzo
- Lab. di Citogenetica Medica, Istituto Auxologico Italiano, IRCCS, Milano, Italy
| | - Chiara Valtorta
- Lab. di Citogenetica Medica, Istituto Auxologico Italiano, IRCCS, Milano, Italy
| | - Melissa Alfonsi
- U.O.C. di Genetica medica, Ospedale SS Annunziata, Chieti, Italy
| | - Alberta Alghisi
- U.O.S. Genetica e Biologia Molecolare, Azienda ULSS 6, Vicenza, Italy
| | | | - Rosario Casalone
- SMeL specializzato Citogenetica e Genetica Medica, ASST Sette Laghi, Osp. di Circolo e Fond. Macchi, Varese, Italy
| | - Rossella Caselli
- U.O.C. Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | | | - Carlo Ceglia
- UOSD Genetica Medica, AORN "SG Moscati", Avellino, Italy
| | - Anna Maria Ciaschini
- A.O.U. Ospedali Riuniti Umberto I - G.M.Lancisi - G.Salesi, Lab. Genetica Medica SOS Malattie Rare, Ancona, Italy
| | - Domenico Coviello
- Lab. di Genetica Umana, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Francesca Crosti
- U.S. Genetica Medica, Ospedale San Gerardo ASST Monza, Monza, Italy
| | | | | | - Rita Genesio
- U.O.C. di Citogenetica, A.O.U. Federico II, Napoli, Italy
| | | | - Paola Granata
- SMeL specializzato Citogenetica e Genetica Medica, ASST Sette Laghi, Osp. di Circolo e Fond. Macchi, Varese, Italy
| | - Ilaria Longo
- U.O.C. Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Michela Malacarne
- Lab. di Genetica Umana, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | | | | | | | - Chiara Palka
- Dipartimento di Pediatria, Università G. D'Annunzio, Chieti-Pescara, Italy
| | - Vanna Pecile
- S.C. Genetica Medica, IRCCS Burlo Garofolo, Trieste, Italy
| | - Chiara Pessina
- SMeL specializzato Citogenetica e Genetica Medica, ASST Sette Laghi, Osp. di Circolo e Fond. Macchi, Varese, Italy
| | - Diana Postorivo
- U.O.C. Lab. di Genetica Medica, Policlinico Tor Vergata, Roma, Italy
| | - Serena Redaelli
- Dipartimento di Medicina e Chirurgia, Università di Milano-Bicocca, Monza, Italy
| | - Alessandra Renieri
- U.O.C. Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Chiara Rigon
- U.O.C. Genetica e Epidemiologia Clinica, A.O.U. di Padova, Padova, Italy
| | - Fabiola Tiberi
- A.O.U. Ospedali Riuniti Umberto I - G.M.Lancisi - G.Salesi, Lab. Genetica Medica SOS Malattie Rare, Ancona, Italy
| | - Mariella Tonelli
- LCGM Dipartimento di Medicina Molecolare e Traslazionale, Università di Brescia, Brescia, Italy
| | - Nicoletta Villa
- U.S. Genetica Medica, Ospedale San Gerardo ASST Monza, Monza, Italy
| | - Anna Zilio
- U.O.S. Genetica e Biologia Molecolare, Azienda ULSS 6, Vicenza, Italy
| | - Daniela Zuccarello
- U.O.C. Genetica e Epidemiologia Clinica, A.O.U. di Padova, Padova, Italy
| | - Antonio Novelli
- U.O.C. Laboratorio di Genetica Medica, Ospedale Pediatrico del Bambino Gesù, Roma, Italy
| | - Lidia Larizza
- Lab. di Citogenetica Medica, Istituto Auxologico Italiano, IRCCS, Milano, Italy
| | - Daniela Giardino
- Lab. di Citogenetica Medica, Istituto Auxologico Italiano, IRCCS, Milano, Italy
| |
Collapse
|
269
|
Tilot AK, Vino A, Kucera KS, Carmichael DA, van den Heuvel L, den Hoed J, Sidoroff-Dorso AV, Campbell A, Porteous DJ, St Pourcain B, van Leeuwen TM, Ward J, Rouw R, Simner J, Fisher SE. Investigating genetic links between grapheme-colour synaesthesia and neuropsychiatric traits. Philos Trans R Soc Lond B Biol Sci 2019; 374:20190026. [PMID: 31630655 PMCID: PMC6834005 DOI: 10.1098/rstb.2019.0026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2019] [Indexed: 12/22/2022] Open
Abstract
Synaesthesia is a neurological phenomenon affecting perception, where triggering stimuli (e.g. letters and numbers) elicit unusual secondary sensory experiences (e.g. colours). Family-based studies point to a role for genetic factors in the development of this trait. However, the contributions of common genomic variation to synaesthesia have not yet been investigated. Here, we present the SynGenes cohort, the largest genotyped collection of unrelated people with grapheme-colour synaesthesia (n = 723). Synaesthesia has been associated with a range of other neuropsychological traits, including enhanced memory and mental imagery, as well as greater sensory sensitivity. Motivated by the prior literature on putative trait overlaps, we investigated polygenic scores derived from published genome-wide scans of schizophrenia and autism spectrum disorder (ASD), comparing our SynGenes cohort to 2181 non-synaesthetic controls. We found a very slight association between schizophrenia polygenic scores and synaesthesia (Nagelkerke's R2 = 0.0047, empirical p = 0.0027) and no significant association for scores related to ASD (Nagelkerke's R2 = 0.00092, empirical p = 0.54) or body mass index (R2 = 0.00058, empirical p = 0.60), included as a negative control. As sample sizes for studying common genomic variation continue to increase, genetic investigations of the kind reported here may yield novel insights into the shared biology between synaesthesia and other traits, to complement findings from neuropsychology and brain imaging. This article is part of a discussion meeting issue 'Bridging senses: novel insights from synaesthesia'.
Collapse
Affiliation(s)
- Amanda K. Tilot
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, 6525 XD Nijmegen, The Netherlands
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA 90033, USA
| | - Arianna Vino
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, 6525 XD Nijmegen, The Netherlands
| | - Katerina S. Kucera
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, 6525 XD Nijmegen, The Netherlands
| | - Duncan A. Carmichael
- School of Applied Sciences, Edinburgh Napier University, Sighthill Court, Edinburgh EH11 4BN, UK
| | - Loes van den Heuvel
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, 6525 XD Nijmegen, The Netherlands
| | - Joery den Hoed
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, 6525 XD Nijmegen, The Netherlands
| | | | - Archie Campbell
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
- Usher Institute for Population Health Sciences and Informatics, University of Edinburgh, Edinburgh EH16 4UX, UK
| | - David J. Porteous
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh EH8 9JZ, UK
| | - Beate St Pourcain
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, 6525 XD Nijmegen, The Netherlands
| | - Tessa M. van Leeuwen
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6500 HE Nijmegen, The Netherlands
| | - Jamie Ward
- School of Psychology, University of Sussex, Brighton BN1 9RH, UK
| | - Romke Rouw
- Department of Psychology, University of Amsterdam, 1018 WT Amsterdam, The Netherlands
| | - Julia Simner
- School of Psychology, University of Sussex, Brighton BN1 9RH, UK
| | - Simon E. Fisher
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, 6525 XD Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6500 HE Nijmegen, The Netherlands
| |
Collapse
|
270
|
Hoffmann A, Ziller M, Spengler D. Progress in iPSC-Based Modeling of Psychiatric Disorders. Int J Mol Sci 2019; 20:E4896. [PMID: 31581684 PMCID: PMC6801734 DOI: 10.3390/ijms20194896] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 09/29/2019] [Accepted: 09/30/2019] [Indexed: 12/19/2022] Open
Abstract
Progress in iPSC-based cellular systems provides new insights into human brain development and early neurodevelopmental deviations in psychiatric disorders. Among these, studies on schizophrenia (SCZ) take a prominent role owing to its high heritability and multifarious evidence that it evolves from a genetically induced vulnerability in brain development. Recent iPSC studies on patients with SCZ indicate that functional impairments of neural progenitor cells (NPCs) in monolayer culture extend to brain organoids by disrupting neocorticogenesis in an in vitro model. In addition, the formation of hippocampal circuit-like structures in vitro is impaired in patients with SCZ as is the case for glia development. Intriguingly, chimeric-mice experiments show altered oligodendrocyte and astrocyte development in vivo that highlights the importance of cell-cell interactions in the pathogenesis of early-onset SCZ. Likewise, cortical imbalances in excitatory-inhibitory signaling may result from a cell-autonomous defect in cortical interneuron (cIN) development. Overall, these findings indicate that genetic risk in SCZ impacts neocorticogenesis, hippocampal circuit formation, and the development of distinct glial and neuronal subtypes. In light of this remarkable progress, we discuss current limitations and further steps necessary to harvest the full potential of iPSC-based investigations on psychiatric disorders.
Collapse
Affiliation(s)
- Anke Hoffmann
- Department of Translational Research in Psychiatry, Max-Planck Institute of Psychiatry, 80804 Munich, Germany.
| | - Michael Ziller
- Department of Translational Research in Psychiatry, Max-Planck Institute of Psychiatry, 80804 Munich, Germany.
| | - Dietmar Spengler
- Department of Translational Research in Psychiatry, Max-Planck Institute of Psychiatry, 80804 Munich, Germany.
| |
Collapse
|
271
|
Yang G, Shcheglovitov A. Probing disrupted neurodevelopment in autism using human stem cell-derived neurons and organoids: An outlook into future diagnostics and drug development. Dev Dyn 2019; 249:6-33. [PMID: 31398277 DOI: 10.1002/dvdy.100] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 07/23/2019] [Accepted: 07/31/2019] [Indexed: 12/11/2022] Open
Abstract
Autism spectrum disorders (ASDs) represent a spectrum of neurodevelopmental disorders characterized by impaired social interaction, repetitive or restrictive behaviors, and problems with speech. According to a recent report by the Centers for Disease Control and Prevention, one in 68 children in the US is diagnosed with ASDs. Although ASD-related diagnostics and the knowledge of ASD-associated genetic abnormalities have improved in recent years, our understanding of the cellular and molecular pathways disrupted in ASD remains very limited. As a result, no specific therapies or medications are available for individuals with ASDs. In this review, we describe the neurodevelopmental processes that are likely affected in the brains of individuals with ASDs and discuss how patient-specific stem cell-derived neurons and organoids can be used for investigating these processes at the cellular and molecular levels. Finally, we propose a discovery pipeline to be used in the future for identifying the cellular and molecular deficits and developing novel personalized therapies for individuals with idiopathic ASDs.
Collapse
Affiliation(s)
- Guang Yang
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, Utah.,Neuroscience Graduate Program, University of Utah, Salt Lake City, Utah
| | - Alex Shcheglovitov
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, Utah.,Neuroscience Graduate Program, University of Utah, Salt Lake City, Utah
| |
Collapse
|
272
|
Convergence in neuropsychiatric research. Nat Methods 2019; 16:961-964. [PMID: 31537909 DOI: 10.1038/s41592-019-0578-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
273
|
Ziats CA, Rennert OM, Ziats MN. Toward a Pathway-Driven Clinical-Molecular Framework for Classifying Autism Spectrum Disorders. Pediatr Neurol 2019; 98:46-52. [PMID: 31272785 DOI: 10.1016/j.pediatrneurol.2019.05.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/30/2019] [Accepted: 05/06/2019] [Indexed: 10/26/2022]
Abstract
BACKGROUND The current classification system of neurodevelopmental disorders is based on clinical criteria; however, this method alone fails to incorporate what is now known about genomic similarities and differences between closely related clinical neurodevelopmental disorders. Here we present an alternative clinical molecular classification system of neurodevelopmental disorders based on shared molecular and cellular pathways, using syndromes with autistic features as examples. METHODS Using the Online Mendelian Inheritance in Man database, we identified 83 syndromes that had "autism" as a feature of disease, which in combination were associated with 69 autism disease-causing genes. Using annotation terms generated from the DAVID annotation tool, we grouped each gene and its associated autism syndrome into three biological pathways: ion transport, cellular synaptic function, and transcriptional regulation. RESULTS The majority of the autism syndromes we analyzed (54 of 83) enriched for processes related to transcriptional regulation and were associated with more non-neurologic symptoms and co-morbid psychiatric disease when compared with the other two pathways studied. Disorders with disrupted cellular synaptic function had significantly more motor-related symptoms when compared with the other groups of disorders. CONCLUSION Our pathway-based classification system identified unique clinical characteristics within each group that may help guide clinical diagnosis, prognosis, and treatment. These results suggest that shifting current clinical classification of autism disorders toward molecularly driven, pathway-related diagnostic groups such as this may more precisely guide clinical decision making and may be informative for future clinical trial and drug development approaches.
Collapse
Affiliation(s)
- Catherine A Ziats
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland.
| | - Owen M Rennert
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - Mark N Ziats
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
274
|
Molnár Z, Clowry GJ, Šestan N, Alzu'bi A, Bakken T, Hevner RF, Hüppi PS, Kostović I, Rakic P, Anton ES, Edwards D, Garcez P, Hoerder‐Suabedissen A, Kriegstein A. New insights into the development of the human cerebral cortex. J Anat 2019; 235:432-451. [PMID: 31373394 PMCID: PMC6704245 DOI: 10.1111/joa.13055] [Citation(s) in RCA: 226] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2019] [Indexed: 12/12/2022] Open
Abstract
The cerebral cortex constitutes more than half the volume of the human brain and is presumed to be responsible for the neuronal computations underlying complex phenomena, such as perception, thought, language, attention, episodic memory and voluntary movement. Rodent models are extremely valuable for the investigation of brain development, but cannot provide insight into aspects that are unique or highly derived in humans. Many human psychiatric and neurological conditions have developmental origins but cannot be studied adequately in animal models. The human cerebral cortex has some unique genetic, molecular, cellular and anatomical features, which need to be further explored. The Anatomical Society devoted its summer meeting to the topic of Human Brain Development in June 2018 to tackle these important issues. The meeting was organized by Gavin Clowry (Newcastle University) and Zoltán Molnár (University of Oxford), and held at St John's College, Oxford. The participants provided a broad overview of the structure of the human brain in the context of scaling relationships across the brains of mammals, conserved principles and recent changes in the human lineage. Speakers considered how neuronal progenitors diversified in human to generate an increasing variety of cortical neurons. The formation of the earliest cortical circuits of the earliest generated neurons in the subplate was discussed together with their involvement in neurodevelopmental pathologies. Gene expression networks and susceptibility genes associated to neurodevelopmental diseases were discussed and compared with the networks that can be identified in organoids developed from induced pluripotent stem cells that recapitulate some aspects of in vivo development. New views were discussed on the specification of glutamatergic pyramidal and γ-aminobutyric acid (GABA)ergic interneurons. With the advancement of various in vivo imaging methods, the histopathological observations can be now linked to in vivo normal conditions and to various diseases. Our review gives a general evaluation of the exciting new developments in these areas. The human cortex has a much enlarged association cortex with greater interconnectivity of cortical areas with each other and with an expanded thalamus. The human cortex has relative enlargement of the upper layers, enhanced diversity and function of inhibitory interneurons and a highly expanded transient subplate layer during development. Here we highlight recent studies that address how these differences emerge during development focusing on diverse facets of our evolution.
Collapse
Affiliation(s)
- Zoltán Molnár
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
| | - Gavin J. Clowry
- Institute of NeuroscienceNewcastle UniversityNewcastle upon TyneUK
| | - Nenad Šestan
- Department of Neuroscience, Yale University School of MedicineNew HavenCTUSA
| | - Ayman Alzu'bi
- Department of Basic Medical SciencesFaculty of MedicineYarmouk UniversityIrbidJordan
| | | | | | - Petra S. Hüppi
- Dept. de l'enfant et de l'adolescentHôpitaux Universitaires de GenèveGenèveSwitzerland
| | - Ivica Kostović
- Croatian Institute for Brain ResearchSchool of MedicineUniversity of ZagrebZagrebCroatia
| | - Pasko Rakic
- Department of Neuroscience, Yale University School of MedicineNew HavenCTUSA
| | - E. S. Anton
- UNC Neuroscience CenterDepartment of Cell and Molecular PhysiologyThe University of North Carolina School of MedicineChapel HillNCUSA
| | - David Edwards
- Centre for the Developing BrainBiomedical Engineering and Imaging Sciences,King's College LondonLondonUK
| | - Patricia Garcez
- Federal University of Rio de Janeiro, UFRJInstitute of Biomedical SciencesRio de JaneiroBrazil
| | | | - Arnold Kriegstein
- Department of NeurologyUniversity of California, San Francisco (UCSF)San FranciscoCAUSA
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell ResearchUCSFSan FranciscoCAUSA
| |
Collapse
|
275
|
Abstract
OBJECTIVE The immune system has been suggested to be associated with neuropsychiatric disorders; for example, elevated levels of cytokines and the inflammation-related transcription factor nuclear factor kappa-B (NF-κB) have been reported in individuals with autism spectrum disorder (ASD). The aim of this study was to investigate possible associations between autistic-like traits (ALTs) and single nucleotide polymorphisms (SNPs) in NFKB1 (encoding a subunit of the NF-κB protein complex) and NF-κB inhibitor-like protein 1 (NFKBIL1). METHODS The study was conducted in a cohort from the general population: The Child and Adolescent Twin Study in Sweden (CATSS, n = 12 319, 9-12 years old). The subjects were assessed by the Autism-Tics, ADHD, and Other Comorbidities Inventory. Five SNPs within the two genes were genotyped (NFKBIL1: rs2857605, rs2239707, rs2230365 and rs2071592; NFKB1: rs4648022). RESULTS We found significant associations for two SNPs in NFKBIL1: rs2239707 showed a significant distribution of genotype frequencies in the case-control analysis both for all individuals combined and in boys only, and rs2230365 was significantly associated with the ALTs-module language impairment in boys only. Furthermore, we found nominal association in the case-control study for rs2230365, replicating earlier association between this SNP and ASD in an independent genome-wide association study. CONCLUSION The shown associations between polymorphisms in NFKBIL1 and ALTs are supporting an influence of the immune system on neuropsychiatric symptoms.
Collapse
|
276
|
Affiliation(s)
- Jordan W Smoller
- Department of Psychiatry and Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston; and Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Mass
| |
Collapse
|
277
|
Hoffmann A, Spengler D. Chromatin Remodeling Complex NuRD in Neurodevelopment and Neurodevelopmental Disorders. Front Genet 2019; 10:682. [PMID: 31396263 PMCID: PMC6667665 DOI: 10.3389/fgene.2019.00682] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 07/01/2019] [Indexed: 01/22/2023] Open
Abstract
The nucleosome remodeling and deacetylase (NuRD) complex presents one of the major chromatin remodeling complexes in mammalian cells. Here, we discuss current evidence for NuRD's role as an important epigenetic regulator of gene expression in neural stem cell (NSC) and neural progenitor cell (NPC) fate decisions in brain development. With the formation of the cerebellar and cerebral cortex, NuRD facilitates experience-dependent cerebellar plasticity and regulates additionally cerebral subtype specification and connectivity in postmitotic neurons. Consistent with these properties, genetic variation in NuRD's subunits emerges as important risk factor in common polygenic forms of neurodevelopmental disorders (NDDs) and neurodevelopment-related psychiatric disorders such as schizophrenia (SCZ) and bipolar disorder (BD). Overall, these findings highlight the critical role of NuRD in chromatin regulation in brain development and in mental health and disease.
Collapse
Affiliation(s)
| | - Dietmar Spengler
- Epigenomics of Early Life, Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| |
Collapse
|
278
|
Lamonica JM, Zhou Z. Disentangling chromatin architecture to gain insights into the etiology of brain disorders. Curr Opin Genet Dev 2019; 55:76-81. [PMID: 31323465 DOI: 10.1016/j.gde.2019.06.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 06/09/2019] [Accepted: 06/15/2019] [Indexed: 11/25/2022]
Abstract
Chromatin organization, together with DNA and histone modifications, is directly linked to the spatiotemporal control of gene expression that specifies and maintains cell type-specific functions. This is particularly important in the brain where hundreds of cell types with distinct functions reside. Recent advances in molecular and computational technologies have enabled the query of chromatin architecture at unprecedented resolution and detail. Here, we review recent studies on the emerging importance of chromatin architecture in the pathogenesis of brain disorders, with emphasis on schizophrenia, autism spectrum disorders (ASD), and unstable repeat expansion disorders. These studies provide molecular insights into how these brain disorders arise at the level of chromatin architecture and implicate new therapeutic directions.
Collapse
Affiliation(s)
- Janine M Lamonica
- Department of Genetics and Epigenetics Institute, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Zhaolan Zhou
- Department of Genetics and Epigenetics Institute, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
279
|
Warrier V, Baron-Cohen S. Mapping genotype to phenotype in neurodevelopmental copy number variants. Lancet Psychiatry 2019; 6:455-456. [PMID: 31056459 DOI: 10.1016/s2215-0366(19)30163-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 04/10/2019] [Indexed: 01/01/2023]
Affiliation(s)
- Varun Warrier
- Autism Research Centre, University of Cambridge, Cambridge CB2 8AH, UK.
| | - Simon Baron-Cohen
- Autism Research Centre, University of Cambridge, Cambridge CB2 8AH, UK
| |
Collapse
|
280
|
McIntosh AM, Sullivan PF, Lewis CM. Uncovering the Genetic Architecture of Major Depression. Neuron 2019; 102:91-103. [PMID: 30946830 PMCID: PMC6482287 DOI: 10.1016/j.neuron.2019.03.022] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/05/2019] [Accepted: 03/14/2019] [Indexed: 12/21/2022]
Abstract
There have been several recent studies addressing the genetic architecture of depression. This review serves to take stock of what is known now about the genetics of depression, how it has increased our knowledge and understanding of its mechanisms, and how the information and knowledge can be leveraged to improve the care of people affected. We identify four priorities for how the field of MD genetics research may move forward in future years, namely by increasing the sample sizes available for genome-wide association studies (GWASs), greater inclusion of diverse ancestries and low-income countries, the closer integration of psychiatric genetics with electronic medical records, and the development of the neuroscience toolkit for polygenic disorders.
Collapse
Affiliation(s)
- Andrew M McIntosh
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK; Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK.
| | - Patrick F Sullivan
- Departments of Genetics and Psychiatry, University of North Carolina, Chapel Hill, NC, USA; Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Cathryn M Lewis
- Social, Genetic and Developmental Psychiatry Centre, King's College London, London, UK; Department of Medical and Molecular Genetics, King's College London, London UK
| |
Collapse
|
281
|
Katsuki A, Kakeda S, Watanabe K, Igata R, Otsuka Y, Kishi T, Nguyen L, Ueda I, Iwata N, Korogi Y, Yoshimura R. A single-nucleotide polymorphism influences brain morphology in drug-naïve patients with major depressive disorder. Neuropsychiatr Dis Treat 2019; 15:2425-2432. [PMID: 31692503 PMCID: PMC6711561 DOI: 10.2147/ndt.s204461] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 05/02/2019] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE Recently, a genome-wide association study successfully identified genetic variants associated with major depressive disorder (MDD). The study identified 17 independent single-nucleotide polymorphisms (SNPs) significantly associated with diagnosis of MDD. These SNPs were predicted to be enriched in genes that are expressed in the central nervous system and function in transcriptional regulation associated with neurodevelopment. The study aimed to investigate associations between 17 SNPs and brain morphometry using magnetic resonance imaging (MRI) in drug-naïve patients with MDD and healthy controls (HCs). METHODS Forty-seven patients with MDD and 42 HCs were included. All participants underwent T1-weighted structural MRI and genotyping. The genotype-diagnosis interactions associated with regional cortical thicknesses were evaluated using voxel-based morphometry for the 17 SNPs. RESULTS Regarding rs301806, an SNP in the RERE genomic regions, we found a significant difference in a genotype effect in the right-lateral orbitofrontal and postcentral lobes between diagnosis groups. After testing every possible diagnostic comparison, the genotype-diagnosis interaction in these areas revealed that the cortical thickness reductions in the MDD group relative to those in the HC group were significantly larger in T/T individuals than in C-carrier ones. For the other SNPs, no brain area was noted where a genotype effect significantly differed between the two groups. CONCLUSIONS We found that a RERE gene SNP was associated with cortical thickness reductions in the right-lateral orbitofrontal and postcentral lobes in drug-naïve patients with MDD. The effects of RERE gene polymorphism and gene-environment interactions may exist in brain structures of patients with MDD.
Collapse
Affiliation(s)
- Asuka Katsuki
- Department of Psychiatry, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 8078555, Japan
| | - Shingo Kakeda
- Department of Radiology, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 8078555, Japan
| | - Keita Watanabe
- Department of Radiology, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 8078555, Japan
| | - Ryohei Igata
- Department of Psychiatry, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 8078555, Japan
| | - Yuka Otsuka
- Department of Psychiatry, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 8078555, Japan
| | - Taro Kishi
- Department of Psychiatry, Fujita Health University, Toyoake, Aichi 4701192, Japan
| | - LeHoa Nguyen
- Department of Psychiatry, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 8078555, Japan
| | - Issei Ueda
- Department of Radiology, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 8078555, Japan
| | - Nakao Iwata
- Department of Psychiatry, Fujita Health University, Toyoake, Aichi 4701192, Japan
| | - Yukunori Korogi
- Department of Radiology, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 8078555, Japan
| | - Reiji Yoshimura
- Department of Psychiatry, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 8078555, Japan
| |
Collapse
|