251
|
Shah RS, Soetikno BT, Lajko M, Fawzi AA. A Mouse Model for Laser-induced Choroidal Neovascularization. J Vis Exp 2015:e53502. [PMID: 26779879 DOI: 10.3791/53502] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The mouse laser-induced choroidal neovascularization (CNV) model has been a crucial mainstay model for neovascular age-related macular degeneration (AMD) research. By administering targeted laser injury to the RPE and Bruch's membrane, the procedure induces angiogenesis, modeling the hallmark pathology observed in neovascular AMD. First developed in non-human primates, the laser-induced CNV model has come to be implemented into many other species, the most recent of which being the mouse. Mouse experiments are advantageously more cost-effective, experiments can be executed on a much faster timeline, and they allow the use of various transgenic models. The miniature size of the mouse eye, however, poses a particular challenge when performing the procedure. Manipulation of the eye to visualize the retina requires practice of fine dexterity skills as well as simultaneous hand-eye-foot coordination to operate the laser. However, once mastered, the model can be applied to study many aspects of neovascular AMD such as molecular mechanisms, the effect of genetic manipulations, and drug treatment effects. The laser-induced CNV model, though useful, is not a perfect model of the disease. The wild-type mouse eye is otherwise healthy, and the chorio-retinal environment does not mimic the pathologic changes in human AMD. Furthermore, injury-induced angiogenesis does not reflect the same pathways as angiogenesis occurring in an age-related and chronic disease state as in AMD. Despite its shortcomings, the laser-induced CNV model is one of the best methods currently available to study the debilitating pathology of neovascular AMD. Its implementation has led to a deeper understanding of the pathogenesis of AMD, as well as contributing to the development of many of the AMD therapies currently available.
Collapse
Affiliation(s)
- Ronil S Shah
- Department of Ophthalmology, Northwestern University Feinberg School of Medicine
| | - Brian T Soetikno
- Department of Ophthalmology, Northwestern University Feinberg School of Medicine
| | - Michelle Lajko
- Department of Ophthalmology, Northwestern University Feinberg School of Medicine
| | - Amani A Fawzi
- Department of Ophthalmology, Northwestern University Feinberg School of Medicine;
| |
Collapse
|
252
|
Grassmann F, Ach T, Brandl C, Heid IM, Weber BH. What Does Genetics Tell Us About Age-Related Macular Degeneration? Annu Rev Vis Sci 2015; 1:73-96. [DOI: 10.1146/annurev-vision-082114-035609] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Thomas Ach
- Department of Ophthalmology, University of Alabama at Birmingham, Birmingham, Alabama 35294
- Department of Ophthalmology, University Hospital Würzburg, Würzburg, D-97080, Germany
| | - Caroline Brandl
- Institute of Human Genetics and
- Department of Genetic Epidemiology, University of Regensburg, Regensburg, D-93053, Germany;
- Department of Ophthalmology, University Hospital Regensburg, Regensburg, D-93042, Germany
| | - Iris M. Heid
- Department of Genetic Epidemiology, University of Regensburg, Regensburg, D-93053, Germany;
| | | |
Collapse
|
253
|
Scholz R, Sobotka M, Caramoy A, Stempfl T, Moehle C, Langmann T. Minocycline counter-regulates pro-inflammatory microglia responses in the retina and protects from degeneration. J Neuroinflammation 2015; 12:209. [PMID: 26576678 PMCID: PMC4650866 DOI: 10.1186/s12974-015-0431-4] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 11/12/2015] [Indexed: 12/20/2022] Open
Abstract
Background Microglia reactivity is a hallmark of retinal degenerations and overwhelming microglial responses contribute to photoreceptor death. Minocycline, a semi-synthetic tetracycline analog, has potent anti-inflammatory and neuroprotective effects. Here, we investigated how minocycline affects microglia in vitro and studied its immuno-modulatory properties in a mouse model of acute retinal degeneration using bright white light exposure. Methods LPS-treated BV-2 microglia were stimulated with 50 μg/ml minocycline for 6 or 24 h, respectively. Pro-inflammatory gene transcription was determined by real-time RT-PCR and nitric oxide (NO) secretion was assessed using the Griess reagent. Caspase 3/7 levels were determined in 661W photoreceptors cultured with microglia-conditioned medium in the absence or presence of minocycline supplementation. BALB/cJ mice received daily intraperitoneal injections of 45 mg/kg minocycline, starting 1 day before exposure to 15.000 lux white light for 1 hour. The effect of minocycline treatment on microglial reactivity was analyzed by immunohistochemical stainings of retinal sections and flat-mounts, and messenger RNA (mRNA) expression of microglia markers was determined using real-time RT-PCR and RNA-sequencing. Optical coherence tomography (OCT) and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) stainings were used to measure the extent of retinal degeneration and photoreceptor apoptosis. Results Stimulation of LPS-activated BV-2 microglia with minocycline significantly diminished the transcription of the pro-inflammatory markers CCL2, IL6, and inducible nitric oxide synthase (iNOS). Minocycline also reduced the production of NO and dampened microglial neurotoxicity on 661W photoreceptors. Furthermore, minocycline had direct protective effects on 661W photoreceptors by decreasing caspase 3/7 activity. In mice challenged with white light, injections of minocycline strongly decreased the number of amoeboid alerted microglia in the outer retina and down-regulated the expression of the microglial activation marker translocator protein (18 kDa) (TSPO), CD68, and activated microglia/macrophage whey acidic protein (AMWAP) already 1 day after light exposure. Furthermore, RNA-seq analyses revealed the potential of minocycline to globally counter-regulate pro-inflammatory gene transcription in the light-damaged retina. The severe thinning of the outer retina and the strong induction of photoreceptor apoptosis induced by light challenge were nearly completely prevented by minocycline treatment as indicated by a preserved retinal structure and a low number of apoptotic cells. Conclusions Minocycline potently counter-regulates microgliosis and light-induced retinal damage, indicating a promising concept for the treatment of retinal pathologies. Electronic supplementary material The online version of this article (doi:10.1186/s12974-015-0431-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rebecca Scholz
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, University of Cologne, 50931, Cologne, Germany.
| | - Markus Sobotka
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, University of Cologne, 50931, Cologne, Germany.
| | - Albert Caramoy
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, University of Cologne, 50931, Cologne, Germany.
| | - Thomas Stempfl
- Center of Excellence for Fluorescent Bioanalytics, University of Regensburg, 93053, Regensburg, Germany.
| | - Christoph Moehle
- Center of Excellence for Fluorescent Bioanalytics, University of Regensburg, 93053, Regensburg, Germany.
| | - Thomas Langmann
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, University of Cologne, 50931, Cologne, Germany.
| |
Collapse
|
254
|
Management of Ocular Diseases Using Lutein and Zeaxanthin: What Have We Learned from Experimental Animal Studies? J Ophthalmol 2015; 2015:523027. [PMID: 26617995 PMCID: PMC4651639 DOI: 10.1155/2015/523027] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 09/21/2015] [Indexed: 01/06/2023] Open
Abstract
Zeaxanthin and lutein are two carotenoid pigments that concentrated in the retina, especially in the macula. The effects of lutein and zeaxanthin on the prevention and treatment of various eye diseases, including age-related macular degeneration, diabetic retinopathy and cataract, ischemic/hypoxia induced retinopathy, light damage of the retina, retinitis pigmentosa, retinal detachment, and uveitis, have been studied in different experimental animal models. In these animal models, lutein and zeaxanthin have been reported to have beneficial effects in protecting ocular tissues and cells (especially the retinal neurons) against damage caused by different etiological factors. The mechanisms responsible for these effects of lutein and zeaxanthin include prevention of phototoxic damage by absorption of blue light, reduction of oxidative stress through antioxidant activity and free radical scavenging, and their anti-inflammatory and antiangiogenic properties. The results of these experimental animal studies may provide new preventive and therapeutic procedures for clinical management of various vision-threatening diseases.
Collapse
|
255
|
Scholz R, Caramoy A, Bhuckory MB, Rashid K, Chen M, Xu H, Grimm C, Langmann T. Targeting translocator protein (18 kDa) (TSPO) dampens pro-inflammatory microglia reactivity in the retina and protects from degeneration. J Neuroinflammation 2015; 12:201. [PMID: 26527153 PMCID: PMC4630900 DOI: 10.1186/s12974-015-0422-5] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 10/26/2015] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Reactive microglia are commonly seen in retinal degenerative diseases, and neurotoxic microglia responses can contribute to photoreceptor cell death. We and others have previously shown that translocator protein (18 kDa) (TSPO) is highly induced in retinal degenerations and that the selective TSPO ligand XBD173 (AC-5216, emapunil) exerts strong anti-inflammatory effects on microglia in vitro and ex vivo. Here, we investigated whether targeting TSPO with XBD173 has immuno-modulatory and neuroprotective functions in two mouse models of acute retinal degeneration using bright white light exposure. METHODS BALB/cJ and Cx3cr1(GFP/+) mice received intraperitoneal injections of 10 mg/kg XBD173 or vehicle for five consecutive days, starting 1 day prior to exposure to either 15,000 lux white light for 1 h or 50,000 lux focal light for 10 min, respectively. The effects of XBD173 treatment on microglia and Müller cell reactivity were analyzed by immuno-stainings of retinal sections and flat mounts, fluorescence-activated cell sorting (FACS) analysis, and mRNA expression of microglia markers using quantitative real-time PCR (qRT-PCR). Optical coherence tomography (OCT), terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) stainings, and morphometric analyses were used to quantify the extent of retinal degeneration and photoreceptor apoptosis. RESULTS Four days after the mice were challenged with bright white light, a large number of amoeboid-shaped alerted microglia appeared in the degenerating outer retina, which was nearly completely prevented by treatment with XBD173. This treatment also down-regulated the expression of TSPO protein in microglia but did not change the TSPO levels in the retinal pigment epithelium (RPE). RT-PCR analysis showed that the microglia/macrophage markers Cd68 and activated microglia/macrophage whey acidic protein (Amwap) as well as the pro-inflammatory genes Ccl2 and Il6 were reduced after XBD173 treatment. Light-induced degeneration of the outer retina was nearly fully blocked by XBD173 treatment. We further confirmed these findings in an independent mouse model of focal light damage. Retinas of animals receiving XBD173 therapy displayed significantly more ramified non-reactive microglia and more viable arrestin-positive cone photoreceptors than vehicle controls. CONCLUSIONS Targeting TSPO with XBD173 effectively counter-regulates microgliosis and ameliorates light-induced retinal damage, highlighting a new pharmacological concept for the treatment of retinal degenerations.
Collapse
Affiliation(s)
- Rebecca Scholz
- Department of Ophthalmology, Laboratory for Experimental Immunology of the Eye, University of Cologne, 50931, Cologne, Germany.
| | - Albert Caramoy
- Department of Ophthalmology, Laboratory for Experimental Immunology of the Eye, University of Cologne, 50931, Cologne, Germany.
| | - Mohajeet B Bhuckory
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, BT12 6BA, UK.
| | - Khalid Rashid
- Department of Ophthalmology, Laboratory for Experimental Immunology of the Eye, University of Cologne, 50931, Cologne, Germany.
| | - Mei Chen
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, BT12 6BA, UK.
| | - Heping Xu
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, BT12 6BA, UK.
| | - Christian Grimm
- Department of Ophthalmology, Lab for Retinal Cell Biology, University of Zürich, 8057, Zürich, Switzerland.
| | - Thomas Langmann
- Department of Ophthalmology, Laboratory for Experimental Immunology of the Eye, University of Cologne, 50931, Cologne, Germany.
| |
Collapse
|
256
|
Bennis A, Gorgels TGMF, ten Brink JB, van der Spek PJ, Bossers K, Heine VM, Bergen AA. Comparison of Mouse and Human Retinal Pigment Epithelium Gene Expression Profiles: Potential Implications for Age-Related Macular Degeneration. PLoS One 2015; 10:e0141597. [PMID: 26517551 PMCID: PMC4627757 DOI: 10.1371/journal.pone.0141597] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 10/09/2015] [Indexed: 11/26/2022] Open
Abstract
Background The human retinal pigment epithelium (RPE) plays an important role in the pathogenesis of age related macular degeneration (AMD). AMD is the leading cause of blindness worldwide. There is currently no effective treatment available. Preclinical studies in AMD mouse models are essential to develop new therapeutics. This requires further in-depth knowledge of the similarities and differences between mouse and human RPE. Methods We performed a microarray study to identify and functionally annotate RPE specific gene expression in mouse and human RPE. We used a meticulous method to determine C57BL/6J mouse RPE signature genes, correcting for possible RNA contamination from its adjacent layers: the choroid and the photoreceptors. We compared the signature genes, gene expression profiles and functional annotations of the mouse and human RPE. Results We defined sets of mouse (64), human (171) and mouse–human interspecies (22) RPE signature genes. Not unexpectedly, our gene expression analysis and comparative functional annotation suggested that, in general, the mouse and human RPE are very similar. For example, we found similarities for general features, like “organ development” and “disorders related to neurological tissue”. However, detailed analysis of the molecular pathways and networks associated with RPE functions, suggested also multiple species-specific differences, some of which may be relevant for the development of AMD. For example, CFHR1, most likely the main complement regulator in AMD pathogenesis was highly expressed in human RPE, but almost absent in mouse RPE. Furthermore, functions assigned to mouse and human RPE expression profiles indicate (patho-) biological differences related to AMD, such as oxidative stress, Bruch’s membrane, immune-regulation and outer blood retina barrier. Conclusion These differences may be important for the development of new therapeutic strategies and translational studies in age-related macular degeneration.
Collapse
Affiliation(s)
- Anna Bennis
- Department of Clinical Genetics, Academic Medical Centre, Amsterdam, The Netherlands
- The Netherlands Institute for Neuroscience (NIN-KNAW), Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Theo G. M. F. Gorgels
- The Netherlands Institute for Neuroscience (NIN-KNAW), Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
- University Eye Clinic Maastricht, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Jacoline B. ten Brink
- Department of Clinical Genetics, Academic Medical Centre, Amsterdam, The Netherlands
| | - Peter J. van der Spek
- Department of Bioinformatics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Koen Bossers
- Laboratory for Neuroregeneration, the Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Vivi M. Heine
- Department of Pediatrics / Child Neurology, Neuroscience Campus Amsterdam, VU University Medical Centre, Amsterdam, The Netherlands
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, Amsterdam, The Netherlands
| | - Arthur A. Bergen
- Department of Clinical Genetics, Academic Medical Centre, Amsterdam, The Netherlands
- The Netherlands Institute for Neuroscience (NIN-KNAW), Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
- Department of Ophthalmology, Academic Medical Centre, Amsterdam, The Netherlands
- * E-mail:
| |
Collapse
|
257
|
Shibuya K, Tomohiro M, Sasaki S, Otake S. Characteristics of structures and lesions of the eye in laboratory animals used in toxicity studies. J Toxicol Pathol 2015; 28:181-8. [PMID: 26538807 PMCID: PMC4604127 DOI: 10.1293/tox.2015-0037] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 06/29/2015] [Indexed: 11/19/2022] Open
Abstract
Histopathology of the eye is an essential part of ocular toxicity evaluation. There are structural variations of the eye among several laboratory animals commonly used in toxicity studies, and many cases of ocular lesions in these animals are related to anatomical and physiological characteristics of the eye. Since albino rats have no melanin in the eye, findings of the fundus can be observed clearly by ophthalmoscopy. Retinal atrophy is observed as a hyper-reflective lesion in the fundus and is usually observed as degeneration of the retina in histopathology. Albino rats are sensitive to light, and light-induced retinal degeneration is commonly observed because there is no melanin in the eye. Therefore, it is important to differentiate the causes of retinal degeneration because the lesion occurs spontaneously and is induced by several drugs or by lighting. In dogs, the tapetum lucidum, a multilayered reflective tissue of the choroid, is one of unique structures of the eye. Since tapetal cells contain reflecting crystals in which a high level of zinc has been demonstrated chemically, drug-induced tapetum degeneration is possibly related to zinc chelation. The eye of the monkey has a macula similar to that of humans. The macula consists only of cones with a high density, and light falls directly on the macula that plays an important role in visual acuity. Macular degeneration occurring in monkeys resembles histopathologically that of humans. Hence, the eye of the monkey is a suitable model to investigate macular degeneration and to assess drug-induced macular lesions.
Collapse
Affiliation(s)
- Kazumoto Shibuya
- Testing Department, Nippon Institute for Biological Science, 9-2221-1 Shin-machi, Ome, Tokyo 198-0024, Japan
| | - Masayuki Tomohiro
- Clinical & Regulatory Affairs, Alcon Japan Ltd., Toranomon Hills Mori Tower, 1-23-1 Toranomon, Minato-ku, Tokyo 105-6333, Japan
| | - Shoji Sasaki
- Japan Development, AbbVie GK, 3-5-27 Mita, Minato-ku, Tokyo 108-6302, Japan
| | - Seiji Otake
- Safety Assessment Department, LSI Medience Corporation, 14-1 Sunayama, Kamisu-shi, Ibaraki 314-0255, Japan
| |
Collapse
|
258
|
Stem cell based therapies for age-related macular degeneration: The promises and the challenges. Prog Retin Eye Res 2015; 48:1-39. [PMID: 26113213 DOI: 10.1016/j.preteyeres.2015.06.004] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 06/05/2015] [Accepted: 06/11/2015] [Indexed: 12/21/2022]
|
259
|
Abstract
Purpose We have observed that the commonly used ketamine/xylazine anesthesia mix can induce a focally severe and permanent corneal opacity. The purpose of this study was to establish the clinical and histological features of this deleterious side effect, its sensitivity with respect to age and anesthesia protocol, and approaches for avoiding it. Methods Young C57BL/6J, C57BLKS/J, and SJL/J mice were treated with permutations of anesthesia protocols and compared using slit-lamp exams, optical coherence tomography, histologic analyses, and telemetric measurements of body temperature. Results Ketamine/xylazine induces corneal damage in mice with a variable frequency. Among 12 experimental cohorts, corneal damage associated with ketamine/xylazine was observed in 9 of them. Despite various treatments to avoid corneal dehydration during anesthesia, the frequency of corneas experiencing damage among responding cohorts was 42% (26% inclusive of all cohorts), which is significantly greater than the natural prevalence (5%). The damage was consistent with band keratopathy. It appeared as a white or gray horizontal band located proximal to the pupil and was positive for subepithelial calcium deposition with von Kossa stain. Conclusions The sum of our clinical and histological observations is consistent with ketamine/xylazine-induced band keratopathy in mice. This finding is relevant for mouse studies involving the eye and/or vision-dependent behavioral assays, which would both be prone to artifact without appreciation of the damage caused by ketamine/xylazine anesthesia. Use of yohimbine is suggested as a practical means of avoiding this complication.
Collapse
|
260
|
Pogue AI, Dua P, Hill JM, Lukiw WJ. Progressive inflammatory pathology in the retina of aluminum-fed 5xFAD transgenic mice. J Inorg Biochem 2015. [PMID: 26213226 DOI: 10.1016/j.jinorgbio.2015.07.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
At least 57 murine transgenic models for Alzheimer's disease (Tg-AD) have been developed to overexpress the 42 amino acid amyloid-beta (Aβ42) peptide in the central nervous system (CNS). These 'humanized murine Tg-AD models' have greatly expanded our understanding of the contribution of Aβ42 peptide-mediated pro-inflammatory neuropathology to the AD process. A number of independent laboratories using different amyloid-overexpressing Tg-AD models have shown that supplementation of murine Tg-AD diets and/or drinking water with aluminum significantly enhances Aβ42 peptide-mediated inflammatory pathology and AD-type cognitive change compared to animals receiving control diets. In humans AD-type pathology appears to originate in the limbic system and progressively spreads into primary processing and sensory regions such as the retina. In these studies, for the first time, we assess the propagation of Aβ42 and inflammatory signals into the retina of 5xFAD Tg-AD amyloid-overexpressing mice whose diets were supplemented with aluminum. The two most interesting findings were (1) that similar to other Tg-AD models, there was a significantly accelerated development of Aβ42 and inflammatory pathology in 5xFAD Tg-AD mice fed aluminum; and (2) in aluminum-supplemented animals, markers for inflammatory pathology appeared in both the brain and the retina as evidenced by an evolving presence of Aβ42 peptides, and accompanied by inflammatory markers - cyclooxygenase-2 (COX-2) and C-reactive protein (CRP). The results indicate that in the 5xFAD Tg-AD model aluminum not only enhances an Aβ42-mediated inflammatory degeneration of the brain but also appears to induce AD-type pathology in an anatomically-linked primary sensory area that involves vision.
Collapse
Affiliation(s)
- A I Pogue
- Alchem Biotech, Toronto ON M5S 1A8 CANADA
| | - P Dua
- Department of Health Information Management, Louisiana State University, Ruston, LA, USA
| | - J M Hill
- Neuroscience Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; Department of Ophthalmology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - W J Lukiw
- Alchem Biotech, Toronto ON M5S 1A8 CANADA; Neuroscience Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; Department of Ophthalmology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; Department of Neurology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA.
| |
Collapse
|
261
|
Orban T, Johnson WM, Dong Z, Maeda T, Maeda A, Sakai T, Tsuneoka H, Mieyal JJ, Palczewski K. Serum levels of lipid metabolites in age-related macular degeneration. FASEB J 2015; 29:4579-88. [PMID: 26187344 DOI: 10.1096/fj.15-275289] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 07/06/2015] [Indexed: 01/24/2023]
Abstract
Age-related macular degeneration (AMD) is a neurodegenerative disease that causes adult-onset blindness. There are 2 forms of this progressive disease: wet and dry. Currently there is no cure for AMD, but several treatment options have started to emerge making early detection critical for therapeutic success. Analysis of the eyes of Abca4(-/-)Rdh8(-/-) mice that display light-induced retinal degeneration indicates that 11-cis-retinal and docosahexaenoic acid (DHA) levels were significantly decreased as compared with the eyes of control dark-adapted C57BL/6J mice. In addition, exposure to intense light correlated with higher levels of prostaglandin G2 in the eyes of Abca4(-/-)Rdh8(-/-) mice. Intense light exposure also lowered DHA levels in the eyes of wild-type C57BL/6J mice without discernible retinal degeneration. Analysis of human serum from patients with AMD recapitulated these dysregulated DHA levels and revealed dysregulation of arachidonic acid (AA) levels as well (∼32% increase in patients with AMD compared with average levels in healthy individuals). From these observations, we then built a statistical model that included levels of DHA and AA from human serum. This model had a 74% probability of correctly identifying patients with AMD from controls. Addition of a genetic analysis for one of the most prevalent amino acid substitutions in the age-related maculopathy susceptibility 2 gene linked to AMD, Ala(69)→Ser, did not improve the statistical model. Thus, we have characterized a reliable method with the potential to detect AMD without a genetic component, paving the way for a larger-scale clinical evaluation. Our studies on mouse models along with the analysis of human serum suggest that our small molecule-based model may serve as an effective tool to estimate the risk of developing AMD.
Collapse
Affiliation(s)
- Tivadar Orban
- *Department of Pharmacology and Department of Ophthalmology and Visual Sciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA; Polgenix, Incorporated, Cleveland, Ohio, USA; Department of Ophthalmology, Jikei University School of Medicine, Tokyo, Japan; and Louis Stokes Veterans Affairs Medical Research Center, Cleveland, Ohio, USA
| | - William M Johnson
- *Department of Pharmacology and Department of Ophthalmology and Visual Sciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA; Polgenix, Incorporated, Cleveland, Ohio, USA; Department of Ophthalmology, Jikei University School of Medicine, Tokyo, Japan; and Louis Stokes Veterans Affairs Medical Research Center, Cleveland, Ohio, USA
| | - Zhiqian Dong
- *Department of Pharmacology and Department of Ophthalmology and Visual Sciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA; Polgenix, Incorporated, Cleveland, Ohio, USA; Department of Ophthalmology, Jikei University School of Medicine, Tokyo, Japan; and Louis Stokes Veterans Affairs Medical Research Center, Cleveland, Ohio, USA
| | - Tadao Maeda
- *Department of Pharmacology and Department of Ophthalmology and Visual Sciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA; Polgenix, Incorporated, Cleveland, Ohio, USA; Department of Ophthalmology, Jikei University School of Medicine, Tokyo, Japan; and Louis Stokes Veterans Affairs Medical Research Center, Cleveland, Ohio, USA
| | - Akiko Maeda
- *Department of Pharmacology and Department of Ophthalmology and Visual Sciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA; Polgenix, Incorporated, Cleveland, Ohio, USA; Department of Ophthalmology, Jikei University School of Medicine, Tokyo, Japan; and Louis Stokes Veterans Affairs Medical Research Center, Cleveland, Ohio, USA
| | - Tsutomu Sakai
- *Department of Pharmacology and Department of Ophthalmology and Visual Sciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA; Polgenix, Incorporated, Cleveland, Ohio, USA; Department of Ophthalmology, Jikei University School of Medicine, Tokyo, Japan; and Louis Stokes Veterans Affairs Medical Research Center, Cleveland, Ohio, USA
| | - Hiroshi Tsuneoka
- *Department of Pharmacology and Department of Ophthalmology and Visual Sciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA; Polgenix, Incorporated, Cleveland, Ohio, USA; Department of Ophthalmology, Jikei University School of Medicine, Tokyo, Japan; and Louis Stokes Veterans Affairs Medical Research Center, Cleveland, Ohio, USA
| | - John J Mieyal
- *Department of Pharmacology and Department of Ophthalmology and Visual Sciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA; Polgenix, Incorporated, Cleveland, Ohio, USA; Department of Ophthalmology, Jikei University School of Medicine, Tokyo, Japan; and Louis Stokes Veterans Affairs Medical Research Center, Cleveland, Ohio, USA
| | - Krzysztof Palczewski
- *Department of Pharmacology and Department of Ophthalmology and Visual Sciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA; Polgenix, Incorporated, Cleveland, Ohio, USA; Department of Ophthalmology, Jikei University School of Medicine, Tokyo, Japan; and Louis Stokes Veterans Affairs Medical Research Center, Cleveland, Ohio, USA
| |
Collapse
|
262
|
Gong Y, Li J, Sun Y, Fu Z, Liu CH, Evans L, Tian K, Saba N, Fredrick T, Morss P, Chen J, Smith LEH. Optimization of an Image-Guided Laser-Induced Choroidal Neovascularization Model in Mice. PLoS One 2015; 10:e0132643. [PMID: 26161975 PMCID: PMC4498645 DOI: 10.1371/journal.pone.0132643] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 06/16/2015] [Indexed: 12/13/2022] Open
Abstract
The mouse model of laser-induced choroidal neovascularization (CNV) has been used in studies of the exudative form of age-related macular degeneration using both the conventional slit lamp and a new image-guided laser system. A standardized protocol is needed for consistent results using this model, which has been lacking. We optimized details of laser-induced CNV using the image-guided laser photocoagulation system. Four lesions with similar size were consistently applied per eye at approximately double the disc diameter away from the optic nerve, using different laser power levels, and mice of various ages and genders. After 7 days, the mice were sacrificed and retinal pigment epithelium/choroid/sclera was flat-mounted, stained with Isolectin B4, and imaged. Quantification of the area of the laser-induced lesions was performed using an established and constant threshold. Exclusion criteria are described that were necessary for reliable data analysis of the laser-induced CNV lesions. The CNV lesion area was proportional to the laser power levels. Mice at 12-16 weeks of age developed more severe CNV than those at 6-8 weeks of age, and the gender difference was only significant in mice at 12-16 weeks of age, but not in those at 6-8 weeks of age. Dietary intake of omega-3 long-chain polyunsaturated fatty acid reduced laser-induced CNV in mice. Taken together, laser-induced CNV lesions can be easily and consistently applied using the image-guided laser platform. Mice at 6-8 weeks of age are ideal for the laser-induced CNV model.
Collapse
Affiliation(s)
- Yan Gong
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jie Li
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Ophthalmology, Sichuan Provincial Hospital and Sichuan Academy of Medical Science, Chengdu, Sichuan, People’s Republic of China
| | - Ye Sun
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Zhongjie Fu
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Chi-Hsiu Liu
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Lucy Evans
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Katherine Tian
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Nicholas Saba
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Thomas Fredrick
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Peyton Morss
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jing Chen
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Lois E. H. Smith
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
263
|
Kraljević Pavelić S, Klobučar M, Sedić M, Micek V, Gehrig P, Grossman J, Pavelić K, Vojniković B. UV-induced retinal proteome changes in the rat model of age-related macular degeneration. Biochim Biophys Acta Mol Basis Dis 2015; 1852:1833-45. [PMID: 26071645 DOI: 10.1016/j.bbadis.2015.06.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 05/29/2015] [Accepted: 06/08/2015] [Indexed: 12/23/2022]
Abstract
Age-related macular degeneration (AMD) is characterized by irreversible damage of photoreceptors in the central posterior part of the retina, called the macula and is the most common cause of vision loss in those aged over 50. A growing body of evidence shows that cumulative long-term exposure to UV radiation may be harmful to the retina and possibly leads to AMD irrespective of age. In spite of many research efforts, cellular and molecular mechanisms leading to UV-induced retinal damage and possibly retinal diseases such as AMD are not completely understood. In the present study we explored damage mechanisms accounting for UV-induced retinal phototoxicity in the rats exposed to UVA and UVB irradiation using a proteomics approach. Our study showed that UV irradiation induces profound changes in the retinal proteomes of the rats associated with the disruption of energy homeostasis, oxidative stress, DNA damage response and structural and functional impairments of the interphotoreceptor matrix components and their cell surface receptors such as galectins. Two small leucine-rich proteoglycans, biglycan and lumican, were identified as phototoxicity biomarkers associated with UV-induced disruption of interphotoreceptor matrix (IPM). In addition, UVB induced activation of Src kinase, which could account for cytoskeletal rearrangements in the retina was observed at the proteomics level. Pharmacological intervention either to target Src kinase with the aim of preventing cytoskeletal rearrangements in the retinal pigment epithelium (RPE) and neuronal retina or to help rebuild damaged IPM may provide fresh avenues of treatment for patients suffering from AMD.
Collapse
Affiliation(s)
- Sandra Kraljević Pavelić
- University of Rijeka, Department of Biotechnology, Radmile Matejčić 2, HR-51000 Rijeka, Croatia; University of Rijeka, Centre for high-throughput technologies, Radmile Matejčić 2, HR-51000 Rijeka, Croatia.
| | - Marko Klobučar
- University of Rijeka, Department of Biotechnology, Radmile Matejčić 2, HR-51000 Rijeka, Croatia; University of Rijeka, Centre for high-throughput technologies, Radmile Matejčić 2, HR-51000 Rijeka, Croatia
| | - Mirela Sedić
- University of Rijeka, Department of Biotechnology, Radmile Matejčić 2, HR-51000 Rijeka, Croatia; University of Rijeka, Centre for high-throughput technologies, Radmile Matejčić 2, HR-51000 Rijeka, Croatia
| | - Vedran Micek
- The Institute for Medical Research and Occupational Health, Ksaverska cesta 2, POB 291, HR-10001 Zagreb, Croatia
| | - Peter Gehrig
- Functional Genomics Center Zürich, University of Zurich/ETH Zurich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Jonas Grossman
- Functional Genomics Center Zürich, University of Zurich/ETH Zurich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Krešimir Pavelić
- University of Rijeka, Department of Biotechnology, Radmile Matejčić 2, HR-51000 Rijeka, Croatia; University of Rijeka, Centre for high-throughput technologies, Radmile Matejčić 2, HR-51000 Rijeka, Croatia
| | - Božidar Vojniković
- University of Applied Sciences Velika Gorica, Zagrebačka cesta 5, Velika Gorica 10410, Croatia
| |
Collapse
|
264
|
Abstract
Age-related macular degeneration (AMD) affects approximately one-third of Americans over 70 and is characterized by lipoprotein-rich sub-retinal pigmented epithelium (sub-RPE) deposits. Substantial evidence has emerged that implicates complement factor H (CFH) in the pathogenesis of AMD. Here, we conduct an in vivo analysis to elucidate the role of CFH in AMD pathology. We show that (i) CFH and lipoproteins compete for binding in the sub-RPE extracellular matrix such that decreasing CFH leads to lipoprotein accumulation and sub-RPE deposit formation; and (ii) detrimental complement activation within sub-RPE deposits leads to RPE damage and vision loss. This new understanding of the complicated interactions of CFH in development of AMD-like pathology paves the way for identifying more targeted therapeutic strategies for AMD. Complement factor H (CFH) is a major susceptibility gene for age-related macular degeneration (AMD); however, its impact on AMD pathobiology is unresolved. Here, the role of CFH in the development of AMD pathology in vivo was interrogated by analyzing aged Cfh+/− and Cfh−/− mice fed a high-fat, cholesterol-enriched diet. Strikingly, decreased levels of CFH led to increased sub-retinal pigmented epithelium (sub-RPE) deposit formation, specifically basal laminar deposits, following high-fat diet. Mechanistically, our data show that deposits are due to CFH competition for lipoprotein binding sites in Bruch’s membrane. Interestingly and despite sub-RPE deposit formation occurring in both Cfh+/− and Cfh−/− mice, RPE damage accompanied by loss of vision occurred only in old Cfh+/− mice. We demonstrate that such pathology is a function of excess complement activation in Cfh+/− mice versus complement deficiency in Cfh−/− animals. Due to the CFH-dependent increase in sub-RPE deposit height, we interrogated the potential of CFH as a previously unidentified regulator of Bruch’s membrane lipoprotein binding and show, using human Bruch’s membrane explants, that CFH removes endogenous human lipoproteins in aged donors. Thus, advanced age, high-fat diet, and decreased CFH induce sub-RPE deposit formation leading to complement activation, which contributes to RPE damage and visual function impairment. This new understanding of the complicated interactions of CFH in AMD-like pathology provides an improved foundation for the development of targeted therapies for AMD.
Collapse
|
265
|
The genetics of age-related macular degeneration (AMD)--Novel targets for designing treatment options? Eur J Pharm Biopharm 2015; 95:194-202. [PMID: 25986585 DOI: 10.1016/j.ejpb.2015.04.039] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 04/27/2015] [Accepted: 04/29/2015] [Indexed: 11/22/2022]
Abstract
Age-related macular degeneration (AMD) is a progressive disease of the central retina and the main cause of legal blindness in industrialized countries. Risk to develop the disease is conferred by both individual as well as genetic factors with the latter being increasingly deciphered over the last decade. Therapeutically, striking advances have been made for the treatment of the neovascular form of late stage AMD while for the late stage atrophic form of the disease, which accounts for almost half of the visually impaired, there is currently no effective therapy on the market. This review highlights our current knowledge on the genetic architecture of early and late stage AMD and explores its potential for the discovery of novel, target-guided treatment options. We reflect on current clinical and experimental therapies for all forms of AMD and specifically note a persisting lack of efficacy for treatment in atrophic AMD. We further explore the current insight in AMD-associated genes and pathways and critically question whether this knowledge is suited to design novel treatment options. Specifically, we point out that known genetic factors associated with AMD govern the risk to develop disease and thus may not play a role in its severity or progression. Treatments based on such knowledge appear appropriate rather for prevention than treatment of manifest disease. As a consequence, future research in AMD needs to be greatly focused on approaches relevant to the patients and their medical needs.
Collapse
|
266
|
Alvarez Palomo AB, McLenachan S, Chen FK, Da Cruz L, Dilley RJ, Requena J, Lucas M, Lucas A, Drukker M, Edel MJ. Prospects for clinical use of reprogrammed cells for autologous treatment of macular degeneration. FIBROGENESIS & TISSUE REPAIR 2015; 8:9. [PMID: 25984235 PMCID: PMC4432516 DOI: 10.1186/s13069-015-0026-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 04/24/2015] [Indexed: 12/12/2022]
Abstract
Since the discovery of induced pluripotent stem cells (iPSC) in 2006, the symptoms of many human diseases have been reversed in animal models with iPSC therapy, setting the stage for future clinical development. From the animal data it is clear that iPSC are rapidly becoming the lead cell type for cell replacement therapy and for the newly developing field of iPSC-derived body organ transplantation. The first human pathology that might be treated in the near future with iPSC is age-related macular degeneration (AMD), which has recently passed the criteria set down by regulators for phase I clinical trials with allogeneic human embryonic stem cell-derived cell transplantation in humans. Given that iPSC are currently in clinical trial in Japan (RIKEN) to treat AMD, the establishment of a set of international criteria to make clinical-grade iPSC and their differentiated progeny is the next step in order to prepare for future autologous cell therapy clinical trials. Armed with clinical-grade iPSC, we can then specifically test for their threat of cancer, for proper and efficient differentiation to the correct cell type to treat human disease and then to determine their immunogenicity. Such a rigorous approach sets a far more relevant paradigm for their intended future use than non-clinical-grade iPSC. This review focuses on the latest developments regarding the first possible use of iPSC-derived retinal pigment epithelial cells in treating human disease, covers data gathered on animal models to date and methods to make clinical-grade iPSC, suggests techniques to ensure quality control and discusses possible clinical immune responses.
Collapse
Affiliation(s)
- Ana Belen Alvarez Palomo
- Control of Pluripotency Laboratory, Department of Physiological Sciences I, Faculty of Medicine, University of Barcelona, Hospital Clinic, Casanova 143, 08036 Barcelona, Spain
| | - Samuel McLenachan
- Centre for Ophthalmology and Visual Science (Lions Eye Institute), University of Western Australia, 2 Verdun Street, Nedlands, WA 6009 Australia
| | - Fred K Chen
- Centre for Ophthalmology and Visual Science (Lions Eye Institute), University of Western Australia, 2 Verdun Street, Nedlands, WA 6009 Australia
| | - Lyndon Da Cruz
- Moorfields Eye Hospital, 162 City Road, London, EC1V 2PD England
| | - Rodney J Dilley
- Ear Sciences Centre, 1 Salvado Rd, Subiaco, WA 6008 Australia ; School of Surgery, University of Western Australia, 35 Stirling Highway, Nedlands, WA 6009 Australia
| | - Jordi Requena
- Control of Pluripotency Laboratory, Department of Physiological Sciences I, Faculty of Medicine, University of Barcelona, Hospital Clinic, Casanova 143, 08036 Barcelona, Spain
| | - Michaela Lucas
- School of Medicine and Pharmacology, University of Western Australia, 35 Stirling Highway, Nedlands, WA 6009 Australia ; PathWest, SCGH Laboratories Hospital Ave, Nedlands, WA 6009 Australia
| | - Andrew Lucas
- Institute for Immunology and Infectious Diseases, Murdoch University, Building 390, Discovery Way, Murdoch, Perth, WA 6150 Australia
| | - Micha Drukker
- Helmholtz Zentrum München, German Research Centre for Environmental Health (GmbH), Institute of Stem Cell Research, Ingolstädter Landstraße 1, D-85764 Neuherberg, Germany
| | - Michael J Edel
- Control of Pluripotency Laboratory, Department of Physiological Sciences I, Faculty of Medicine, University of Barcelona, Hospital Clinic, Casanova 143, 08036 Barcelona, Spain ; Division of Pediatrics and Child Health, Westmead Children's Hospital, Corner Hawkesbury Road and Hainsworth Street, Westmead, Sydney, NSW 2145 Australia ; School of Anatomy, Physiology & Human Biology and Centre for Cell Therapy and Regenerative Medicine (CCTRM), University of Western Australia, 35 Stirling Highway, Nedlands, WA 6009 Australia
| |
Collapse
|
267
|
Maestroni S, Maestroni A, Ceglia S, Tremolada G, Mancino M, Sacchi A, Lattanzio R, Zucchiatti I, Corti A, Bandello F, Zerbini G. Effect of chromogranin A-derived vasostatin-1 on laser-induced choroidal neovascularization in the mouse. Acta Ophthalmol 2015; 93:e218-22. [PMID: 25271003 DOI: 10.1111/aos.12557] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 08/13/2014] [Indexed: 12/21/2022]
Abstract
PURPOSE To verify the effect of vasostatin-1 (VS-1), an anti-angiogenic fragment of chromogranin A, in the prevention of choroidal neovascularization (CNV) in an established mouse model of laser-induced ocular neovascularization. METHODS Bruch's membrane, the innermost layer of the choroid, was broken by laser photocoagulation in C57/Bl6 mice, to induce CNV. Mice were then treated daily for 14 days by intraperitoneal injection of VS-1 or vehicle (6 mice/group). CNV and vascular leakage were measured at three time-points (day 0, 7 and 14) in vivo by spectral domain optical coherence tomography (OCT) and fluorescein angiography (FA). Ex vivo analysis of CNV was also performed at day 14 by confocal microscopy analysis of dextran-perfused choroidal flat-mounts. RESULTS In vivo analyses showed that VS-1 significantly reduced CNV at day 14 (p = 0.03) and vascular leakage at day 7 (p = 0.01) and 14 (p = 0.04). Ex vivo confocal microscopy analysis of CNV performed on dextran-perfused choroidal flat-mounts at day 14 confirmed the protective activity of VS-1 (p = 0.01). A significant correlation between the results of in vivo and ex vivo analyses of CNV was also observed (p = 0.001, R(2) = 0.81). CONCLUSION The results indicate that VS-1 can prevent CNV and vascular leakage in a mouse model of ocular neovascularization, suggesting that this polypeptide might have therapeutic activity in human ocular diseases that are complicated by neovascularization or excessive vascular permeability.
Collapse
Affiliation(s)
- Silvia Maestroni
- Complications of Diabetes Unit Division of Metabolic and Cardiovascular Sciences San Raffaele Scientific Institute Milan Italy
| | - Anna Maestroni
- Complications of Diabetes Unit Division of Metabolic and Cardiovascular Sciences San Raffaele Scientific Institute Milan Italy
| | - Simona Ceglia
- Complications of Diabetes Unit Division of Metabolic and Cardiovascular Sciences San Raffaele Scientific Institute Milan Italy
| | - Gemma Tremolada
- Department of Ophthalmology Vita‐Salute University San Raffaele Scientific Institute Milan Italy
| | - Monica Mancino
- IRCCS MultiMedica – Cardiovascular Research Department Milan Italy
| | - Angelina Sacchi
- Tumor Biology and Vascular Targeting Unit San Raffaele Scientific Institute Milan Italy
| | - Rosangela Lattanzio
- Department of Ophthalmology Vita‐Salute University San Raffaele Scientific Institute Milan Italy
| | - Ilaria Zucchiatti
- Department of Ophthalmology Vita‐Salute University San Raffaele Scientific Institute Milan Italy
| | - Angelo Corti
- Tumor Biology and Vascular Targeting Unit San Raffaele Scientific Institute Milan Italy
| | - Francesco Bandello
- Department of Ophthalmology Vita‐Salute University San Raffaele Scientific Institute Milan Italy
| | - Gianpaolo Zerbini
- Complications of Diabetes Unit Division of Metabolic and Cardiovascular Sciences San Raffaele Scientific Institute Milan Italy
| |
Collapse
|
268
|
Broadhead GK, Grigg JR, Chang AA, McCluskey P. Dietary modification and supplementation for the treatment of age-related macular degeneration. Nutr Rev 2015; 73:448-62. [PMID: 26081455 DOI: 10.1093/nutrit/nuv005] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Age-related macular degeneration (AMD) causes a significant proportion of visual loss in the developed world. Currently, little is known about its pathogenesis, and treatment options are limited. Dietary intake is one of the few modifiable risk factors for this condition. The best-validated therapies remain oral antioxidant supplements based on those investigated in the Age-Related Eye Disease Study (AREDS) and the recently completed Age-Related Eye Disease Study 2 (AREDS2). In this review, current dietary guidelines related to AMD, along with the underlying evidence to support them, are presented in conjunction with current treatment recommendations. Both AREDS and AREDS2 are discussed, as are avenues for further research, including supplementation with vitamin D and saffron. Despite the considerable disease burden of atrophic AMD, few effective therapies are available to treat it, and further research is required.
Collapse
Affiliation(s)
- Geoffrey K Broadhead
- G.K. Broadhead, J. Grigg, A.A Chang, and P. McCluskey are with the Save Sight Institute, Department of Ophthalmology, The University of Sydney, Sydney, New South Wales, 2000, Australia. G.K. Broadhead and A.A Chang are with the Sydney Institute of Vision Science, Sydney, New South Wales, 2000, Australia.
| | - John R Grigg
- G.K. Broadhead, J. Grigg, A.A Chang, and P. McCluskey are with the Save Sight Institute, Department of Ophthalmology, The University of Sydney, Sydney, New South Wales, 2000, Australia. G.K. Broadhead and A.A Chang are with the Sydney Institute of Vision Science, Sydney, New South Wales, 2000, Australia
| | - Andrew A Chang
- G.K. Broadhead, J. Grigg, A.A Chang, and P. McCluskey are with the Save Sight Institute, Department of Ophthalmology, The University of Sydney, Sydney, New South Wales, 2000, Australia. G.K. Broadhead and A.A Chang are with the Sydney Institute of Vision Science, Sydney, New South Wales, 2000, Australia
| | - Peter McCluskey
- G.K. Broadhead, J. Grigg, A.A Chang, and P. McCluskey are with the Save Sight Institute, Department of Ophthalmology, The University of Sydney, Sydney, New South Wales, 2000, Australia. G.K. Broadhead and A.A Chang are with the Sydney Institute of Vision Science, Sydney, New South Wales, 2000, Australia
| |
Collapse
|
269
|
Pouw RB, Vredevoogd DW, Kuijpers TW, Wouters D. Of mice and men: The factor H protein family and complement regulation. Mol Immunol 2015; 67:12-20. [PMID: 25824240 DOI: 10.1016/j.molimm.2015.03.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 03/09/2015] [Accepted: 03/10/2015] [Indexed: 10/23/2022]
Abstract
For decades immunological research has relied, with variable success, on mouse models to investigate diseases and possible therapeutic interventions. With the approval of the first therapeutic antibody targeting complement, called eculizumab, as therapy in paroxysmal nocturnal hemoglobinuria (PNH) and more recently atypical hemolytic uremic syndrome (aHUS), the viability of targeting the complement system was demonstrated. The potent, endogenous complement regulators have become of increasing interest as templates for designing and developing new therapeutics. Recently, complement inhibitors based on (parts of) the human complement regulator factor H (FH) are being examined for therapeutic intervention in inflammatory conditions. The first step to evaluate the potency of a new drug is often testing it in a mouse model for the target disease. However, translating results to human conditions requires a good understanding of similarities and, more importantly, differences between the human and mouse complement system and particularly regulation. This review will provide a comprehensive overview of the complement regulator FH and its closely related proteins and current views on their role in mice and men.
Collapse
Affiliation(s)
- R B Pouw
- Department of Immunopathology, Sanquin Blood Supply, Division Research and Landsteiner laboratory of the Academic Medical Centre, University of Amsterdam, Amsterdam, the Netherlands; Department of Pediatric Hematology, Immunology & Infectious Diseases, Emma Children's Hospital, Academic Medical Centre, Amsterdam, the Netherlands.
| | - D W Vredevoogd
- Department of Immunopathology, Sanquin Blood Supply, Division Research and Landsteiner laboratory of the Academic Medical Centre, University of Amsterdam, Amsterdam, the Netherlands
| | - T W Kuijpers
- Department of Pediatric Hematology, Immunology & Infectious Diseases, Emma Children's Hospital, Academic Medical Centre, Amsterdam, the Netherlands; Department of Blood Cell Research, Sanquin Blood Supply, Division Research and Landsteiner laboratory of the Academic Medical Centre, University of Amsterdam, Amsterdam, the Netherlands
| | - D Wouters
- Department of Immunopathology, Sanquin Blood Supply, Division Research and Landsteiner laboratory of the Academic Medical Centre, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
270
|
Koriyama Y, Hisano S, Ogai K, Sugitani K, Furukawa A, Kato S. Involvement of neuronal nitric oxide synthase in N-methyl-N-nitrosourea-induced retinal degeneration in mice. J Pharmacol Sci 2015; 127:394-6. [DOI: 10.1016/j.jphs.2015.02.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 01/26/2015] [Accepted: 02/09/2015] [Indexed: 10/24/2022] Open
|
271
|
Whitmore SS, Sohn EH, Chirco KR, Drack AV, Stone EM, Tucker BA, Mullins RF. Complement activation and choriocapillaris loss in early AMD: implications for pathophysiology and therapy. Prog Retin Eye Res 2015; 45:1-29. [PMID: 25486088 PMCID: PMC4339497 DOI: 10.1016/j.preteyeres.2014.11.005] [Citation(s) in RCA: 174] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 11/19/2014] [Accepted: 11/25/2014] [Indexed: 12/24/2022]
Abstract
Age-related macular degeneration (AMD) is a common and devastating disease that can result in severe visual dysfunction. Over the last decade, great progress has been made in identifying genetic variants that contribute to AMD, many of which lie in genes involved in the complement cascade. In this review we discuss the significance of complement activation in AMD, particularly with respect to the formation of the membrane attack complex in the aging choriocapillaris. We review the clinical, histological and biochemical data that indicate that vascular loss in the choroid occurs very early in the pathogenesis of AMD, and discuss the potential impact of vascular dropout on the retinal pigment epithelium, Bruch's membrane and the photoreceptor cells. Finally, we present a hypothesis for the pathogenesis of early AMD and consider the implications of this model on the development of new therapies.
Collapse
Affiliation(s)
- S Scott Whitmore
- The Stephen A. Wynn Institute for Vision Research, The University of Iowa, United States; Department of Ophthalmology and Visual Sciences, The University of Iowa, United States
| | - Elliott H Sohn
- The Stephen A. Wynn Institute for Vision Research, The University of Iowa, United States; Department of Ophthalmology and Visual Sciences, The University of Iowa, United States
| | - Kathleen R Chirco
- The Stephen A. Wynn Institute for Vision Research, The University of Iowa, United States; Department of Ophthalmology and Visual Sciences, The University of Iowa, United States
| | - Arlene V Drack
- The Stephen A. Wynn Institute for Vision Research, The University of Iowa, United States; Department of Ophthalmology and Visual Sciences, The University of Iowa, United States
| | - Edwin M Stone
- The Stephen A. Wynn Institute for Vision Research, The University of Iowa, United States; Department of Ophthalmology and Visual Sciences, The University of Iowa, United States
| | - Budd A Tucker
- The Stephen A. Wynn Institute for Vision Research, The University of Iowa, United States; Department of Ophthalmology and Visual Sciences, The University of Iowa, United States
| | - Robert F Mullins
- The Stephen A. Wynn Institute for Vision Research, The University of Iowa, United States; Department of Ophthalmology and Visual Sciences, The University of Iowa, United States
| |
Collapse
|
272
|
Farkas MH, Au ED, Sousa ME, Pierce EA. RNA-Seq: Improving Our Understanding of Retinal Biology and Disease. Cold Spring Harb Perspect Med 2015; 5:a017152. [PMID: 25722474 PMCID: PMC4561396 DOI: 10.1101/cshperspect.a017152] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Over the past several years, rapid technological advances have allowed for a dramatic increase in our knowledge and understanding of the transcriptional landscape, because of the ability to study gene expression in greater depth and with more detail than previously possible. To this end, RNA-Seq has quickly become one of the most widely used methods for studying transcriptomes of tissues and individual cells. Unlike previously favored analysis methods, RNA-Seq is extremely high-throughput, and is not dependent on an annotated transcriptome, laying the foundation for novel genetic discovery. Additionally, RNA-Seq derived transcriptomes provide a basis for widening the scope of research to identify potential targets in the treatment of retinal disease.
Collapse
Affiliation(s)
- Michael H Farkas
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts 02114
| | - Elizabeth D Au
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts 02114
| | - Maria E Sousa
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts 02114
| | - Eric A Pierce
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts 02114
| |
Collapse
|
273
|
Brandl C, Grassmann F, Riolfi J, Weber BHF. Tapping Stem Cells to Target AMD: Challenges and Prospects. J Clin Med 2015; 4:282-303. [PMID: 26239128 PMCID: PMC4470125 DOI: 10.3390/jcm4020282] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 01/13/2015] [Indexed: 02/08/2023] Open
Abstract
Human pluripotent stem cells (hPSCs) are increasingly gaining attention in biomedicine as valuable resources to establish patient-derived cell culture models of the cell type known to express the primary pathology. The idea of "a patient in a dish" aims at basic, but also clinical, applications with the promise to mimic individual genetic and metabolic complexities barely reflected in current invertebrate or vertebrate animal model systems. This may particularly be true for the inherited and complex diseases of the retina, as this tissue has anatomical and physiological aspects unique to the human eye. For example, the complex age-related macular degeneration (AMD), the leading cause of blindness in Western societies, can be attributed to a large number of genetic and individual factors with so far unclear modes of mutual interaction. Here, we review the current status and future prospects of utilizing hPSCs, specifically induced pluripotent stem cells (iPSCs), in basic and clinical AMD research, but also in assessing potential treatment options. We provide an outline of concepts for disease modelling and summarize ongoing and projected clinical trials for stem cell-based therapy in late-stage AMD.
Collapse
Affiliation(s)
- Caroline Brandl
- Institute of Human Genetics, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany.
- Department of Ophthalmology, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93042 Regensburg, Germany.
| | - Felix Grassmann
- Institute of Human Genetics, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany.
| | - Julia Riolfi
- Institute of Human Genetics, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany.
| | - Bernhard H F Weber
- Institute of Human Genetics, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany.
| |
Collapse
|
274
|
Cho YW, Han YS, Chung IY, Kim SJ, Seo SW, Yoo JM, Park JM. Suppression of laser-induced choroidal neovascularization by intravitreal injection of tristetraprolin. Int J Ophthalmol 2014; 7:952-8. [PMID: 25540745 DOI: 10.3980/j.issn.2222-3959.2014.06.07] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 08/25/2014] [Indexed: 11/02/2022] Open
Abstract
AIM To examine the effect of intravitreal adenoviral vector-mediated tristetraprolin (Ad-TTP) on VEGF mRNA expression in a rat model of laser-induced choroidal neovascularization. METHODS Ad-TTP was prepared using a commercial kit. Retinal laser-induced photocoagulation (10 spots per eye) was performed on rats in this experimental choroidal neovascularization (CNV) model. Rats were divided into four groups: control (single intravitreal injection of balanced salt solution, n=10), laser-induced CNV (photocoagulation only, n=20), laser-induced CNV plus Ad-TTP injection (photocoagulation plus a single intravitreal Ad-TTP injection, n=20) and Ad-TTP injection only (n=10). Changes in choroidal morphology were evaluated in ten rats in the laser only and the laser plus Ad-TTP groups. Two weeks after laser injury, the size of CNV was calculated by perfusion with high-molecular-weight fluorescein isothiocyanate (FITC)-dextran. VEGF mRNA expression in retina-choroid tissue from ten rats in each group was measured by reverse transcription polymerase chain reaction (RT-PCR). RESULTS Two weeks after treatment, the area of laser-induced CNV was reduced by approximately 60% in the rats given the Ad-TTP injection compared with that in the laser-only group. There was a tendency toward decreased VEGF mRNA expression in the Ad-TTP injection groups. CONCLUSION A single intravitreal injection of Ad-TTP significantly suppressed CNV size in this experimental laser-induced CNV model. Ad-TTP injection also decreased VEGF mRNA expression compared with that in the laser-induced CNV group. The present study is meaningful as the first study to investigate the effect of tristetraprolin delivered via intravitreal injection.
Collapse
Affiliation(s)
- Yong Wun Cho
- Department of Ophthalmology, Gyeongsang National University School of Medicine, Jinju 660-702, Korea
| | - Yong Seop Han
- Department of Ophthalmology, Gyeongsang National University School of Medicine, Jinju 660-702, Korea ; Gyeongsang Institute of Health Science, Gyeongsang National University, Jinju 660-702, Korea
| | - In Young Chung
- Department of Ophthalmology, Gyeongsang National University School of Medicine, Jinju 660-702, Korea ; Gyeongsang Institute of Health Science, Gyeongsang National University, Jinju 660-702, Korea
| | - Seong Jae Kim
- Department of Ophthalmology, Gyeongsang National University School of Medicine, Jinju 660-702, Korea
| | - Seong Wook Seo
- Department of Ophthalmology, Gyeongsang National University School of Medicine, Jinju 660-702, Korea ; Gyeongsang Institute of Health Science, Gyeongsang National University, Jinju 660-702, Korea
| | - Ji Myong Yoo
- Department of Ophthalmology, Gyeongsang National University School of Medicine, Jinju 660-702, Korea ; Gyeongsang Institute of Health Science, Gyeongsang National University, Jinju 660-702, Korea
| | - Jong Moon Park
- Department of Ophthalmology, Gyeongsang National University School of Medicine, Jinju 660-702, Korea ; Gyeongsang Institute of Health Science, Gyeongsang National University, Jinju 660-702, Korea
| |
Collapse
|
275
|
Kozlowski MR. Senescent retinal pigment epithelial cells are more sensitive to vascular endothelial growth factor: implications for "wet" age-related macular degeneration. J Ocul Pharmacol Ther 2014; 31:87-92. [PMID: 25453983 DOI: 10.1089/jop.2014.0071] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
PURPOSE Senescence of the retinal pigment epithelial (RPE) cell layer has been implicated in the occurrence of age-related macular degeneration (AMD). The present study examines whether the ability of vascular endothelial growth factor (VEGF) to decrease the barrier function of RPE cells is enhanced in senescent RPE cells, which could contribute to the pathology of "wet" AMD. METHODS Low or high population doubling level (PDL) range ARPE-19 human RPE cells were cultured in 6-well plates on membrane-containing inserts. After 2 weeks, the cells were treated with either VEGF or its vehicle and their transepithelial electrical resistance (TEER) was measured. One week later, the cells were stained for senescence-associated β-galactosidase (SABG) activity. RESULTS VEGF was significantly more effective in reducing the TEER of the high PDL ARPE-19 cell layers than the low PDL layers (25% decrease vs. 6% decrease; t-test, P=0.0013). The low PDL cell layers had a modest uniform level of SABG staining. In contrast, the high PDL layers displayed darker and more mottled SABG staining indicative of the presence of senescent cells. CONCLUSIONS The present results show that the ability of VEGF to reduce the barrier function of RPE cell layers is greater in high PDL layers, which display signs of senescence, than in low PDL layers. Senescence-induced changes in the responsiveness of RPE cell layers to VEGF could contribute to the pathology of AMD. Agents that strengthen the barrier properties of RPE cells or reduce their responsiveness to VEGF could be effective in treating "wet" AMD.
Collapse
|
276
|
Valapala M, Edwards M, Hose S, Grebe R, Bhutto IA, Cano M, Berger T, Mak TW, Wawrousek E, Handa JT, Lutty GA, Samuel Zigler J, Sinha D. Increased Lipocalin-2 in the retinal pigment epithelium of Cryba1 cKO mice is associated with a chronic inflammatory response. Aging Cell 2014; 13:1091-4. [PMID: 25257511 PMCID: PMC4244249 DOI: 10.1111/acel.12274] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2014] [Indexed: 02/01/2023] Open
Abstract
Although chronic inflammation is believed to contribute to the pathology of age-related macular degeneration (AMD), knowledge regarding the events that elicit the change from para-inflammation to chronic inflammation in the pathogenesis of AMD is lacking. We propose here that lipocalin-2 (LCN2), a mammalian innate immunity protein that is trafficked to the lysosomes, may contribute to this process. It accumulates significantly with age in retinal pigment epithelial (RPE) cells of Cryba1 conditional knockout (cKO) mice, but not in control mice. We have recently shown that these mice, which lack βA3/A1-crystallin specifically in RPE, have defective lysosomal clearance. The age-related increase in LCN2 in the cKO mice is accompanied by increases in chemokine (C-C motif) ligand 2 (CCL2), reactive gliosis, and immune cell infiltration. LCN2 may contribute to induction of a chronic inflammatory response in this mouse model with AMD-like pathology.
Collapse
Affiliation(s)
- Mallika Valapala
- Wilmer Eye Institute The Johns Hopkins University School of Medicine Baltimore MD USA
| | - Malia Edwards
- Wilmer Eye Institute The Johns Hopkins University School of Medicine Baltimore MD USA
| | - Stacey Hose
- Wilmer Eye Institute The Johns Hopkins University School of Medicine Baltimore MD USA
| | - Rhonda Grebe
- Wilmer Eye Institute The Johns Hopkins University School of Medicine Baltimore MD USA
| | - Imran A. Bhutto
- Wilmer Eye Institute The Johns Hopkins University School of Medicine Baltimore MD USA
| | - Marisol Cano
- Wilmer Eye Institute The Johns Hopkins University School of Medicine Baltimore MD USA
| | - Thorsten Berger
- The Campbell Family Institute for Breast Cancer Research and Ontario Cancer Institute University Health Network Toronto ON Canada
| | - Tak W. Mak
- The Campbell Family Institute for Breast Cancer Research and Ontario Cancer Institute University Health Network Toronto ON Canada
| | - Eric Wawrousek
- National Eye Institute National Institutes of Health Bethesda MD USA
| | - James T. Handa
- Wilmer Eye Institute The Johns Hopkins University School of Medicine Baltimore MD USA
| | - Gerard A. Lutty
- Wilmer Eye Institute The Johns Hopkins University School of Medicine Baltimore MD USA
| | - J. Samuel Zigler
- Wilmer Eye Institute The Johns Hopkins University School of Medicine Baltimore MD USA
| | - Debasish Sinha
- Wilmer Eye Institute The Johns Hopkins University School of Medicine Baltimore MD USA
| |
Collapse
|
277
|
Lee EK, Kim YJ, Kim JY, Song HB, Yu HG. Melissa officinalis extract inhibits laser-induced choroidal neovascularization in a rat model. PLoS One 2014; 9:e110109. [PMID: 25314292 PMCID: PMC4197006 DOI: 10.1371/journal.pone.0110109] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 09/15/2014] [Indexed: 12/27/2022] Open
Abstract
Purpose This study investigated the effect of Melissa officinalis extract on laser-induced choroidal neovascularization (CNV) in a rat model. The mechanism by which M. officinalis extract acted was also investigated. Methods Experimental CNV was induced by laser photocoagulation in Brown Norway rats. An active fraction of the Melissa leaf extract was orally administered (50 or 100 mg/kg/day) beginning 3 days before laser photocoagulation and ending 14 days after laser photocoagulation. Optical coherence tomography and fluorescein angiography were performed in vivo to evaluate the thickness and leakage of CNV. Choroidal flat mount and histological analysis were conducted to observe the CNV in vitro. Vascular endothelial growth factor (VEGF), matrix metalloproteinase (MMP)-2, and MMP-9 expression were measured in retinal and choroidal-scleral lysates 7 days after laser injury. Moreover, the effect of M. officinalis extract on tertiary-butylhydroperoxide (t-BH)-induced VEGF secretion and mRNA levels of VEGF, MMP-2, and MMP-9 were evaluated in human retinal epithelial cells (ARPE-19) as well as in human umbilical vein endothelial cells (HUVECs). Results The CNV thickness in M. officinalis-treated rats was significantly lower than in vehicle-treated rats by histological analysis. The CNV thickness was 33.93±7.64 µm in the high-dose group (P<0.001), 44.09±12.01 µm in the low-dose group (P = 0.016), and 51.00±12.37 µm in the control group. The proportion of CNV lesions with clinically significant fluorescein leakage was 9.2% in rats treated with high-dose M. officinalis, which was significantly lower than in control rats (53.4%, P<0.001). The levels of VEGF, MMP-2, and MMP-9 were significantly lower in the high-dose group than in the control group. Meanwhile, M. officinalis extract suppressed t-BH-induced transcription of VEGF and MMP-9 in ARPE-19 cells and HUVECs. Conclusions Systemic administration of M. officinalis extract suppressed laser-induced CNV formation in rats. Inhibition of VEGF and MMP-9 via anti-oxidative activity may underlie this effect.
Collapse
Affiliation(s)
- Eun Kyoung Lee
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Korea
| | - Young Joo Kim
- Department of Ophthalmology, Seoul National University Hospital Biomedical Research Institute, Seoul, Korea
| | - Jin Young Kim
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Korea
| | - Hyun Beom Song
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Korea
| | - Hyeong Gon Yu
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Korea
- * E-mail:
| |
Collapse
|
278
|
Schnabolk G, Stauffer K, O'Quinn E, Coughlin B, Kunchithapautham K, Rohrer B. A comparative analysis of C57BL/6J and 6N substrains; chemokine/cytokine expression and susceptibility to laser-induced choroidal neovascularization. Exp Eye Res 2014; 129:18-23. [PMID: 25305577 DOI: 10.1016/j.exer.2014.10.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 09/29/2014] [Accepted: 10/06/2014] [Indexed: 12/20/2022]
Abstract
Age-related macular degeneration (AMD) is the most prevalent cause of blindness in the elderly. To study potential underlying mechanisms of AMD, animal models are utilized, focusing mostly on mice. Recently, genomic and phenotypic differences between the so-called control substrains, C57BL/6J and C57BL/6N, have been described in models of ocular and non-ocular diseases. In particular, the rd8 mutation of the Crb1 gene present in the C57BL/6N has been shown to impact certain ocular phenotypes and appears to augment phenotypes generally associated with inflammation. Here, we investigated angiogenic factor and cytokine expression using pathway arrays as well as the susceptibility to laser-induced choroidal neovascularization (CNV), a model of wet AMD, in the two substrains. Age-matched 3-month-old C57BL/6J and C57BL/6N animals differed in gene expression levels for angiogenic factors and cytokines, with 6N animals expressing higher levels of inflammatory markers than 6Js. Yet laser-induced CNV was comparable in size between the two substrains. This lack of difference in CNV size was correlated with a gene expression profile that was comparable between the two substrains, due to the fact that the degree of change in gene expression of inflammatory markers after CNV was blunted in 6N mice. In summary, significant gene expression differences exist between C57BL/6J and C57BL/6N animals, reinforcing the notion that appropriate litter-mate controls or genetic background controls need to be used. Contrary to our expectation, CNV was not augmented in 6N animals, suggesting that low chronic inflammation in the RPE might provide a level of pre-conditioning and protection against stress.
Collapse
Affiliation(s)
- Gloriane Schnabolk
- Research Service, Ralph H Johnson VA Medical Center, Charleston, SC 29401, USA
| | - Kimberly Stauffer
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Elizabeth O'Quinn
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Beth Coughlin
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Kannan Kunchithapautham
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Bärbel Rohrer
- Research Service, Ralph H Johnson VA Medical Center, Charleston, SC 29401, USA; Department of Ophthalmology, Medical University of South Carolina, Charleston, SC 29425, USA.
| |
Collapse
|
279
|
Intracellular amyloid beta alters the tight junction of retinal pigment epithelium in 5XFAD mice. Neurobiol Aging 2014; 35:2013-20. [DOI: 10.1016/j.neurobiolaging.2014.03.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 01/21/2014] [Accepted: 03/11/2014] [Indexed: 01/20/2023]
|
280
|
Malek G, Lad EM. Emerging roles for nuclear receptors in the pathogenesis of age-related macular degeneration. Cell Mol Life Sci 2014; 71:4617-36. [PMID: 25156067 DOI: 10.1007/s00018-014-1709-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 08/14/2014] [Accepted: 08/18/2014] [Indexed: 12/20/2022]
Abstract
Age-related macular degeneration (AMD) is the leading cause of vision loss in the elderly in the Western world. Over the last 30 years, our understanding of the pathogenesis of the disease has grown exponentially thanks to the results of countless epidemiology, genetic, histological, and biochemical studies. This information, in turn, has led to the identification of multiple biologic pathways potentially involved in development and progression of AMD, including but not limited to inflammation, lipid and extracellular matrix dysregulation, and angiogenesis. Nuclear receptors are a superfamily of transcription factors that have been shown to regulate many of the pathogenic pathways linked with AMD and as such they are emerging as promising targets for therapeutic intervention. In this review, we will present the fundamental phenotypic features of AMD and discuss our current understanding of the pathobiological disease mechanisms. We will introduce the nuclear receptor superfamily and discuss the current literature on their effects on AMD-related pathophysiology.
Collapse
Affiliation(s)
- Goldis Malek
- Department of Ophthalmology, Duke University School of Medicine, 2351 Erwin Road, AERI Room 4006, Durham, NC, 27710, USA,
| | | |
Collapse
|
281
|
The Mitochondria-Targeted Antioxidant SkQ1 Downregulates Aryl Hydrocarbon Receptor-Dependent Genes in the Retina of OXYS Rats with AMD-Like Retinopathy. J Ophthalmol 2014; 2014:530943. [PMID: 25132985 PMCID: PMC4123489 DOI: 10.1155/2014/530943] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 07/01/2014] [Indexed: 12/14/2022] Open
Abstract
The mitochondria-targeted antioxidant SkQ1 is a novel drug thought to retard development of age-related diseases. It has been shown that SkQ1 reduces clinical signs of retinopathy in senescence-accelerated OXYS rats, which are a known animal model of human age-related macular degeneration (AMD). The aim of this work was to test whether SkQ1 affects transcriptional activity of AhR (aryl hydrocarbon receptor) and Nrf2 (nuclear factor erythroid 2-related factor 2), which are considered as AMD-associated genes in the retina of OXYS and Wistar rats. Our results showed that only AhR and AhR-dependent genes were sensitive to SkQ1. Dietary supplementation with SkQ1 decreased the AhR mRNA level in both OXYS and Wistar rats. At baseline, the retinal Cyp1a1 mRNA level was lower in OXYS rats. SkQ1 supplementation decreased the Cyp1a1 mRNA level in Wistar rats, but this level remained unchanged in OXYS rats. Baseline Cyp1a2 and Cyp1b1 mRNA expression was stronger in OXYS than in Wistar rats. In the OXYS strain, Cyp1a2 and Cyp1b1 mRNA levels decreased as a result of SkQ1 supplementation. These data suggest that the Cyp1a2 and Cyp1b1 enzymes are involved in the pathogenesis of AMD-like retinopathy of OXYS rats and are possible therapeutic targets of SkQ1.
Collapse
|
282
|
Chen S, Popp NA, Chan CC. Animal models of age-related macular degeneration and their translatability into the clinic. EXPERT REVIEW OF OPHTHALMOLOGY 2014; 9:285-295. [PMID: 35600070 PMCID: PMC9119377 DOI: 10.1586/17469899.2014.939171] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Age-related macular degeneration (AMD) is a leading cause of blindness in people over the age of 55. Despite its common nature, the etiology of the disease involves both genetic and environmental factors, the interaction of which is not fully understood. Animal models, including the mouse, rat, rabbit, pig and non-human primate, have been developed to study various aspects of the disease and to evaluate novel therapies; however, no single model has been developed to emulate all aspects of the disease. This review will discuss the various existing models of AMD, their strengths and limitations and examples of their use in current AMD research.
Collapse
Affiliation(s)
- Shida Chen
- Immunopathology Section, Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
- Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Nicholas A Popp
- Immunopathology Section, Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Chi-Chao Chan
- Immunopathology Section, Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
283
|
Askou AL. Development of gene therapy for treatment of age-related macular degeneration. Acta Ophthalmol 2014; 92 Thesis3:1-38. [PMID: 24953666 DOI: 10.1111/aos.12452] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Intraocular neovascular diseases are the leading cause of blindness in the Western world in individuals over the age of 50. Age-related macular degeneration (AMD) is one of these diseases. Exudative AMD, the late-stage form, is characterized by abnormal neovessel development, sprouting from the choroid into the avascular subretinal space, where it can suddenly cause irreversible damage to the vulnerable photoreceptor (PR) cells essential for our high-resolution, central vision. The molecular basis of AMD is not well understood, but several growth factors have been implicated including vascular endothelial growth factor (VEGF), and the advent of anti-VEGF therapy has markedly changed the outcome of treatment. However, common to all current therapies for exudative AMD are the complications of repeated monthly intravitreal injections, which must be continued throughout one's lifetime to maintain visual benefits. Additionally, some patients do not benefit from established treatments. Strategies providing long-term suppression of inappropriate ocular angiogenesis are therefore needed, and gene therapy offers a potential powerful technique. This study aimed to develop a strategy based on RNA interference (RNAi) for the sustained attenuation of VEGF. We designed a panel of anti-VEGF short hairpin RNAs (shRNA), and based on the most potent shRNAs, microRNA (miRNA)-mimicked hairpins were developed. We demonstrated an additive VEGF silencing effect when we combined the miRNAs in a tricistronic miRNA cluster. To meet the requirements for development of medical treatments for AMD with long-term effects, the shRNA/miRNA is expressed from vectors based on adeno-associated virus (AAV) or lentivirus (LV). Both vector systems have been found superior in terms of transduction efficiency and persistence in gene expression in retinal cells. The capacity of AAV-encoded RNAi effector molecules to silence endogenous VEGF gene expression was evaluated in mouse models, including the model of laser-induced choroidal neovascularization (CNV), and we found that subretinal administration of self-complementary (sc)-AAV2/8 encoding anti-VEGF shRNAs can impair vessel formation. In parallel, a significant reduction of endogenous VEGF was demonstrated following injection of scAAV2/8 vectors expressing multiple anti-VEGF miRNAs into murine hind limb muscles. Furthermore, in an ongoing project we have designed versatile, multigenic LV vectors with combined expression of multiple miRNAs and proteins, including pigment epithelium-derived factor (PEDF), a multifunctional, secreted protein that has anti-angiogenic and neurotrophic functions. Co-expression of miRNAs and proteins from a single viral vector increases safety by minimizing the viral load necessary to obtain a therapeutic effect and thereby reduces the risk of insertional mutagenesis as well as the immune response against viral proteins. Our results show co-expression of functional anti-VEGF-miRNAs and PEDF in cell studies, and in vivo studies reveal an efficient retinal pigment epithelium (RPE)-specific gene expression following the incorporation of the vitelliform macular dystrophy 2 (VMD2) promoter, demonstrating the potential applicability of our multigenic LV vectors in ocular anti-VEGF gene therapy, including combination therapy for treatment of exudative AMD. In conclusion, these highly promising data clearly demonstrate that viral-encoded RNAi effector molecules can be used for the inhibition of neovascularization and will, in combination with the growing interest of applying DNA- or RNA-based technologies in the clinic, undoubtedly contribute to the development of efficacious long-term gene therapy treatment of intraocular neovascular diseases.
Collapse
|
284
|
Mao H, Seo SJ, Biswal MR, Li H, Conners M, Nandyala A, Jones K, Le YZ, Lewin AS. Mitochondrial oxidative stress in the retinal pigment epithelium leads to localized retinal degeneration. Invest Ophthalmol Vis Sci 2014; 55:4613-27. [PMID: 24985474 DOI: 10.1167/iovs.14-14633] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
PURPOSE Oxidative stress in the RPE is widely accepted as a contributing factor to AMD. We have previously shown that ribozyme-mediated reduction in the antioxidant enzyme manganese superoxide dismutase (MnSOD) leads to some of the features of geographic atrophy in mice. To develop a mouse model independent of viral injection, we used a conditional knockout of the Sod2 gene in the RPE to elevate mitochondrial oxidative stress in that cell layer. METHODS Experimental mice in which exon 3 of Sod2 was flanked by loxP sites were also transgenic for PVMD2-rtTA and tetO-PhCMV cre, so that cre recombinase was expressed only in the RPE. Pups of this genotype (Sod2(flox/flox)VMD2cre) were induced to express cre recombinase by feeding doxycycline-laced chow to nursing dams. Controls included mice of this genotype not treated with doxycycline and doxycycline-treated Sod2(flox/flox) mice lacking the cre transgene. Expression of cre in the RPE was verified by immunohistochemistry, and deletion of Sod2 exon 3 in the RPE was confirmed by PCR. Mice were followed up over a period of 9 months by spectral-domain optical coherence tomography (SD-OCT), digital fundus imaging, and full-field ERG. Following euthanasia, retinas were examined by light and electron microscopy or by immunohistochemistry. Contour length of rod outer segments and thickness of the RPE layer were measured by unbiased stereology. RESULTS Following doxycycline induction of cre, Sod2(flox/flox) cre mice demonstrated increased signs of oxidative stress in the RPE and accumulation of autofluorescent material by age 2 months. They showed a gradual decline in the ERG response and thinning of the outer nuclear layer (by SD-OCT), which were statistically significant by 6 months. In addition, OCT and electron microscopy revealed increased porosity of the choroid. At the same interval, hypopigmented foci appeared in fundus micrographs, and vascular abnormalities were detected by fluorescein angiography. By 9 months, the RPE layer in Sod2(flox/flox) cre mice was thicker than in nontransgenic littermates, and the rod outer segments were significantly longer over most of the retina, although localized atrophy of photoreceptors was also obvious in some eyes. CONCLUSIONS Conditional tissue-specific reduction in MnSOD induced oxidative stress in mouse RPE, leading to RPE dysfunction, damage to the choroid, and death of photoreceptor cells. The RPE oxidative stress did not cause drusen-like deposits, but the model recapitulated certain key aspects of the pathology of dry AMD and may be useful in testing therapies.
Collapse
Affiliation(s)
- Haoyu Mao
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, Florida, United States
| | - Soo Jung Seo
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, Florida, United States
| | - Manas R Biswal
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, Florida, United States
| | - Hong Li
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, Florida, United States
| | - Mandy Conners
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, Florida, United States
| | - Arathi Nandyala
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, Florida, United States
| | - Kyle Jones
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, Florida, United States
| | - Yun-Zheng Le
- Departments of Medicine, Endocrinology, and Cell Biology and Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Alfred S Lewin
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, Florida, United States
| |
Collapse
|
285
|
Pan JR, Wang C, Yu QL, Zhang S, Li B, Hu J. Effect of Methyl-CpG binding domain protein 2 (MBD2) on AMD-like lesions in ApoE-deficient mice. ACTA ACUST UNITED AC 2014; 34:408-414. [DOI: 10.1007/s11596-014-1292-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 04/17/2014] [Indexed: 01/07/2023]
|
286
|
Koriyama Y, Sugitani K, Ogai K, Kato S. Heat shock protein 70 induction by valproic acid delays photoreceptor cell death by N-methyl-N-nitrosourea in mice. J Neurochem 2014; 130:707-19. [PMID: 24773621 DOI: 10.1111/jnc.12750] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 04/18/2014] [Accepted: 04/28/2014] [Indexed: 12/28/2022]
Abstract
Retinal degenerative diseases (RDs) are a group of inherited diseases characterized by the loss of photoreceptor cells. Selective photoreceptor loss can be induced in mice by an intraperitoneal injection of N-methyl-N-nitrosourea (MNU) and, because of its selectivity, this model is widely used to study the mechanism of RDs. Although it is known that calcium-calpain activation and lipid peroxidation are involved in the initiation of cell death, the precise mechanisms of this process remain unknown. Heat shock protein 70 (HSP70) has been shown to function as a chaperone molecule to protect cells against environmental and physiological stresses. In this study, we investigated the role of HSP70 on photoreceptor cell death in mice. HSP70 induction by valproic acid, a histone deacetylase inhibitor, attenuated the photoreceptor cell death by MNU through inhibition of apoptotic caspase signals. Furthermore, HSP70 itself was rapidly and calpain-dependently cleaved after MNU treatment. Therefore, HSP70 induction by valproic acid was dually effective against MNU-induced photoreceptor cell loss as a result of its anti-apoptotic actions and its ability to prevent HSP70 degradation. These findings might help lead us to a better understanding of the pathogenic mechanism of RDs. Retinal degenerative diseases are characterized by the loss of photoreceptor cells. We proposed the following cascade for N-methyl-N-nitrosourea (MNU)-induced photoreceptor cell death: MNU gives rise to cleavage of heat shock protein 70 (HSP70); HSP70 induction by valproic acid (VPA) is dually effective against MNU-induced photoreceptor cell loss because of its anti-apoptotic actions and its ability to prevent HSP70 degradation. We hope that the present study heralds a new era in developing therapeutic tools against retinal degenerative diseases.
Collapse
Affiliation(s)
- Yoshiki Koriyama
- Department of Molecular Neurobiology, Graduate School of Medicine, Kanazawa University, Kanazawa, Japan; Graduate School and Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Japan
| | | | | | | |
Collapse
|
287
|
Nagai N, Lundh von Leithner P, Izumi-Nagai K, Hosking B, Chang B, Hurd R, Adamson P, Adamis AP, Foxton RH, Ng YS, Shima DT. Spontaneous CNV in a novel mutant mouse is associated with early VEGF-A-driven angiogenesis and late-stage focal edema, neural cell loss, and dysfunction. Invest Ophthalmol Vis Sci 2014; 55:3709-19. [PMID: 24845632 DOI: 10.1167/iovs.14-13989] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Characterization of a mouse model of spontaneous choroidal neovascularization (sCNV) and its effect on retinal architecture and function. METHODS The sCNV mouse phenotype was characterized by using fundus photography, fluorescein angiography, confocal scanning laser ophthalmoscopy (SLO), optical coherence tomography (OCT), ERG, immunostaining, biochemistry, and electron microscopy. A role for VEGF-A signaling in sCNV was investigated by using neutralizing antibodies and a role for macrophages explored by cell-depletion studies. RESULTS The sCNV starts between postnatal day 10 and 15 (P10-P15), increasing in number and severity causing RPE disruption and dysfunction. Various morphological methods confirmed the choroidal origin and subretinal position of the angiogenic vessels. At approximately P25, vessels were present in the outer retina with instances of anastomosis of some sCNV lesions with the retinal vasculature. The number of CNV lesions was significantly decreased by systemic blockade of the VEGF-A pathway. Choroidal neovascularization size also was significantly modulated by reducing the number of lesion-associated macrophages. Later stages of sCNV were associated with edema, neuronal loss, and dysfunction. CONCLUSIONS The sCNV mouse is a new model for the study of both early and late events associated with choroidal neovascularization. Pharmacological reduction in sCNV with VEGF-A antagonists and an anti-inflammatory strategy suggests the model may be useful for investigating novel targets for treating human ocular neovascular disease.
Collapse
Affiliation(s)
- Norihiro Nagai
- Department of Ocular Biology and Therapeutics, University College London, Institute of Ophthalmology, London, United Kingdom
| | - Pete Lundh von Leithner
- Department of Ocular Biology and Therapeutics, University College London, Institute of Ophthalmology, London, United Kingdom
| | - Kanako Izumi-Nagai
- Department of Ocular Biology and Therapeutics, University College London, Institute of Ophthalmology, London, United Kingdom
| | - Brett Hosking
- Department of Ocular Biology and Therapeutics, University College London, Institute of Ophthalmology, London, United Kingdom
| | - Bo Chang
- The Jackson Laboratory, Bar Harbor, Maine, United States
| | - Ron Hurd
- The Jackson Laboratory, Bar Harbor, Maine, United States
| | - Peter Adamson
- GSK Ophthalmology, GlaxoSmithKline, Stevenage, Hertfordshire, United Kingdom
| | | | - Richard H Foxton
- Department of Ocular Biology and Therapeutics, University College London, Institute of Ophthalmology, London, United Kingdom
| | - Yin Shan Ng
- Department of Ocular Biology and Therapeutics, University College London, Institute of Ophthalmology, London, United Kingdom
| | - David T Shima
- Department of Ocular Biology and Therapeutics, University College London, Institute of Ophthalmology, London, United Kingdom
| |
Collapse
|
288
|
Human Pluripotent Stem Cell-Derived Retinal Pigmented Epithelium in Retinal Treatment: from Bench to Bedside. Mol Neurobiol 2014; 50:597-612. [DOI: 10.1007/s12035-014-8684-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 03/17/2014] [Indexed: 01/23/2023]
|
289
|
Birke MT, Lipo E, Adhi M, Birke K, Kumar-Singh R. AAV-mediated expression of human PRELP inhibits complement activation, choroidal neovascularization and deposition of membrane attack complex in mice. Gene Ther 2014; 21:507-13. [PMID: 24670995 DOI: 10.1038/gt.2014.24] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 02/08/2014] [Accepted: 02/11/2014] [Indexed: 01/17/2023]
Abstract
Age-related macular degeneration (AMD) is the leading cause of blindness among the elderly. Approximately 50% of AMD patients have a polymorphism in the negative regulator of complement known as Factor H. Individuals homozygous for a Y402H polymorphism in Factor H have elevated levels of membrane attack complex (MAC) in their choroid and retinal pigment epithelium relative to individuals homozygous for the wild-type allele. An inability to form MAC due to a polymorphism in C9 is protective against the formation of choroidal neovascularization (CNV) in AMD patients. Hence, blocking MAC in AMD patients may be protective against CNV. Here we investigate the potential of human proline/arginine-rich end leucine-rich repeat protein (PRELP) as an inhibitor of complement-mediated damage when delivered via the subretinal route using an AAV2/8 vector. In a fluorescence-activated cell sorting (FACS) lysis assay, PRELP inhibited normal human serum-mediated lysis of Hepa-1c1c7 cells by 18.7%. Unexpectedly, PRELP enhanced the formation of tubes by human umbilical vein endothelial cells (HUVECs) by approximately 240%, but, when delivered via an AAV vector to the retina of mice, PRELP inhibited laser-induced CNV by 60%. PRELP reduced deposition of MAC in vivo by 25.5%. Our results have implications for the development of complement inhibitors as a therapy for AMD.
Collapse
Affiliation(s)
- M T Birke
- Department of Ophthalmology, Tufts University School of Medicine, Boston, MA, USA
| | - E Lipo
- Department of Ophthalmology, Tufts University School of Medicine, Boston, MA, USA
| | - M Adhi
- Department of Ophthalmology, Tufts University School of Medicine, Boston, MA, USA
| | - K Birke
- Department of Ophthalmology, Tufts University School of Medicine, Boston, MA, USA
| | - R Kumar-Singh
- Department of Ophthalmology, Tufts University School of Medicine, Boston, MA, USA
| |
Collapse
|
290
|
Kumar S, Berriochoa Z, Jones AD, Fu Y. Detecting abnormalities in choroidal vasculature in a mouse model of age-related macular degeneration by time-course indocyanine green angiography. J Vis Exp 2014:e51061. [PMID: 24637497 DOI: 10.3791/51061] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Indocyanine Green Angiography (or ICGA) is a technique performed by ophthalmologists to diagnose abnormalities of the choroidal and retinal vasculature of various eye diseases such as age-related macular degeneration (AMD). ICGA is especially useful to image the posterior choroidal vasculature of the eye due to its capability of penetrating through the pigmented layer with its infrared spectrum. ICGA time course can be divided into early, middle, and late phases. The three phases provide valuable information on the pathology of eye problems. Although time-course ICGA by intravenous (IV) injection is widely used in the clinic for the diagnosis and management of choroid problems, ICGA by intraperitoneal injection (IP) is commonly used in animal research. Here we demonstrated the technique to obtain high-resolution ICGA time-course images in mice by tail-vein injection and confocal scanning laser ophthalmoscopy. We used this technique to image the choroidal lesions in a mouse model of age-related macular degeneration. Although it is much easier to introduce ICG to the mouse vasculature by IP, our data indicate that it is difficult to obtain reproducible ICGA time course images by IP-ICGA. In contrast, ICGA via tail vein injection provides high quality ICGA time-course images comparable to human studies. In addition, we showed that ICGA performed on albino mice gives clearer pictures of choroidal vessels than that performed on pigmented mice. We suggest that time-course IV-ICGA should become a standard practice in AMD research based on animal models.
Collapse
Affiliation(s)
- Sandeep Kumar
- Department of Ophthalmology & Visual Sciences, University of Utah Health Sciences Center
| | - Zachary Berriochoa
- Department of Ophthalmology & Visual Sciences, University of Utah Health Sciences Center
| | - Alex D Jones
- Department of Ophthalmology & Visual Sciences, University of Utah Health Sciences Center
| | - Yingbin Fu
- Department of Ophthalmology & Visual Sciences, University of Utah Health Sciences Center; Department of Neurobiology & Anatomy, University of Utah Health Sciences Center;
| |
Collapse
|
291
|
Pinazo-Durán MD, Gómez-Ulla F, Arias L, Araiz J, Casaroli-Marano R, Gallego-Pinazo R, García-Medina JJ, López-Gálvez MI, Manzanas L, Salas A, Zapata M, Diaz-Llopis M, García-Layana A. Do nutritional supplements have a role in age macular degeneration prevention? J Ophthalmol 2014; 2014:901686. [PMID: 24672708 PMCID: PMC3941929 DOI: 10.1155/2014/901686] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 10/12/2013] [Indexed: 11/18/2022] Open
Abstract
Purpose. To review the proposed pathogenic mechanisms of age macular degeneration (AMD), as well as the role of antioxidants (AOX) and omega-3 fatty acids ( ω -3) supplements in AMD prevention. Materials and Methods. Current knowledge on the cellular/molecular mechanisms of AMD and the epidemiologic/experimental studies on the effects of AOX and ω -3 were addressed all together with the scientific evidence and the personal opinion of professionals involved in the Retina Group of the OFTARED (Spain). Results. High dietary intakes of ω -3 and macular pigments lutein/zeaxanthin are associated with lower risk of prevalence and incidence in AMD. The Age-Related Eye Disease study (AREDS) showed a beneficial effect of high doses of vitamins C, E, beta-carotene, and zinc/copper in reducing the rate of progression to advanced AMD in patients with intermediate AMD or with one-sided late AMD. The AREDS-2 study has shown that lutein and zeaxanthin may substitute beta-carotene because of its potential relationship with increased lung cancer incidence. Conclusion. Research has proved that elder people with poor diets, especially with low AOX and ω -3 micronutrients intake and subsequently having low plasmatic levels, are more prone to developing AMD. Micronutrient supplementation enhances antioxidant defense and healthy eyes and might prevent/retard/modify AMD.
Collapse
Affiliation(s)
- Maria D Pinazo-Durán
- University of Valencia, Spain ; The Ophthalmic Research Unit "Santiago Grisolía", Valencia, Spain
| | - Francisco Gómez-Ulla
- University of Santiago de Compostela, Spain ; The Institute Gomez-Ulla, Santiago de Compostela, Spain ; Foundation RetinaPlus, Spain
| | - Luis Arias
- University of Barcelona, Spain ; Retina Section, Department of Ophthalmology, Bellvitge University Hospital, Barcelona, Spain
| | - Javier Araiz
- Vitreous and Retina Department, UPV/EHU and Instituto Clínico Quirúrgico de Oftalmología (ICQO), University of the Basque Country, Bilbao, Spain
| | - Ricardo Casaroli-Marano
- Clinic Institute of Ophthalmology, Clinic Hospital of Barcelona, University of Barcelona, Barcelona, Spain
| | - Roberto Gallego-Pinazo
- Macula Section, Department of Ophthalmology, University and Polytechnic Hospital La Fe, Valencia, Spain
| | - Jose J García-Medina
- University of Murcia, General University Hospital Reina Sofia, Murcia, Spain ; Ophthalmic Reseach Unit "Santiago Grisolia", Valencia, Spain
| | - Maria Isabel López-Gálvez
- The University of Valladolid, Diabetes and Telemedicine Unit at the IOBA, Spain ; The Retina Unit of the Clinic University Hospital of Valladolid, Spain
| | - Lucía Manzanas
- The University of Valladolid, Spain ; The Vitreo-Retina Unit of the Clinic University Hospital of Valladolid, Spain
| | - Anna Salas
- Research Institute of the Hospital of Vall Hebron, Barcelona, Spain
| | - Miguel Zapata
- Retina Section of the Hospital of Vall Hebron, The Universidad Autònoma de Barcelona, Barcelona, Spain
| | - Manuel Diaz-Llopis
- Faculty of Medicine, University of Valencia, Valencia, Spain ; University and Polytechnic Hospital La Fe, Valencia, Spain
| | | |
Collapse
|
292
|
Ananth S, Gnana-Prakasam JP, Bhutia YD, Veeranan-Karmegam R, Martin PM, Smith SB, Ganapathy V. Regulation of the cholesterol efflux transporters ABCA1 and ABCG1 in retina in hemochromatosis and by the endogenous siderophore 2,5-dihydroxybenzoic acid. Biochim Biophys Acta Mol Basis Dis 2014; 1842:603-12. [PMID: 24462739 DOI: 10.1016/j.bbadis.2014.01.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 01/08/2014] [Accepted: 01/13/2014] [Indexed: 01/19/2023]
Abstract
Hypercholesterolemia and polymorphisms in the cholesterol exporter ABCA1 are linked to age-related macular degeneration (AMD). Excessive iron in retina also has a link to AMD pathogenesis. Whether these findings mean a biological/molecular connection between iron and cholesterol is not known. Here we examined the relationship between retinal iron and cholesterol using a mouse model (Hfe(-/-)) of hemochromatosis, a genetic disorder of iron overload. We compared the expression of the cholesterol efflux transporters ABCA1 and ABCG1 and cholesterol content in wild type and Hfe(-/-) mouse retinas. We also investigated the expression of Bdh2, the rate-limiting enzyme in the synthesis of the endogenous siderophore 2,5-dihydroxybenzoic acid (2,5-DHBA) in wild type and Hfe(-/-) mouse retinas, and the influence of this siderophore on ABCA1/ABCG1 expression in retinal pigment epithelium. We found that ABCA1 and ABCG1 were expressed in all retinal cell types, and that their expression was decreased in Hfe(-/-) retina. This was accompanied with an increase in retinal cholesterol content. Bdh2 was also expressed in all retinal cell types, and its expression was decreased in hemochromatosis. In ARPE-19 cells, 2,5-DHBA increased ABCA1/ABCG1 expression and decreased cholesterol content. This was not due to depletion of free iron because 2,5-DHBA (a siderophore) and deferiprone (an iron chelator) had opposite effects on transferrin receptor expression and ferritin levels. We conclude that iron is a regulator of cholesterol homeostasis in retina and that removal of cholesterol from retinal cells is impaired in hemochromatosis. Since excessive cholesterol is pro-inflammatory, hemochromatosis might promote retinal inflammation via cholesterol in AMD.
Collapse
Affiliation(s)
- Sudha Ananth
- Department of Biochemistry and Molecular Biology, Georgia Regents University, Augusta, GA 30912, USA
| | - Jaya P Gnana-Prakasam
- Department of Biochemistry and Molecular Biology, Georgia Regents University, Augusta, GA 30912, USA
| | - Yangzom D Bhutia
- Department of Biochemistry and Molecular Biology, Georgia Regents University, Augusta, GA 30912, USA
| | | | - Pamela M Martin
- Department of Biochemistry and Molecular Biology, Georgia Regents University, Augusta, GA 30912, USA
| | - Sylvia B Smith
- Department of Cellular Biology and Anatomy, Georgia Regents University, Augusta, GA 30912, USA
| | - Vadivel Ganapathy
- Department of Biochemistry and Molecular Biology, Georgia Regents University, Augusta, GA 30912, USA.
| |
Collapse
|
293
|
Rowan S, Weikel K, Chang ML, Nagel BA, Thinschmidt JS, Carey A, Grant MB, Fliesler SJ, Smith D, Taylor A. Cfh genotype interacts with dietary glycemic index to modulate age-related macular degeneration-like features in mice. Invest Ophthalmol Vis Sci 2014; 55:492-501. [PMID: 24370827 DOI: 10.1167/iovs.13-12413] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
PURPOSE Age-related macular degeneration (AMD) is a leading cause of visual impairment worldwide. Genetics and diet contribute to the relative risk for developing AMD, but their interactions are poorly understood. Genetic variations in Complement Factor H (CFH), and dietary glycemic index (GI) are major risk factors for AMD. We explored the effects of GI on development of early AMD-like features and changes to central nervous system (CNS) inflammation in Cfh-null mice. METHODS Aged 11-week-old wild type (WT) C57Bl/6J or Cfh-null mice were group pair-fed high or low GI diets for 33 weeks. At 10 months of age, mice were evaluated for early AMD-like features in the neural retina and RPE by light and electron microscopy. Brains were analyzed for Iba1 macrophage/microglia immunostaining, an indicator of inflammation. RESULTS The 10-month-old WT mice showed no retinal abnormalities on either diet. The Cfh-null mice, however, showed distinct early AMD-like features in the RPE when fed a low GI diet, including vacuolation, disruption of basal infoldings, and increased basal laminar deposits. The Cfh-null mice also showed thinning of the RPE, hypopigmentation, and increased numbers of Iba1-expressing macrophages in the brain, irrespective of diet. CONCLUSIONS The presence of early AMD-like features by 10 months of age in Cfh-null mice fed a low GI diet is surprising, given the apparent protection from the development of such features in aged WT mice or humans consuming lower GI diets. Our findings highlight the need to consider gene-diet interactions when developing animal models and therapeutic approaches to treat AMD.
Collapse
Affiliation(s)
- Sheldon Rowan
- JM-USDA Human Nutrition Research Center on Aging (HNRCA), Tufts University, Boston, Massachusetts
| | | | | | | | | | | | | | | | | | | |
Collapse
|
294
|
Electrophysiological Characterization of Rod and Cone Responses in the Baboon Nonhuman Primate Model. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 801:67-73. [DOI: 10.1007/978-1-4614-3209-8_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
295
|
van Lookeren Campagne M, LeCouter J, Yaspan BL, Ye W. Mechanisms of age-related macular degeneration and therapeutic opportunities. J Pathol 2013; 232:151-64. [DOI: 10.1002/path.4266] [Citation(s) in RCA: 222] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 09/09/2013] [Accepted: 09/11/2013] [Indexed: 12/27/2022]
Affiliation(s)
| | - Jennifer LeCouter
- Molecular Biology Department; Genentech; South San Francisco CA 94080 USA
| | - Brian L Yaspan
- ITGR Human Genetics Department; Genentech; South San Francisco CA 94080 USA
| | - Weilan Ye
- Molecular Biology Department; Genentech; South San Francisco CA 94080 USA
| |
Collapse
|
296
|
Langford-Smith A, Keenan TDL, Clark SJ, Bishop PN, Day AJ. The role of complement in age-related macular degeneration: heparan sulphate, a ZIP code for complement factor H? J Innate Immun 2013; 6:407-16. [PMID: 24335201 DOI: 10.1159/000356513] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 10/21/2013] [Indexed: 12/23/2022] Open
Abstract
Age-related macular degeneration (AMD) is the leading cause of blindness in developed nations and has been associated with complement dysregulation in the central retina. The Y402H polymorphism in the complement regulatory protein factor H (CFH) can confer a >5-fold increased risk of developing AMD and is present in approximately 30% of people of European descent. CFH, in conjunction with other factors, regulates complement activation in host tissues, and the Y402H polymorphism has been found to alter the protein's specificity for heparan sulphate (HS) - a complex polysaccharide found ubiquitously in mammals. HS, which is present on the cell surface and also in the extracellular matrix, exhibits huge structural diversity due to variations in the level/pattern of sulphation, where particular structures may act as 'ZIP codes' for different tissue/cellular locations. Recent work has demonstrated that CFH contains two HS-binding domains that each recognize specific HS ZIP codes, allowing differential recognition of Bruch's membrane (in the eye) or the glomerular basement membrane (in the kidney). Importantly, the Y402H polymorphism impairs the binding of CFH to the HS in Bruch's membrane, which could result in increased complement activation and chronic local inflammation (in 402H individuals) and thereby contribute to AMD pathology.
Collapse
Affiliation(s)
- Alex Langford-Smith
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester, UK
| | | | | | | | | |
Collapse
|
297
|
Stefanova NA, Zhdankina AA, Fursova AZ, Kolosova NG. Potential of melatonin for prevention of age-related macular degeneration: Experimental study. ADVANCES IN GERONTOLOGY 2013. [DOI: 10.1134/s2079057013040073] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
298
|
Böhm MR, Mertsch S, König S, Spieker T, Thanos S. Macula-less rat and macula-bearing monkey retinas exhibit common lifelong proteomic changes. Neurobiol Aging 2013; 34:2659-75. [DOI: 10.1016/j.neurobiolaging.2013.04.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 04/10/2013] [Accepted: 04/20/2013] [Indexed: 10/26/2022]
|
299
|
Laser-induced choroidal neovascularization model to study age-related macular degeneration in mice. Nat Protoc 2013; 8:2197-211. [DOI: 10.1038/nprot.2013.135] [Citation(s) in RCA: 206] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
300
|
Gorbatyuk M, Gorbatyuk O. Review: retinal degeneration: focus on the unfolded protein response. Mol Vis 2013; 19:1985-98. [PMID: 24068865 PMCID: PMC3782367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 09/18/2013] [Indexed: 11/08/2022] Open
Abstract
Recently published literature has provided evidence that the unfolded protein response (UPR) is involved in the development of retinal degeneration. The scope of these studies encompassed diabetic retinopathy, retinopathy of prematurity, glaucoma, retinal detachment, light-induced retinal degeneration, age-related macular degeneration, and inherited retinal degeneration. Subsequent studies investigating the role of individual UPR markers in retinal pathogenesis and examining the therapeutic potential of reprogramming the UPR as a method for modulating the rate of retinal degeneration have been initiated. Manipulation of UPR markers has been made possible by the use of knockout mice, pharmacological agents, and viral vector-mediated augmentation of gene expression. Future research will aim at identifying specific inhibitors and/or inducers of UPR regulatory markers as well as expand the list of UPR-related animal models. Additionally, adeno-associated virus-mediated gene delivery is a safe and effective method for modulating gene expression, and thus is a useful research tool for manipulating individual UPR markers in affected retinas and a promising delivery vector for gene therapy in retinal degenerative disorders.
Collapse
Affiliation(s)
- Marina Gorbatyuk
- Department of Vision Sciences, University of Alabama at Birmingham, Birmingham, AL 35233
| | - Oleg Gorbatyuk
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610
| |
Collapse
|