251
|
Emodin Alleviates High-Glucose-Induced Pancreatic β-Cell Pyroptosis by Inhibiting NLRP3/GSDMD Signaling. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:5276832. [PMID: 35265148 PMCID: PMC8898799 DOI: 10.1155/2022/5276832] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 12/22/2022]
Abstract
Diabetes mellitus (DM) is a chronic noninfectious disease that is mainly featured by pancreatic β-cell (β-cell) dysfunction and impaired glucose homeostasis. Currently, the pathogenesis of dysfunction of the β-cells in DM remains unclear, and therapeutic approaches to it are limited. Emodin (EMD), a natural anthraquinone derivative, has been preliminarily proven to show antidiabetic effects. However, the underlying mechanism of EMD on β-cells still needs to be elucidated. In this study, we investigated the protective effects of EMD on the high glucose (50 mM)-induced INS-1 cell line and the underlying mechanism. INS-1 cells were treated with EMD (5, 10, and 20 μM) when exposed to high glucose. The effects of EMD were examined by using the inverted phase-contrast microscope, qRT-PCR, ELISA, and western blot. The results showed that EMD could alleviate cellular morphological changes, suppress IL-1β and LDH release, and promote insulin secretion in high-glucose-induced INS-1 cells. Furthermore, EMD inhibits NOD-like receptor protein 3 (NLRP3) activation and gasdermin D (GSDMD) cleavage to alleviate pyroptosis induced by high glucose. Overexpression of NLRP3 reversed the above changes caused by EMD. Collectively, our findings suggest that EMD attenuates high-glucose-induced β-cell pyroptosis by inhibiting NLRP3/GSDMD signaling.
Collapse
|
252
|
Chen Z, Wang N, Yao Y, Yu D. Context-dependent regulation of follicular helper T cell survival. Trends Immunol 2022; 43:309-321. [DOI: 10.1016/j.it.2022.02.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/03/2022] [Accepted: 02/07/2022] [Indexed: 02/07/2023]
|
253
|
Cao A, Kagan JC. Gasdermin Pore Forming Activities that Promote Inflammation from Living and Dead Cells. J Mol Biol 2022; 434:167427. [PMID: 34973239 PMCID: PMC8844208 DOI: 10.1016/j.jmb.2021.167427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/28/2021] [Accepted: 12/24/2021] [Indexed: 10/19/2022]
Abstract
Gasdermins are proteins that can self-assemble into membrane channels (also known as pores). These pores can serve as conduits for the secretion of cytosolic molecules, with the most commonly studied being members of the interleukin-1 family of cytokines. However, gasdermin pore forming activities must be tightly regulated, as the channels that they form can lead to a lytic form of cell death known as pyroptosis. Recent studies have revealed multiple mechanisms that control gasdermin activities within cells and identified gasdermin proteins in organisms as diverse as bacteria, humans and yeast. In this Review, we discuss the molecular and cellular mechanisms that regulate gasdermin pore formation. These mechanisms of gasdermin regulation likely explain the flexibility of these proteins to display cell type specific (and potentially organism specific) functions.
Collapse
Affiliation(s)
- Anh Cao
- Harvard Medical School and Division of Gastroenterology, Boston Children's Hospital Boston, Massachusetts, USA, 02115
| | - Jonathan C. Kagan
- Harvard Medical School and Division of Gastroenterology, Boston Children's Hospital Boston, Massachusetts, USA, 02115,Correspondence:
| |
Collapse
|
254
|
Mechanisms and Consequences of Noncanonical Inflammasome-Mediated Pyroptosis. J Mol Biol 2022; 434:167245. [PMID: 34537239 PMCID: PMC8844060 DOI: 10.1016/j.jmb.2021.167245] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/07/2021] [Accepted: 09/07/2021] [Indexed: 12/13/2022]
Abstract
The noncanonical inflammasome, comprising inflammatory caspases 4, 5, or 11, monitors the cytosol for bacterial lipopolysaccharide (LPS). Intracellular LPS-elicited autoproteolysis of these inflammatory caspases leads to the cleavage of the pore-forming protein gasdermin D (GSDMD). GSDMD pore formation induces a lytic form of cell death known as pyroptosis and the release of inflammatory cytokines and DAMPs, thereby promoting inflammation. The noncanonical inflammasome-dependent innate sensing of cytosolic LPS plays important roles in bacterial infections and sepsis pathogenesis. Exciting studies in the recent past have significantly furthered our understanding of the biochemical and structural basis of the caspase-4/11 activation of GSDMD, caspase-4/11's substrate specificity, and the biological consequences of noncanonical inflammasome activation of GSDMD. This review will discuss these recent advances and highlight the remaining gaps in our understanding of the noncanonical inflammasome and pyroptosis.
Collapse
|
255
|
Chen Y, Luo R, Li J, Wang S, Ding J, Zhao K, Lu B, Zhou W. Intrinsic Radical Species Scavenging Activities of Tea Polyphenols Nanoparticles Block Pyroptosis in Endotoxin-Induced Sepsis. ACS NANO 2022; 16:2429-2441. [PMID: 35133795 DOI: 10.1021/acsnano.1c08913] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Sepsis, a life-threating illness caused by deregulated host immune responses to infections, is characterized by overproduction of multiple reactive oxygen and nitrogen species (RONS) and excessive pyroptosis, leading to high mortality. However, there is still no approved specific molecular therapy to treat sepsis. Here we reported drug-free tea polyphenols nanoparticles (TPNs) with intrinsic broad-spectrum RONS scavenging and pyroptosis-blocking activities to treat endotoxin (LPS)-induced sepsis in mice. The RONS scavenging activities originated from the polyphenols-derived structure, while the pyroptosis blockage was achieved by inhibiting gasdermin D (GSDMD) mediating the pore formation and membrane rupture, showing multifunctionalities for sepsis therapy. Notably, TPNs suppress GSDMD by inhibiting the oligomerization of GSDMD rather than the cleavage of GSDMD, thus displaying high pyroptosis-inhibition efficiency. As a result, TPNs showed an excellent therapeutic efficacy in sepsis mice model, as evidenced by survival rate improvement, hypothermia amelioration, and the organ damage protection. Collectively, TPNs present biocompatible candidates for the treatment of sepsis.
Collapse
Affiliation(s)
- Yuan Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
- Department of Pharmacy, The First People's Hospital of Changde City, Changde, Hunan 415003, China
| | - Ruiheng Luo
- Hematology and Department of Critical Care Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Jing Li
- Hematology and Department of Critical Care Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Shengfeng Wang
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Jinsong Ding
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Kai Zhao
- Hematology and Department of Critical Care Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Ben Lu
- Hematology and Department of Critical Care Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
- Department of Pathophysiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410000, P. R. China
- Key Laboratory of Sepsis and Translational Medicine, School of Basic Medical Science, Central South University, Changsha, Hunan 410000, P. R. China
| | - Wenhu Zhou
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| |
Collapse
|
256
|
Abstract
Mitochondria are dynamic organelles vital for energy production with now appreciated roles in immune defense. During microbial infection, mitochondria serve as signaling hubs to induce immune responses to counteract invading pathogens like viruses. Mitochondrial functions are central to a variety of antiviral responses including apoptosis and type I interferon signaling (IFN-I). While apoptosis and IFN-I mediated by mitochondrial antiviral signaling (MAVS) are well-established defenses, new dimensions of mitochondrial biology are emerging as battlefronts during viral infection. Increasingly, it has become apparent that mitochondria serve as reservoirs for distinct cues that trigger immune responses and that alterations in mitochondrial morphology may also tip infection outcomes. Furthermore, new data are foreshadowing pivotal roles for classic, homeostatic facets of this organelle as host-virus interfaces, namely, the tricarboxylic acid (TCA) cycle and electron transport chain (ETC) complexes like respiratory supercomplexes. Underscoring the importance of "housekeeping" mitochondrial activities in viral infection is the growing list of viral-encoded inhibitors including mimics derived from cellular genes that antagonize these functions. For example, virologs for ETC factors and several enzymes from the TCA cycle have been recently identified in DNA virus genomes and serve to pinpoint new vulnerabilities during infection. Here, we highlight recent advances for known antiviral functions associated with mitochondria as well as where the next battlegrounds may be based on viral effectors. Collectively, new methodology and mechanistic insights over the coming years will strengthen our understanding of how an ancient molecular truce continues to defend cells against viruses.
Collapse
Affiliation(s)
- Mahsa Sorouri
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Tyron Chang
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Genetics, Disease, and Development Graduate Program, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Dustin C Hancks
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
257
|
Zhuang J, Xie L, Zheng L. A Glimpse of Programmed Cell Death Among Bacteria, Animals, and Plants. Front Cell Dev Biol 2022; 9:790117. [PMID: 35223864 PMCID: PMC8866957 DOI: 10.3389/fcell.2021.790117] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/24/2021] [Indexed: 12/15/2022] Open
Abstract
Programmed cell death (PCD) in animals mainly refers to lytic and non-lytic forms. Disruption and integrity of the plasma membrane are considered as hallmarks of lytic and apoptotic cell death, respectively. These lytic cell death programs can prevent the hosts from microbial pathogens. The key to our understanding of these cases is pattern recognition receptors, such as TLRs in animals and LRR-RLKs in plants, and nod-like receptors (NLRs). Herein, we emphatically discuss the biochemical and structural studies that have clarified the anti-apoptotic and pro-apoptotic functions of Bcl-2 family proteins during intrinsic apoptosis and how caspase-8 among apoptosis, necroptosis, and pyroptosis sets the switchable threshold and integrates innate immune signaling, and that have compared the similarity and distinctness of the apoptosome, necroptosome, and inflammasome. We recapitulate that the necroptotic MLKL pore, pyroptotic gasdermin pore, HR-inducing resistosome, and mitochondrial Bcl-2 family all can form ion channels, which all directly boost membrane disruption. Comparing the conservation and unique aspects of PCD including ferrroptosis among bacteria, animals, and plants, the commonly shared immune domains including TIR-like, gasdermin-like, caspase-like, and MLKL/CC-like domains act as arsenal modules to restructure the diverse architecture to commit PCD suicide upon stresses/stimuli for host community.
Collapse
Affiliation(s)
- Jun Zhuang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, China
- *Correspondence: Jun Zhuang,
| | - Li Xie
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Luping Zheng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
258
|
Foley A, Steinberg BE, Goldenberg NM. Inflammasome Activation in Pulmonary Arterial Hypertension. Front Med (Lausanne) 2022; 8:826557. [PMID: 35096915 PMCID: PMC8792742 DOI: 10.3389/fmed.2021.826557] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 12/20/2021] [Indexed: 01/01/2023] Open
Abstract
Inflammasomes are multi-protein complexes that sense both infectious and sterile inflammatory stimuli, launching a cascade of responses to propagate danger signaling throughout an affected tissue. Recent studies have implicated inflammasome activation in a variety of pulmonary diseases, including pulmonary arterial hypertension (PAH). Indeed, the end-products of inflammasome activation, including interleukin (IL)-1β, IL-18, and lytic cell death (“pyroptosis”) are all key biomarkers of PAH, and are potentially therapeutic targets for human disease. This review summarizes current knowledge of inflammasome activation in immune and vascular cells of the lung, with a focus on the role of these pathways in the pathogenesis of PAH. Special emphasis is placed on areas of potential drug development focused on inhibition of inflammasomes and their downstream effectors.
Collapse
Affiliation(s)
- Anna Foley
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Benjamin E Steinberg
- Department of Physiology, University of Toronto, Toronto, ON, Canada.,Department of Anesthesia and Pain Medicine, The Hospital for Sick Children, The University of Toronto, Toronto, ON, Canada
| | - Neil M Goldenberg
- Department of Physiology, University of Toronto, Toronto, ON, Canada.,Department of Anesthesia and Pain Medicine, The Hospital for Sick Children, The University of Toronto, Toronto, ON, Canada
| |
Collapse
|
259
|
Voutsadakis IA. Biomarkers of everolimus efficacy in breast cancer therapy. J Oncol Pharm Pract 2022; 28:945-959. [PMID: 35018844 DOI: 10.1177/10781552211073673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Everolimus is an inhibitor of serine/ threonine kinase mTOR. The drug is approved for the treatment of metastatic ER positive, HER2 negative breast cancers and benefits a subset of patients with these breast cancers in combination with hormonal therapies. Despite extensive efforts, no additional predictive biomarkers to guide therapeutic decisions for everolimus have been introduced in clinical practice. DATA SOURCES This paper discusses predictive biomarkers for everolimus efficacy in breast cancer. A search of the medline and web of science databases was performed using the words "everolimus" and "biomarkers". References of retrieved articles were manually scanned for additional relevant articles. DATA SUMMARY Everolimus benefits a subset of patients with metastatic ER positive, HER2 negative breast cancers in combination with hormonal therapies. Despite extensive efforts no additional predictive biomarkers to guide therapeutic decisions for everolimus therapy have been confirmed for use in clinical practice. However, promising biomarker leads for everolimus efficacy in breast cancer have been suggested and include expression of proteins in the mTOR pathway in ER positive, HER2 negative breast cancers. In HER2 positive cancers PIK3CA mutations, and PTEN expression loss are prognostic. Other clinical predictive biomarkers with more limited data include characteristics derived from whole genome sequencing, subsets of circulating leukocytes and changes in Standardized Uptake Values (SUV) of Positron Emission Tomography (PET) scans. CONCLUSIONS Putative predictive biomarkers for everolimus efficacy in breast cancer patients, both genomic and clinical, deserve further study and could lead to a better selection of responsive patients.
Collapse
Affiliation(s)
- Ioannis A Voutsadakis
- Algoma District Cancer Program, 10066Sault Area Hospital, Sault Ste. Marie, Ontario, Canada, and Section of Internal Medicine, Division of Clinical Sciences, Northern Ontario School of Medicine, Sudbury, Ontario, Canada
| |
Collapse
|
260
|
Wang S, Liu Y, Zhang L, Sun Z. Methods for monitoring cancer cell pyroptosis. Cancer Biol Med 2021; 19:j.issn.2095-3941.2021.0504. [PMID: 34931767 PMCID: PMC9088190 DOI: 10.20892/j.issn.2095-3941.2021.0504] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/01/2021] [Indexed: 11/11/2022] Open
Abstract
Pyroptosis is a form of proinflammatory cell death that depends on the gasdermin family of proteins. The main features of pyroptosis are altered membrane permeability, cell swelling, membrane rupture, and the ability to mobilize a strong immune response. The relationship between pyroptosis and cancer has become a popular topic in immunological research. Multiple strategies for inducing pyroptosis in cancer cells have been developed for cancer therapy, including chemotherapy, small molecule drugs, and nanomedicines. In this review, we systematically discuss recent advances in research on the mechanisms of pyroptosis, and compare pyroptosis with apoptosis and necroptosis from several aspects. The development of various experimental systems has accompanied rapid progress in this field, but little consensus on monitoring pyroptosis is currently available. We focus on techniques commonly used to monitor pyroptosis, and describe future techniques that may be used to increase our knowledge in this field. Overall, the advancement of pyroptosis detection methods will help researchers to better investigate the relationships between pyroptosis and various cancers, and should provide insights into the use of these promising tools for cancer treatments.
Collapse
Affiliation(s)
- Shuo Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Yuantong Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Lu Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Zhijun Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
- Department of Oral Maxillofacial-Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| |
Collapse
|
261
|
Molecular and structural aspects of gasdermin family pores and insights into gasdermin-elicited programmed cell death. Biochem Soc Trans 2021; 49:2697-2710. [PMID: 34812891 PMCID: PMC8786298 DOI: 10.1042/bst20210672] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 01/04/2023]
Abstract
Pyroptosis is a highly inflammatory and lytic type of programmed cell death (PCD) commenced by inflammasomes, which sense perturbations in the cytosolic environment. Recently, several ground-breaking studies have linked a family of pore-forming proteins known as gasdermins (GSDMs) to pyroptosis. The human genome encodes six GSDM proteins which have a characteristic feature of forming pores in the plasma membrane resulting in the disruption of cellular homeostasis and subsequent induction of cell death. GSDMs have an N-terminal cytotoxic domain and an auto-inhibitory C-terminal domain linked together through a flexible hinge region whose proteolytic cleavage by various enzymes releases the N-terminal fragment that can insert itself into the inner leaflet of the plasma membrane by binding to acidic lipids leading to pore formation. Emerging studies have disclosed the involvement of GSDMs in various modalities of PCD highlighting their role in diverse cellular and pathological processes. Recently, the cryo-EM structures of the GSDMA3 and GSDMD pores were resolved which have provided valuable insights into the pore formation process of GSDMs. Here, we discuss the current knowledge regarding the role of GSDMs in PCD, structural and molecular aspects of autoinhibition, and pore formation mechanism followed by a summary of functional consequences of gasdermin-induced membrane permeabilization.
Collapse
|
262
|
Li N, Wang Y, Wang X, Sun N, Gong YH. Pathway network of pyroptosis and its potential inhibitors in acute kidney injury. Pharmacol Res 2021; 175:106033. [PMID: 34915124 DOI: 10.1016/j.phrs.2021.106033] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 12/18/2022]
Abstract
Acute kidney injury (AKI) is a worldwide problem, and there is no effective drug to eliminate AKI. The death of renal cells is an important pathological basis of intrinsic AKI. At present, targeted therapy for TEC death is a research hotspot in AKI therapy. There are many ways of cell death involved in the occurrence and development of AKI, such as apoptosis, necrosis, ferroptosis, and pyroptosis. This article mainly focuses on the role of pyroptosis in AKI. The assembly and activation of NLRP3 inflammasome is a key event in the occurrence of pyroptosis, which is affected by many factors, such as the activation of the NF-κB signaling pathway, mitochondrial instability and excessive endoplasmic reticulum (ER) stress. The activation of NLRP3 inflammasome can trigger its downstream inflammatory cytokines, which will lead to pyroptosis and eventually induce AKI. In this paper, we reviewed the possible mechanism of pyroptosis in AKI and the potential effective inhibitors of various key targets in this process. It may provide potential therapeutic targets for novel intrinsic AKI therapies based on pyroptosis, so as to develop better therapeutic strategies.
Collapse
Affiliation(s)
- Ning Li
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China; Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou 325000, China
| | - Yuru Wang
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China; Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou 325000, China
| | - Xinyue Wang
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China; Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou 325000, China
| | - Na Sun
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China; Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou 325000, China
| | - Yan-Hua Gong
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China; Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou 325000, China.
| |
Collapse
|
263
|
Yin L, Yu L, He JC, Chen A. Controversies in Podocyte Loss: Death or Detachment? Front Cell Dev Biol 2021; 9:771931. [PMID: 34881244 PMCID: PMC8645964 DOI: 10.3389/fcell.2021.771931] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/03/2021] [Indexed: 12/21/2022] Open
Abstract
Glomerular podocytes are characterized by terminally differentiated epithelial cells with limited proliferating ability; thus, podocyte loss could not be fully compensated by podocyte regeneration. A large body of clinical studies collectively demonstrated that podocyte loss correlated with glomerular diseases progression. Both podocyte death and podocyte detachment lead to podocyte loss; however, which one is the main cause remains controversial. Up to date, multiple mechanisms are involved in podocyte death, including programmed apoptotic cell death (apoptosis and anoikis), programmed nonapoptotic cell death (autophagy, entosis, and podoptosis), immune-related cell death (pyroptosis), and other types of cell death (necroptosis and mitotic catastrophe-related cell death). Apoptosis is considered a common mechanism of podocyte loss; however, most of the data were generated in vitro and the evidence of in vivo podocyte apoptosis is limited. The isolation of podocytes in the urine and subsequent culture of urinary podocytes in vitro suggest that detachment of viable podocytes could be another important mechanism for podocyte loss. In this review, we summarize recent advances that address this controversial topic on the specific circumstances of podocyte loss.
Collapse
Affiliation(s)
- Lijun Yin
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Department of Nephrology, Institute of Nephrology, The Second Xiangya Hospital at Central South University, Changsha, China
| | - Lu Yu
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Department of Nephrology, Institute of Nephrology, The Second Xiangya Hospital at Central South University, Changsha, China.,Department of Health Sciences, Boston University College of Health and Rehabilitation Sciences: Sargent College, Boston University, Boston, MA, United States
| | - John Cijiang He
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Renal Program, James J. Peters Veterans Affairs Medical Center at Bronx, New York, NY, United States
| | - Anqun Chen
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Department of Nephrology, Institute of Nephrology, The Second Xiangya Hospital at Central South University, Changsha, China
| |
Collapse
|
264
|
Hu Y, Wang B, Li S, Yang S. Pyroptosis, and its Role in Central Nervous System Disease. J Mol Biol 2021; 434:167379. [PMID: 34838808 DOI: 10.1016/j.jmb.2021.167379] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 11/16/2021] [Accepted: 11/20/2021] [Indexed: 02/07/2023]
Abstract
Pyroptosis is an inflammatory form of cell death executed by transmembrane pore-forming proteins known as gasdermins and can be activated in an inflammasome-dependent or -independent manner. Inflammasome-dependent pyroptosis is triggered in response to pathogen-associated molecular patterns (PAMPs) or damage-associated molecular patterns (DAMPs) and has emerged as an important player in the pathogenesis of multiple inflammatory diseases, mainly by releasing inflammatory contents. More recently, numerous studies have revealed the intricate mechanisms of pyroptosis and its role in the development of neuroinflammation in central nervous system (CNS) diseases. In this review, we summarize current understandings of the molecular and regulatory mechanisms of pyroptosis. In addition, we discuss how pyroptosis can drive different forms of neurological diseases and new promising therapeutic strategies targeting pyroptosis that can be leveraged to treat neuroinflammation.
Collapse
Affiliation(s)
- Yingchao Hu
- Department of Immunology, Key Laboratory of Immunological Environment and Disease, Gusu School, State Key Laboratory of Reproductive Medicine, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Center for Global Health, Nanjing Medical University, Nanjing 211166, China
| | - Bingwei Wang
- Department of Pharmacology, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Sheng Li
- Department of Neurology, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.
| | - Shuo Yang
- Department of Immunology, Key Laboratory of Immunological Environment and Disease, Gusu School, State Key Laboratory of Reproductive Medicine, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Center for Global Health, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
265
|
Magupalli VG, Fontana P, Wu H. Ragulator-Rag and ROS TORment gasdermin D pore formation. Trends Immunol 2021; 42:948-950. [PMID: 34663551 PMCID: PMC8643276 DOI: 10.1016/j.it.2021.09.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 09/29/2021] [Accepted: 09/29/2021] [Indexed: 11/26/2022]
Abstract
Upon cleavage, the Gasdermin D (GSDMD) N-terminal fragment assembles into pores on the plasma membrane to orchestrate the lytic cell death known as pyroptosis. In a recent article, Evavold et al. showed that the Ragulator-Rag-mTORC1-ROS pathway controls the transition from cleavage and membrane localization to oligomerization and pore formation.
Collapse
Affiliation(s)
- Venkat Giri Magupalli
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.
| | - Pietro Fontana
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Hao Wu
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
266
|
Sollberger G. Approaching Neutrophil Pyroptosis. J Mol Biol 2021; 434:167335. [PMID: 34757055 DOI: 10.1016/j.jmb.2021.167335] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 01/21/2023]
Abstract
All cells must die at some point, and the dogma is that they do it either silently via apoptosis or via pro-inflammatory, lytic forms of death. Amongst these lytic cell death pathways, pyroptosis is one of the best characterized. Pyroptosis depends on inflammatory caspases which activate members of the gasdermin family of proteins, and it is associated with the release of the pro-inflammatory cytokines interleukin (IL)-1β and IL-18. Pyroptosis is an essential component of innate immunity, it initiates and amplifies inflammation and it removes the replication niche for intracellular pathogens. Most of the literature on pyroptosis focuses on monocytes and macrophages. However, the most abundant phagocytes in humans are neutrophils. This review addresses whether neutrophils undergo pyroptosis and the underlying mechanisms. Furthermore, I discuss how and why neutrophils might be able to resist pyroptosis.
Collapse
Affiliation(s)
- Gabriel Sollberger
- University of Dundee, School of Life Sciences, Division of Cell Signalling and Immunology, Dow Street, DD1 5EH Dundee, UK; Max Planck Institute for Infection Biology, Charitéplatz 1, 10117 Berlin, Germany.
| |
Collapse
|
267
|
Sarrió D, Martínez-Val J, Molina-Crespo Á, Sánchez L, Moreno-Bueno G. The multifaceted roles of gasdermins in cancer biology and oncologic therapies. Biochim Biophys Acta Rev Cancer 2021; 1876:188635. [PMID: 34656686 DOI: 10.1016/j.bbcan.2021.188635] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/28/2021] [Accepted: 10/10/2021] [Indexed: 12/18/2022]
Abstract
The involvement of the Gasdermin (GSDM) protein family in cancer and other pathologies is one of the hottest topics in biomedical research. There are six GSDMs in humans (GSDMA, B, C, D, GSDME/DFNA5 and PJVK/DFNB59) and, except PJVK, they can trigger cell death mostly by pyroptosis (a form of lytic and pro-inflammatory cell death) but also other mechanisms. The exact role of GSDMs in cancer is intricate, since depending on the biological context, these proteins have diverse cell-death dependent and independent functions, exhibit either pro-tumor or anti-tumor functions, and promote either sensitization or resistance to oncologic treatments. In this review we provide a comprehensive overview on the multifaceted roles of the GSDMs in cancer, and we critically discuss the possibilities of exploiting GSDM functions as determinants of anti-cancer treatment and as novel therapeutic targets, with special emphasis on innovative GSDM-directed nano-therapies. Finally, we discuss the issues to be resolved before GSDM-mediated oncologic therapies became a reality at the clinical level.
Collapse
Affiliation(s)
- David Sarrió
- Biochemistry Department, UAM, & IIBm "Alberto Sols" CSIC-UAM, c/ Arzobispo Morcillo 4, 28029 Madrid, Spain.; Centro de Investigación Biomédica en Red, área de Cáncer (CIBERONC), c/ Melchor Fernández Almagro 3, 28029 Madrid, Spain..
| | - Jeannette Martínez-Val
- Zoology, Genetics and Physical Anthropology Department, Santiago de Compostela University, Avda/ Alfonso X O Sabio s/n, 27002 Lugo, Spain
| | - Ángela Molina-Crespo
- Biochemistry Department, UAM, & IIBm "Alberto Sols" CSIC-UAM, c/ Arzobispo Morcillo 4, 28029 Madrid, Spain.; Centro de Investigación Biomédica en Red, área de Cáncer (CIBERONC), c/ Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Laura Sánchez
- Zoology, Genetics and Physical Anthropology Department, Santiago de Compostela University, Avda/ Alfonso X O Sabio s/n, 27002 Lugo, Spain
| | - Gema Moreno-Bueno
- Biochemistry Department, UAM, & IIBm "Alberto Sols" CSIC-UAM, c/ Arzobispo Morcillo 4, 28029 Madrid, Spain.; Centro de Investigación Biomédica en Red, área de Cáncer (CIBERONC), c/ Melchor Fernández Almagro 3, 28029 Madrid, Spain.; MD Anderson Cancer Center Foundation, c/ Arturo Soria 270, 28033 Madrid, Spain..
| |
Collapse
|
268
|
Li T, Zheng G, Li B, Tang L. Pyroptosis: A promising therapeutic target for noninfectious diseases. Cell Prolif 2021; 54:e13137. [PMID: 34590363 PMCID: PMC8560609 DOI: 10.1111/cpr.13137] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 09/09/2021] [Accepted: 09/20/2021] [Indexed: 12/11/2022] Open
Abstract
Pyroptosis, which is characterized by gasdermin family protein-mediated pore formation, cellular lysis and the release of pro-inflammatory cytokines, is a form of programmed cell death associated with intracellular pathogens-induced infection. However, emerging evidence indicates that pyroptosis also contributes to sterile inflammation. In this review, we will first illustrate the biological process of pyroptosis. Then, we will focus on the pathogenic effects of pyroptosis on multiple noninfectious disorders. At last, we will characterize several specific pyroptotic inhibitors targeting the pyroptotic signalling pathway. These data demonstrate that pyroptosis plays a prominent role in sterile diseases, thereby providing a promising approach to the treatment of noninfective inflammatory disorders.
Collapse
Affiliation(s)
- Tong Li
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Pharmacology of Traditional Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Pharmacy, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guangjuan Zheng
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Pharmacology of Traditional Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Pathology, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ben Li
- Department of Pharmacy, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lipeng Tang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Pharmacology of Traditional Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
269
|
Bjanes E, Sillas RG, Matsuda R, Demarco B, Fettrelet T, DeLaney AA, Kornfeld OS, Lee BL, Rodríguez López EM, Grubaugh D, Wynosky-Dolfi MA, Philip NH, Krespan E, Tovar D, Joannas L, Beiting DP, Henao-Mejia J, Schaefer BC, Chen KW, Broz P, Brodsky IE. Genetic targeting of Card19 is linked to disrupted NINJ1 expression, impaired cell lysis, and increased susceptibility to Yersinia infection. PLoS Pathog 2021; 17:e1009967. [PMID: 34648590 PMCID: PMC8547626 DOI: 10.1371/journal.ppat.1009967] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 10/26/2021] [Accepted: 09/23/2021] [Indexed: 12/13/2022] Open
Abstract
Cell death plays a critical role in inflammatory responses. During pyroptosis, inflammatory caspases cleave Gasdermin D (GSDMD) to release an N-terminal fragment that generates plasma membrane pores that mediate cell lysis and IL-1 cytokine release. Terminal cell lysis and IL-1β release following caspase activation can be uncoupled in certain cell types or in response to particular stimuli, a state termed hyperactivation. However, the factors and mechanisms that regulate terminal cell lysis downstream of GSDMD cleavage remain poorly understood. In the course of studies to define regulation of pyroptosis during Yersinia infection, we identified a line of Card19-deficient mice (Card19lxcn) whose macrophages were protected from cell lysis and showed reduced apoptosis and pyroptosis, yet had wild-type levels of caspase activation, IL-1 secretion, and GSDMD cleavage. Unexpectedly, CARD19, a mitochondrial CARD-containing protein, was not directly responsible for this, as an independently-generated CRISPR/Cas9 Card19 knockout mouse line (Card19Null) showed no defect in macrophage cell lysis. Notably, Card19 is located on chromosome 13, immediately adjacent to Ninj1, which was recently found to regulate cell lysis downstream of GSDMD activation. RNA-seq and western blotting revealed that Card19lxcn BMDMs have significantly reduced NINJ1 expression, and reconstitution of Ninj1 in Card19lxcn immortalized BMDMs restored their ability to undergo cell lysis in response to caspase-dependent cell death stimuli. Card19lxcn mice exhibited increased susceptibility to Yersinia infection, whereas independently-generated Card19Null mice did not, demonstrating that cell lysis itself plays a key role in protection against bacterial infection, and that the increased infection susceptibility of Card19lxcn mice is attributable to loss of NINJ1. Our findings identify genetic targeting of Card19 being responsible for off-target effects on the adjacent gene Ninj1, disrupting the ability of macrophages to undergo plasma membrane rupture downstream of gasdermin cleavage and impacting host survival and bacterial control during Yersinia infection.
Collapse
Affiliation(s)
- Elisabet Bjanes
- Cell and Molecular Biology Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
| | - Reyna Garcia Sillas
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
| | - Rina Matsuda
- Cell and Molecular Biology Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
| | - Benjamin Demarco
- Department of Biochemistry, University of Lausanne, Epalinges, Vaud, Switzerland
| | - Timothée Fettrelet
- Department of Biochemistry, University of Lausanne, Epalinges, Vaud, Switzerland
| | - Alexandra A. DeLaney
- Cell and Molecular Biology Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
| | - Opher S. Kornfeld
- Department of Physiological Chemistry, Genentech Inc., South San Francisco, California, United States of America
| | - Bettina L. Lee
- Department of Physiological Chemistry, Genentech Inc., South San Francisco, California, United States of America
| | - Eric M. Rodríguez López
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
- Immunology Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Daniel Grubaugh
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
| | - Meghan A. Wynosky-Dolfi
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
| | - Naomi H. Philip
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
- Immunology Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Elise Krespan
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
- Center for Host Microbial Interactions, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
| | - Dorothy Tovar
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
| | - Leonel Joannas
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
- CRISPR/Cas9 Mouse Targeting Core, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
| | - Daniel P. Beiting
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
- Center for Host Microbial Interactions, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Jorge Henao-Mejia
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Division of Protective Immunity, Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Brian C. Schaefer
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, Maryland, United States of America
| | - Kaiwen W. Chen
- Department of Biochemistry, University of Lausanne, Epalinges, Vaud, Switzerland
| | - Petr Broz
- Department of Biochemistry, University of Lausanne, Epalinges, Vaud, Switzerland
| | - Igor E. Brodsky
- Cell and Molecular Biology Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
- Immunology Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
270
|
Abstract
In this issue of Cell, Evavold et al. (2021) report that mTOR Complex 1 (mTORC1), a metabolic signaling complex, controls reactive oxygen species (ROS) production in mitochondria, which in turn promotes inflammatory cell death mediated by gasdermin D (GSDMD). This provides a new mechanistic connection between metabolic signaling and inflammatory cell death.
Collapse
Affiliation(s)
- Zhonghua Liu
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Tsan Sam Xiao
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|