251
|
Kanady JD, Dellinger MT, Munger SJ, Witte MH, Simon AM. Connexin37 and Connexin43 deficiencies in mice disrupt lymphatic valve development and result in lymphatic disorders including lymphedema and chylothorax. Dev Biol 2011; 354:253-66. [PMID: 21515254 PMCID: PMC3134316 DOI: 10.1016/j.ydbio.2011.04.004] [Citation(s) in RCA: 145] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Revised: 04/06/2011] [Accepted: 04/08/2011] [Indexed: 12/31/2022]
Abstract
Intraluminal valves are required for the proper function of lymphatic collecting vessels and large lymphatic trunks like the thoracic duct. Despite recent progress in the study of lymphvasculogenesis and lymphangiogenesis, the molecular mechanisms controlling the morphogenesis of lymphatic valves remain poorly understood. Here, we report that gap junction proteins, or connexins (Cxs), are required for lymphatic valvulogenesis. Cx37 and Cx43 are expressed early in mouse lymphatic development in the jugular lymph sacs, and later in development these Cxs become enriched and differentially expressed by lymphatic endothelial cells on the upstream and downstream sides of the valves. Specific deficiencies of Cx37 and Cx43 alone or in combination result in defective valve formation in lymphatic collecting vessels, lymphedema, and chylothorax. We also show that Cx37 regulates jugular lymph sac size and that both Cx37 and Cx43 are required for normal thoracic duct development, including valve formation. Another Cx family member, Cx47, whose human analog is mutated in some families with lymphedema, is also highly enriched in a subset of endothelial cells in lymphatic valves. Mechanistically, we present data from Foxc2-/- embryos suggesting that Cx37 may be a target of regulation by Foxc2, a transcription factor that is mutated in human lymphedema-distichiasis syndrome. These results show that at least three Cxs are expressed in the developing lymphatic vasculature and, when defective, are associated with clinically manifest lymphatic disorders in mice and man.
Collapse
Affiliation(s)
- John D. Kanady
- Department of Physiology, University of Arizona, Tucson, AZ 85724, USA
| | - Michael T. Dellinger
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85724, USA
| | | | - Marlys H. Witte
- Department of Surgery, University of Arizona, Tucson, AZ 85724, USA
| | | |
Collapse
|
252
|
Ivaska J, Heino J. Cooperation between integrins and growth factor receptors in signaling and endocytosis. Annu Rev Cell Dev Biol 2011; 27:291-320. [PMID: 21663443 DOI: 10.1146/annurev-cellbio-092910-154017] [Citation(s) in RCA: 190] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
All multicellular animals express receptors for growth factors (GFs) and extracellular matrix (ECM) molecules. Integrin-type ECM receptors anchor cells to their surroundings and concomitantly activate intracellular signal transduction pathways. The same signaling mechanisms are regulated by GF receptors (GFRs). Recently, intensive research efforts have revealed novel mechanisms describing how the two receptor systems collaborate at many different levels. Integrins can directly bind to GFs and promote their activation. Adhesion receptors also organize signaling platforms and assist GFRs or even activate them via ligand-independent mechanisms. Furthermore, integrins can orchestrate endocytosis and recycling of GFRs. Here, we review the present knowledge about the interplay between integrins and GFRs and discuss recent ideas of how this collaboration may explain some previous controversies in integrin research.
Collapse
Affiliation(s)
- Johanna Ivaska
- Medical Biotechnology, VTT Technical Research Center of Finland, Turku FI-20520, Finland.
| | | |
Collapse
|
253
|
Witte MH, Dellinger MT, McDonald DM, Nathanson SD, Boccardo FM, Campisi CCC, Sleeman JP, Gershenwald JE. Lymphangiogenesis and hemangiogenesis: potential targets for therapy. J Surg Oncol 2011; 103:489-500. [PMID: 21480241 PMCID: PMC4422163 DOI: 10.1002/jso.21714] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This review updates historical background from century-old observations on embryonic lymphatic system development through current understanding of the molecular basis of lymphvasculogenesis/lymphangiogenesis ("molecular lymphology"), highlighting similarities and differences with analogous blood vasculature processes. Topics covered include molecular mechanisms in lymphatic development, structural adaptations of the lymphatic vasculature to particulate and cellular transport and trafficking, lymphogenous route of clinical cancer spread, preservation of delineated lymphatic pathways during cancer operations, and anti-lymphangiogenesis in cancer therapy.
Collapse
Affiliation(s)
- Marlys H Witte
- Department of Surgery, University of Arizona College of Medicine, Tucson, Arizona 85724-5200, USA.
| | | | | | | | | | | | | | | |
Collapse
|
254
|
Lymphangiogenesis in post-natal tissue remodeling: lymphatic endothelial cell connection with its environment. Mol Aspects Med 2011; 32:146-58. [PMID: 21549745 DOI: 10.1016/j.mam.2011.04.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Accepted: 04/15/2011] [Indexed: 11/23/2022]
Abstract
The main physiological function of the lymphatic vasculature is to maintain tissue fluid homeostasis. Lymphangiogenesis or de novo lymphatic formation is closely associated with tissue inflammation in adults (i.e. wound healing, allograft rejection, tumor metastasis). Until recently, research on lymphangiogenesis focused mainly on growth factor/growth factor-receptor pathways governing this process. One of the lymphatic vessel features is the incomplete or absence of basement membrane. This close association of endothelial cells with the underlying interstitial matrix suggests that cell-matrix interactions play an important role in lymphangiogenesis and lymphatic functions. However, the exploration of interaction between extracellular matrix (ECM) components and lymphatic endothelial cells is in its infancy. Herein, we describe ECM-cell and cell-cell interactions on lymphatic system function and their modification occurring in pathologies including cancer metastasis.
Collapse
|
255
|
Barnes RM, Firulli BA, VanDusen NJ, Morikawa Y, Conway SJ, Cserjesi P, Vincentz JW, Firulli AB. Hand2 loss-of-function in Hand1-expressing cells reveals distinct roles in epicardial and coronary vessel development. Circ Res 2011; 108:940-9. [PMID: 21350214 PMCID: PMC3086599 DOI: 10.1161/circresaha.110.233171] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Accepted: 02/10/2011] [Indexed: 12/31/2022]
Abstract
RATIONALE The basic helix-loop-helix (bHLH) transcription factors Hand1 and Hand2 are essential for embryonic development. Given their requirement for cardiogenesis, it is imperative to determine their impact on cardiovascular function. OBJECTIVE To deduce the role of Hand2 within the epicardium. METHOD AND RESULTS We engineered a Hand1 allele expressing Cre recombinase. Cardiac Hand1 expression is largely limited to cells of the primary heart field, overlapping little with Hand2 expression. Hand1 is expressed within the septum transversum, and the Hand1 lineage marks the proepicardial organ and epicardium. To examine Hand factor functional overlap, we conditionally deleted Hand2 from Hand1-expressing cells. Hand2 mutants display defective epicardialization and fail to form coronary arteries, coincident with altered extracellular matrix deposition and Pdgfr expression. CONCLUSIONS These data demonstrate a hierarchal relationship whereby transient Hand1 septum transversum expression defines epicardial precursors that are subsequently dependent on Hand2 function.
Collapse
Affiliation(s)
- Ralston M. Barnes
- Riley Heart Research Center, Wells Center for Pediatric Research, Division of Pediatric Cardiology, Departments of Anatomy and Medical and Molecular Genetics, Indiana Medical School, 1044 W. Walnut St., Indianapolis, IN 46202-5225, USA
| | - Beth A. Firulli
- Riley Heart Research Center, Wells Center for Pediatric Research, Division of Pediatric Cardiology, Departments of Anatomy and Medical and Molecular Genetics, Indiana Medical School, 1044 W. Walnut St., Indianapolis, IN 46202-5225, USA
| | - Nathan J. VanDusen
- Riley Heart Research Center, Wells Center for Pediatric Research, Division of Pediatric Cardiology, Departments of Anatomy and Medical and Molecular Genetics, Indiana Medical School, 1044 W. Walnut St., Indianapolis, IN 46202-5225, USA
| | - Yuka Morikawa
- Department of Cell and Molecular Biology, Tulane University, 2000 Percival Stern Hall, New Orleans, LA 70118, USA
| | - Simon J. Conway
- Riley Heart Research Center, Wells Center for Pediatric Research, Division of Pediatric Cardiology, Departments of Anatomy and Medical and Molecular Genetics, Indiana Medical School, 1044 W. Walnut St., Indianapolis, IN 46202-5225, USA
| | - Peter Cserjesi
- Department of Pathology and Cell Biology, Columbia University, 630 W 168 Street, New York, NY 10032, USA
| | - Joshua W. Vincentz
- Riley Heart Research Center, Wells Center for Pediatric Research, Division of Pediatric Cardiology, Departments of Anatomy and Medical and Molecular Genetics, Indiana Medical School, 1044 W. Walnut St., Indianapolis, IN 46202-5225, USA
| | - Anthony B. Firulli
- Riley Heart Research Center, Wells Center for Pediatric Research, Division of Pediatric Cardiology, Departments of Anatomy and Medical and Molecular Genetics, Indiana Medical School, 1044 W. Walnut St., Indianapolis, IN 46202-5225, USA
| |
Collapse
|
256
|
Affiliation(s)
- Camilla Norrmén
- From the Molecular/Cancer Biology Laboratory, Research Programs Unit, Institute for Molecular Medicine Finland and Helsinki University Hospital, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland (C.N., T.T., K.A.), and Division of Experimental Oncology and Department of Biochemistry, CePO, University of Lausanne and CHUV, Epalinges, Switzerland (T.V.P.)
| | - Tuomas Tammela
- From the Molecular/Cancer Biology Laboratory, Research Programs Unit, Institute for Molecular Medicine Finland and Helsinki University Hospital, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland (C.N., T.T., K.A.), and Division of Experimental Oncology and Department of Biochemistry, CePO, University of Lausanne and CHUV, Epalinges, Switzerland (T.V.P.)
| | - Tatiana V. Petrova
- From the Molecular/Cancer Biology Laboratory, Research Programs Unit, Institute for Molecular Medicine Finland and Helsinki University Hospital, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland (C.N., T.T., K.A.), and Division of Experimental Oncology and Department of Biochemistry, CePO, University of Lausanne and CHUV, Epalinges, Switzerland (T.V.P.)
| | - Kari Alitalo
- From the Molecular/Cancer Biology Laboratory, Research Programs Unit, Institute for Molecular Medicine Finland and Helsinki University Hospital, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland (C.N., T.T., K.A.), and Division of Experimental Oncology and Department of Biochemistry, CePO, University of Lausanne and CHUV, Epalinges, Switzerland (T.V.P.)
| |
Collapse
|
257
|
Abstract
OBJECTIVE In the United States, there are more than 100,000 people with spina bifida. There have been very few studies to date documenting the occurrence of lymphedema in the spina bifida population, despite a case series in 2001 that suggested that the occurrence may be higher than in the general population. Currently, approximately 1 million people have lymphedema in the United States. The purpose of this study was to document the occurrence of lymphedema and associated medical factors in a regional adult spina bifida population. DESIGN A total of 240 electronic medical records from the Adult Spina Bifida Clinic from January 2005 to August 2008 were retrospectively reviewed. Subjects were divided into two groups based on the presence or absence of lymphedema. χ² analyses were used to compare lymphedema groups with respect to history of medical comorbidities and ethnicity. Fisher exact tests were used to compare groups with respect to mobility status and the presence of power wheelchair seat functions. Mann-Whitney U tests were used to compare groups with respect to age, anatomic lesion level, employment level, and income. RESULTS Twenty-two (9.2%) patients had lymphedema. Mean ± SD population age was 35.1 ± 11.1 yrs. Lymphedema was associated with a history of trauma (P = 0.044), cellulitis (P < 0.001), cancer (P = 0.038), obesity (P < 0.001), wounds (P < 0.001), hypertension (P = 0.036), higher lesion level spina bifida (P = 0.049), and mobility status (P = 0.007). Hypertension and obesity were present in 38.3% and 37.5% of the total study population, respectively. CONCLUSIONS This is the first study to document the occurrence of lymphedema in a spina bifida patient population, which was almost 100 times higher than that in the general patient population. We also documented a high occurrence of hypertension and obesity in the total study population. These findings may help guide further prospective studies to more clearly delineate the risk factors for the development of lymphedema and to determine the appropriate therapies. Better screening, prevention and treatment algorithms are needed for hypertension and obesity in the spina bifida population.
Collapse
|
258
|
Abstract
The development of multicellular organisms, as well as maintenance of organ architecture and function, requires robust regulation of cell fates. This is in part achieved by conserved signaling pathways through which cells process extracellular information and translate this information into changes in proliferation, differentiation, migration, and cell shape. Gene deletion studies in higher eukaryotes have assigned critical roles for components of the extracellular matrix (ECM) and their cellular receptors in a vast number of developmental processes, indicating that a large proportion of this signaling is regulated by cell-ECM interactions. In addition, genetic alterations in components of this signaling axis play causative roles in several human diseases. This review will discuss what genetic analyses in mice and lower organisms have taught us about adhesion signaling in development and disease.
Collapse
Affiliation(s)
- Sara A Wickström
- Paul Gerson Una Group, Skin Homeostasis and Ageing, Max Planck Institute for Biology of Ageing, 50937 Cologne, Germany.
| | | | | |
Collapse
|
259
|
Laco F, Grant MH, Flint DJ, Black RA. Cellular Trans-Differentiation and Morphogenesis Toward the Lymphatic Lineage in Regenerative Medicine. Stem Cells Dev 2011; 20:181-95. [DOI: 10.1089/scd.2009.0527] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Filip Laco
- Department of Bioengineering, University of Strathclyde, Glasgow, Scotland, United Kingdom
| | - Mary Helen Grant
- Department of Bioengineering, University of Strathclyde, Glasgow, Scotland, United Kingdom
| | - David J. Flint
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland, United Kingdom
| | - Richard A. Black
- Department of Bioengineering, University of Strathclyde, Glasgow, Scotland, United Kingdom
| |
Collapse
|
260
|
Stem cell integrins: Implications for ex-vivo culture and cellular therapies. Stem Cell Res 2011; 6:1-12. [DOI: 10.1016/j.scr.2010.09.005] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 09/28/2010] [Accepted: 09/28/2010] [Indexed: 12/15/2022] Open
|
261
|
Abstract
Integrins are adhesive proteins that have evolved to mediate cell-cell and cell-matrix communication that is indispensable for development and postnatal physiology. Despite their widespread expression, the genetic deletion of specific integrin family members in lower organisms as well as mammals leads to relatively distinct abnormalities. Many of the processes in which integrins participate have a requirement for strong adhesion coincident with times of mechanical stress. In Drosophila, the absence of specific integrins leads to detachment of muscle from the gut and body wall and separation of the two epithelial layers in the wing. In mice and humans, a deletion of either subunit of the laminin-binding integrin, α6β4 leads to severe skin blistering and defects in other epithelial layers. In addition, integrins have also evolved to serve more subspecialized roles ranging from the establishment of a stem cell niche in Drosophila and mammals, to the regulation of pathogenic tumor vascularization, platelet adhesion, and leukocyte transmigration in mammalian systems. However, some cells seem to function normally in the absence of all integrins, as revealed by the very surprising finding that deletion of all the major integrin types on dendritic cells of mice has no effect on the ability of these cells to migrate within the interstitium of the skin and enter into lymphatics. In addition to serving as transmembrane mechanical links, integrins in vertebrates synergize with a number of receptors including growth factor receptors, to enhance responses. This leads to the activation of a large signaling network that affects cell proliferation and differentiation, as well as cell shape and migration. In vivo studies, in lower organisms, knockout mouse models as well as in inherited human diseases together have provided important insights into how this major, primordial family of adhesion receptors have remained true to their name "integrins" as their diverse functions have in common the ability to integrate extracellular stimuli into intracellular signals that affect cell behavior.
Collapse
|
262
|
Meng Z, Fu X, Chen X, Zeng S, Tian Y, Jove R, Xu R, Huang W. miR-194 is a marker of hepatic epithelial cells and suppresses metastasis of liver cancer cells in mice. Hepatology 2010; 52:2148-57. [PMID: 20979124 PMCID: PMC3076553 DOI: 10.1002/hep.23915] [Citation(s) in RCA: 176] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Accepted: 08/03/2010] [Indexed: 12/11/2022]
Abstract
UNLABELLED MicroRNAs (miRNAs) are small noncoding RNAs that regulate gene expression by interacting with the 3' untranslated region (3'-UTR) of multiple mRNAs. Recent studies have linked miRNAs to the development of cancer metastasis. In this study, we show that miR-194 is specifically expressed in the human gastrointestinal tract and kidney. Moreover, miR-194 is highly expressed in hepatic epithelial cells, but not in Kupffer cells or hepatic stellate cells, two types of mesenchymal cells in the liver. miR-194 expression was decreased in hepatocytes cultured in vitro, which had undergone a dedifferentiation process. Furthermore, expression of miR-194 was low in liver mesenchymal-like cancer cell lines. The overexpression of miR-194 in liver mesenchymal-like cancer cells reduced the expression of the mesenchymal cell marker N-cadherin and suppressed invasion and migration of the mesenchymal-like cancer cells both in vitro and in vivo. We further demonstrated that miR-194 targeted the 3'-UTRs of several genes that were involved in epithelial-mesenchymal transition and cancer metastasis. CONCLUSION These results support a role of miR-194, which is specifically expressed in liver parenchymal cells, in preventing liver cancer cell metastasis.
Collapse
Affiliation(s)
- Zhipeng Meng
- Division of Gene Regulation and Drug Discovery, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | | | | | | | | | | | | | | |
Collapse
|
263
|
Cseh B, Fernandez-Sauze S, Grall D, Schaub S, Doma E, Van Obberghen-Schilling E. Autocrine fibronectin directs matrix assembly and crosstalk between cell–matrix and cell–cell adhesion in vascular endothelial cells. J Cell Sci 2010; 123:3989-99. [DOI: 10.1242/jcs.073346] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Cellular fibronectin (cFN) variants harboring extra FN type 3 repeats, namely extra domains B and A, are major constituents of the extracellular matrix around newly forming blood vessels during development and angiogenesis. Their expression is induced by angiogenic stimuli and their assembly into fibrillar arrays is driven by cell-generated tension at α5β1 integrin-based adhesions. Here, we examined the role and functional redundancy of cFN variants in cultured endothelial cells by isoform-selective RNA interference. We show that FN fibrillogenesis is a cell-autonomous process whereby basally directed secretion and assembly of cellular FN are tightly coupled events that play an important role not only in signaling at cell–matrix adhesions but also at cell–cell contacts. Silencing of cFN variants differentially affects integrin usage, cell spreading, motility and capillary morphogenesis in vitro. cFN-deficient cells undergo a switch from α5β1- to αvβ3-based adhesion, accompanied by a Src-regulated disruption of adherens junctions. These studies identify a crucial role for autocrine FN in subendothelial matrix assembly and junctional integrity that provides spatially and temporally restricted control of endothelial plasticity during angiogenic blood vessel remodeling.
Collapse
Affiliation(s)
- Botond Cseh
- University of Nice-Sophia Antipolis, CNRS UMR 6543, Centre Antoine Lacassagne, 33 Avenue de Valombrose, 06189 Nice, France
| | - Samantha Fernandez-Sauze
- University of Nice-Sophia Antipolis, CNRS UMR 6543, Centre Antoine Lacassagne, 33 Avenue de Valombrose, 06189 Nice, France
| | - Dominique Grall
- University of Nice-Sophia Antipolis, CNRS UMR 6543, Centre Antoine Lacassagne, 33 Avenue de Valombrose, 06189 Nice, France
| | - Sébastien Schaub
- University of Nice-Sophia Antipolis, CNRS UMR 6543, Centre Antoine Lacassagne, 33 Avenue de Valombrose, 06189 Nice, France
| | - Eszter Doma
- University of Nice-Sophia Antipolis, CNRS UMR 6543, Centre Antoine Lacassagne, 33 Avenue de Valombrose, 06189 Nice, France
| | - Ellen Van Obberghen-Schilling
- University of Nice-Sophia Antipolis, CNRS UMR 6543, Centre Antoine Lacassagne, 33 Avenue de Valombrose, 06189 Nice, France
| |
Collapse
|
264
|
Oommen S, Gupta SK, Vlahakis NE. Vascular endothelial growth factor A (VEGF-A) induces endothelial and cancer cell migration through direct binding to integrin {alpha}9{beta}1: identification of a specific {alpha}9{beta}1 binding site. J Biol Chem 2010; 286:1083-92. [PMID: 21071450 DOI: 10.1074/jbc.m110.175158] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Integrin α9β1 mediates accelerated cell adhesion and migration through interactions with a number of diverse extracellular ligands. We have shown previously that it directly binds the vascular endothelial growth factors (VEGF) A, C, and D and contributes to VEGF-induced angiogenesis and lymphangiogenesis. Until now, the α9β1 binding site in VEGF has not been identified. Here, we report that the three-amino acid sequence, EYP, encoded by exon 3 of VEGF-A is essential for binding of VEGF to integrin α9β1 and induces adhesion and migration of endothelial and cancer cells. EYP is specific for α9β1 binding and neither requires nor activates VEGFR-2, the cognate receptor for VEGF-A. Following binding to EYP, integrin α9β1 transduces cell migration through direct activation of the integrin signaling intermediates Src and focal adhesion kinase. This interaction is biologically important because it mediates in vitro endothelial cell tube formation, wound healing, and cancer cell invasion. These novel findings identify EYP as a potential site for directed pharmacotherapy.
Collapse
Affiliation(s)
- Saji Oommen
- Thoracic Disease Research Unit, Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | |
Collapse
|
265
|
Wang Y, Oliver G. Current views on the function of the lymphatic vasculature in health and disease. Genes Dev 2010; 24:2115-26. [PMID: 20889712 DOI: 10.1101/gad.1955910] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The lymphatic vascular system is essential for lipid absorption, fluid homeostasis, and immune surveillance. Until recently, lymphatic vessel dysfunction had been associated with symptomatic pathologic conditions such as lymphedema. Work in the last few years had led to a better understanding of the functional roles of this vascular system in health and disease. Furthermore, recent work has also unraveled additional functional roles of the lymphatic vasculature in fat metabolism, obesity, inflammation, and the regulation of salt storage in hypertension. In this review, we summarize the functional roles of the lymphatic vasculature in health and disease.
Collapse
Affiliation(s)
- Yingdi Wang
- Department of Genetics and Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | | |
Collapse
|
266
|
Abstract
Right from birth, the lymphatics play a crucial role in dietary functions. A majority of the lipid absorbed from the newborn's lipid-rich diet enters the blood circulation through the lymphatic system, which transports triglyceride-loaded particles known as chylomicrons from the villi of the small intestine to the venous circulation near the heart. In light of the significance of this role, as well as the fact that lipid transport from the gut was one of the earliest discovered functions of the lymphatic vasculature, it is surprising that so little is known about how chylomicrons initially gain access to the lymphatic vessel. This review will focus on the current mechanisms thought to be important in this process and highlight important questions that need to be answered in the future.
Collapse
Affiliation(s)
- J Brandon Dixon
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA.
| |
Collapse
|
267
|
Wiig H, Keskin D, Kalluri R. Interaction between the extracellular matrix and lymphatics: consequences for lymphangiogenesis and lymphatic function. Matrix Biol 2010; 29:645-56. [PMID: 20727409 PMCID: PMC3992865 DOI: 10.1016/j.matbio.2010.08.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Revised: 08/03/2010] [Accepted: 08/03/2010] [Indexed: 12/19/2022]
Abstract
The lymphatic system is important for body fluid balance as well as immunological surveillance. Due to the identification of new molecular markers during the last decade, there has been a recent dramatic increase in our knowledge on the molecular mechanisms involved in lymphatic vessel growth (lymphangiogenesis) and lymphatic function. Here we review data showing that although it is often overlooked, the extracellular matrix plays an important role in the generation of new lymphatic vessels as a response to physiological and pathological stimuli. Extracellular matrix-lymphatic interactions as well as biophysical characteristics of the stroma have consequences for tumor formation, growth and metastasis. During the recent years, anti-lymphangiogenesis has emerged as an additional therapeutic modality to the clinically applied anti-angiogenesis strategy. Oppositely, enhancement of lymphangiogenesis in situations of lymph accumulation is seen as a promising strategy to a set of conditions where few therapeutic avenues are available. Knowledge on the interaction between the extracellular matrix and the lymphatics may enhance our understanding of the underlying mechanisms and may ultimately lead to better therapies for conditions where reduced or increased lymphatic function is the therapeutic target.
Collapse
Affiliation(s)
- Helge Wiig
- Division of Matrix Biology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, United States
| | | | | |
Collapse
|
268
|
Zhou F, Chang Z, Zhang L, Hong YK, Shen B, Wang B, Zhang F, Lu G, Tvorogov D, Alitalo K, Hemmings BA, Yang Z, He Y. Akt/Protein kinase B is required for lymphatic network formation, remodeling, and valve development. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:2124-33. [PMID: 20724596 PMCID: PMC2947305 DOI: 10.2353/ajpath.2010.091301] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Accepted: 06/16/2010] [Indexed: 01/11/2023]
Abstract
Akt-mediated signaling plays an important role in blood vascular development. In this study, we investigated the role of Akt in lymphatic growth using Akt-deficient mice. First, we found that lymphangiogenesis occurred in Akt1(-/-), Akt2(-/-), and Akt3(-/-) mice. However, both the diameter and endothelial cell number of lymphatic capillaries were significantly less in Akt1(-/-) mice than in wild-type control mice, whereas there was only a slight change in Akt2(-/-) and Akt3(-/-) mice. Second, valves present in the small collecting lymphatics in the superficial dermal layer of the ear skin were rarely observed in Akt1(-/-) mice, although these valves could be detected in the large collecting lymphatics in the deep layer of the skin tissues. A fluorescence microlymphangiography assay showed that the skin lymphatic network in Akt1(-/-) mice was functional but abnormal as shown by fluorescein isothiocyanate-dextran draining. There was an uncharacteristic enlargement of collecting lymphatic vessels, and further analysis showed that smooth muscle cell coverage of collecting lymphatic vessels became much more sparse in Akt1-deficient mice than in wild-type control animals. Finally, we showed that lymphatic vessels were detected in compound Akt-null mice and that lymphangiogenesis could be induced by vascular endothelial growth factor-C delivered via adenoviral vectors in adult mice lacking Akt1. These results indicate that despite the compensatory roles of other Akt isoforms, Akt1 is more critically required during lymphatic development.
Collapse
Affiliation(s)
- Fei Zhou
- Laboratory of Vascular and Cancer Biology, MOE (Ministry of Education) Key Laboratory for Model Animal and Disease Study, Model Animal Research Institute, Nanjing University, Nanjing, China
| | - Zai Chang
- Laboratory of Heart and Disease Model, MOE (Ministry of Education) Key Laboratory for Model Animal and Disease Study, Model Animal Research Institute, Nanjing University, Nanjing, China
| | - Luqing Zhang
- Laboratory of Vascular and Cancer Biology, MOE (Ministry of Education) Key Laboratory for Model Animal and Disease Study, Model Animal Research Institute, Nanjing University, Nanjing, China
| | - Young-Kwon Hong
- Departments of Surgery and Biochemistry and Molecular Biology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Bin Shen
- Laboratory of Vascular and Cancer Biology, MOE (Ministry of Education) Key Laboratory for Model Animal and Disease Study, Model Animal Research Institute, Nanjing University, Nanjing, China
| | - Bo Wang
- Laboratory of Vascular and Cancer Biology, MOE (Ministry of Education) Key Laboratory for Model Animal and Disease Study, Model Animal Research Institute, Nanjing University, Nanjing, China
| | - Fan Zhang
- Department of Medical Imaging, Nanjing Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, China
| | - Guangming Lu
- Department of Medical Imaging, Nanjing Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, China
| | - Denis Tvorogov
- Molecular/Cancer Biology Laboratory, the Department of Pathology, Haartman Institute and Ludwig Institute for Cancer Research, Biomedicum Helsinki, Helsinki University Central Hospital, University of Helsinki, Helsinki, Finland
| | - Kari Alitalo
- Molecular/Cancer Biology Laboratory, the Department of Pathology, Haartman Institute and Ludwig Institute for Cancer Research, Biomedicum Helsinki, Helsinki University Central Hospital, University of Helsinki, Helsinki, Finland
| | - Brian A. Hemmings
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Zhongzhou Yang
- Laboratory of Heart and Disease Model, MOE (Ministry of Education) Key Laboratory for Model Animal and Disease Study, Model Animal Research Institute, Nanjing University, Nanjing, China
| | - Yulong He
- Laboratory of Vascular and Cancer Biology, MOE (Ministry of Education) Key Laboratory for Model Animal and Disease Study, Model Animal Research Institute, Nanjing University, Nanjing, China
| |
Collapse
|
269
|
Lund AW, Swartz MA. Role of lymphatic vessels in tumor immunity: passive conduits or active participants? J Mammary Gland Biol Neoplasia 2010; 15:341-52. [PMID: 20835756 DOI: 10.1007/s10911-010-9193-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2010] [Accepted: 08/29/2010] [Indexed: 12/18/2022] Open
Abstract
Research in lymphatic biology and cancer immunology may soon intersect as emerging evidence implicates the lymphatics in the progression of chronic inflammation and autoimmunity as well as in tumor metastasis and immune escape. Like the blood vasculature, the lymphatic system comprises a highly dynamic conduit system that regulates fluid homeostasis, antigen transport and immune cell trafficking, which all play important roles in the progression and resolution of inflammation, autoimmune diseases, and cancer. This review presents emerging evidence that lymphatic vessels are active modulators of immunity, perhaps fine-tuning the response to adjust the balance between peripheral tolerance and immunity. This suggests that the tumor-associated lymphatic vessels and draining lymph node may be important in tumor immunity which in turn governs metastasis.
Collapse
Affiliation(s)
- Amanda W Lund
- Institute of Bioengineering and Swiss Institute of Experimental Cancer Research, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | |
Collapse
|
270
|
Dixon JB. Lymphatic lipid transport: sewer or subway? Trends Endocrinol Metab 2010; 21:480-7. [PMID: 20541951 PMCID: PMC2914116 DOI: 10.1016/j.tem.2010.04.003] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Revised: 04/29/2010] [Accepted: 04/30/2010] [Indexed: 12/17/2022]
Abstract
The lymphatics began receiving attention in the scientific community as early as 1622, when Gasparo Aselli noted the appearance of milky-white vessels in the mesentery of a well-fed dog. Since this time, the lymphatic system has been historically regarded as the sewer of the vasculature, passively draining fluid and proteins from the interstitial spaces (along with lipid from the gut) into the blood. Recent reports, however, suggest that the lymphatic role in lipid transport is an active and intricate process, and that when lymphatic function is compromised, there are systemic consequences to lipid metabolism and transport. This review highlights these recent findings, and suggests future directions for understanding the interplay between lymphatic and lipid biology in health and disease.
Collapse
Affiliation(s)
- J Brandon Dixon
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| |
Collapse
|
271
|
van der Flier A, Badu-Nkansah K, Whittaker CA, Crowley D, Bronson RT, Lacy-Hulbert A, Hynes RO. Endothelial alpha5 and alphav integrins cooperate in remodeling of the vasculature during development. Development 2010; 137:2439-49. [PMID: 20570943 PMCID: PMC2889609 DOI: 10.1242/dev.049551] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2010] [Indexed: 01/19/2023]
Abstract
Integrin cell adhesion receptors and fibronectin, one of their extracellular matrix ligands, have been demonstrated to be important for angiogenesis using functional perturbation studies and complete knockout mouse models. Here, we report on the roles of the alpha5 and alphav integrins, which are the major endothelial fibronectin receptors, in developmental angiogenesis. We generated an integrin alpha5-floxed mouse line and ablated alpha5 integrin in endothelial cells. Unexpectedly, endothelial-specific knockout of integrin alpha5 has no obvious effect on developmental angiogenesis. We provide evidence for genetic interaction between mutations in integrin alpha5 and alphav and for overlapping functions and compensation between these integrins and perhaps others. Nonetheless, in embryos lacking both alpha5 and alphav integrins in their endothelial cells, initial vasculogenesis and angiogenesis proceed normally, at least up to E11.5, including the formation of apparently normal embryonic vasculature and development of the branchial arches. However, in the absence of endothelial alpha5 and alphav integrins, but not of either alone, there are extensive defects in remodeling of the great vessels and heart resulting in death at ~E14.5. We also found that fibronectin assembly is somewhat affected in integrin alpha5 knockout endothelial cells and markedly reduced in integrin alpha5/alphav double-knockout endothelial cell lines. Therefore, neither alpha5 nor alphav integrins are required in endothelial cells for initial vasculogenesis and angiogenesis, although they are required for remodeling of the heart and great vessels. These integrins on other cells, and/or other integrins on endothelial cells, might contribute to fibronectin assembly and vascular development.
Collapse
Affiliation(s)
- Arjan van der Flier
- Howard Hughes Medical Institute, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kwabena Badu-Nkansah
- Howard Hughes Medical Institute, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Charles A. Whittaker
- Howard Hughes Medical Institute, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Denise Crowley
- Howard Hughes Medical Institute, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Roderick T. Bronson
- Howard Hughes Medical Institute, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | - Richard O. Hynes
- Howard Hughes Medical Institute, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
272
|
Garmy-Susini B, Avraamides CJ, Schmid MC, Foubert P, Ellies LG, Barnes L, Feral C, Papayannopoulou T, Lowy A, Blair SL, Cheresh D, Ginsberg M, Varner JA. Integrin alpha4beta1 signaling is required for lymphangiogenesis and tumor metastasis. Cancer Res 2010; 70:3042-51. [PMID: 20388801 PMCID: PMC2856096 DOI: 10.1158/0008-5472.can-09-3761] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Recent studies have shown that lymphangiogenesis or the growth of lymphatic vessels at the periphery of tumors promotes tumor metastasis to lymph nodes. We show here that the fibronectin-binding integrin alpha4beta1 and its ligand fibronectin are novel functional markers of proliferative lymphatic endothelium. Tumors and lymphangiogenic growth factors, such as vascular endothelial growth factor-C (VEGF-C) and VEGF-A, induce lymphatic vessel expression of integrin alpha4beta1. Integrin alpha4beta1 then promotes growth factor and tumor-induced lymphangiogenesis, as genetic loss of integrin alpha4beta1 expression in Tie2Cre+ alpha4(loxp/loxp) mice or genetic loss of alpha4 signaling in alpha4Y991A knock-in mice blocks growth factor and tumor-induced lymphangiogenesis, as well as tumor metastasis to lymph nodes. In addition, antagonists of integrin alpha4beta1 suppress lymphangiogenesis and tumor metastasis. Our studies show that integrin alpha4beta1 and the signals it transduces regulate the adhesion, migration, invasion, and survival of proliferating lymphatic endothelial cells. As suppression of alpha4beta1 expression, signal transduction, or function in tumor lymphatic endothelium not only inhibits tumor lymphangiogenesis but also prevents metastatic disease, these results show that integrin alpha4beta1-mediated tumor lymphangiogenesis promotes metastasis and is a useful target for the suppression of metastatic disease.
Collapse
Affiliation(s)
| | | | | | | | | | - Leo Barnes
- Moores Cancer Center, University of California, San Diego
- Department of Pathology, University of California, San Diego
| | - Chloe Feral
- Department of Medicine, University of California, San Diego
| | | | - Andrew Lowy
- Moores Cancer Center, University of California, San Diego
- Department of Surgery, University of California, San Diego
| | - Sarah L. Blair
- Moores Cancer Center, University of California, San Diego
- Department of Surgery, University of California, San Diego
| | - David Cheresh
- Moores Cancer Center, University of California, San Diego
- Department of Pathology, University of California, San Diego
| | - Mark Ginsberg
- Department of Medicine, University of California, San Diego
| | - Judith A. Varner
- Moores Cancer Center, University of California, San Diego
- Department of Medicine, University of California, San Diego
| |
Collapse
|
273
|
Gupta SK, Vlahakis NE. Integrin alpha9beta1: Unique signaling pathways reveal diverse biological roles. Cell Adh Migr 2010; 4:194-8. [PMID: 20179422 DOI: 10.4161/cam.4.2.10900] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Integrins are transmembrane heterodimeric receptors responsible for transducing and modulating signals between the extracellular matrix and cytoskeleton, ultimately influencing cell functions such as adhesion and migration. Integrin alpha9beta1 is classified within a two member sub-family of integrins highlighted in part by its specialized role in cell migration. The importance of this role is demonstrated by its regulation of numerous biological functions including lymphatic valve morphogenesis, lymphangiogenesis, angiogenesis and hematopoietic homeostasis. Compared to other integrins the signaling mechanisms that transduce alpha9beta1-induced cell migration are not well described. We have recently shown that Src tyrosine kinase plays a key proximal role to control alpha9beta1 signaling. Specifically it activates inducible nitric oxide synthase (iNOS) and in turn nitric oxide (NO) production as a means to transduce cell migration. Furthermore, we have also described a role for FAK, Erk and Rac1 in alpha9beta1 signal transduction. Here we provide an over view of known integrin alpha9beta1 signaling pathways and highlight its roles in diverse biological conditions.
Collapse
Affiliation(s)
- Shiv K Gupta
- Thoracic Disease Research Unit, Division of Pulmonary & Critical Care Medicine, Mayo Clinic, Rochester, MN, USA
| | | |
Collapse
|
274
|
Abstract
The growth of lymphatic vessels (lymphangiogenesis) is actively involved in a number of pathological processes including tissue inflammation and tumor dissemination but is insufficient in patients suffering from lymphedema, a debilitating condition characterized by chronic tissue edema and impaired immunity. The recent explosion of knowledge on the molecular mechanisms governing lymphangiogenesis provides new possibilities to treat these diseases.
Collapse
Affiliation(s)
- Tuomas Tammela
- Molecular/Cancer Biology Laboratory and Haartman Institute, University of Helsinki, Finland
| | | |
Collapse
|
275
|
Blei F. Literature Watch. Lymphat Res Biol 2009. [DOI: 10.1089/lrb.2009.7403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|