251
|
Meinshausen AK, Herbster M, Zwahr C, Soldera M, Müller A, Halle T, Lasagni AF, Bertrand J. Aspect ratio of nano/microstructures determines Staphylococcus aureus adhesion on PET and titanium surfaces. J Appl Microbiol 2021; 131:1498-1514. [PMID: 33565669 DOI: 10.1111/jam.15033] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/26/2021] [Accepted: 02/06/2021] [Indexed: 01/09/2023]
Abstract
AIMS Joint infections cause premature implant failure. The avoidance of bacterial colonization of implant materials by modification of the material surface is therefore the focus of current research. In this in vitro study the complex interaction of periodic structures on PET and titanium surfaces on the adhesion of Staphylococcus aureus is analysed. METHODS AND RESULTS Using direct laser interference patterning as well as roll-to-roll hot embossing methods, structured periodic textures of different spatial distance were produced on surfaces and S. aureus were cultured for 24 h on these. The amount of adhering bacteria was quantified using fluorescence microscopy and the local adhesion behaviour was investigated using scanning electron microscopy. For PET structures, minimal bacterial adhesion was identified for an aspect ratio of about 0·02. On titanium structures, S. aureus adhesion was significantly decreased for profile heights of < 200 nm. Our results show a significantly decreased bacterial adhesion for structures with an aspect ratio range of 0·02 to 0·05. CONCLUSIONS We show that structuring on surfaces can decrease the amount of S. aureus on titanium and PET as common implant materials. SIGNIFICANCE AND IMPACT OF THE STUDY The study highlights the immense potential of applying specific structures to implant materials to prevent implant colonization with pathogen bacteria.
Collapse
Affiliation(s)
- A-K Meinshausen
- Department of Orthopedic Surgery, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - M Herbster
- Department of Orthopedic Surgery, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.,Institute of Materials and Joining Technology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - C Zwahr
- Chair of Large Area Laser Based Surface Structuring, Technische Universität Dresden, Dresden, Germany
| | - M Soldera
- Chair of Large Area Laser Based Surface Structuring, Technische Universität Dresden, Dresden, Germany
| | - A Müller
- Institute for Molecular and Clinical Immunology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.,Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - T Halle
- Institute of Materials and Joining Technology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - A F Lasagni
- Chair of Large Area Laser Based Surface Structuring, Technische Universität Dresden, Dresden, Germany.,Fraunhofer Institute for Material and Beam Technology IWS, Dresden, Germany
| | - J Bertrand
- Department of Orthopedic Surgery, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
252
|
Indwelling Device-Associated Biofilms in Critically Ill Cancer Patients-Study Protocol. Pathogens 2021; 10:pathogens10030306. [PMID: 33800769 PMCID: PMC8001301 DOI: 10.3390/pathogens10030306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/28/2021] [Accepted: 03/03/2021] [Indexed: 11/26/2022] Open
Abstract
Health care-associated infections are a leading cause of inpatient complications. Rapid pathogen detection/identification is a major challenge in sepsis management that highly influences the successful outcome. The current standard of microorganism identification relies on bacterial growth in culture, which has several limitations. Gene sequencing research has developed culture-independent techniques for microorganism identification, with the aim to improve etiological diagnosis and, therefore, to change sepsis outcome. A prospective, observational, non-interventional, single-center study was designed that assesses biofilm-associated pathogens in a specific subpopulation of septic critically ill cancer patients. Indwelling device samples will be collected in septic patients at the moment of the removal of the arterial catheter, central venous catheter, endotracheal tube and urinary catheter. Concomitantly, clinical data regarding 4 sites (nasal, pharyngeal, rectal and skin) of pathogen colonization at the time of hospital/intensive care admission will be collected. The present study aims to offer new insights into biofilm-associated infections and to evaluate the infection caused by catheter-specific and patient-specific biofilm-associated pathogens in association with the extent of colonization. The analysis relies on the two following detection/identification techniques: standard microbiological method and next generation sequencing (NGS). Retrospectively, the study will estimate the clinical value of the NGS-based detection and its virtual potential in changing patient management and outcome, notably in the subjects with missing sepsis source or lack of response to anti-infective treatment.
Collapse
|
253
|
Maillard JY, Kampf G, Cooper R. Antimicrobial stewardship of antiseptics that are pertinent to wounds: the need for a united approach. JAC Antimicrob Resist 2021; 3:dlab027. [PMID: 34223101 PMCID: PMC8209993 DOI: 10.1093/jacamr/dlab027] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Long before the nature of infection was recognized, or the significance of biofilms in delayed healing was understood, antimicrobial agents were being used in wound care. In the last 70 years, antibiotics have provided an effective means to control wound infection, but the continued emergence of antibiotic-resistant strains and the documented antibiotic tolerance of biofilms has reduced their effectiveness. A range of wound dressings containing an antimicrobial (antibiotic or non-antibiotic compound) has been developed. Whereas standardized methods for determining the efficacy of non-antibiotic antimicrobials in bacterial suspension tests were developed in the early twentieth century, standardized ways of evaluating the efficacy of antimicrobial dressings against microbial suspensions and biofilms are not available. Resistance to non-antibiotic antimicrobials and cross-resistance with antibiotics has been reported, but consensus on breakpoints is absent and surveillance is impossible. Antimicrobial stewardship is therefore in jeopardy. This review highlights these difficulties and in particular the efficacy of current non-antibiotic antimicrobials used in dressings, their efficacy, and the challenges of translating in vitro efficacy data to the efficacy of dressings in patients. This review calls for a unified approach to developing standardized methods of evaluating antimicrobial dressings that will provide an improved basis for practitioners to make informed choices in wound care.
Collapse
Affiliation(s)
- Jean-Yves Maillard
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, Wales, UK
| | - Günter Kampf
- Institute of Hygiene and Environmental Medicine, University of Greifswald, Germany
| | - Rose Cooper
- School of Sport & Health Sciences, Cardiff Metropolitan University, Cardiff, Wales, UK
| |
Collapse
|
254
|
|
255
|
Guedes GMM, Santos-Filho ASP, Regis WFM, Ocadaque CJ, Amando BR, Sidrim JJC, Brilhante RSN, Cordeiro RA, Bandeira SP, Rocha MFG, Castelo-Branco DSCM. Ex situ model of biofilm-associated wounds: providing a host-like environment for the study of Staphylococcus aureus and Pseudomonas aeruginosa biofilms. J Appl Microbiol 2021; 131:1487-1497. [PMID: 33556197 DOI: 10.1111/jam.15026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 01/17/2021] [Accepted: 02/02/2021] [Indexed: 12/20/2022]
Abstract
AIM This study aimed to assess an ex situ model of biofilm-associated wounds on porcine skin for the study of Staphylococcus aureus and Pseudomonas aeruginosa biofilms in a host-like environment, after 48 to 120 h of incubation. MATERIAL AND RESULTS Ex situ and in vitro biofilms were comparatively analysed. Overall, CFU-counts and matrix quantification yielded significantly (P < 0·05) higher results for ex situ than in vitro biofilms. Confocal microscopy revealed greater (P < 0·05) biomass and thickness at 48-72 h and greater (P < 0·05) robustness at 72 h of growth. S. aureus ex situ biofilms produced less (P < 0·05) siderophore and proteases than in vitro biofilms, while P. aeruginosa ex situ biofilms produced more (P < 0·05) siderophores and less proteases than in vitro biofilms. CONCLUSIONS Biofilms grown ex situ present a greater amount of bacterial cells and polymeric matrix than their in vitro counterparts, reaching maturity at 72 h of growth. Moreover the production of virulence factors differs between ex situ and in vitro biofilms. SIGNIFICANCE AND IMPACT OF THE STUDY These findings emphasize the importance of using ex situ biofilm models, once they mimic in vivo conditions. The use of these models brings perspectives for the pursuit of therapeutic alternatives, as tests may be performed in a host-like environment.
Collapse
Affiliation(s)
- G M M Guedes
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Group of Applied Medical Microbiology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - A S P Santos-Filho
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Group of Applied Medical Microbiology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - W F M Regis
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Group of Applied Medical Microbiology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - C J Ocadaque
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Group of Applied Medical Microbiology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - B R Amando
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Group of Applied Medical Microbiology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - J J C Sidrim
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Specialized Medical Mycology Center, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - R S N Brilhante
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Specialized Medical Mycology Center, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - R A Cordeiro
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Specialized Medical Mycology Center, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - S P Bandeira
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Specialized Medical Mycology Center, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - M F G Rocha
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Specialized Medical Mycology Center, Federal University of Ceará, Fortaleza, Ceará, Brazil.,Postgraduate Program in Veterinary Sciences, College of Veterinary, State University of Ceará, Fortaleza, Ceará, Brazil
| | - D S C M Castelo-Branco
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Group of Applied Medical Microbiology, Federal University of Ceará, Fortaleza, Ceará, Brazil.,Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Specialized Medical Mycology Center, Federal University of Ceará, Fortaleza, Ceará, Brazil
| |
Collapse
|
256
|
Silva NBS, Marques LA, Röder DDB. Diagnosis of biofilm infections: current methods used, challenges and perspectives for the future. J Appl Microbiol 2021; 131:2148-2160. [PMID: 33629487 DOI: 10.1111/jam.15049] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 02/01/2021] [Accepted: 02/23/2021] [Indexed: 12/16/2022]
Abstract
The diagnosis of biofilms continues to be a challenge, and there is no standardized protocol for such a diagnosis in clinical practice. In addition, some proposed methodologies are expensive to require significant amounts of time and a high number of trained staff, making them impracticable for clinical practice. In recent years, mass spectrophotometry/matrix-assisted laser desorption ionization time of flight (MALDI-TOF) has been applied it in biofilm studies. However, due to several problems and limitations of the technique, MALDI-TOF is far from being the gold standard for identifying biofilm formation. The omics analysis may prove to be a promising strategy for the diagnosis of biofilms in clinical laboratories since it allows the identification of pathogens in less time than needed for conventional techniques and in a more specific manner. However, omic tools are expensive and require qualified technical expertise, and an analysis of the data obtained needs to be careful not to neglect subpopulations in the biofilm. More studies must therefore be developed for creating a protocol that guarantees rapid biofilm identification, ensuring greater chances of success in infection control. This review discusses the current methods of microbial biofilm detection and future perspectives for its diagnosis in clinical practice.
Collapse
Affiliation(s)
- N B S Silva
- Applied Immunology and Parasitology, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - L A Marques
- Health Sciences, Medical School, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - D D B Röder
- Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| |
Collapse
|
257
|
Moser C, Jensen PØ, Thomsen K, Kolpen M, Rybtke M, Lauland AS, Trøstrup H, Tolker-Nielsen T. Immune Responses to Pseudomonas aeruginosa Biofilm Infections. Front Immunol 2021; 12:625597. [PMID: 33692800 PMCID: PMC7937708 DOI: 10.3389/fimmu.2021.625597] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/20/2021] [Indexed: 12/17/2022] Open
Abstract
Pseudomonas aeruginosa is a key pathogen of chronic infections in the lungs of cystic fibrosis patients and in patients suffering from chronic wounds of diverse etiology. In these infections the bacteria congregate in biofilms and cannot be eradicated by standard antibiotic treatment or host immune responses. The persistent biofilms induce a hyper inflammatory state that results in collateral damage of the adjacent host tissue. The host fails to eradicate the biofilm infection, resulting in hindered remodeling and healing. In the present review we describe our current understanding of innate and adaptive immune responses elicited by P. aeruginosa biofilms in cystic fibrosis lung infections and chronic wounds. This includes the mechanisms that are involved in the activation of the immune responses, as well as the effector functions, the antimicrobial components and the associated tissue destruction. The mechanisms by which the biofilms evade immune responses, and potential treatment targets of the immune response are also discussed.
Collapse
Affiliation(s)
- Claus Moser
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Peter Østrup Jensen
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.,Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kim Thomsen
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Mette Kolpen
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Morten Rybtke
- Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anne Sofie Lauland
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Hannah Trøstrup
- Department of Plastic Surgery and Breast Surgery, Zealand University Hospital, Roskilde, Denmark
| | - Tim Tolker-Nielsen
- Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
258
|
Schulze A, Mitterer F, Pombo JP, Schild S. Biofilms by bacterial human pathogens: Clinical relevance - development, composition and regulation - therapeutical strategies. MICROBIAL CELL (GRAZ, AUSTRIA) 2021; 8:28-56. [PMID: 33553418 PMCID: PMC7841849 DOI: 10.15698/mic2021.02.741] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 01/08/2021] [Accepted: 01/12/2021] [Indexed: 12/19/2022]
Abstract
Notably, bacterial biofilm formation is increasingly recognized as a passive virulence factor facilitating many infectious disease processes. In this review we will focus on bacterial biofilms formed by human pathogens and highlight their relevance for diverse diseases. Along biofilm composition and regulation emphasis is laid on the intensively studied biofilms of Vibrio cholerae, Pseudomonas aeruginosa and Staphylococcus spp., which are commonly used as biofilm model organisms and therefore contribute to our general understanding of bacterial biofilm (patho-)physiology. Finally, therapeutical intervention strategies targeting biofilms will be discussed.
Collapse
Affiliation(s)
- Adina Schulze
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria
- A.S. and F.M. contributed equally to this work
| | - Fabian Mitterer
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria
- A.S. and F.M. contributed equally to this work
| | - Joao P. Pombo
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria
| | - Stefan Schild
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria
- BioTechMed Graz, Austria
- Field of Excellence Biohealth – University of Graz, Graz, Austria
| |
Collapse
|
259
|
Jara J, Alarcón F, Monnappa AK, Santos JI, Bianco V, Nie P, Ciamarra MP, Canales Á, Dinis L, López-Montero I, Valeriani C, Orgaz B. Self-Adaptation of Pseudomonas fluorescens Biofilms to Hydrodynamic Stress. Front Microbiol 2021; 11:588884. [PMID: 33510716 PMCID: PMC7835673 DOI: 10.3389/fmicb.2020.588884] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 12/14/2020] [Indexed: 11/26/2022] Open
Abstract
In some conditions, bacteria self-organize into biofilms, supracellular structures made of a self-produced embedding matrix, mainly composed of polysaccharides, DNA, proteins, and lipids. It is known that bacteria change their colony/matrix ratio in the presence of external stimuli such as hydrodynamic stress. However, little is still known about the molecular mechanisms driving this self-adaptation. In this work, we monitor structural features of Pseudomonas fluorescens biofilms grown with and without hydrodynamic stress. Our measurements show that the hydrodynamic stress concomitantly increases the cell density population and the matrix production. At short growth timescales, the matrix mediates a weak cell-cell attractive interaction due to the depletion forces originated by the polymer constituents. Using a population dynamics model, we conclude that hydrodynamic stress causes a faster diffusion of nutrients and a higher incorporation of planktonic bacteria to the already formed microcolonies. This results in the formation of more mechanically stable biofilms due to an increase of the number of crosslinks, as shown by computer simulations. The mechanical stability also relies on a change in the chemical compositions of the matrix, which becomes enriched in carbohydrates, known to display adhering properties. Overall, we demonstrate that bacteria are capable of self-adapting to hostile hydrodynamic stress by tailoring the biofilm chemical composition, thus affecting both the mesoscale structure of the matrix and its viscoelastic properties that ultimately regulate the bacteria-polymer interactions.
Collapse
Affiliation(s)
- Josué Jara
- Departamento de Farmacia Galénica y Tecnología Alimentaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Francisco Alarcón
- Departamento de Estructura de la Materia, Física Térmica y Electrónica, Universidad Complutense de Madrid, Madrid, Spain.,Departamento de Ingeniería Física, Universidad de Guanajuato, León, Mexico
| | - Ajay K Monnappa
- Instituto de Investigación Biomédica Hospital 12 de Octubre (imas12), Madrid, Spain
| | | | - Valentino Bianco
- Departamento de Química Física, Universidad Complutense de Madrid, Madrid, Spain
| | - Pin Nie
- Nanyang Technological University, Singapore, Singapore
| | | | - Ángeles Canales
- Departamento de Química Orgánica, Universidad Complutense de Madrid, Madrid, Spain
| | - Luis Dinis
- Departamento de Estructura de la Materia, Física Térmica y Electrónica, Universidad Complutense de Madrid, Madrid, Spain
| | - Iván López-Montero
- Instituto de Investigación Biomédica Hospital 12 de Octubre (imas12), Madrid, Spain.,Departamento de Química Física, Universidad Complutense de Madrid, Madrid, Spain
| | - Chantal Valeriani
- Departamento de Estructura de la Materia, Física Térmica y Electrónica, Universidad Complutense de Madrid, Madrid, Spain
| | - Belén Orgaz
- Departamento de Farmacia Galénica y Tecnología Alimentaria, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
260
|
Malone M, Radzieta M, Schwarzer S, Jensen SO, Lavery LA. Efficacy of a topical concentrated surfactant gel on microbial communities in non-healing diabetic foot ulcers with chronic biofilm infections: A proof-of-concept study. Int Wound J 2021; 18:457-466. [PMID: 33476485 PMCID: PMC8273583 DOI: 10.1111/iwj.13546] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/18/2020] [Accepted: 12/28/2020] [Indexed: 12/15/2022] Open
Abstract
This proof‐of‐concept study sought to determine the effects of standard of care (SOC) and a topically applied concentrated surfactant gel (SG) on the total microbial load, community composition, and community diversity in non‐healing diabetic foot ulcers (DFUs) with chronic biofilm infections. SOC was provided in addition to a topical concentrated SG, applied every 2 days for 6 weeks. Wound swabs were obtained from the base of ulcers at baseline (week 0), week 1, mid‐point (week 3), and end of treatment (week 6). DNA sequencing and real‐time quantitative polymerase chain reaction (qPCR) were employed to determine the total microbial load, community composition, and diversity of patient samples. Tissue specimens were obtained at baseline and scanning electron microscopy and peptide nucleic acid fluorescent in situ hybridisation with confocal laser scanning microscopy were used to confirm the presence of biofilm in all 10 DFUs with suspected chronic biofilm infections. The application of SG resulted in 7 of 10 samples achieving a reduction in mean log10 total microbial load from baseline to end of treatment (0.8 Log10 16S copies, ±0.6), and 3 of 10 samples demonstrated an increase in mean Log10 total microbial load (0.6 log10 16S copies, ±0.8) from baseline to end of treatment. Composition changes in microbial communities were driven by changes to the most dominant bacteria. Corynebacterium sp. and Streptococcus sp. frequently reduced in relative abundance in patient samples from week 0 to week 6 but did not disappear. In contrast, Staphylococcus sp., Finegoldia sp., and Fusobacterium sp., relative abundances frequently increased in patient samples from week 0 to week 6. The application of a concentrated SG resulted in varying shifts to diversity (increase or decrease) between week 0 and week 6 samples at the individual patient level. Any shifts in community diversity were independent to changes in the total microbial loads. SOC and a topical concentrated SG directly affect the microbial loads and community composition of DFUs with chronic biofilm infections.
Collapse
Affiliation(s)
- Matthew Malone
- South West Sydney Limb Preservation and Wound Research, South West Sydney Local Health District, Sydney, Australia.,High Risk Foot Service, Liverpool Hospital, South West Sydney LHD, Sydney, Australia.,Infectious Diseases and Microbiology, School of Medicine, Western Sydney University, Sydney, Australia
| | - Michael Radzieta
- South West Sydney Limb Preservation and Wound Research, South West Sydney Local Health District, Sydney, Australia.,Infectious Diseases and Microbiology, School of Medicine, Western Sydney University, Sydney, Australia
| | - Saskia Schwarzer
- South West Sydney Limb Preservation and Wound Research, South West Sydney Local Health District, Sydney, Australia.,High Risk Foot Service, Liverpool Hospital, South West Sydney LHD, Sydney, Australia
| | - Slade O Jensen
- South West Sydney Limb Preservation and Wound Research, South West Sydney Local Health District, Sydney, Australia.,Infectious Diseases and Microbiology, School of Medicine, Western Sydney University, Sydney, Australia.,Antimicrobial Resistance and Mobile Elements Group, Ingham Institute of Applied Medical Research, Sydney, Australia
| | - Lawrence A Lavery
- Department of Plastic Surgery, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
261
|
Jakobsen TH, Xu Y, Bay L, Schønheyder HC, Jakobsen T, Bjarnsholt T, Thomsen TR. Sampling challenges in diagnosis of chronic bacterial infections. J Med Microbiol 2021; 70. [PMID: 33410733 DOI: 10.1099/jmm.0.001302] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In recent decades there has been an increase in knowledge of the distribution, species diversity and growth patterns of bacteria in human chronic infections. This has challenged standard diagnostic methods, which have undergone a development to both increase the accuracy of testing as well as to decrease the occurrence of contamination. In particular, the introduction of new technologies based on molecular techniques into the clinical diagnostic process has increased detection and identification of infectious pathogens. Sampling is the first step in the diagnostic process, making it crucial for obtaining a successful outcome. However, sampling methods have not developed at the same speed as molecular identification. The heterogeneous distribution and potentially small number of pathogenic bacterial cells in chronic infected tissue makes sampling a complicated task, and samples must be collected judiciously and handled with care. Clinical sampling is a step in the diagnostic process that may benefit from innovative methods based on current knowledge of bacteria present in chronic infections. In the present review, we describe and discuss different aspects that complicate sampling of chronic infections. The purpose is to survey representative scientific work investigating the presence and distribution of bacteria in chronic infections in relation to various clinical sampling methods.
Collapse
Affiliation(s)
- Tim Holm Jakobsen
- Costerton Biofilm Center, Institute for Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Yijuan Xu
- Bio- and Environmental Technology, Danish Technological Institute, Taastrup, Denmark
- Center for Microbial Communities, Department of Chemistry and Biosciences, Aalborg University, Aalborg, Denmark
| | - Lene Bay
- Costerton Biofilm Center, Institute for Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Henrik Carl Schønheyder
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
- Department of Clinical Microbiology, Aalborg University Hospital, Aalborg, Denmark
| | - Thomas Jakobsen
- Department of Orthopaedics, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Thomas Bjarnsholt
- Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Costerton Biofilm Center, Institute for Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Trine Rolighed Thomsen
- Bio- and Environmental Technology, Danish Technological Institute, Taastrup, Denmark
- Center for Microbial Communities, Department of Chemistry and Biosciences, Aalborg University, Aalborg, Denmark
| |
Collapse
|
262
|
Bernard C, Juin C, Vitry M, Le VTD, Verdon J, Toullec AS, Imbert C, Girardot M. Can Leaves and Stems of Rubus idaeus L. Handle Candida albicans Biofilms? Pharmaceuticals (Basel) 2020; 13:E477. [PMID: 33353173 PMCID: PMC7766086 DOI: 10.3390/ph13120477] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 12/15/2022] Open
Abstract
Candida albicans is an opportunistic pathogen involved in many infections, especially linked to implanted medical devices. Its ability to form biofilms complicates the treatment of these infections as few molecules are active against sessile C. albicans. The aim of this study was to evaluate the potential of leaves, three-month-old and one-year-old stems of Rubus idaeus L. against C. albicans biofilm growth. Extractions with a polarity gradient were carried out on hydroacetonic extracts and followed by fractionation steps. The obtained extracts and fractions were tested for their anti-biofilm growth activity against C. albicans using XTT method. Compounds of active subfractions were identified by LC-MS. The hexane extracts from leaves and stems were the most active against the fungus with IC50 at 500 and 250 µg/mL. Their bioguided fractionation led to 4 subfractions with IC50 between 62.5 and 125 µg/mL. Most of the components identified in active subfractions were fatty acids and terpenoïds.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Marion Girardot
- Laboratoire Ecologie et Biologie des Interactions, Université de Poitiers, UMR CNRS 7267, F-86073 Poitiers, France; (C.B.); (C.J.); (M.V.); (V.T.D.L.); (J.V.); (A.-S.T.); (C.I.)
| |
Collapse
|
263
|
Biofilm Formation as a Complex Result of Virulence and Adaptive Responses of Helicobacter pylori. Pathogens 2020; 9:pathogens9121062. [PMID: 33353223 PMCID: PMC7766044 DOI: 10.3390/pathogens9121062] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 12/11/2022] Open
Abstract
Helicobacter pylori is a bacterium that is capable of colonizing a host for many years, often for a lifetime. The survival in the gastric environment is enabled by the production of numerous virulence factors conditioning adhesion to the mucosa surface, acquisition of nutrients, and neutralization of the immune system activity. It is increasingly recognized, however, that the adaptive mechanisms of H. pylori in the stomach may also be linked to the ability of this pathogen to form biofilms. Initially, biofilms produced by H. pylori were strongly associated by scientists with water distribution systems and considered as a survival mechanism outside the host and a source of fecal-oral infections. In the course of the last 20 years, however, this trend has changed and now the most attention is focused on the biomedical aspect of this structure and its potential contribution to the therapeutic difficulties of H. pylori. Taking into account this fact, the aim of the current review is to discuss the phenomenon of H. pylori biofilm formation and present this mechanism as a resultant of the virulence and adaptive responses of H. pylori, including morphological transformation, membrane vesicles secretion, matrix production, efflux pump activity, and intermicrobial communication. These mechanisms will be considered in the context of transcriptomic and proteomic changes in H. pylori biofilms and their modulating effect on the development of this complex structure.
Collapse
|
264
|
Dargan D, Hindocha S, Hadlett M, Wright R, Beck D, McConville S, Hartley-Large D, Mortimer K, Brackley P. Groin dissections in skin cancer: Effect of a change in prophylactic antibiotic protocol. J Plast Reconstr Aesthet Surg 2020; 74:1553-1561. [PMID: 33551360 DOI: 10.1016/j.bjps.2020.11.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 09/14/2020] [Accepted: 11/22/2020] [Indexed: 11/27/2022]
Abstract
OBJECTIVES To determine whether groin dissection surgical site infection (SSI) incidence changed with shorter post-operative antibiotic prophylaxis. BACKGROUND Post-operative prophylaxis changed due to antimicrobial stewardship, from regular oral antibiotics until drain removal, to three intravenous doses. Both groups had a single intravenous dose at induction. METHODS A prospective database of groin dissections for metastatic skin cancer was retrospectively reviewed for SSI according to Public Health England criteria. Eighty groin dissections in 79 consecutive patients were included: 40 had oral antibiotics until drain removal [mean 26±7 (range 19-36) days] and 39 had three post-operative intravenous doses. RESULTS Longer prophylaxis was associated with lower SSI incidence [10 (25%) versus 21 (54%), odds ratio (OR) 3.50, 95% confidence interval (CI) 1.34-9.08, p = 0.009], fewer deep infections [5 (13%) versus 16 (41%), OR 4.89, 95% CI 1.57-15.13, p = 0.004], fewer readmissions for infection [5 (13%) versus 15 (38%), OR 4.38, 95% CI 1.40-13.65, p = 0.008], but similar seroma incidence [18 (45%) versus 16 (41%), OR 0.85, 95% CI 0.35-2.07, p = 0.72] and wound dehiscence [7 (18%) versus 5 (13%), OR 0.69, 95% CI 0.20-2.40, p = 0.56]. BMI ≥30 (n = 21) was associated with SSI, occurring in 13 of 21 (62%) (OR 3.859, 95% CI 1.34-11.10, p = 0.01). Median infection onset was 22 days (IQR 12-27) versus 17 (IQR 13-22), (p = 0.53). Multiple organisms were cultured in 21 of 31 (68%) patients with positive microbiological samples. CONCLUSIONS SSI rates doubled with shorter prophylaxis; deep infections and readmissions for infection tripled. Obesity was independently associated with infection. Seroma and wound dehiscence incidence were unchanged. Infections mainly occurred in the third week after surgery and were polymicrobial.
Collapse
Affiliation(s)
- Dallan Dargan
- Mersey Regional Burns and Plastic Surgery Centre, St. Helens and Knowsley Teaching Hospitals NHS Trust, Whiston Hospital, Warrington Road, Prescot L35 5DR, United Kingdom.
| | - Sandip Hindocha
- Plastic Surgery & Laser Centre, Bedford Hospital NHS Trust, Kempston Road, Bedford MK42 9DJ, United Kingdom
| | - Max Hadlett
- School of Medicine, University of Liverpool, Cedar House, Ashton Street, Liverpool L69 3GE, United Kingdom
| | - Rosanna Wright
- Mersey Regional Burns and Plastic Surgery Centre, St. Helens and Knowsley Teaching Hospitals NHS Trust, Whiston Hospital, Warrington Road, Prescot L35 5DR, United Kingdom
| | - Deborah Beck
- Mersey Regional Burns and Plastic Surgery Centre, St. Helens and Knowsley Teaching Hospitals NHS Trust, Whiston Hospital, Warrington Road, Prescot L35 5DR, United Kingdom
| | - Sarah McConville
- Mersey Regional Burns and Plastic Surgery Centre, St. Helens and Knowsley Teaching Hospitals NHS Trust, Whiston Hospital, Warrington Road, Prescot L35 5DR, United Kingdom
| | - David Hartley-Large
- Mersey Regional Burns and Plastic Surgery Centre, St. Helens and Knowsley Teaching Hospitals NHS Trust, Whiston Hospital, Warrington Road, Prescot L35 5DR, United Kingdom
| | - Kalani Mortimer
- Departments of Microbiology and Infection Prevention, St. Helens and Knowsley Teaching Hospitals NHS Trust, Whiston Hospital, Warrington Road, Prescot L35 5DR, United Kingdom
| | - Philip Brackley
- Mersey Regional Burns and Plastic Surgery Centre, St. Helens and Knowsley Teaching Hospitals NHS Trust, Whiston Hospital, Warrington Road, Prescot L35 5DR, United Kingdom
| |
Collapse
|
265
|
Gilbert-Girard S, Savijoki K, Yli-Kauhaluoma J, Fallarero A. Screening of FDA-Approved Drugs Using a 384-Well Plate-Based Biofilm Platform: The Case of Fingolimod. Microorganisms 2020; 8:microorganisms8111834. [PMID: 33233348 PMCID: PMC7700524 DOI: 10.3390/microorganisms8111834] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/12/2020] [Accepted: 11/20/2020] [Indexed: 12/19/2022] Open
Abstract
In an effort to find new repurposed antibacterial compounds, we performed the screening of an FDA-approved compounds library against Staphylococcus aureus American Type Culture Collection (ATCC) 25923. Compounds were evaluated for their capacity to prevent both planktonic growth and biofilm formation as well as to disrupt pre-formed biofilms. One of the identified initial hits was fingolimod (FTY720), an immunomodulator approved for the treatment of multiple sclerosis, which was then selected for follow-up studies. Fingolimod displayed a potent activity against S. aureus and S. epidermidis with a minimum inhibitory concentration (MIC) within the range of 12–15 µM at which concentration killing of all the bacteria was confirmed. A time–kill kinetic study revealed that fingolimod started to drastically reduce the viable bacterial count within two hours and we showed that no resistance developed against this compound for up to 20 days. Fingolimod also displayed a high activity against Acinetobacter baumannii (MIC 25 µM) as well as a modest activity against Escherichia coli and Pseudomonas aeruginosa. In addition, fingolimod inhibited quorum sensing in Chromobacterium violaceum and might therefore target this signaling pathway in certain Gram-negative bacteria. In conclusion, we present the identification of fingolimod from a compound library and its evaluation as a potential repurposed antibacterial compound.
Collapse
Affiliation(s)
- Shella Gilbert-Girard
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland; (K.S.); (A.F.)
- Correspondence:
| | - Kirsi Savijoki
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland; (K.S.); (A.F.)
| | - Jari Yli-Kauhaluoma
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland;
| | - Adyary Fallarero
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland; (K.S.); (A.F.)
| |
Collapse
|
266
|
Wang L, Tkhilaishvili T, Trampuz A, Gonzalez Moreno M. Evaluation of Staphylococcal Bacteriophage Sb-1 as an Adjunctive Agent to Antibiotics Against Rifampin-Resistant Staphylococcus aureus Biofilms. Front Microbiol 2020; 11:602057. [PMID: 33262752 PMCID: PMC7686474 DOI: 10.3389/fmicb.2020.602057] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 10/07/2020] [Indexed: 12/14/2022] Open
Abstract
Rifampin plays a crucial role in the treatment of staphylococcal implant-associated infection, as it is the only antibiotic capable of eradicating Staphylococcus aureus biofilms. However, the emergence of rifampin resistance strongly limits its use. Combinatorial therapy of antibiotics and bacteriophages may represent a strategy to overcome the resistance. Here, we evaluated the activity of staphylococcal bacteriophage Sb-1 in combination with different antibiotics against the biofilms of 10 rifampin-resistant S. aureus clinical strains, including MRSA and MSSA. S. aureus biofilms formed on porous glass beads were exposed to antibiotics alone or combined with Sb-1 simultaneously or staggered (first Sb-1 for 24 h followed by antibiotic). Recovered bacteria were detected by measuring growth-related heat production at 37°C (isothermal microcalorimetry) and the biofilm eradication was assessed by sonication of beads and plating of the resulting sonication fluid. Minimum biofilm eradication concentration (MBEC) was defined as the lowest concentration of antibiotic required to kill all adherent bacteria, resulting in absence of growth after plating the sonication fluid. Tested antibiotics presented high MBEC values when administered alone (64 to > 1,024 μg/ml). The simultaneous or staggered combination of Sb-1 with daptomycin showed the highest activity against all MRSA biofilms, whereas the exposure to Sb-1 with vancomycin showed no improved anti-biofilm activity. Staggered administration of Sb-1 and flucloxacillin, cefazolin, or fosfomycin improved the antibiofilm activity in four out of six MSSA, whereas simultaneous exposure exhibited similar or lesser synergy. In conclusion, the combinatorial effect of Sb-1 and antibiotics enabled to eradicate rifampin-resistant S. aureus biofilms in vitro.
Collapse
Affiliation(s)
- Lei Wang
- Center for Musculoskeletal Surgery, Humboldt-Universität zu Berlin and Berlin Institute of Health, Corporate Member of Freie Universität Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Tamta Tkhilaishvili
- Center for Musculoskeletal Surgery, Humboldt-Universität zu Berlin and Berlin Institute of Health, Corporate Member of Freie Universität Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Andrej Trampuz
- Center for Musculoskeletal Surgery, Humboldt-Universität zu Berlin and Berlin Institute of Health, Corporate Member of Freie Universität Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany.,BIH Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Mercedes Gonzalez Moreno
- Center for Musculoskeletal Surgery, Humboldt-Universität zu Berlin and Berlin Institute of Health, Corporate Member of Freie Universität Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany.,BIH Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
267
|
Koch JA, Pust TM, Cappellini AJ, Mandell JB, Ma D, Shah NB, Brothers KM, Urish KL. Staphylococcus epidermidis Biofilms Have a High Tolerance to Antibiotics in Periprosthetic Joint Infection. Life (Basel) 2020; 10:E253. [PMID: 33114423 PMCID: PMC7693748 DOI: 10.3390/life10110253] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 10/20/2020] [Indexed: 01/18/2023] Open
Abstract
Both Staphylococcus aureus and Staphylococcus epidermidis are commonly associated with periprosthetic joint infections (PJIs). The treatment of PJI can be challenging because biofilms are assumed to have an increased intolerance to antibiotics. This makes the treatment of PJI challenging from a clinical perspective. Although S. aureus has been previously demonstrated to have increased biofilm antibiotic tolerance, this has not been well established with Staphylococcus epidermidis. A prospective registry of PJI S. epidermidis isolates was developed. The efficacy of clinically relevant antibiotics was quantified against these isolates. S. epidermidis planktonic minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were collected using clinical laboratory standard index (CLSI) assays for eight antibiotics (doxycycline, vancomycin, daptomycin, clindamycin, rifampin, nafcillin, and trimethoprim/sulfamethoxazole). Mature biofilms were grown in vitro, after which minimum biofilm inhibitory concentration (MBIC) and minimum biofilm bactericidal concentration (MBBC) were quantified. Only rifampin and doxycycline had a measurable MBIC across all tested isolates. Based on MBBC, 64% of S. epidermidis biofilms could be eliminated by rifampin, whereas only 18% by doxycycline. S. epidermidis biofilm was observed to have a high tolerance to antibiotics as compared to planktonic culture. Isolate biofilm antibiotic tolerance varied to a larger degree than was seen in planktonic cultures.
Collapse
Affiliation(s)
- John A. Koch
- Arthritis and Arthroplasty Design Group, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15260, USA; (J.A.K.); (T.M.P.); (A.J.C.); (J.B.M.); (D.M); (K.M.B.)
| | - Taylor M. Pust
- Arthritis and Arthroplasty Design Group, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15260, USA; (J.A.K.); (T.M.P.); (A.J.C.); (J.B.M.); (D.M); (K.M.B.)
| | - Alex J. Cappellini
- Arthritis and Arthroplasty Design Group, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15260, USA; (J.A.K.); (T.M.P.); (A.J.C.); (J.B.M.); (D.M); (K.M.B.)
| | - Jonathan B. Mandell
- Arthritis and Arthroplasty Design Group, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15260, USA; (J.A.K.); (T.M.P.); (A.J.C.); (J.B.M.); (D.M); (K.M.B.)
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Dongzhu Ma
- Arthritis and Arthroplasty Design Group, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15260, USA; (J.A.K.); (T.M.P.); (A.J.C.); (J.B.M.); (D.M); (K.M.B.)
| | - Neel B. Shah
- Division of Infectious Disease, Department of Internal Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15260, USA;
| | - Kimberly M. Brothers
- Arthritis and Arthroplasty Design Group, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15260, USA; (J.A.K.); (T.M.P.); (A.J.C.); (J.B.M.); (D.M); (K.M.B.)
| | - Kenneth L. Urish
- Arthritis and Arthroplasty Design Group, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15260, USA; (J.A.K.); (T.M.P.); (A.J.C.); (J.B.M.); (D.M); (K.M.B.)
- The Bone and Joint Center, Magee Womens Hospital of the University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260, USA
- Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
268
|
Bowler P, Murphy C, Wolcott R. Biofilm exacerbates antibiotic resistance: Is this a current oversight in antimicrobial stewardship? Antimicrob Resist Infect Control 2020; 9:162. [PMID: 33081846 PMCID: PMC7576703 DOI: 10.1186/s13756-020-00830-6] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 10/15/2020] [Indexed: 01/08/2023] Open
Abstract
Objective To raise awareness of the role of environmental biofilm in the emergence and spread of antibiotic resistance and its consideration in antimicrobial stewardship. Background Antibiotic resistance is a major threat to public health. Overuse of antibiotics, increased international travel, and genetic promiscuity amongst bacteria have contributed to antibiotic resistance, and global containment efforts have so far met with limited success. Antibiotic resistance is a natural mechanism by which bacteria have adapted to environmental threats over billions of years and is caused either by genetic mutations or by horizontal gene transfer. Another ancient survival strategy involves bacteria existing within a self-produced polymeric matrix, which today is termed biofilm. Biofilm similarly enables bacterial tolerance to environmental threats, and also encourages the transfer of antibiotic resistance genes between bacterial species. This natural and ubiquitous mode of bacterial life has not been considered amongst strategies to tackle antibiotic resistance in healthcare facilities, despite its ability to significantly enhance bacterial survival and persistence, and to encourage antibiotic resistance. Conclusion Biofilm must be considered synonymously with antibiotic resistance because of its proficiency in transferring resistance genes as well as its innate phenotypic tolerance to antibiotics. Although biofilm falls outside of the current definition of antimicrobial stewardship, greater awareness of the existence, ubiquity, and consequences of environmental biofilm amongst healthcare practitioners is crucial to improving hygiene practices and controlling the emergence and spread of antibiotic resistance in healthcare facilities.
Collapse
Affiliation(s)
- Philip Bowler
- Infection Prevention and Control, ConvaTec Ltd, Deeside, UK.
| | | | | |
Collapse
|
269
|
Biofilms in Diabetic Foot Ulcers: Significance and Clinical Relevance. Microorganisms 2020; 8:microorganisms8101580. [PMID: 33066595 PMCID: PMC7602394 DOI: 10.3390/microorganisms8101580] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/07/2020] [Accepted: 10/11/2020] [Indexed: 12/14/2022] Open
Abstract
Foot infections are the main disabling complication in patients with diabetes mellitus. These infections can lead to lower-limb amputation, increasing mortality and decreasing the quality of life. Biofilm formation is an important pathophysiology step in diabetic foot ulcers (DFU)-it plays a main role in the disease progression and chronicity of the lesion, the development of antibiotic resistance, and makes wound healing difficult to treat. The main problem is the difficulty in distinguishing between infection and colonization in DFU. The bacteria present in DFU are organized into functionally equivalent pathogroups that allow for close interactions between the bacteria within the biofilm. Consequently, some bacterial species that alone would be considered non-pathogenic, or incapable of maintaining a chronic infection, could co-aggregate symbiotically in a pathogenic biofilm and act synergistically to cause a chronic infection. In this review, we discuss current knowledge on biofilm formation, its presence in DFU, how the diabetic environment affects biofilm formation and its regulation, and the clinical implications.
Collapse
|
270
|
Rembe JD, Huelsboemer L, Plattfaut I, Besser M, Stuermer EK. Antimicrobial Hypochlorous Wound Irrigation Solutions Demonstrate Lower Anti-biofilm Efficacy Against Bacterial Biofilm in a Complex in-vitro Human Plasma Biofilm Model (hpBIOM) Than Common Wound Antimicrobials. Front Microbiol 2020; 11:564513. [PMID: 33162949 PMCID: PMC7583357 DOI: 10.3389/fmicb.2020.564513] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 09/11/2020] [Indexed: 12/21/2022] Open
Abstract
Biofilms pose a relevant factor for wound healing impairment in chronic wounds. With 78% of all chronic wounds being affected by biofilms, research in this area is of high priority, especially since data for evidence-based selection of appropriate antimicrobials and antiseptics is scarce. Therefore, the objective of this study was to evaluate the anti-biofilm efficacy of commercially available hypochlorous wound irrigation solutions compared to established antimicrobials. Using an innovative complex in-vitro human plasma biofilm model (hpBIOM), quantitative reduction of Pseudomonas aeruginosa, Staphylococcus aureus, and Methicillin-resistant S. aureus (MRSA) biofilms by three hypochlorous irrigation solutions [two <0.08% and one 0.2% sodium hypochlorite (NaClO)] was compared to a 0.04% polyhexanide (PHMB) irrigation solution and 0.1% octenidine-dihydrochloride/phenoxyethanol (OCT/PE). Efficacy was compared to a non-challenged planktonic approach, as well as with increased substance volume over a prolonged exposure (up to 72 h). Qualitative visualization of biofilms was performed by scanning electron microscopy (SEM). Both reference agents (OCT/PE and PHMB) induced significant biofilm reductions within 72 h, whereby high volume OCT/PE even managed complete eradication of P. aeruginosa and MRSA biofilms after 72 h. The tested hypochlorous wound irrigation solutions achieved no relevant penetration and eradication of biofilms despite increased volume and exposure. Only 0.2% NaClO managed a low reduction under prolonged exposure. The results demonstrate that low-dosed hypochlorous wound irrigation solutions are significantly less effective than PHMB-based irrigation solution and OCT/PE, thus unsuitable for biofilm eradication on their own. The used complex hpBIOM thereby mimics the highly challenging clinical wound micro-environment, providing a more profound base for future clinical translation.
Collapse
Affiliation(s)
- Julian-Dario Rembe
- Department of Vascular and Endovascular Surgery, University Hospital Düsseldorf, Heinrich-Heine-University of Düsseldorf, Düsseldorf, Germany
| | - Lioba Huelsboemer
- Chair for Translational Wound Research, Centre for Biomedical Education and Research, Witten/Herdecke University, Witten, Germany
| | - Isabell Plattfaut
- Chair for Translational Wound Research, Centre for Biomedical Education and Research, Witten/Herdecke University, Witten, Germany
| | - Manuela Besser
- Chair for Translational Wound Research, Centre for Biomedical Education and Research, Witten/Herdecke University, Witten, Germany
| | - Ewa K. Stuermer
- Department of Vascular Medicine, University Heart and Vascular Center Hamburg, Translational Wound Research, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
271
|
Santiago AJ, Donlan RM. Bacteriophage Infections of Biofilms of Health Care-Associated Pathogens: Klebsiella pneumoniae. EcoSal Plus 2020; 9. [PMID: 33118486 DOI: 10.1128/ecosalplus.esp-0029-2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Members of the family Enterobacteriaceae, such as Klebsiella pneumoniae, are considered both serious and urgent public health threats. Biofilms formed by these health care-associated pathogens can lead to negative and costly health outcomes. The global spread of antibiotic resistance, coupled with increased tolerance to antimicrobial treatments in biofilm-associated bacteria, highlights the need for novel strategies to overcome treatment hurdles. Bacteriophages (phages), or viruses that infect bacteria, have reemerged as one such potential strategy. Virulent phages are capable of infecting and killing their bacterial hosts, in some cases producing depolymerases that are able to hydrolyze biofilms. Phage therapy does have its limitations, however, including potential narrow host ranges, development of bacterial resistance to infection, and the potential spread of phage-encoded virulence genes. That being said, advances in phage isolation, screening, and genome sequencing tools provide an upside in overcoming some of these limitations and open up the possibilities of using phages as effective biofilm control agents.
Collapse
Affiliation(s)
- Ariel J Santiago
- Clinical and Environmental Microbiology Branch, Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Rodney M Donlan
- Clinical and Environmental Microbiology Branch, Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Atlanta, GA, USA
| |
Collapse
|
272
|
Pérez-Granda MJ, Alonso B, Zavala R, Latorre MC, Hortal J, Samaniego R, Bouza E, Muñoz P, Guembe M. Selective digestive decontamination solution used as "lock therapy" prevents and eradicates bacterial biofilm in an in vitro bench-top model. Ann Clin Microbiol Antimicrob 2020; 19:44. [PMID: 32972419 PMCID: PMC7513905 DOI: 10.1186/s12941-020-00387-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/10/2020] [Indexed: 02/07/2023] Open
Abstract
Background Most preventing measures for reducing ventilator-associated pneumonia (VAP) are based mainly on the decolonization of the internal surface of the endotracheal tubes (ETTs). However, it has been demonstrated that bacterial biofilm can also be formed on the external surface of ETTs. Our objective was to test in vitro the efficacy of selective digestive decontamination solution (SDDs) onto ETT to prevent biofilm formation and eradicate preformed biofilms of three different microorganisms of VAP. Methods We used an in vitro model in which we applied, at the subglottic space of ETT, biofilms of either P. aeruginosa ATCC 15442, or E. coli ATCC 25922, or S. aureus ATCC 29213, and the SDDs at the same time (prophylaxis) or after 72 h of biofilm forming (treatment). ETT were incubated during 5 days with a regimen of 2 h-locks. ETT fragments were analyzed by sonication and confocal laser scanning microscopy to calculate the percentage reduction of cfu and viable cells, respectively. Results Median (IQR) percentage reduction of live cells and cfu/ml counts after treatment were, respectively, 53.2% (39.4%—64.1%) and 100% (100%–100.0%) for P. aeruginosa, and 67.9% (46.7%–78.7%) and 100% (100%–100.0%) for E. coli. S. aureus presented a complete eradication by both methods. After prophylaxis, there were absence of live cells and cfu/ml counts for all microorganisms. Conclusions SDDs used as “lock therapy” in the subglottic space is a promising prophylactic approach that could be used in combination with the oro-digestive decontamination procedure in the prevention of VAP.
Collapse
Affiliation(s)
- María Jesús Pérez-Granda
- Cardiac Surgery Postoperative Care Unit, Hospital General Universitario Gregorio Marañón, Madrid, 28007, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, 28009, Spain.,CIBER Enfermedades Respiratorias-CIBERES, CB06/06/0058), Madrid, Spain
| | - Beatriz Alonso
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, 28009, Spain. .,Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, 28007, Spain. .,Servicio de Microbiología Clínica y Enfermedades Infecciosas, Instituto de Investigación Sanitaria Gregorio Marañón, Hospital General Universitario "Gregorio Marañón", C/. Dr. Esquerdo, 46, Madrid, 28007, Spain.
| | - Ricardo Zavala
- Biology Department, School of Biology, Universidad Complutense de Madrid, Madrid, 28040, Spain
| | - María Consuelo Latorre
- Biology Department, School of Biology, Universidad Complutense de Madrid, Madrid, 28040, Spain
| | - Javier Hortal
- Cardiac Surgery Postoperative Care Unit, Hospital General Universitario Gregorio Marañón, Madrid, 28007, Spain.,CIBER Enfermedades Respiratorias-CIBERES, CB06/06/0058), Madrid, Spain
| | - Rafael Samaniego
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, 28009, Spain.,Confocal Laser Scanning Microscopy Unit, Hospital General Universitario Gregorio Marañón, Madrid, 28007, Spain
| | - Emilio Bouza
- Medicine Department, School of Medicine, Universidad Complutense de Madrid, Madrid, 28040, Spain
| | - Patricia Muñoz
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, 28009, Spain.,CIBER Enfermedades Respiratorias-CIBERES, CB06/06/0058), Madrid, Spain.,Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, 28007, Spain.,Medicine Department, School of Medicine, Universidad Complutense de Madrid, Madrid, 28040, Spain
| | - María Guembe
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, 28009, Spain. .,Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, 28007, Spain. .,Servicio de Microbiología Clínica y Enfermedades Infecciosas, Instituto de Investigación Sanitaria Gregorio Marañón, Hospital General Universitario "Gregorio Marañón", C/. Dr. Esquerdo, 46, Madrid, 28007, Spain.
| |
Collapse
|
273
|
Soares A, Alexandre K, Lamoureux F, Lemée L, Caron F, Pestel-Caron M, Etienne M. Efficacy of a ciprofloxacin/amikacin combination against planktonic and biofilm cultures of susceptible and low-level resistant Pseudomonas aeruginosa. J Antimicrob Chemother 2020; 74:3252-3259. [PMID: 31424553 DOI: 10.1093/jac/dkz355] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 06/21/2019] [Accepted: 07/17/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Eradicating bacterial biofilm without mechanical dispersion remains a challenge. Combination therapy has been suggested as a suitable strategy to eradicate biofilm. OBJECTIVES To evaluate the efficacy of a ciprofloxacin/amikacin combination in a model of in vitro Pseudomonas aeruginosa biofilm. METHODS The antibacterial activity of ciprofloxacin and amikacin (alone, in combination and successively) was evaluated by planktonic and biofilm time-kill assays against five P. aeruginosa strains: PAO1, a WT clinical strain and three clinical strains overexpressing the efflux pumps MexAB-OprM (AB), MexXY-OprM (XY) and MexCD-OprJ (CD), respectively. Amikacin MIC was 16 mg/L for XY and ciprofloxacin MIC was 0.5 mg/L for CD. The other strains were fully susceptible to ciprofloxacin and amikacin. The numbers of total and resistant cells were determined. RESULTS In planktonic cultures, regrowth of high-level resistant mutants was observed when CD was exposed to ciprofloxacin alone and XY to amikacin alone. Eradication was obtained with ciprofloxacin or amikacin in the other strains, or with the combination in XY and CD strains. In biofilm, bactericidal reduction after 8 h followed by a mean 4 log10 cfu/mL plateau in all strains and for all regimens was noticed. No regrowth of resistant mutants was observed whatever the antibiotic regimen. The bacterial reduction obtained with a second antibiotic used simultaneously or consecutively was not significant. CONCLUSIONS The ciprofloxacin/amikacin combination prevented the emergence of resistant mutants in low-level resistant strains in planktonic cultures. Biofilm persister cells were not eradicated, either with monotherapy or with the combination.
Collapse
Affiliation(s)
- Anaïs Soares
- EA 2656 (GRAM), Normandie Univ, Unirouen, Rouen, France.,Microbiology Department, Rouen University Hospital, Rouen, France
| | - Kévin Alexandre
- EA 2656 (GRAM), Normandie Univ, Unirouen, Rouen, France.,Infectious Diseases Department, Rouen University Hospital, Rouen, France
| | - Fabien Lamoureux
- Laboratory of Pharmacology, Toxicology and Pharmacogenetics, Rouen University Hospital, Rouen, France
| | - Ludovic Lemée
- EA 2656 (GRAM), Normandie Univ, Unirouen, Rouen, France.,Microbiology Department, Rouen University Hospital, Rouen, France
| | - François Caron
- EA 2656 (GRAM), Normandie Univ, Unirouen, Rouen, France.,Infectious Diseases Department, Rouen University Hospital, Rouen, France
| | - Martine Pestel-Caron
- EA 2656 (GRAM), Normandie Univ, Unirouen, Rouen, France.,Microbiology Department, Rouen University Hospital, Rouen, France
| | - Manuel Etienne
- EA 2656 (GRAM), Normandie Univ, Unirouen, Rouen, France.,Infectious Diseases Department, Rouen University Hospital, Rouen, France
| |
Collapse
|
274
|
Nolan PJ, Jain R, Cohen L, Finklea JD, Smith TT. In vitro activity of ceftolozane-tazobactam and ceftazidime-avibactam against Pseudomonas aeruginosa isolated from patients with cystic fibrosis. Diagn Microbiol Infect Dis 2020; 99:115204. [PMID: 33152675 DOI: 10.1016/j.diagmicrobio.2020.115204] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/26/2020] [Accepted: 09/02/2020] [Indexed: 11/26/2022]
Abstract
Pseudomonas aeruginosa is a commonly isolated pathogen in adults with cystic fibrosis (CF). Antimicrobial resistance is an escalating problem due to chronic colonization and frequent antimicrobial exposure. Ceftolozane-tazobactam (C/T) and ceftazidime-avibactam (CZA) exhibit promising activity against antimicrobial resistant organisms, including P. aeruginosa. A retrospective review was conducted comparing the in vitro activities of C/T and CZA against 42 P. aeruginosa isolates from the respiratory tract of 32 adults with CF. The first isolate per patient per year that underwent susceptibility testing for C/T, CZA, and colistin was included. C/T was more susceptible than CZA (60% versus 43%). Thirty-eight (90%) isolates were considered highly drug resistant and demonstrated higher C/T susceptibilities compared to CZA (55% versus 45%). These results suggest using C/T while awaiting susceptibilities when standard antipseudomonal agents cannot be used.
Collapse
Affiliation(s)
- Patrick J Nolan
- Department of Pediatrics, Division of Internal Medicine and Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Raksha Jain
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Leah Cohen
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - James D Finklea
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Tiffeny T Smith
- Department of Pharmacy, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
275
|
Alhede M, Lorenz M, Fritz BG, Jensen PØ, Ring HC, Bay L, Bjarnsholt T. Bacterial aggregate size determines phagocytosis efficiency of polymorphonuclear leukocytes. Med Microbiol Immunol 2020; 209:669-680. [PMID: 32880037 PMCID: PMC7568703 DOI: 10.1007/s00430-020-00691-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 08/19/2020] [Indexed: 02/06/2023]
Abstract
The ability of bacteria to aggregate and form biofilms impairs phagocytosis by polymorphonuclear leukocytes (PMNs). The aim of this study was to examine if the size of aggregates is critical for successful phagocytosis and how bacterial biofilms evade phagocytosis. We investigated the live interaction between PMNs and Pseudomonas aeruginosa, Staphylococcus aureus, Escherichia coli and Staphylococcus epidermidis using confocal scanning laser microscopy. Aggregate size significantly affected phagocytosis outcome and larger aggregates were less likely to be phagocytized. Aggregates of S. epidermidis were also less likely to be phagocytized than equally-sized aggregates of the other three species. We found that only aggregates of approx. 5 μm diameter or smaller were consistently phagocytosed. We demonstrate that planktonic and aggregated cells of all four species significantly reduced the viability of PMNs after 4 h of incubation. Our results indicate that larger bacterial aggregates are less likely to be phagocytosed by PMNs and we propose that, if the aggregates become too large, circulating PMNs may not be able to phagocytose them quickly enough, which may lead to chronic infection.
Collapse
Affiliation(s)
- Maria Alhede
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Melanie Lorenz
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Blaine Gabriel Fritz
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Peter Østrup Jensen
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark.,Department of Clinical Microbiology, Rigshospitalet, Afsnit 9301, Juliane Maries Vej 22, DK-2100, Copenhagen Ø, Denmark.,Institute for Inflammation Research, Center for Rheumatology and Spine Diseases, Rigshospitalet, 2100, Copenhagen, Denmark
| | - Hans Christian Ring
- Department of Dermatology, Bispebjerg Hospital, Nielsine Nielsens Vej 9, København, NV, Denmark
| | - Lene Bay
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Thomas Bjarnsholt
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark. .,Department of Clinical Microbiology, Rigshospitalet, Afsnit 9301, Juliane Maries Vej 22, DK-2100, Copenhagen Ø, Denmark.
| |
Collapse
|
276
|
Zhang L, Li J, Liang J, Zhang Z, Wei Q, Wang K. The effect of Cyclic-di-GMP on biofilm formation by Pseudomonas aeruginosa in a novel empyema model. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1146. [PMID: 33240995 PMCID: PMC7576012 DOI: 10.21037/atm-20-6022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Background Pseudomonas aeruginosa (P. aeruginosa) is a common pathogenic bacterium which causes pleural empyema, and infection of P. aeruginosa is often associated with biofilm. The aim of this study was to establish a model of rabbit empyema infected by P. aeruginosa to determine whether it causes the formation of biofilm in the pleural cavity. Furthermore, we investigated the effect of cyclic diguanosine monophosphate (c-di-GMP) on biofilm formation in this P. aeruginosa empyema model. Methods Twenty rabbits were used and randomly divided into five groups: PAO1, PAO1ΔwspF, and PAO1/plac-yhjH infection groups, and Luria-Bertani (LB) broth and turpentine control groups. A drainage catheter was implanted into the pleural cavity through thoracentesis. The three infection groups were respectively infected with PAO1, PAO1ΔwspF, and PAO1/plac-yhjH strains, which caused empyema. The two control groups were injected with LB or turpentine. After 4 days of infection, we sacrificed the rabbits. We evaluated the pathology of pleura through hematoxylin-eosin staining. Colony count and crystal violet assay were used to analyze the biofilm formation on the surface of catheters. Scanning electron was used to observe the biofilm on the surface of the pleura. Peptide nucleic acids-fluorescence in situ hybridization (PNA-FISH) was used to observe the biofilm in the fibrinous deposition. Results By the PNA-FISH assay, biofilms were observed in the fibrinous deposition of the three infection groups. The red fluorescence area of the PAO1ΔwspF infection group was larger than that of the PAO1 and PAO1/plac-yhjH infection groups. Through electron microscopy, we observed that PAO1 strains were embedded in an electron-dense extracellular matrix on the surface of pleural tissue, and appeared to be biofilm-like structures. For the crystal violet assay, the optical density values of different groups were significantly different: PAO1ΔwspF > PAO1 > PAO1/plac-yhjH > control groups (P<0.05). Conclusions To the best knowledge of the authors, this is the first study to report P. aeruginosa forming biofilm in a novel animal model of pleural empyema. In addition, c-di-GMP signaling molecules played an important role in biofilm formation in the pleural cavity.
Collapse
Affiliation(s)
- Li Zhang
- Department of Orthopedic Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jinlong Li
- Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jinhua Liang
- Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhenqiang Zhang
- Department of Respiratory and Critical Care Medicine, Liuzhou People's Hospital, Liuzhou, China
| | - Qingjun Wei
- Department of Orthopedic Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ke Wang
- Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
277
|
Jiang Y, Geng M, Bai L. Targeting Biofilms Therapy: Current Research Strategies and Development Hurdles. Microorganisms 2020; 8:microorganisms8081222. [PMID: 32796745 PMCID: PMC7465149 DOI: 10.3390/microorganisms8081222] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/31/2020] [Accepted: 08/07/2020] [Indexed: 01/05/2023] Open
Abstract
Biofilms are aggregate of microorganisms in which cells are frequently embedded within a self-produced matrix of extracellular polymeric substance (EPS) and adhere to each other and/or to a surface. The development of biofilm affords pathogens significantly increased tolerances to antibiotics and antimicrobials. Up to 80% of human bacterial infections are biofilm-associated. Dispersal of biofilms can turn microbial cells into their more vulnerable planktonic phenotype and improve the therapeutic effect of antimicrobials. In this review, we focus on multiple therapeutic strategies that are currently being developed to target important structural and functional characteristics and drug resistance mechanisms of biofilms. We thoroughly discuss the current biofilm targeting strategies from four major aspects—targeting EPS, dispersal molecules, targeting quorum sensing, and targeting dormant cells. We explain each aspect with examples and discuss the main hurdles in the development of biofilm dispersal agents in order to provide a rationale for multi-targeted therapy strategies that target the complicated biofilms. Biofilm dispersal is a promising research direction to treat biofilm-associated infections in the future, and more in vivo experiments should be performed to ensure the efficacy of these therapeutic agents before being used in clinic.
Collapse
|
278
|
Tian S, Su L, Liu Y, Cao J, Yang G, Ren Y, Huang F, Liu J, An Y, van der Mei HC, Busscher HJ, Shi L. Self-targeting, zwitterionic micellar dispersants enhance antibiotic killing of infectious biofilms-An intravital imaging study in mice. SCIENCE ADVANCES 2020; 6:eabb1112. [PMID: 32851173 PMCID: PMC7428326 DOI: 10.1126/sciadv.abb1112] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 07/01/2020] [Indexed: 05/03/2023]
Abstract
Extracellular polymeric substances (EPS) hold infectious biofilms together and limit antimicrobial penetration and clinical infection control. Here, we present zwitterionic micelles as a previously unexplored, synthetic self-targeting dispersant. First, a pH-responsive poly(ε-caprolactone)-block-poly(quaternary-amino-ester) was synthesized and self-assembled with poly(ethylene glycol)-block-poly(ε-caprolactone) to form zwitterionic, mixed-shell polymeric micelles (ZW-MSPMs). In the acidic environment of staphylococcal biofilms, ZW-MSPMs became positively charged because of conversion of the zwitterionic poly(quaternary-amino-ester) to a cationic lactone ring. This allowed ZW-MSPMs to self-target, penetrate, and accumulate in staphylococcal biofilms in vitro. In vivo biofilm targeting by ZW-MSPMs was confirmed for staphylococcal biofilms grown underneath an implanted abdominal imaging window through direct imaging in living mice. ZW-MSPMs interacted strongly with important EPS components such as eDNA and protein to disperse biofilm and enhance ciprofloxacin efficacy toward remaining biofilm, both in vitro and in vivo. Zwitterionic micellar dispersants may aid infection control and enhance efficacy of existing antibiotics against remaining biofilm.
Collapse
Affiliation(s)
- Shuang Tian
- State Key Laboratory of Medicinal Chemical Biology; Key Laboratory of Functional Polymer Materials, Ministry of Education; and Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P.R. China
- University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AV Groningen, Netherlands
| | - Linzhu Su
- State Key Laboratory of Medicinal Chemical Biology; Key Laboratory of Functional Polymer Materials, Ministry of Education; and Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P.R. China
- University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AV Groningen, Netherlands
| | - Yong Liu
- State Key Laboratory of Medicinal Chemical Biology; Key Laboratory of Functional Polymer Materials, Ministry of Education; and Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P.R. China
- University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AV Groningen, Netherlands
| | - Jingjing Cao
- State Key Laboratory of Medicinal Chemical Biology; Key Laboratory of Functional Polymer Materials, Ministry of Education; and Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P.R. China
| | - Guang Yang
- State Key Laboratory of Medicinal Chemical Biology; Key Laboratory of Functional Polymer Materials, Ministry of Education; and Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P.R. China
- University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AV Groningen, Netherlands
| | - Yijin Ren
- University of Groningen and University Medical Center Groningen, Department of Orthodontics, Hanzeplein 1, 9700 RB Groningen, Netherlands
| | - Fan Huang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, P.R. China
| | - Jianfeng Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, P.R. China
- Corresponding author. (J.L.); (H.C.v.d.M.); (H.J.B.); (L.Sh.)
| | - Yingli An
- State Key Laboratory of Medicinal Chemical Biology; Key Laboratory of Functional Polymer Materials, Ministry of Education; and Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P.R. China
| | - Henny C. van der Mei
- University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AV Groningen, Netherlands
- Corresponding author. (J.L.); (H.C.v.d.M.); (H.J.B.); (L.Sh.)
| | - Henk J. Busscher
- University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AV Groningen, Netherlands
- Corresponding author. (J.L.); (H.C.v.d.M.); (H.J.B.); (L.Sh.)
| | - Linqi Shi
- State Key Laboratory of Medicinal Chemical Biology; Key Laboratory of Functional Polymer Materials, Ministry of Education; and Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P.R. China
- Corresponding author. (J.L.); (H.C.v.d.M.); (H.J.B.); (L.Sh.)
| |
Collapse
|
279
|
Østergaard L, Lauridsen TK, Iversen K, Bundgaard H, Søndergaard L, Ihlemann N, Moser C, Fosbøl E. Infective endocarditis in patients who have undergone transcatheter aortic valve implantation: a review. Clin Microbiol Infect 2020; 26:999-1007. [DOI: 10.1016/j.cmi.2020.01.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/20/2020] [Accepted: 01/24/2020] [Indexed: 02/06/2023]
|
280
|
Is combined medication with natural medicine a promising therapy for bacterial biofilm infection? Biomed Pharmacother 2020; 128:110184. [DOI: 10.1016/j.biopha.2020.110184] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/17/2020] [Accepted: 04/19/2020] [Indexed: 12/11/2022] Open
|
281
|
Blirup-Plum SA, Bjarnsholt T, Jensen HE, Kragh KN, Aalbæk B, Gottlieb H, Bue M, Jensen LK. Pathological and microbiological impact of a gentamicin-loaded biocomposite following limited or extensive debridement in a porcine model of osteomyelitis. Bone Joint Res 2020; 9:394-401. [PMID: 32793334 PMCID: PMC7393185 DOI: 10.1302/2046-3758.97.bjr-2020-0007.r1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Aims CERAMENT|G is an absorbable gentamicin-loaded biocomposite used as an on-site vehicle of antimicrobials for the treatment of chronic osteomyelitis. The purpose of the present study was to investigate the sole effect of CERAMENT|G, i.e. without additional systemic antimicrobial therapy, in relation to a limited or extensive debridement of osteomyelitis lesions in a porcine model. Methods Osteomyelitis was induced in nine pigs by inoculation of 104 colony-forming units (CFUs) of Staphylococcus aureus into a drill hole in the right tibia. After one week, the pigs were allocated into three groups. Group A (n = 3) received no treatment during the study period (19 days). Groups B (n = 3) and C (n = 3) received limited or extensive debridement seven days postinoculation, respectively, followed by injection of CERAMENT|G into the bone voids. The pigs were euthanized ten (Group C) and 12 (Group B) days after the intervention. Results All animals presented confirmatory signs of bone infection post-mortem. The estimated amount of inflammation was substantially greater in Groups A and B compared to Group C. In both Groups B and C, peptide nucleic acid fluorescence in situ hybridization (PNA FISH) of CERAMENT|G and surrounding bone tissue revealed bacteria embedded in an opaque matrix, i.e. within biofilm. In addition, in Group C, the maximal measured post-mortem gentamicin concentrations in CERAMENT|G and surrounding bone tissue samples were 16.6 μg/ml and 6.2 μg/ml, respectively. Conclusion The present study demonstrates that CERAMENT|G cannot be used as a standalone alternative to extensive debridement or be used without the addition of systemic antimicrobials. Cite this article: Bone Joint Res 2020;9(7):394–401.
Collapse
Affiliation(s)
- Sophie A Blirup-Plum
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Bjarnsholt
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Microbiology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Henrik E Jensen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kasper N Kragh
- Costerton Biofilm Center, Department of Immunology and Microbiology, Copenhagen, Copenhagen, Denmark
| | - Bent Aalbæk
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hans Gottlieb
- Department of Orthopedic Surgery, Herlev Hospital, Herlev, Denmark
| | - Mats Bue
- Orthopaedic Research Unit, Aarhus University Hospital, Aarhus, Denmark
| | - Louise K Jensen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
282
|
Furner-Pardoe J, Anonye BO, Cain R, Moat J, Ortori CA, Lee C, Barrett DA, Corre C, Harrison F. Anti-biofilm efficacy of a medieval treatment for bacterial infection requires the combination of multiple ingredients. Sci Rep 2020; 10:12687. [PMID: 32724094 PMCID: PMC7387442 DOI: 10.1038/s41598-020-69273-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 06/16/2020] [Indexed: 11/12/2022] Open
Abstract
Novel antimicrobials are urgently needed to combat drug-resistant bacteria and to overcome the inherent difficulties in treating biofilm-associated infections. Studying plants and other natural materials used in historical infection remedies may enable further discoveries to help fill the antibiotic discovery gap. We previously reconstructed a 1,000-year-old remedy containing onion, garlic, wine, and bile salts, known as 'Bald's eyesalve', and showed it had promising antibacterial activity. In this current paper, we have found this bactericidal activity extends to a range of Gram-negative and Gram-positive wound pathogens in planktonic culture and, crucially, that this activity is maintained against Acinetobacter baumannii, Stenotrophomonas maltophilia, Staphylococcus aureus, Staphylococcus epidermidis and Streptococcus pyogenes in a soft-tissue wound biofilm model. While the presence of garlic in the mixture can explain the activity against planktonic cultures, garlic has no activity against biofilms. We have found the potent anti-biofilm activity of Bald's eyesalve cannot be attributed to a single ingredient and requires the combination of all ingredients to achieve full activity. Our work highlights the need to explore not only single compounds but also mixtures of natural products for treating biofilm infections and underlines the importance of working with biofilm models when exploring natural products for the anti-biofilm pipeline.
Collapse
Affiliation(s)
- Jessica Furner-Pardoe
- School of Life Sciences, Gibbet Hill Campus, University of Warwick, Coventry, CV4 7AL, UK.
- Warwick Medical School, Gibbet Hill Campus, University of Warwick, Coventry, CV4 7AL, UK.
| | - Blessing O Anonye
- School of Life Sciences, Gibbet Hill Campus, University of Warwick, Coventry, CV4 7AL, UK
- School of Medicine, University of Central Lancashire, Preston, PR1 2HE, UK
| | - Ricky Cain
- School of Life Sciences, Gibbet Hill Campus, University of Warwick, Coventry, CV4 7AL, UK
- Evotec (U.K.) Ltd, 114 Innovation Drive, Milton Park, Abingdon, OX14 4RZ, Oxfordshire, UK
| | - John Moat
- Warwick Antimicrobial Screening Facility, School of Life Sciences, Gibbet Hill Campus, University of Warwick, Coventry, CV4 7AL, UK
| | - Catherine A Ortori
- Centre for Analytical Bioscience, Advanced Materials and Healthcare Technologies Division, School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Christina Lee
- School of English, University of Nottingham, Nottingham, NG7 2RD, UK
| | - David A Barrett
- Centre for Analytical Bioscience, Advanced Materials and Healthcare Technologies Division, School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Christophe Corre
- School of Life Sciences, Gibbet Hill Campus, University of Warwick, Coventry, CV4 7AL, UK
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - Freya Harrison
- School of Life Sciences, Gibbet Hill Campus, University of Warwick, Coventry, CV4 7AL, UK.
| |
Collapse
|
283
|
Ahmed MN, Abdelsamad A, Wassermann T, Porse A, Becker J, Sommer MOA, Høiby N, Ciofu O. The evolutionary trajectories of P. aeruginosa in biofilm and planktonic growth modes exposed to ciprofloxacin: beyond selection of antibiotic resistance. NPJ Biofilms Microbiomes 2020; 6:28. [PMID: 32709907 PMCID: PMC7381665 DOI: 10.1038/s41522-020-00138-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 07/06/2020] [Indexed: 12/22/2022] Open
Abstract
Ciprofloxacin (CIP) is used to treat Pseudomonas aeruginosa biofilm infections. We showed that the pathways of CIP-resistance development during exposure of biofilms and planktonic P. aeruginosa populations to subinhibitory levels of CIP depend on the mode of growth. In the present study, we analyzed CIP-resistant isolates obtained from previous evolution experiments, and we report a variety of evolved phenotypic and genotypic changes that occurred in parallel with the evolution of CIP-resistance. Cross-resistance to beta-lactam antibiotics was associated with mutations in genes involved in cell-wall recycling (ftsZ, murG); and could also be explained by mutations in the TCA cycle (sdhA) genes and in genes involved in arginine catabolism. We found that CIP-exposed isolates that lacked mutations in quorum-sensing genes and acquired mutations in type IV pili genes maintained swarming motility and lost twitching motility, respectively. Evolved CIP-resistant isolates showed high fitness cost in planktonic competition experiments, yet persisted in the biofilm under control conditions, compared with ancestor isolates and had an advantage when exposed to CIP. Their persistence in biofilm competition experiments in spite of their fitness cost in planktonic growth could be explained by their prolonged lag-phase. Interestingly, the set of mutated genes that we identified in these in vitro-evolved CIP-resistant colonies, overlap with a large number of patho-adaptive genes previously reported in P. aeruginosa isolates from cystic fibrosis (CF) patients. This suggests that the antibiotic stress is contributing to the bacterial evolution in vivo, and that adaptive laboratory evolution can be used to predict the in vivo evolutionary trajectories.
Collapse
Affiliation(s)
- Marwa N Ahmed
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.,Department of Microbiology, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Ahmed Abdelsamad
- Department of Genetics, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Tina Wassermann
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
| | - Andreas Porse
- Novo Nordisk Foundation Center for Sustainability, Technical University of Denmark, Lyngby, Denmark
| | - Janna Becker
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Morten O A Sommer
- Novo Nordisk Foundation Center for Sustainability, Technical University of Denmark, Lyngby, Denmark
| | - Niels Høiby
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
| | - Oana Ciofu
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
284
|
Low-Grade-Infektionen in der Wirbelsäulenchirurgie – Ein Chamäleon? DER ORTHOPADE 2020; 49:669-678. [DOI: 10.1007/s00132-020-03947-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
285
|
Freiberg JA, Le Breton Y, Harro JM, Allison DL, McIver KS, Shirtliff ME. The Arginine Deiminase Pathway Impacts Antibiotic Tolerance during Biofilm-Mediated Streptococcus pyogenes Infections. mBio 2020; 11:e00919-20. [PMID: 32636245 PMCID: PMC7343988 DOI: 10.1128/mbio.00919-20] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/09/2020] [Indexed: 02/06/2023] Open
Abstract
Bacterial biofilms are responsible for a variety of serious human infections and are notoriously difficult to treat due to their recalcitrance to antibiotics. Further work is necessary to elicit a full understanding of the mechanism of this antibiotic tolerance. The arginine deiminase (ADI) pathway is responsible for bacterial pH maintenance and is highly expressed during biofilm growth in multiple bacterial species. Using the group A Streptococcus (GAS) as a model human pathogen, the ADI pathway was demonstrated to contribute to biofilm growth. The inability of antibiotics to reduce GAS populations when in a biofilm was demonstrated by in vitro studies and a novel animal model of nasopharyngeal infection. However, disruption of the ADI pathway returned GAS biofilms to planktonic levels of antibiotic sensitivity, suggesting the ADI pathway is influential in biofilm-related antibiotic treatment failure and provides a new strategic target for the treatment of biofilm infections in GAS and potentially numerous other bacterial species.IMPORTANCE Biofilm-mediated bacterial infections are a major threat to human health because of their recalcitrance to antibiotic treatment. Through the study of Streptococcus pyogenes, a significant human pathogen that is known to form antibiotic-tolerant biofilms, we demonstrated the role that a bacterial pathway known for responding to acid stress plays in biofilm growth and antibiotic tolerance. This not only provides some insight into antibiotic treatment failure in S. pyogenes infections but also, given the widespread nature of this pathway, provides a potentially broad target for antibiofilm therapies. This discovery has the potential to impact the treatment of many different types of recalcitrant biofilm infections.
Collapse
Affiliation(s)
- Jeffrey A Freiberg
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, Maryland, USA
| | - Yoann Le Breton
- Department of Cell Biology & Molecular Genetics and Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, USA
| | - Janette M Harro
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, Maryland, USA
| | - Devon L Allison
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, Maryland, USA
| | - Kevin S McIver
- Department of Cell Biology & Molecular Genetics and Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, USA
| | - Mark E Shirtliff
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, Maryland, USA
- Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, Baltimore, Maryland, USA
| |
Collapse
|
286
|
Wolcott RD, Cook RG, Johnson E, Jones CE, Kennedy JP, Simman R, Woo K, Weir D, Schultz G, Hermans MH. A review of iodine-based compounds, with a focus on biofilms: results of an expert panel. J Wound Care 2020; 29:S38-S43. [PMID: 32654617 DOI: 10.12968/jowc.2020.29.sup7.s38] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Biofilms play a central role in the chronicity of non-healing lesions such as venous leg ulcers and diabetic foot ulcers. Therefore, biofilm management and treatment is now considered an essential part of wound care. Many antimicrobial treatments, whether topical or systemic, have been shown to have limited efficacy in the treatment of biofilm phenotypes. The antimicrobial properties of iodine compounds rely on multiple and diverse interactions to exert their effects on microorganisms. An expert panel, held in Las Vegas during the autumn Symposium on Advanced Wound Care meeting in 2018, discussed these properties, with the focus on iodine and iodophors and their effects on biofilm prevention and treatment.
Collapse
Affiliation(s)
| | - Randall G Cook
- Jackson Wound and Hyperbaric Medicine Center, Montgomery, AL, US
| | - Eric Johnson
- Bozeman Deaconess Wound and Hyperbaric Center, Driggs, ID, US
| | | | | | | | - Kevin Woo
- Queen's School of Nursing, Kingston, ON, Canada
| | - Dot Weir
- Catholic Health Advanced Wound Healing Centers, Cheektowaga, NY, US
| | - Gregory Schultz
- Institute for Wound Research to Study Molecular and Cellular Regulation of Healing, University of Florida, Gainesville, FL, US
| | | |
Collapse
|
287
|
Tipton CD, Wolcott RD, Sanford NE, Miller C, Pathak G, Silzer TK, Sun J, Fleming D, Rumbaugh KP, Little TD, Phillips N, Phillips CD. Patient genetics is linked to chronic wound microbiome composition and healing. PLoS Pathog 2020; 16:e1008511. [PMID: 32555671 PMCID: PMC7302439 DOI: 10.1371/journal.ppat.1008511] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 04/01/2020] [Indexed: 12/11/2022] Open
Abstract
The clinical importance of microbiomes to the chronicity of wounds is widely appreciated, yet little is understood about patient-specific processes shaping wound microbiome composition. Here, a two-cohort microbiome-genome wide association study is presented through which patient genomic loci associated with chronic wound microbiome diversity were identified. Further investigation revealed that alternative TLN2 and ZNF521 genotypes explained significant inter-patient variation in relative abundance of two key pathogens, Pseudomonas aeruginosa and Staphylococcus epidermidis. Wound diversity was lowest in Pseudomonas aeruginosa infected wounds, and decreasing wound diversity had a significant negative linear relationship with healing rate. In addition to microbiome characteristics, age, diabetic status, and genetic ancestry all significantly influenced healing. Using structural equation modeling to identify common variance among SNPs, six loci were sufficient to explain 53% of variation in wound microbiome diversity, which was a 10% increase over traditional multiple regression. Focusing on TLN2, genotype at rs8031916 explained expression differences of alternative transcripts that differ in inclusion of important focal adhesion binding domains. Such differences are hypothesized to relate to wound microbiomes and healing through effects on bacterial exploitation of focal adhesions and/or cellular migration. Related, other associated loci were functionally enriched, often with roles in cytoskeletal dynamics. This study, being the first to identify patient genetic determinants for wound microbiomes and healing, implicates genetic variation determining cellular adhesion phenotypes as important drivers of infection type. The identification of predictive biomarkers for chronic wound microbiomes may serve as risk factors and guide treatment by informing patient-specific tendencies of infection. Chronic, or non-healing, wounds represent a costly burden to patients, and bacterial infection of wounds is an important driver of chronicity. A variety of bacterial species often occur in chronic wounds, but it is unknown why certain species are observed in some wound infections and not others. In this study, genetic variation of wound clinic patients was compared to the bacteria observed in their infected wounds. Through these comparisons, genetic variation in the TLN2 and ZNF521 genes was found to be associated with both the number of bacteria observed in wounds and the abundance of common pathogens (primarily Pseudomonas aeruginosa and Staphylococcus epidermidis). Moreover, Pseudomonas infected wounds were found to have fewer species present and wounds with fewer species were slower to heal. Furthermore, patient genes associated with microbiomes commonly encode proteins known to be important for cellular structures important to healing and to which bacteria directly interact. Experimental investigation of one such gene, TLN2, identified genotype-dependent differences in the expression of functionally different versions of TLN2 that is hypothesized to shape differences in cellular adhesion structures. Finally, a new statistical approach is presented in which patient biomarkers are used to predict the number of species observed during infection. Overall, our results describe how patient genetic variation influence the types of bacteria likely to infect an individual as well as influence healing.
Collapse
Affiliation(s)
- Craig D Tipton
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, United States of America.,RTL Genomics, Lubbock, Texas, United States of America
| | - Randall D Wolcott
- Southwest Regional Wound Care Center, Lubbock, Texas, United States of America
| | - Nicholas E Sanford
- Southwest Regional Wound Care Center, Lubbock, Texas, United States of America
| | - Clint Miller
- Southwest Regional Wound Care Center, Lubbock, Texas, United States of America
| | - Gita Pathak
- Microbiology, Immunology & Genetics, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
| | - Talisa K Silzer
- Microbiology, Immunology & Genetics, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
| | - Jie Sun
- Microbiology, Immunology & Genetics, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
| | - Derek Fleming
- Department of Surgery, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
| | - Kendra P Rumbaugh
- Department of Surgery, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America.,Burn Center of Excellence, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
| | - Todd D Little
- Department of Educational Psychology, Texas Tech University, Lubbock, Texas, United States of America.,Optentia Research Focus Area, North West University, Vanderbijlpark, South Africa
| | - Nicole Phillips
- Microbiology, Immunology & Genetics, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
| | - Caleb D Phillips
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, United States of America.,Natural Science Research Laboratory, Texas Tech University, Lubbock, Texas, United States of America
| |
Collapse
|
288
|
Travis J, Malone M, Hu H, Baten A, Johani K, Huygens F, Vickery K, Benkendorff K. The microbiome of diabetic foot ulcers: a comparison of swab and tissue biopsy wound sampling techniques using 16S rRNA gene sequencing. BMC Microbiol 2020; 20:163. [PMID: 32546123 PMCID: PMC7296698 DOI: 10.1186/s12866-020-01843-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/03/2020] [Indexed: 12/18/2022] Open
Abstract
Background Health-care professionals need to collect wound samples to identify potential pathogens that contribute to wound infection. Obtaining appropriate samples from diabetic foot ulcers (DFUs) where there is a suspicion of infection is of high importance. Paired swabs and tissue biopsies were collected from DFUs and both sampling techniques were compared using 16S rRNA gene sequencing. Results Mean bacterial abundance determined using quantitative polymerase chain reaction (qPCR) was significantly lower in tissue biopsies (p = 0.03). The mean number of reads across all samples was significantly higher in wound swabs \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \Big(\overline{X} $$\end{document}(X¯ = 32,014) compared to tissue (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \overline{X} $$\end{document}X¯ = 15,256, p = 0.001). Tissue biopsies exhibited greater overall diversity of bacteria relative to swabs (Shannon’s H diversity p = 0.009). However, based on a presence/absence analysis of all paired samples, the frequency of occurrence of bacteria from genera of known and potential pathogens was generally higher in wound swabs than tissue biopsies. Multivariate analysis identified significantly different bacterial communities in swabs compared to tissue (p = 0.001). There was minimal correlation between paired wound swabs and tissue biopsies in the number and types of microorganisms. RELATE analysis revealed low concordance between paired DFU swab and tissue biopsy samples (Rho = 0.043, p = 0.34). Conclusions Using 16S rRNA gene sequencing this study identifies the potential for using less invasive swabs to recover high relative abundances of known and potential pathogen genera from DFUs when compared to the gold standard collection method of tissue biopsy.
Collapse
Affiliation(s)
- J Travis
- School of Environment, Science and Engineering, Southern Cross University, Lismore, NSW, Australia
| | - M Malone
- Limb Preservation and Wound Research Academic Unit, Western Sydney LHD, Liverpool, Sydney, NSW, 2170, Australia.,Infectious Diseases and Microbiology, School of Medicine, Western Sydney University, Campbelltown Campus, Liverpool, Sydney, 2170, Australia.,Ingham Institute of Applied Medical Research, Liverpool, Sydney, NSW, 2170, Australia
| | - H Hu
- Surgical Infection Research Group Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - A Baten
- Agresearch, Grasslands Research Centre, Palmerston North, New Zealand
| | - K Johani
- Ingham Institute of Applied Medical Research, Liverpool, Sydney, NSW, 2170, Australia.,Central Military Laboratories and Blood Bank, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - F Huygens
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Herston, QLD, Australia.,School of Biomedical Science, Queensland University of Technology, Brisbane, Australia
| | - K Vickery
- Surgical Infection Research Group Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - K Benkendorff
- School of Environment, Science and Engineering, Southern Cross University, Lismore, NSW, Australia. .,National Marine Science Centre, 2 Bay Drive, Coffs Harbour, NSW, Australia.
| |
Collapse
|
289
|
Yuan Y, Li X, Wang L, Li G, Cong C, Li R, Cui H, Murtaza B, Xu Y. The endolysin of the Acinetobacter baumannii phage vB_AbaP_D2 shows broad antibacterial activity. Microb Biotechnol 2020; 14:403-418. [PMID: 32519416 PMCID: PMC7936296 DOI: 10.1111/1751-7915.13594] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/22/2020] [Accepted: 04/24/2020] [Indexed: 12/16/2022] Open
Abstract
The emergence and rapid spread of multidrug‐resistant bacteria has induced intense research for novel therapeutic approaches. In this study, the Acinetobacter baumannii bacteriophage D2 (vB_AbaP_D2) was isolated, characterized and sequenced. The endolysin of bacteriophage D2, namely Abtn‐4, contains an amphipathic helix and was found to have activity against multidrug‐resistant Gram‐negative strains. By more than 3 log units, A. baumannii were killed by Abtn‐4 (5 µM) in 2 h. In absence of outer membrane permeabilizers, Abtn‐4 exhibited broad antimicrobial activity against several Gram‐positive and Gram‐negative bacteria, such as Staphylococcus aureus, Pseudomonas aeruginosa, Klebsiella pneumonia, Enterococcus and Salmonella. Furthermore, Abtn‐4 had the ability to reduce biofilm formation. Interestingly, Abtn‐4 showed antimicrobial activity against phage‐resistant bacterial mutants. Based on these results, endolysin Abtn‐4 may be a promising candidate therapeutic agent for multidrug‐resistant bacterial infections.
Collapse
Affiliation(s)
- Yuyu Yuan
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Xiaoyu Li
- School of Bioengineering, Dalian University of Technology, Dalian, China.,Ministry of Education Center for Food Safety of Animal Origin, Dalian, China
| | - Lili Wang
- School of Bioengineering, Dalian University of Technology, Dalian, China.,Ministry of Education Center for Food Safety of Animal Origin, Dalian, China
| | - Gen Li
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Cong Cong
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Ruihua Li
- The Second Hospital of Dalian Medical University, Dalian, China
| | - Huijing Cui
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Bilal Murtaza
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Yongping Xu
- School of Bioengineering, Dalian University of Technology, Dalian, China.,Ministry of Education Center for Food Safety of Animal Origin, Dalian, China
| |
Collapse
|
290
|
Ferreira M, Aguiar S, Bettencourt A, Gaspar MM. Lipid-based nanosystems for targeting bone implant-associated infections: current approaches and future endeavors. Drug Deliv Transl Res 2020; 11:72-85. [PMID: 32514703 DOI: 10.1007/s13346-020-00791-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Bone infections caused by Staphylococcus aureus are a major concern in medical care, particularly when associated with orthopedic-implant devices. The ability of the bacteria to form biofilms and their capacity to invade and persist within osteoblasts turn the infection eradication into a huge challenge. The reduction of antibiotic penetration through bacterial biofilms associated with the presence of persistent cells, ability to survive in the host, and high tolerance to antibiotics are some of the reasons for the difficult treatment of these infections. Effective therapeutic approaches are urgently needed. In this sense, lipid-based nanosystems, such as liposomes, have been investigated as an innovative and alternative strategy for the treatment of implant-associated S. aureus infections, due to their preferential accumulation at infected sites and interaction with S. aureus. This review highlights the recent advances on antibiotic-loaded liposome formulations both in vitro and in vivo and how the interaction with S. aureus biofilms may be improved by modulating the liposomal external surface. Graphical Abstract.
Collapse
Affiliation(s)
- Magda Ferreira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisbon, Portugal
- Centre for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, Universidade de Lisboa, Av. Universidade Técnica, 1300-477, Lisbon, Portugal
| | - Sandra Aguiar
- Centre for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, Universidade de Lisboa, Av. Universidade Técnica, 1300-477, Lisbon, Portugal
| | - Ana Bettencourt
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisbon, Portugal.
| | - Maria Manuela Gaspar
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisbon, Portugal.
| |
Collapse
|
291
|
Wang S, Payne GF, Bentley WE. Quorum Sensing Communication: Molecularly Connecting Cells, Their Neighbors, and Even Devices. Annu Rev Chem Biomol Eng 2020; 11:447-468. [DOI: 10.1146/annurev-chembioeng-101519-124728] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Quorum sensing (QS) is a molecular signaling modality that mediates molecular-based cell–cell communication. Prevalent in nature, QS networks provide bacteria with a method to gather information from the environment and make decisions based on the intel. With its ability to autonomously facilitate both inter- and intraspecies gene regulation, this process can be rewired to enable autonomously actuated, but molecularly programmed, genetic control. On the one hand, novel QS-based genetic circuits endow cells with smart functions that can be used in many fields of engineering, and on the other, repurposed QS circuitry promotes communication and aids in the development of synthetic microbial consortia. Furthermore, engineered QS systems can probe and intervene in interkingdom signaling between bacteria and their hosts. Lastly, QS is demonstrated to establish conversation with abiotic materials, especially by taking advantage of biological and even electronically induced assembly processes; such QS-incorporated biohybrid devices offer innovative ways to program cell behavior and biological function.
Collapse
Affiliation(s)
- Sally Wang
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, USA
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland 20850, USA
- Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, Maryland 20742, USA
| | - Gregory F. Payne
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland 20850, USA
- Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, Maryland 20742, USA
| | - William E. Bentley
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, USA
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland 20850, USA
- Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, Maryland 20742, USA
| |
Collapse
|
292
|
Jorge P, Magalhães AP, Grainha T, Alves D, Sousa AM, Lopes SP, Pereira MO. Antimicrobial resistance three ways: healthcare crisis, major concepts and the relevance of biofilms. FEMS Microbiol Ecol 2020; 95:5532357. [PMID: 31305896 DOI: 10.1093/femsec/fiz115] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 07/12/2019] [Indexed: 12/13/2022] Open
Abstract
Worldwide, infections are resuming their role as highly effective killing diseases, as current treatments are failing to respond to the growing problem of antimicrobial resistance (AMR). The social and economic burden of AMR seems ever rising, with health- and research-related organizations rushing to collaborate on a worldwide scale to find effective solutions. Resistant bacteria are spreading even in first-world nations, being found not only in healthcare-related settings, but also in food and in the environment. In this minireview, the impact of AMR in healthcare systems and the major bacteria behind it are highlighted. Ecological aspects of AMR evolution and the complexity of its molecular mechanisms are explained. Major concepts, such as intrinsic, acquired and adaptive resistance, as well as tolerance and heteroresistance, are also clarified. More importantly, the problematic of biofilms and their role in AMR, namely their main resistance and tolerance mechanisms, are elucidated. Finally, some of the most promising anti-biofilm strategies being investigated are reviewed. Much is still to be done regarding the study of AMR and the discovery of new anti-biofilm strategies. Gladly, considerable research on this topic is generated every day and increasingly concerted actions are being engaged globally to try and tackle this problem.
Collapse
Affiliation(s)
- Paula Jorge
- Centre of Biological Engineering, Laboratory of Research in Biofilms Rosário Oliveira, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Andreia Patrícia Magalhães
- Centre of Biological Engineering, Laboratory of Research in Biofilms Rosário Oliveira, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Tânia Grainha
- Centre of Biological Engineering, Laboratory of Research in Biofilms Rosário Oliveira, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Diana Alves
- Centre of Biological Engineering, Laboratory of Research in Biofilms Rosário Oliveira, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Ana Margarida Sousa
- Centre of Biological Engineering, Laboratory of Research in Biofilms Rosário Oliveira, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Susana Patrícia Lopes
- Centre of Biological Engineering, Laboratory of Research in Biofilms Rosário Oliveira, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Maria Olívia Pereira
- Centre of Biological Engineering, Laboratory of Research in Biofilms Rosário Oliveira, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
293
|
Preliminary assessment of nanopore-based metagenomic sequencing for the diagnosis of prosthetic joint infection. Int J Infect Dis 2020; 97:54-59. [PMID: 32439542 DOI: 10.1016/j.ijid.2020.05.044] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 01/10/2023] Open
Abstract
OBJECTIVES Pathogen identification is crucial for the diagnosis and management of periprosthetic joint infection (PJI). Although culturing methods are the foundation of pathogen detection in PJI, false-negative results often occur. Oxford nanopore sequencing (ONS) is a promising alternative for detecting pathogens and providing information on their antimicrobial resistance (AMR) profiles, without culturing. METHODS To evaluate the capability of metagenomic ONS (mONS) in detecting pathogens from PJI samples, both metagenomic next-generation sequencing (mNGS) and mONS were performed in 15 osteoarticular samples from nine consecutive PJI patients according to the modified Musculoskeletal Infection Society (MSIS) criteria. The sequencing data generated from both platforms were then analyzed for pathogen identification and AMR detection using an in-house-developed bioinformatics pipeline. RESULTS Our results showed that mONS could be applied to detect the causative pathogen and characterize its AMR features in fresh PJI samples. By real-time sequencing and analysis, pathogen identification and AMR detection from the initiation of sequencing were accelerated. CONCLUSION We showed proof of concept that mONS can function as a rapid, accurate tool in PJI diagnostic microbiology. Despite efforts to reduce host DNA, the high proportion of host DNA was still a limitation of this method that prevented full genome analysis.
Collapse
|
294
|
van Geelen L, Kaschani F, Sazzadeh SS, Adeniyi ET, Meier D, Proksch P, Pfeffer K, Kaiser M, Ioerger TR, Kalscheuer R. Natural brominated phenoxyphenols kill persistent and biofilm-incorporated cells of MRSA and other pathogenic bacteria. Appl Microbiol Biotechnol 2020; 104:5985-5998. [PMID: 32418125 PMCID: PMC8217011 DOI: 10.1007/s00253-020-10654-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/25/2020] [Accepted: 04/29/2020] [Indexed: 01/02/2023]
Abstract
Due to a high unresponsiveness to chemotherapy, biofilm formation is an important medical problem that frequently occurs during infection with many bacterial pathogens. In this study, the marine sponge-derived natural compounds 4,6-dibromo-2-(2',4'-dibromophenoxy)phenol and 3,4,6-tribromo-2-(2',4'-dibromophenoxy)phenol were found to exhibit broad antibacterial activity against medically relevant gram-positive and gram-negative pathogens. The compounds were not only bactericidal against both replicating and stationary phase-persistent planktonic cells of methicillin-resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa; they also killed biofilm-incorporated cells of both species while not affecting biofilm structural integrity. Moreover, these compounds were active against carbapenemase-producing Enterobacter sp. This simultaneous activity of compounds against different growth forms of both gram-positive and gram-negative bacteria is rare. Genome sequencing of spontaneous resistant mutants and proteome analysis suggest that resistance is mediated by downregulation of the bacterial EIIBC phosphotransferase components scrA and mtlA in MRSA likely leading to a lower uptake of the molecules. Due to their only moderate cytotoxicity against human cell lines, phenoxyphenols provide an interesting new scaffold for development of antimicrobial agents with activity against planktonic cells, persisters and biofilm-incoporated cells of ESKAPE pathogens. KEY POINTS: • Brominated phenoxyphenols kill actively replicating and biofilm-incorporated bacteria. • Phosphotransferase systems mediate uptake of brominated phenoxyphenols. • Downregulation of phosphotransferase systems mediate resistance.
Collapse
Affiliation(s)
- Lasse van Geelen
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University Düsseldorf, Dusseldorf, Germany
| | - Farnusch Kaschani
- Center of Medical Biotechnology, Chemical Biology, University Duisburg-Essen, Duisburg, Germany
| | - Shabnam S Sazzadeh
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich Heine University Düsseldorf, Dusseldorf, Germany
| | - Emmanuel T Adeniyi
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University Düsseldorf, Dusseldorf, Germany
| | - Dieter Meier
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University Düsseldorf, Dusseldorf, Germany
| | - Peter Proksch
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University Düsseldorf, Dusseldorf, Germany
| | - Klaus Pfeffer
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich Heine University Düsseldorf, Dusseldorf, Germany
| | - Markus Kaiser
- Center of Medical Biotechnology, Chemical Biology, University Duisburg-Essen, Duisburg, Germany
| | - Thomas R Ioerger
- Department of Computer Science, Texas A&M University, College Station, TX, USA
| | - Rainer Kalscheuer
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University Düsseldorf, Dusseldorf, Germany.
| |
Collapse
|
295
|
Tsikopoulos K, Drago L, Koutras G, Givissis P, Vagdatli E, Soukiouroglou P, Papaioannidou P. Radial Extracorporeal Shock Wave Therapy Against Cutibacterium acnes Implant-Associated Infections: An in Vitro Trial. Microorganisms 2020; 8:743. [PMID: 32429267 PMCID: PMC7285346 DOI: 10.3390/microorganisms8050743] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/29/2020] [Accepted: 05/11/2020] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Antibiotic management of low-virulent implant-associated infections induced by Cutibacterium acnes may be compromised by multi-drug resistance development, side effects, and increased cost. Therefore, we sought to assess the effects of shock wave therapy against the above pathogen using an in vitro model of infection. METHODS We used a total of 120 roughened titanium alloy disks, simulating orthopedic biomaterials, to assess the results of radial extracorporeal shock wave therapy (rESWT) against C. acnes (ATCC 11827) biofilms relative to untreated control. In particular, we considered 1.6 to 2.5 Bar with a frequency ranging from 8-11 Hz and 95 to 143 impulses per disk to investigate the antibacterial effect of rESWT against C. acnes planktonic (free-floating) and biofilm forms. RESULTS Planktonic bacteria load diminished by 54% compared to untreated control after a 1.8-bar setting with a frequency of 8 Hz and 95 impulses was applied (median absorbance (MA) for intervention vs. control groups was 0.9245 (IQR= 0.888 to 0.104) vs. 0.7705 (IQR = 0.712 to 0.864), respectively, p = 0.001). Likewise, a statistically significant reduction in the amount of biofilm relative to untreated control was documented when the above setting was considered (MA for treatment vs biofilm control groups was 0.244 (IQR= 0.215-0.282) and 0.298 (IQR = 0.247-0.307), respectively, p = 0.033). CONCLUSION A 50% biofilm eradication was documented following application of low-pressure and low-frequency radial shock waves, so rESWT could be investigated as an adjuvant treatment to antibiotics, but it cannot be recommended as a standalone treatment against device-associated infections induced by C. ances.
Collapse
Affiliation(s)
- Konstantinos Tsikopoulos
- 1st Department of Pharmacology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Lorenzo Drago
- Laboratory of Clinical Microbiology, Department of Biochemical Sciences for Health, University of Milan, 20133 Milan, Italy;
| | - Georgios Koutras
- Department of Physical Therapy, Technological Education Institute of Thessaloniki, 57400 Sindos, Greece;
| | - Panagiotis Givissis
- 1st Orthopaedic Department of Aristotle University, G. Papanikolaou General Hospital, Exohi, 57010 Thessaloniki, Greece;
| | - Eleni Vagdatli
- Laboratory of Microbiology, Hippokration Hospital, 54642 Thessaloniki, Greece; (E.V.); (P.S.)
| | - Prodromos Soukiouroglou
- Laboratory of Microbiology, Hippokration Hospital, 54642 Thessaloniki, Greece; (E.V.); (P.S.)
| | - Paraskevi Papaioannidou
- 1st Department of Pharmacology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| |
Collapse
|
296
|
Douros K, Everard ML. Time to Say Goodbye to Bronchiolitis, Viral Wheeze, Reactive Airways Disease, Wheeze Bronchitis and All That. Front Pediatr 2020; 8:218. [PMID: 32432064 PMCID: PMC7214804 DOI: 10.3389/fped.2020.00218] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 04/14/2020] [Indexed: 12/11/2022] Open
Abstract
The diagnosis and management of infants and children with a significant viral lower respiratory tract illness remains the subject of much debate and little progress. Over the decades various terms for such illnesses have been in and fallen out of fashion or have evolved to mean different things to different clinicians. Terms such as "bronchiolitis," "reactive airways disease," "viral wheeze," and many more are used to describe the same condition and the same term is frequently used to describe illnesses caused by completely different dominant pathologies. This lack of clarity is due, in large part, to a failure to understand the basic underlying inflammatory and associated processes and, in part, due to the lack of a simple test to identify a condition such as asthma. Moreover, there is a lack of insight into the fact that the same pathology can produce different clinical signs at different ages. The consequence is that terminology and fashions in treatment have tended to go around in circles. As was noted almost 60 years ago, amongst pre-school children with a viral LRTI and airways obstruction there are those with a "viral bronchitis" and those with asthma. In the former group, a neutrophil dominated inflammation response is responsible for the airways' obstruction whilst amongst asthmatics much of the obstruction is attributable to bronchoconstriction. The airways obstruction in the former group is predominantly caused by airways secretions and to some extent mucosal oedema (a "snotty lung"). These patients benefit from good supportive care including supplemental oxygen if required (though those with a pre-existing bacterial bronchitis will also benefit from antibiotics). For those with a viral exacerbation of asthma, characterized by bronchoconstriction combined with impaired b-agonist responsiveness, standard management of an exacerbation of asthma (including the use of steroids to re-establish bronchodilator responsiveness) represents optimal treatment. The difficulty is identifying which group a particular patient falls into. A proposed simplified approach to the nomenclature used to categorize virus associated LRTIs is presented based on an understanding of the underlying pathological processes and how these contribute to the physical signs.
Collapse
Affiliation(s)
- Konstantinos Douros
- Third Department of Paediatrics, Attikon Hospital, University of Athens School of Medicine, Athens, Greece
| | - Mark L. Everard
- Division of Paediatrics and Child Health, Perth Children's Hospital, University of Western Australia, Nedlands, WA, Australia
| |
Collapse
|
297
|
Abstract
OBJECTIVE To review the diagnosis of chronic wound biofilms and discuss current treatment approaches. DATA SOURCES Articles included in this review were obtained from the following databases: Wanfang, China National Knowledge Infrastructure, PubMed, and the Web of Science. We focused on research published before August 2019 with keywords including chronic wound, biofilm, bacterial biofilms, and chronic wound infection. STUDY SELECTION Relevant articles were selected by carefully reading the titles and abstracts. Further, different diagnosis and clinical treatment methods for chronic wound biofilm were compared and summarized from the selected published articles. RESULTS Recent guidelines on medical biofilms stated that approaches such as the use of scanning electron microscopy and confocal laser scanning microscopy are the most reliable types of diagnostic techniques. Further, therapeutic strategies include debridement, negative pressure wound therapy, ultrasound, antibiotic, silver-containing dressing, hyperbaric oxygen therapy, and others. CONCLUSION This review provides the identification and management of biofilms, and it can be used as a tool by clinicians for a better understanding of biofilms and translating research to develop best clinical practices.
Collapse
|
298
|
Amaeze N, Akinbobola A, Chukwuemeka V, Abalkhaila A, Ramage G, Kean R, Staines H, Williams C, Mackay W. Development of a high throughput and low cost model for the study of semi-dry biofilms. BIOFOULING 2020; 36:403-415. [PMID: 32441116 DOI: 10.1080/08927014.2020.1766030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 04/28/2020] [Accepted: 05/01/2020] [Indexed: 06/11/2023]
Abstract
The persistence of microorganisms as biofilms on dry surfaces resistant to the usual terminal cleaning methods may pose an additional risk of transmission of infections. In this study, the Centre for Disease Control (CDC) dry biofilm model (DBM) was adapted into a microtiter plate format (Model 1) and replicated to create a novel in vitro model that replicates conditions commonly encountered in the healthcare environment (Model 2). Biofilms of Staphylococcus aureus grown in the two models were comparable to the biofilms of the CDC DBM in terms of recovered log10 CFU well-1. Assessment of the antimicrobial tolerance of biofilms grown in the two models showed Model 2 a better model for biofilm formation. Confirmation of the biofilms' phenotype with an extracellular matrix deficient S. aureus suggested stress tolerance through a non-matrix defined mechanism in microorganisms. This study highlights the importance of conditions maintained in bacterial growth as they affect biofilm phenotype and behaviour.
Collapse
Affiliation(s)
- Ngozi Amaeze
- Institute of Healthcare Policy and Practice, School of Health and Life Sciences, University of the West of Scotland, Paisley, UK
- Department of Microbiology, University of Abuja, Abuja, Nigeria
| | - Ayorinde Akinbobola
- Institute of Healthcare Policy and Practice, School of Health and Life Sciences, University of the West of Scotland, Paisley, UK
| | - Valentine Chukwuemeka
- Institute of Healthcare Policy and Practice, School of Health and Life Sciences, University of the West of Scotland, Paisley, UK
| | - Adil Abalkhaila
- Department of Human Health, College of Applied Medical Sciences, Qassim University, Buraydah, KSA
| | - Gordon Ramage
- Oral Sciences Research Group, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Ryan Kean
- Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, UK
| | | | - Craig Williams
- Institute of Healthcare Policy and Practice, School of Health and Life Sciences, University of the West of Scotland, Paisley, UK
| | - William Mackay
- Institute of Healthcare Policy and Practice, School of Health and Life Sciences, University of the West of Scotland, Paisley, UK
| |
Collapse
|
299
|
Wang C, Huang Z, Li W, Fang X, Zhang W. Can metagenomic next-generation sequencing identify the pathogens responsible for culture-negative prosthetic joint infection? BMC Infect Dis 2020; 20:253. [PMID: 32228597 PMCID: PMC7106575 DOI: 10.1186/s12879-020-04955-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 03/09/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The aims of this study were to (1) evaluate the efficacy and safety of targeted antibiotics for the treatment of culture-negative prosthetic joint infection based on metagenomic next-generation sequencing results and (2) verify the accuracy and reliability of metagenomic next-generation sequencing for identifying pathogens related to culture-negative prosthetic joint infection. METHODS Ninety-seven consecutive PJI patients, including 27 patients with culture-negative prosthetic joint infection, were treated surgically at our center. Thirteen of the 27 culture-negative prosthetic joint infection patients, who were admitted before June 2017 and treated with empirical antibiotics, comprised the empirical antibiotic group (EA group), and the other 14 patients, who were admitted after June 2017 and treated with targeted antibiotics according to their metagenomic next-generation sequencing results, were classified as the targeted antibiotic group (TA group). The short-term infection control rate, incidence of antibiotic-related complications and costs were compared between the two groups. RESULTS Two of the patients in the EA group experienced debridement and prolonged antimicrobial therapy due to wound infection after the initial revision surgery. No recurrent infections were observed in the TA group; however, no significant difference in the infection control rate was found between the two groups (83.33% vs 100%, P = 0.217). More cases of antibiotic-related complications were recorded in the EA group (6 cases) than in the TA group (1 case), but the difference was not statistically significant (P = 0.0697). The cost of antibiotics obtained for the EA group was 20,168.37 Yuan (3236.38-45,297.16), which was higher than that found for the TA group (10,164.16 Yuan, 2959.54-16,661.04, P = 0.04). CONCLUSIONS Targeted antibiotic treatment for culture-negative prosthetic joint infection based on metagenomic next-generation sequencing results is associated with a favorable outcome, and metagenomic next-generation sequencing is a reliable tool for identifying pathogens related to culture-negative prosthetic joint infection.
Collapse
Affiliation(s)
- Chaoxin Wang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Fujian Medical University, No. 20 Chazhong Road, Fuzhou, 350005, China
| | - Zida Huang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Fujian Medical University, No. 20 Chazhong Road, Fuzhou, 350005, China
| | - Wenbo Li
- Department of Orthopedic Surgery, The First Affiliated Hospital of Fujian Medical University, No. 20 Chazhong Road, Fuzhou, 350005, China
| | - Xinyu Fang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Fujian Medical University, No. 20 Chazhong Road, Fuzhou, 350005, China
| | - Wenming Zhang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Fujian Medical University, No. 20 Chazhong Road, Fuzhou, 350005, China.
| |
Collapse
|
300
|
Six-week antibiotic therapy after one-stage replacement arthroplasty for hip and knee periprosthetic joint infection. Med Mal Infect 2020; 50:567-574. [PMID: 32284220 DOI: 10.1016/j.medmal.2020.03.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 09/09/2019] [Accepted: 03/18/2020] [Indexed: 01/15/2023]
Abstract
OBJECTIVES One-stage replacement arthroplasty for treatment of periprosthetic joint infection (PJI) results in similar cure rate than two-stage (around 85-92%), but antibiotic therapy duration is not well established. The aim of this study was to evaluate the efficacy of a short six-week antibiotic course in periprosthetic joint infections after onstage exchange. PATIENTS AND METHODS Retrospective, observational study conducted at Orthopaedic Department of Cochin Hospital, Paris, between 1st January 2010 and 31 December 2015. Patients with a microbiologically proven PJI, treated with one-stage replacement and 6 weeks (+/1week) of antimicrobial therapy were included. Pearson's-χ2 and Wilcoxon tests were used to compare categorical and continuous variables. RESULTS Fifty patients with periprosthetic joint infections (42 hip, 8 knee PJI) treated with one-stage replacement arthroplasty were included. Median age was 69.3 years (IQR 24.5-97.4). Infections occurred after a mean of 36 months (IQR 1-216). Bone biopsy cultures were positive for Staphylococcus spp. in 29 patients (58%), Cutibacterium acnes in 19 (38%), Gram-negative bacilli in 6 (12%). Polymicrobial infections occurred in 12 (24%). Intravenous antibiotics were administered for a median of 11 days (IQR 4-45) and 46 patients (92%) were switched to an oral therapy. Medium follow-up was of 32 months (IQR 12-101). Overall remission rate was 90%. CONCLUSIONS A six-week course of antibiotics in knee and hip PJIs treated with one-stage RA has a satisfactory remission rate in this open study.
Collapse
|