251
|
Ansel J, Bottin H, Rodriguez-Beltran C, Damon C, Nagarajan M, Fehrmann S, François J, Yvert G. Cell-to-cell stochastic variation in gene expression is a complex genetic trait. PLoS Genet 2008; 4:e1000049. [PMID: 18404214 PMCID: PMC2289839 DOI: 10.1371/journal.pgen.1000049] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2008] [Accepted: 03/11/2008] [Indexed: 11/19/2022] Open
Abstract
The genetic control of common traits is rarely deterministic, with many genes contributing only to the chance of developing a given phenotype. This incomplete penetrance is poorly understood and is usually attributed to interactions between genes or interactions between genes and environmental conditions. Because many traits such as cancer can emerge from rare events happening in one or very few cells, we speculate an alternative and complementary possibility where some genotypes could facilitate these events by increasing stochastic cell-to-cell variations (or ‘noise’). As a very first step towards investigating this possibility, we studied how natural genetic variation influences the level of noise in the expression of a single gene using the yeast S. cerevisiae as a model system. Reproducible differences in noise were observed between divergent genetic backgrounds. We found that noise was highly heritable and placed under a complex genetic control. Scanning the genome, we mapped three Quantitative Trait Loci (QTL) of noise, one locus being explained by an increase in noise when transcriptional elongation was impaired. Our results suggest that the level of stochasticity in particular molecular regulations may differ between multicellular individuals depending on their genotypic background. The complex genetic architecture of noise buffering couples genetic to non-genetic robustness and provides a molecular basis to the probabilistic nature of complex traits. Although most inter-individual phenotypic variabilities are largely attributable to DNA differences, a wealth of examples illustrate how a single biological system can vary stochastically over time and between individuals. Identical twins are not identical, and similarly, clonal microbial cells differ in many aspects even when grown simultaneously in a common environment. Using yeast as a model system, we show that a population of isogenic cells all carrying genotype A showed higher cell-to-cell heterogeneity in gene expression than a population of isogenic cells of genotype B. We considered this level of intra-clonal heterogeneity as a quantitative trait and performed genetic linkage (on AxB) to search for regulators of it. This led to the demonstration that transcriptional elongation impairment increases stochastic variation in gene expression in vivo. Our results show that the two levels of inter-individual diversity, genetic and stochastic, are connected by a complex control of the former on the latter. We invite the community to revisit the interpretation of incomplete penetrance, which defines cases where a mutation does not cause the associated phenotype in all its carriers. We propose that, in the case of cancer or other diseases triggered by single cells, such mutations might increase stochastic molecular fluctuations and thereby the fraction of deviant cellular phenotypes in a human body.
Collapse
Affiliation(s)
- Juliet Ansel
- Université de Lyon, Lyon, France
- Laboratoire de Biologie Moléculaire de la Cellule, Ecole Normale Supérieure de Lyon, CNRS, Lyon, France
- IFR128 BioSciences Lyon-Gerland, Lyon, France
| | - Hélène Bottin
- Université de Lyon, Lyon, France
- Laboratoire de Biologie Moléculaire de la Cellule, Ecole Normale Supérieure de Lyon, CNRS, Lyon, France
- IFR128 BioSciences Lyon-Gerland, Lyon, France
| | - Camilo Rodriguez-Beltran
- Laboratoire de Biotechnologie et Bioprocédés, Institut National des Sciences Appliquées, Toulouse, France
| | - Christelle Damon
- Université de Lyon, Lyon, France
- Laboratoire de Biologie Moléculaire de la Cellule, Ecole Normale Supérieure de Lyon, CNRS, Lyon, France
- IFR128 BioSciences Lyon-Gerland, Lyon, France
| | - Muniyandi Nagarajan
- Université de Lyon, Lyon, France
- Laboratoire de Biologie Moléculaire de la Cellule, Ecole Normale Supérieure de Lyon, CNRS, Lyon, France
- IFR128 BioSciences Lyon-Gerland, Lyon, France
| | - Steffen Fehrmann
- Université de Lyon, Lyon, France
- Laboratoire de Biologie Moléculaire de la Cellule, Ecole Normale Supérieure de Lyon, CNRS, Lyon, France
- IFR128 BioSciences Lyon-Gerland, Lyon, France
| | - Jean François
- Laboratoire de Biotechnologie et Bioprocédés, Institut National des Sciences Appliquées, Toulouse, France
| | - Gaël Yvert
- Université de Lyon, Lyon, France
- Laboratoire de Biologie Moléculaire de la Cellule, Ecole Normale Supérieure de Lyon, CNRS, Lyon, France
- IFR128 BioSciences Lyon-Gerland, Lyon, France
- Laboratoire de Biotechnologie et Bioprocédés, Institut National des Sciences Appliquées, Toulouse, France
- * E-mail:
| |
Collapse
|
252
|
Sbia M, Parnell EJ, Yu Y, Olsen AE, Kretschmann KL, Voth WP, Stillman DJ. Regulation of the yeast Ace2 transcription factor during the cell cycle. J Biol Chem 2008; 283:11135-45. [PMID: 18292088 DOI: 10.1074/jbc.m800196200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previous studies have revealed many parallels in the cell cycle regulation of the Ace2 and Swi5 transcription factors. Although both proteins begin entry into the nucleus near the start of mitosis, here we show that Ace2 accumulates in the nucleus and binds DNA about 10 min later in the cell cycle than Swi5. We used chimeric fusions to identify the N-terminal region of Ace2 as responsible for the delay, and this same region of Ace2 was required for interaction with Cbk1, a kinase necessary for both transcriptional activation by Ace2 and asymmetric distribution of Ace2. Ace2 and Swi5 also showed differences in prevalence during the cell cycle. Swi5 is apparently degraded soon after nuclear entry, whereas constant Ace2 levels throughout the cell cycle suggest Ace2 is exported from the nucleus. Our work suggests that the precise timing of Ace2 accumulation in the nucleus involves both a nuclear export sequence and a nuclear localization signal, whose activities are regulated by phosphorylation.
Collapse
Affiliation(s)
- Mohammed Sbia
- Department of Pathology, University of Utah Health Sciences Center, Salt Lake City, Utah 84112, USA
| | | | | | | | | | | | | |
Collapse
|
253
|
Nap1 links transcription elongation, chromatin assembly, and messenger RNP complex biogenesis. Mol Cell Biol 2008; 28:2113-24. [PMID: 18227150 DOI: 10.1128/mcb.02136-07] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chromatin remodeling is central to the regulation of transcription elongation. We demonstrate that the conserved Saccharomyces cerevisiae histone chaperone Nap1 associates with chromatin. We show that Nap1 regulates transcription of PHO5, and the increase in transcript level and the higher phosphatase activity plateau observed for Deltanap1 cells suggest that the net function of Nap1 is to facilitate nucleosome reassembly during transcription elongation. To further our understanding of histone chaperones in transcription elongation, we identified factors that regulate the function of Nap1 in this process. One factor investigated is an essential mRNA export and TREX complex component, Yra1. Nap1 interacts directly with Yra1 and genetically with other TREX complex components and the mRNA export factor Mex67. Additionally, we show that the recruitment of Nap1 to the coding region of actively transcribed genes is Yra1 dependent and that its recruitment to promoters is TREX complex independent. These observations suggest that Nap1 functions provide a new connection between transcription elongation, chromatin assembly, and messenger RNP complex biogenesis.
Collapse
|
254
|
Marton HA, Desiderio S. The Paf1 complex promotes displacement of histones upon rapid induction of transcription by RNA polymerase II. BMC Mol Biol 2008; 9:4. [PMID: 18194564 PMCID: PMC2265735 DOI: 10.1186/1471-2199-9-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2007] [Accepted: 01/14/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The yeast Paf1 protein complex is required for efficient transcription elongation by RNA polymerase II (RNA pol II), but the precise role of the complex has been unclear. RESULTS Here we show that depletion of the Ctr9 or Paf1 component of the Paf1 complex delays the loss of histones from the GAL1 gene upon induction. This delay in histone removal is accompanied by a decrease in association of RNA pol II with GAL1 and altered distribution of the polymerase along the locus. CONCLUSION These observations may explain why initial induction of GAL transcripts is reduced in Ctr9- or Paf1-deficient cells, and is consistent with a model suggesting that the Paf1 complex and the histone modifications that it mediates increase efficiency of transcriptional elongation by promoting nucleosomal destabilization and histone removal.
Collapse
Affiliation(s)
- Heather A Marton
- Department of Molecular Biology and Genetics and Program in Immunology, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, 733 North Broadway, Baltimore, Maryland 21205, USA.
| | | |
Collapse
|
255
|
Nelson JD, Flanagin S, Kawata Y, Denisenko O, Bomsztyk K. Transcription of laminin gamma1 chain gene in rat mesangial cells: constitutive and inducible RNA polymerase II recruitment and chromatin states. Am J Physiol Renal Physiol 2008; 294:F525-33. [PMID: 18184742 DOI: 10.1152/ajprenal.00299.2007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The laminin gamma1 chain, a critical component of the extracellular matrix, is encoded by the 125-kb-long Lamc1 locus. We profiled RNA polymerase II (Pol II) and histone modifications along the Lamc1 locus to explore transcription of this gene in its native chromatin environment. Treatment with 12-O-tetradecanoylphorbol-13-acetate increased Lamc1 mRNA in rat mesangial cells (RMC). This increase was matched by an increase in Pol II density along the entire length of the Lamc1 locus. In contrast, in the hepatocarcinoma cell line (HTC-IR) an increase in Pol II density was restricted to the promoter and was not followed by mRNA induction. The pattern of histone H3 methylation was similar for both cell types but an increase in H3 lysine 9 acetylation observed at the 5'-end was weaker in HTC-IR cells than in RMC. All of the histone modifications showed spatial patterns where levels differed greatly between the 5'- and 3'-ends of Lamc1. Conversely, at the short, highly induced egr-1 gene the differences in chromatin marks between the 5'- and 3'-ends were much smaller. The results of this study suggest that 1) Lamc1 transcription can be controlled after transcription initiation, to our knowledge, the first time this has been shown in an extracellular matrix gene, and 2) the length of a gene is a factor that can affect the chromatin environment for Pol II elongation.
Collapse
Affiliation(s)
- Joel D Nelson
- Molecular and Cellular Biology Program, University of Washington Medicine Lake Union, Seattle, Washington 98109, USA
| | | | | | | | | |
Collapse
|
256
|
Yao J, Ardehali MB, Fecko CJ, Webb WW, Lis JT. Intranuclear distribution and local dynamics of RNA polymerase II during transcription activation. Mol Cell 2007; 28:978-90. [PMID: 18158896 DOI: 10.1016/j.molcel.2007.10.017] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2007] [Revised: 07/17/2007] [Accepted: 10/15/2007] [Indexed: 12/12/2022]
Abstract
Transcription activation causes dramatic changes in a gene's compaction and macromolecular associations and, in some cases, triggers the translocation of the gene to a nuclear substructure. Here, we evaluate the location, movement, and transcriptional dynamics of Drosophila heat shock (HS) genes both by two-photon microscopy in live polytene nuclei and by FISH in diploid nuclei. The different HS loci occupy separate nuclear positions. Although these loci decondense upon HS, they do not undergo a detectable net translocation nor are they preferentially localized to the nuclear periphery or interior. Additionally, fluorescence recovery after photobleaching reveals that, shortly after HS, newly recruited RNA polymerase II (Pol II) enters elongation via an "efficient entry" mode, which is followed by the progressive establishment of transcription "compartments" at Hsp70 loci where concentrated Pol II is used in a "local recycling" mode. Pol II at highly transcribed developmental loci exhibits dynamics resembling combinations of these Hsp70 transcription modes.
Collapse
Affiliation(s)
- Jie Yao
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | |
Collapse
|
257
|
Spn1 regulates the recruitment of Spt6 and the Swi/Snf complex during transcriptional activation by RNA polymerase II. Mol Cell Biol 2007; 28:1393-403. [PMID: 18086892 DOI: 10.1128/mcb.01733-07] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We investigated the timing of the recruitment of Spn1 and its partner, Spt6, to the CYC1 gene. Like TATA binding protein and RNA polymerase II (RNAPII), Spn1 is constitutively recruited to the CYC1 promoter, although levels of transcription from this gene, which is regulated postrecruitment of RNAPII, are low. In contrast, Spt6 appears only after growth in conditions in which the gene is highly transcribed. Spn1 recruitment is via interaction with RNAPII, since an spn1 mutant defective for interaction with RNAPII is not targeted to the promoter, and Spn1 is necessary for Spt6 recruitment. Through a targeted genetic screen, strong and specific antagonizing interactions between SPN1 and genes encoding Swi/Snf subunits were identified. Like Spt6, Swi/Snf appears at CYC1 only after activation of the gene. However, Spt6 significantly precedes Swi/Snf occupancy at the promoter. In the absence of Spn1 recruitment, Swi/Snf is constitutively found at the promoter. These observations support a model whereby Spn1 negatively regulates RNAPII transcriptional activity by inhibiting recruitment of Swi/Snf to the CYC1 promoter, and this inhibition is abrogated by the Spn1-Spt6 interaction. These findings link Spn1 functions to the transition from an inactive to an actively transcribing RNAPII complex at a postrecruitment-regulated promoter.
Collapse
|
258
|
Two RNA polymerase I subunits control the binding and release of Rrn3 during transcription. Mol Cell Biol 2007; 28:1596-605. [PMID: 18086878 DOI: 10.1128/mcb.01464-07] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Rpa34 and Rpa49 are nonessential subunits of RNA polymerase I, conserved in species from Saccharomyces cerevisiae and Schizosaccharomyces pombe to humans. Rpa34 bound an N-terminal region of Rpa49 in a two-hybrid assay and was lost from RNA polymerase in an rpa49 mutant lacking this Rpa34-binding domain, whereas rpa34Delta weakened the binding of Rpa49 to RNA polymerase. rpa34Delta mutants were caffeine sensitive, and the rpa34Delta mutation was lethal in a top1Delta mutant and in rpa14Delta, rpa135(L656P), and rpa135(D395N) RNA polymerase mutants. These defects were shared by rpa49Delta mutants, were suppressed by the overexpression of Rpa49, and thus, were presumably mediated by Rpa49 itself. rpa49 mutants lacking the Rpa34-binding domain behaved essentially like rpa34Delta mutants, but strains carrying rpa49Delta and rpa49-338::HIS3 (encoding a form of Rpa49 lacking the conserved C terminus) had reduced polymerase occupancy at 30 degrees C, failed to grow at 25 degrees C, and were sensitive to 6-azauracil and mycophenolate. Mycophenolate almost fully dissociated the mutant polymerase from its ribosomal DNA (rDNA) template. The rpa49Delta and rpa49-338::HIS3 mutations had a dual effect on the transcription initiation factor Rrn3 (TIF-IA). They partially impaired its recruitment to the rDNA promoter, an effect that was bypassed by an N-terminal deletion of the Rpa43 subunit encoded by rpa43-35,326, and they strongly reduced the release of the Rrn3 initiation factor during elongation. These data suggest a dual role of the Rpa49-Rpa34 dimer during the recruitment of Rrn3 and its subsequent dissociation from the elongating polymerase.
Collapse
|
259
|
Boireau S, Maiuri P, Basyuk E, de la Mata M, Knezevich A, Pradet-Balade B, Bäcker V, Kornblihtt A, Marcello A, Bertrand E. The transcriptional cycle of HIV-1 in real-time and live cells. ACTA ACUST UNITED AC 2007; 179:291-304. [PMID: 17954611 PMCID: PMC2064765 DOI: 10.1083/jcb.200706018] [Citation(s) in RCA: 156] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
RNA polymerase II (RNAPII) is a fundamental enzyme, but few studies have analyzed its activity in living cells. Using human immunodeficiency virus (HIV) type 1 reporters, we study real-time messenger RNA (mRNA) biogenesis by photobleaching nascent RNAs and RNAPII at specific transcription sites. Through modeling, the use of mutant polymerases, drugs, and quantitative in situ hybridization, we investigate the kinetics of the HIV-1 transcription cycle. Initiation appears efficient because most polymerases demonstrate stable gene association. We calculate an elongation rate of approximately 1.9 kb/min, and, surprisingly, polymerases remain at transcription sites 2.5 min longer than nascent RNAs. With a total polymerase residency time estimated at 333 s, 114 are assigned to elongation, and 63 are assigned to 3′-end processing and/or transcript release. However, mRNAs were released seconds after polyadenylation onset, and analysis of polymerase density by chromatin immunoprecipitation suggests that they pause or lose processivity after passing the polyA site. The strengths and limitations of this kinetic approach to analyze mRNA biogenesis in living cells are discussed.
Collapse
Affiliation(s)
- Stéphanie Boireau
- Institute of Molecular Genetics of Montpellier, Unité Mixte de Recherche 5535, Centre National de la Recherche Scientifique, 34293 Montpellier, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
260
|
Balakrishnan SK, Gross DS. The tumor suppressor p53 associates with gene coding regions and co-traverses with elongating RNA polymerase II in an in vivo model. Oncogene 2007; 27:2661-72. [PMID: 18026140 DOI: 10.1038/sj.onc.1210935] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Sequence-specific transcriptional regulators function by stably binding cognate DNA sequences followed by recruitment of both general and specialized factors to target gene promoters. The tumor suppressor p53 mediates its anti-oncogenic effect on cells by functioning as a sequence-specific regulator. p53 employs a secondary mechanism to suppress tumor formation by permeabilizing the outer mitochondrial membrane, thereby releasing pro-apoptotic factors. Here, we report a potential third biological function of p53: as a transcriptional elongation factor. Using chromatin immunoprecipitation, we demonstrate that human p53 robustly associates with RNA polymerase II (Pol II), but neither Pol I- nor Pol III-transcribed regions in the budding yeast, Saccharomyces cerevisiae. p53's association with open reading frames is mediated by its physical interaction with elongating Pol II, with which p53 travels in vivo and co-immunoprecipitates in vitro. When similarly expressed, the potent acidic activator VP16 cannot be cross-linked to Pol II coding regions. p53 levels comparable to those found in induced mammalian cells confer synthetic sickness or lethality in combination with deletions in genes encoding transcription elongation factors; p53 likewise confers hypersensitivity to the anti-elongation drug 6-azauracil. Collectively, our results indicate that p53 can physically interact with the transcription elongation complex and influence transcription elongation, and open up new avenues of investigation in mammalian cells.
Collapse
Affiliation(s)
- S K Balakrishnan
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center and The Feist-Weiller Cancer Center, Shreveport, LA 71130-3932, USA
| | | |
Collapse
|
261
|
Blechingberg J, Lykke-Andersen S, Jensen TH, Jørgensen AL, Nielsen AL. Regulatory mechanisms for 3'-end alternative splicing and polyadenylation of the Glial Fibrillary Acidic Protein, GFAP, transcript. Nucleic Acids Res 2007; 35:7636-50. [PMID: 17981838 PMCID: PMC2190720 DOI: 10.1093/nar/gkm931] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The glial fibrillary acidic protein, GFAP, forms the intermediate cytoskeleton in cells of the glial lineage. Besides the common GFAPα transcript, the GFAPε and GFAPκ transcripts are generated by alternative mRNA 3′-end processing. Here we use a GFAP minigene to characterize molecular mechanisms participating in alternative GFAP expression. Usage of a polyadenylation signal within the alternatively spliced exon 7a is essential to generate the GFAPκ and GFAPκ transcripts. The GFAPκ mRNA is distinct from GFAPε mRNA given that it also includes intron 7a. Polyadenylation at the exon 7a site is stimulated by the upstream splice site. Moreover, exon 7a splice enhancer motifs supported both exon 7a splicing and polyadenylation. SR proteins increased the usage of the exon 7a polyadenylation signal but not the exon 7a splicing, whereas the polypyrimidine tract binding (PTB) protein enhanced both exon 7a polyadenylation and exon 7a splicing. Finally, increasing transcription by the VP16 trans-activator did not affect the frequency of use of the exon 7a polyadenylation signal whereas the exon 7a splicing frequency was decreased. Our data suggest a model with the selection of the exon 7a polyadenylation site being the essential and primary event for regulating GFAP alternative processing.
Collapse
Affiliation(s)
- Jenny Blechingberg
- Institute of Human Genetics, The Bartholin Building, University of Aarhus, DK-8000 Aarhus C, Denmark
| | | | | | | | | |
Collapse
|
262
|
García-Rubio M, Chávez S, Huertas P, Tous C, Jimeno S, Luna R, Aguilera A. Different physiological relevance of yeast THO/TREX subunits in gene expression and genome integrity. Mol Genet Genomics 2007; 279:123-32. [PMID: 17960421 DOI: 10.1007/s00438-007-0301-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2007] [Accepted: 10/09/2007] [Indexed: 12/21/2022]
Abstract
THO/TREX is a conserved nuclear complex that functions in mRNP biogenesis and plays a role in preventing the transcription-associated genetic instability. THO is composed of Tho2, Hpr1, Mft1 and Thp2 subunits, which associate with the Sub2-Yra1 export factors and Tex1 to form the TREX complex. To compare the functional relevance of the different THO/TREX subunits, we determined the effect of their null mutations on mRNA accumulation and recombination. Unexpectedly, we noticed that a full deletion of HPR1, hpr1DeltaK, conferred stronger hyper-recombination phenotype and gene expression defects than did hpr1DeltaH, the allele encoding a C-terminal truncated protein which was used in most previous studies. We show that tho2Delta and, to a lesser extent, hpr1DeltaK are the THO mutations with the highest impact on all phenotypes, and that sub2Delta shows a similar transcription-dependent hyper-recombination phenotype and in vivo transcription impairment as hpr1DeltaK and tho2Delta. Recombination and transcription analyses indicate that THO/TREX mutants share a moderate but significant effect on gene conversion and ectopic recombination, as well as transcription impairment of even short and low GC-content genes. Our data provide new information on the relevance of these proteins in mRNP biogenesis and in the maintenance of genomic integrity.
Collapse
Affiliation(s)
- María García-Rubio
- Departamento de Biología Molecular, CABIMER, CSIC, Universidad de Sevilla, Av. Américo Vespucio s/n, Seville, Spain
| | | | | | | | | | | | | |
Collapse
|
263
|
Kim B, Nesvizhskii AI, Rani PG, Hahn S, Aebersold R, Ranish JA. The transcription elongation factor TFIIS is a component of RNA polymerase II preinitiation complexes. Proc Natl Acad Sci U S A 2007; 104:16068-73. [PMID: 17913884 PMCID: PMC2042163 DOI: 10.1073/pnas.0704573104] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2007] [Indexed: 11/18/2022] Open
Abstract
In this article, we provide direct evidence that the evolutionarily conserved transcription elongation factor TFIIS functions during preinitiation complex assembly. First, we identified TFIIS in a mass spectrometric screen of RNA polymerase II (Pol II) preinitiation complexes (PICs). Second, we show that the association of TFIIS with a promoter depends on functional PIC components including Mediator and the SAGA complex. Third, we demonstrate that TFIIS is required for efficient formation of active PICs. Using truncation mutants of TFIIS, we find that the Pol II-binding domain is the minimal domain necessary to stimulate PIC assembly. However, efficient formation of active PICs requires both the Pol II-binding domain and the poorly understood N-terminal domain. Importantly, Domain III, which is required for the elongation function of TFIIS, is dispensable during PIC assembly. The results demonstrate that TFIIS is a PIC component that is required for efficient formation and/or stability of the complex.
Collapse
Affiliation(s)
- Bong Kim
- *Institute for Systems Biology, 1441 North 34th Street, Seattle, WA 98103
| | - Alexey I. Nesvizhskii
- *Institute for Systems Biology, 1441 North 34th Street, Seattle, WA 98103
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109
| | - P. Geetha Rani
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Steven Hahn
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Ruedi Aebersold
- *Institute for Systems Biology, 1441 North 34th Street, Seattle, WA 98103
- Institute of Molecular Systems Biology, Eidgenössische Technische Hochschule, 8092 Zurich, Switzerland; and
- Faculty of Science, University of Zurich, CH-8006 Zurich, Switzerland
| | - Jeffrey A. Ranish
- *Institute for Systems Biology, 1441 North 34th Street, Seattle, WA 98103
| |
Collapse
|
264
|
Guglielmi B, Soutourina J, Esnault C, Werner M. TFIIS elongation factor and Mediator act in conjunction during transcription initiation in vivo. Proc Natl Acad Sci U S A 2007; 104:16062-7. [PMID: 17901206 PMCID: PMC2042162 DOI: 10.1073/pnas.0704534104] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The transcription initiation and elongation steps of protein-coding genes usually rely on unrelated protein complexes. However, the TFIIS elongation factor is implicated in both processes. We found that, in the absence of the Med31 Mediator subunit, yeast cells required the TFIIS polymerase II (Pol II)-binding domain but not its RNA cleavage stimulatory activity that is associated with its elongation function. We also found that the TFIIS Pol II-interacting domain was needed for the full recruitment of Pol II to several promoters in the absence of Med31. This work demonstrated that, in addition to its thoroughly characterized role in transcription elongation, TFIIS is implicated through its Pol II-binding domain in the formation or stabilization of the transcription initiation complex in vivo.
Collapse
Affiliation(s)
- Benjamin Guglielmi
- Commissariat à l'Energie Atomique, Institut de Biologie et Technologies de Saclay, Bâtiment 144, Commissariat à l'Energie Atomique/Saclay, Gif-sur-Yvette Cedex F-91191, France
| | - Julie Soutourina
- Commissariat à l'Energie Atomique, Institut de Biologie et Technologies de Saclay, Bâtiment 144, Commissariat à l'Energie Atomique/Saclay, Gif-sur-Yvette Cedex F-91191, France
| | - Cyril Esnault
- Commissariat à l'Energie Atomique, Institut de Biologie et Technologies de Saclay, Bâtiment 144, Commissariat à l'Energie Atomique/Saclay, Gif-sur-Yvette Cedex F-91191, France
| | - Michel Werner
- Commissariat à l'Energie Atomique, Institut de Biologie et Technologies de Saclay, Bâtiment 144, Commissariat à l'Energie Atomique/Saclay, Gif-sur-Yvette Cedex F-91191, France
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
265
|
Yokoyama R, Pannuti A, Ling H, Smith ER, Lucchesi JC. A plasmid model system shows that Drosophila dosage compensation depends on the global acetylation of histone H4 at lysine 16 and is not affected by depletion of common transcription elongation chromatin marks. Mol Cell Biol 2007; 27:7865-70. [PMID: 17875941 PMCID: PMC2169142 DOI: 10.1128/mcb.00397-07] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dosage compensation refers to the equalization of most X-linked gene products between males, which have one X chromosome and a single dose of X-linked genes, and females, which have two X's and two doses of such genes. We developed a plasmid-based model of dosage compensation that allows new experimental approaches for the study of this regulatory mechanism. In Drosophila melanogaster, an enhanced rate of transcription of the X chromosome in males is dependent upon the presence of histone H4 acetylated at lysine 16. This chromatin mark occurs throughout active transcriptional units, leading us to the conclusion that the enhanced level of transcription is achieved through an enhanced rate of RNA polymerase elongation. We used the plasmid model to demonstrate that enhancement in the level of transcription does not depend on other histone marks and factors that have been associated with the process of elongation, thereby highlighting the special role played by histone H4 acetylated at lysine 16 in this process.
Collapse
Affiliation(s)
- Ruth Yokoyama
- Department of Biology, Emory University, Atlanta, Georgia 30322, USA
| | | | | | | | | |
Collapse
|
266
|
Balakrishnan L, Milavetz B. Histone hyperacetylation during SV40 transcription is regulated by p300 and RNA polymerase II translocation. J Mol Biol 2007; 371:1022-37. [PMID: 17658552 PMCID: PMC1987373 DOI: 10.1016/j.jmb.2007.06.080] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2007] [Revised: 06/17/2007] [Accepted: 06/25/2007] [Indexed: 01/03/2023]
Abstract
The effects of the RNA polymerase II (RNAPII) translocation inhibitors alpha amanitin and 5,6-dichloro-1-beta-D-ribobenzimidazole (DRB) and an siRNA targeting p300 on the presence of RNAPII, p300, hyperacetylated H4 and H3 and unmodified H4 and H3 in transcribing simian virus 40 (SV40) minichromosomes were determined. Following treatment with alpha amanitin we observed a profound reduction in the occupancy of the promoter by RNAPII, the loss of p300 from chromatin fragments containing RNAPII, and an increase in the amount of unmodified H4 and H3 associated with the RNAPII. Treatment with DRB had little effect on the presence of RNAPII or p300 but also resulted in a significant increase in the amount of unmodified H4 and H3 present in chromatin fragments associated with RNAPII. Following treatment with a p300 small interfering RNA (siRNA), we observed a significant decrease in late transcription and a corresponding reduction in the amounts of p300 and hyperacetylated histones associated with the transcribing SV40 minichromosomes. We conclude that in transcribing SV40 minichromosomes histone hyperacetylation and deacetylation is dependent upon the presence of p300 and an as yet unknown histone deacetylase associated with the RNAPII complex that occurs coordinately as the RNAPII complex moves through a nucleosome.
Collapse
Affiliation(s)
- Lata Balakrishnan
- Department of Biochemistry and Molecular Biology, University of North Dakota, Grand Forks, ND 58203, USA
| | | |
Collapse
|
267
|
Schwabish MA, Struhl K. The Swi/Snf complex is important for histone eviction during transcriptional activation and RNA polymerase II elongation in vivo. Mol Cell Biol 2007; 27:6987-95. [PMID: 17709398 PMCID: PMC2168902 DOI: 10.1128/mcb.00717-07] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Swi/Snf nucleosome-remodeling complex is recruited by DNA-binding activator proteins, whereupon it alters chromatin structure to increase preinitiation complex formation and transcription. At the SUC2 promoter, the Swi/Snf complex is required for histone eviction in a manner that is independent of transcriptional activity. Swi/Snf travels through coding regions with elongating RNA polymerase (Pol) II, and swi2 mutants exhibit sensitivity to drugs affecting Pol elongation. In FACT-depleted cells, Swi/Snf is important for internal initiation within coding regions, suggesting that Swi/Snf is important for histone eviction that occurs during Pol II elongation. Taken together, these observations suggest that Swi/Snf is important for histone eviction at enhancers and that it also functions as a Pol II elongation factor.
Collapse
Affiliation(s)
- Marc A Schwabish
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | | |
Collapse
|
268
|
Zhang Z, Klatt A, Henderson AJ, Gilmour DS. Transcription termination factor Pcf11 limits the processivity of Pol II on an HIV provirus to repress gene expression. Genes Dev 2007; 21:1609-14. [PMID: 17606639 PMCID: PMC1899470 DOI: 10.1101/gad.1542707] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Many elongation factors in eukaryotes promote gene expression by increasing the processivity of RNA polymerase II (Pol II). However, the stability of RNA Pol II elongation complexes suggests that such complexes are not inherently prone to prematurely terminating transcription, particularly at physiological nucleotide concentrations. We show that the termination factor, Pcf11, causes premature termination on an HIV provirus. The transcription that occurs when Pcf11 is depleted from cells or an extract is no longer sensitive to 6-dichloro-1-beta-D-ribofuranosylbenzimidazole (DRB), a compound that causes premature termination. Hence, Pcf11 can act as a negative elongation factor to repress RNA Pol II gene expression in eukaryotic cells.
Collapse
Affiliation(s)
- Zhiqiang Zhang
- Center for Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Center of Molecular Immunology and Infectious Diseases, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Alicia Klatt
- Center of Molecular Immunology and Infectious Diseases, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Graduate Program in Pathobiology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Andrew J. Henderson
- Center of Molecular Immunology and Infectious Diseases, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Graduate Program in Pathobiology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Center for HIV/AIDS Care and Research, Boston University Medical Center, Boston, Massachusetts 02118, USA
| | - David S. Gilmour
- Center for Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Corresponding author.E-MAIL ; FAX (814) 863-7024
| |
Collapse
|
269
|
Darzacq X, Shav-Tal Y, de Turris V, Brody Y, Shenoy SM, Phair RD, Singer RH. In vivo dynamics of RNA polymerase II transcription. Nat Struct Mol Biol 2007; 14:796-806. [PMID: 17676063 PMCID: PMC4942130 DOI: 10.1038/nsmb1280] [Citation(s) in RCA: 514] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2007] [Accepted: 06/28/2007] [Indexed: 12/17/2022]
Abstract
We imaged transcription in living cells using a locus-specific reporter system, which allowed precise, single-cell kinetic measurements of promoter binding, initiation and elongation. Photobleaching of fluorescent RNA polymerase II revealed several kinetically distinct populations of the enzyme interacting with a specific gene. Photobleaching and photoactivation of fluorescent MS2 proteins used to label nascent messenger RNAs provided sensitive elongation measurements. A mechanistic kinetic model that fits our data was validated using specific inhibitors. Polymerases elongated at 4.3 kilobases min(-1), much faster than previously documented, and entered a paused state for unexpectedly long times. Transcription onset was inefficient, with only 1% of polymerase-gene interactions leading to completion of an mRNA. Our systems approach, quantifying both polymerase and mRNA kinetics on a defined DNA template in vivo with high temporal resolution, opens new avenues for studying regulation of transcriptional processes in vivo.
Collapse
Affiliation(s)
- Xavier Darzacq
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | | | |
Collapse
|
270
|
Tous C, Aguilera A. Impairment of transcription elongation by R-loops in vitro. Biochem Biophys Res Commun 2007; 360:428-32. [PMID: 17603014 DOI: 10.1016/j.bbrc.2007.06.098] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2007] [Accepted: 06/12/2007] [Indexed: 11/22/2022]
Abstract
Transcription elongation causes a local change in DNA superhelicity. An excess of negative supercoiling may lead to opening of DNA strands that could allow formation of R-loops. In yeast, mutants of the THO complex are impaired in transcription elongation and this defect has been linked to co-transcriptional formation of R-loops, which could constitute roadblocks for RNA polymerases. In this study, we found that stably formed 300-nt long DNA-RNA hybrids in a negatively supercoiled transcription template reduced the efficiency of transcription elongation by half, providing a first experimental evidence that transcription elongation is impaired by R-loops in vitro.
Collapse
Affiliation(s)
- Cristina Tous
- Departamento de Genética, Facultad de Biología, and Departamento de Biología Molecular, CABIMER, CSIC-Universidad de Sevilla, Av. Américo Vespucio s/n, 41092 Sevilla, Spain
| | | |
Collapse
|
271
|
Wong CM, Qiu H, Hu C, Dong J, Hinnebusch AG. Yeast cap binding complex impedes recruitment of cleavage factor IA to weak termination sites. Mol Cell Biol 2007; 27:6520-31. [PMID: 17636014 PMCID: PMC2099607 DOI: 10.1128/mcb.00733-07] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nuclear cap binding complex (CBC) is recruited cotranscriptionally and stimulates spliceosome assembly on nascent mRNAs; however, its possible functions in regulating transcription elongation or termination were not well understood. We show that, while CBC appears to be dispensable for normal rates and processivity of elongation by RNA polymerase II (Pol II), it plays a direct role in preventing polyadenylation at weak termination sites. Similarly to Npl3p, with which it interacts, CBC suppresses the weak terminator of the gal10-Delta56 mutant allele by impeding recruitment of termination factors Pcf11p and Rna15p (subunits of cleavage factor IA [CF IA]) and does so without influencing Npl3p occupancy at the termination site. Importantly, deletion of CBC subunits or NPL3 also increases termination at a naturally occurring weak poly(A) site in the RNA14 coding sequences. We also show that CBC is most likely recruited directly to the cap of nascent transcripts rather than interacting first with transcriptional activators or the phosphorylated C-terminal domain of Pol II. Thus, our findings illuminate the mechanism of CBC recruitment and extend its function in Saccharomyces cerevisiae beyond mRNA splicing and degradation of aberrant nuclear mRNAs to include regulation of CF IA recruitment at poly(A) selection sites.
Collapse
Affiliation(s)
- Chi-Ming Wong
- Laboratory of Gene Regulation and Development, National Institute of Child Health and Human Development, NIH, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
272
|
Biswas D, Dutta-Biswas R, Stillman DJ. Chd1 and yFACT act in opposition in regulating transcription. Mol Cell Biol 2007; 27:6279-87. [PMID: 17620414 PMCID: PMC2099615 DOI: 10.1128/mcb.00978-07] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CHD1 encodes an ATP-dependent chromatin remodeler with two chromodomains. Deletion of CHD1 suppresses the temperature-sensitive growth defect caused by mutations in either SPT16 or POB3, which encode subunits of the yFACT chromatin-reorganizing complex. chd1 also suppresses synthetic defects caused by combining an spt16 mutation with other transcription factor mutations, including the synthetic lethality caused by combining an spt16 mutation with TATA binding protein (TBP) or TFIIA defects. Binding of TBP and RNA polymerase II to the GAL1 promoter is reduced in a pob3 mutant, resulting in low levels of GAL1 expression, and all three defects are suppressed by removing Chd1. These results suggest that Chd1 and yFACT have opposing roles in regulating TBP binding at promoters. Additionally, overexpression of Chd1 is tolerated in wild-type cells but is toxic in spt16 mutants. Further, both the ATPase and chromodomain are required for Chd1 activity in opposing yFACT function. Similar to the suppression by chd1, mutations in the SET2 histone methyltransferase also suppress defects caused by yFACT mutations. chd1 and set2 are additive in suppressing pob3, suggesting that Chd1 and Set2 act in distinct pathways. Although human Chd1 has been shown to bind to H3-K4-Me, we discuss evidence arguing that yeast Chd1 binds to neither H3-K4-Me nor H3-K36-Me.
Collapse
Affiliation(s)
- Debabrata Biswas
- Department of Pathology, University of Utah, 15 N. Medical Drive East, Salt Lake City, UT 84112, USA
| | | | | |
Collapse
|
273
|
Zhu W, Wada T, Okabe S, Taneda T, Yamaguchi Y, Handa H. DSIF contributes to transcriptional activation by DNA-binding activators by preventing pausing during transcription elongation. Nucleic Acids Res 2007; 35:4064-75. [PMID: 17567605 PMCID: PMC1919491 DOI: 10.1093/nar/gkm430] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The transcription elongation factor 5,6-dichloro-1-β-d-ribofuranosylbenzimidazole (DRB) sensitivity-inducing factor (DSIF) regulates RNA polymerase II (RNAPII) processivity by promoting, in concert with negative elongation factor (NELF), promoter-proximal pausing of RNAPII. DSIF is also reportedly involved in transcriptional activation. However, the role of DSIF in transcriptional activation by DNA-binding activators is unclear. Here we show that DSIF acts cooperatively with a DNA-binding activator, Gal4-VP16, to promote transcriptional activation. In the absence of DSIF, Gal4-VP16-activated transcription resulted in frequent pausing of RNAPII during elongation in vitro. The presence of DSIF reduced pausing, thereby supporting Gal4-VP16-mediated activation. We found that DSIF exerts its positive effects within a short time-frame from initiation to elongation, and that NELF does not affect the positive regulatory function of DSIF. Knockdown of the gene encoding the large subunit of DSIF, human Spt5 (hSpt5), in HeLa cells reduced Gal4-VP16-mediated activation of a reporter gene, but had no effect on expression in the absence of activator. Together, these results provide evidence that higher-level transcription has a stronger requirement for DSIF, and that DSIF contributes to efficient transcriptional activation by preventing RNAPII pausing during transcription elongation.
Collapse
Affiliation(s)
- Wenyan Zhu
- Graduate School of Bioscience and Biotechnology and Integrated Research Institute, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | - Tadashi Wada
- Graduate School of Bioscience and Biotechnology and Integrated Research Institute, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
- *To whom correspondence should be addressed. +81-45-924-5798+81-45-924-5834,
| | - Sachiko Okabe
- Graduate School of Bioscience and Biotechnology and Integrated Research Institute, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | - Takuya Taneda
- Graduate School of Bioscience and Biotechnology and Integrated Research Institute, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | - Yuki Yamaguchi
- Graduate School of Bioscience and Biotechnology and Integrated Research Institute, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | - Hiroshi Handa
- Graduate School of Bioscience and Biotechnology and Integrated Research Institute, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
- *To whom correspondence should be addressed. +81-45-924-5798+81-45-924-5834,
| |
Collapse
|
274
|
Gaillard H, Wellinger RE, Aguilera A. A new connection of mRNP biogenesis and export with transcription-coupled repair. Nucleic Acids Res 2007; 35:3893-906. [PMID: 17537816 PMCID: PMC1919492 DOI: 10.1093/nar/gkm373] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Although DNA repair is faster in the transcribed strand of active genes, little is known about the possible contribution of mRNP biogenesis and export in transcription-coupled repair (TCR). Interestingly, mutants of THO, a transcription complex involved in maintenance of genome integrity, mRNP biogenesis and export, were recently found to be deficient in nucleotide excision repair. In this study we show by molecular DNA repair analysis, that Sub2-Yra1 and Thp1-Sac3, two main mRNA export complexes, are required for efficient TCR in yeast. Careful analysis revealed that THO mutants are also specifically affected in TCR. Ribozyme-mediated mRNA self-cleavage between two hot spots for UV damage showed that efficient TCR does not depend on the nascent mRNA, neither in wild-type nor in mutant cells. Along with severe UV damage-dependent loss in processivity, RNAPII was found binding to chromatin upon UV irradiation in THO mutants, suggesting that RNAPII remains stalled at DNA lesions. Furthermore, Def1, a factor responsible for the degradation of stalled RNAPII, appears essential for the viability of THO mutants subjected to DNA damage. Our results indicate that RNAPII is not proficient for TCR in mRNP biogenesis and export mutants, opening new perspectives on our knowledge of TCR in eukaryotic cells.
Collapse
Affiliation(s)
| | | | - Andrés Aguilera
- *To whom correspondence should be addressed. +34-954-468-372+34-954-461-664
| |
Collapse
|
275
|
Somesh BP, Sigurdsson S, Saeki H, Erdjument-Bromage H, Tempst P, Svejstrup JQ. Communication between distant sites in RNA polymerase II through ubiquitylation factors and the polymerase CTD. Cell 2007; 129:57-68. [PMID: 17418786 DOI: 10.1016/j.cell.2007.01.046] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2006] [Revised: 11/22/2006] [Accepted: 01/26/2007] [Indexed: 10/23/2022]
Abstract
Transcriptional arrest triggers ubiquitylation of RNA polymerase II (RNAPII). We mapped the yeast RNAPII ubiquitylation sites and found that they play an important role in elongation and the DNA-damage response. One site lies in a protein domain that is unordered in free RNAPII, but ordered in the elongating form, helping explain the preferential ubiquitylation of this form. The other site is >125 Angstroms away, yet mutation of either site affects ubiquitylation of the other, in vitro and in vivo. The basis for this remarkable coupling was uncovered: an Rsp5 (E3) dimer assembled on the RNAPII C-terminal domain (CTD). The ubiquitylation sites bind Ubc5 (E2), which in turn binds Rsp5 to allow modification. Evidence for folding of the CTD compatible with this mechanism of communication between distant sites is provided. These data reveal the specificity and mechanism of RNAPII ubiquitylation and demonstrate that E2s can play a crucial role in substrate recognition.
Collapse
Affiliation(s)
- Baggavalli P Somesh
- Mechanisms of Transcription Laboratory, Cancer Research UK London Research Institute, Clare Hall Laboratories, South Mimms, UK
| | | | | | | | | | | |
Collapse
|
276
|
Kulaeva OI, Gaykalova D, Studitsky VM. Transcription through chromatin by RNA polymerase II: histone displacement and exchange. Mutat Res 2007; 618:116-29. [PMID: 17313961 PMCID: PMC1924643 DOI: 10.1016/j.mrfmmm.2006.05.040] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2006] [Accepted: 05/30/2006] [Indexed: 12/31/2022]
Abstract
The process of transcript elongation by RNA polymerase II (Pol II) involves transcription-dependent exchange and displacement of all core histones and is tightly controlled by numerous protein complexes modifying chromatin structure. These processes can contribute to regulation of transcription initiation and elongation, as well as the chromatin state. Recent data suggest that the histone octamer is displaced from DNA at a high rate of transcription, but can survive less frequent transcription that is accompanied only by partial loss of H2A/H2B histones. Here we propose that critical density of Pol II molecules could be required for displacement of the histone octamer and discuss mechanisms that are most likely involved in the processes of histone exchange.
Collapse
Affiliation(s)
- Olga I. Kulaeva
- Department of Pharmacology, UMDNJ, Robert Wood Johnson Medical School, 675 Hoes Lane, Room 405, Piscataway, NJ 08854, USA
| | - Daria Gaykalova
- Department of Pharmacology, UMDNJ, Robert Wood Johnson Medical School, 675 Hoes Lane, Room 405, Piscataway, NJ 08854, USA
| | - Vasily M. Studitsky
- Department of Pharmacology, UMDNJ, Robert Wood Johnson Medical School, 675 Hoes Lane, Room 405, Piscataway, NJ 08854, USA
| |
Collapse
|
277
|
Schneider DA, Michel A, Sikes ML, Vu L, Dodd JA, Salgia S, Osheim YN, Beyer AL, Nomura M. Transcription elongation by RNA polymerase I is linked to efficient rRNA processing and ribosome assembly. Mol Cell 2007; 26:217-29. [PMID: 17466624 PMCID: PMC1927085 DOI: 10.1016/j.molcel.2007.04.007] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2006] [Revised: 01/26/2007] [Accepted: 04/09/2007] [Indexed: 02/07/2023]
Abstract
The synthesis of ribosomes in eukaryotic cells is a complex process involving many nonribosomal protein factors and snoRNAs. In general, the processes of rRNA transcription and ribosome assembly are treated as temporally or spatially distinct. Here, we describe the identification of a point mutation in the second largest subunit of RNA polymerase I near the active center of the enzyme that results in an elongation-defective enzyme in the yeast Saccharomyces cerevisiae. In vivo, this mutant shows significant defects in rRNA processing and ribosome assembly. Taken together, these data suggest that transcription of rRNA by RNA polymerase I is linked to rRNA processing and maturation. Thus, RNA polymerase I, elongation factors, and rRNA sequence elements appear to function together to optimize transcription elongation, coordinating cotranscriptional interactions of many factors/snoRNAs with pre-rRNA for correct rRNA processing and ribosome assembly.
Collapse
Affiliation(s)
- David A. Schneider
- Department of Biological Chemistry, University of California, Irvine, 240-D Medical Sciences I, Irvine, CA 92697-1700, USA
| | - Antje Michel
- Department of Biological Chemistry, University of California, Irvine, 240-D Medical Sciences I, Irvine, CA 92697-1700, USA
| | - Martha L. Sikes
- Department of Microbiology, University of Virginia Health System, Charlottesville, VA 22908-0734, USA
| | - Loan Vu
- Department of Biological Chemistry, University of California, Irvine, 240-D Medical Sciences I, Irvine, CA 92697-1700, USA
| | - Jonathan A. Dodd
- Department of Biological Chemistry, University of California, Irvine, 240-D Medical Sciences I, Irvine, CA 92697-1700, USA
| | - Shilpa Salgia
- Department of Biological Chemistry, University of California, Irvine, 240-D Medical Sciences I, Irvine, CA 92697-1700, USA
| | - Yvonne N. Osheim
- Department of Microbiology, University of Virginia Health System, Charlottesville, VA 22908-0734, USA
| | - Ann L. Beyer
- Department of Microbiology, University of Virginia Health System, Charlottesville, VA 22908-0734, USA
| | - Masayasu Nomura
- Department of Biological Chemistry, University of California, Irvine, 240-D Medical Sciences I, Irvine, CA 92697-1700, USA
| |
Collapse
|
278
|
Abstract
Eukaryotes transcribe much of their genomes, but little is known about the fidelity of transcriptional initiation by RNA polymerase II in vivo. I suggest that 90% of Pol II initiation events in yeast represent transcriptional noise, and that the specificity of initiation is comparable to that of DNA-binding proteins and other biological processes. This emphasizes the need to develop criteria that distinguish transcriptional noise from transcription with a biological function.
Collapse
Affiliation(s)
- Kevin Struhl
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA.
| |
Collapse
|
279
|
Martínez-Calvillo S, Saxena A, Green A, Leland A, Myler PJ. Characterization of the RNA polymerase II and III complexes in Leishmania major. Int J Parasitol 2007; 37:491-502. [PMID: 17275824 PMCID: PMC2939717 DOI: 10.1016/j.ijpara.2006.11.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2006] [Revised: 11/21/2006] [Accepted: 11/22/2006] [Indexed: 10/23/2022]
Abstract
Transcription of protein-coding genes in Leishmania major and other trypanosomatids differs from that in most eukaryotes and bioinformatic analyses have failed to identify several components of the RNA polymerase (RNAP) complexes. To increase our knowledge about this basic cellular process, we used tandem affinity purification (TAP) to identify subunits of RNAP II and III. Mass spectrometric analysis of the complexes co-purified with TAP-tagged LmRPB2 (encoded by LmjF31.0160) identified seven RNAP II subunits: RPB1, RPB2, RPB3, RPB5, RPB7, RPB10 and RPB11. With the exception of RPB10 and RPB11, and the addition of RPB8, these were also identified using TAP-tagged constructs of one (encoded by LmjF34.0890) of the two LmRPB6 orthologues. The latter experiments also identified the RNAP III subunits RPC1 (C160), RPC2 (C128), RPC3 (C82), RPC4 (C53), RPC5 (C37), RPC6 (C34), RPC9 (C17), RPAC1 (AC40) and RPAC2 (AC19). Significantly, the complexes precipitated by TAP-tagged LmRPB6 did not contain any RNAP I-specific subunits, suggesting that, unlike in other eukaryotes, LmRPB6 is not shared by all three polymerases but is restricted to RNAP II and III, while the LmRPB6z (encoded by LmjF25.0140) isoform is limited to RNAP I. Similarly, we identified peptides from only one (encoded by LmjF18.0780) of the two RPB5 orthologues and one (LmjF13.1120) of the two RPB10 orthologues, suggesting that LmRPB5z (LmjF18.0790) and LmRPB10z (LmjF13.1120) are also restricted to RNAP I. In addition to these RNAP subunits, we also identified a number of other proteins that co-purified with the RNAP II and III complexes, including a potential transcription factor, several histones, an ATPase involved in chromosome segregation, an endonuclease, four helicases, RNA splicing factor PTSR-1, at least two RNA binding proteins and several proteins of unknown function.
Collapse
Affiliation(s)
| | - Alka Saxena
- Seattle Biomedical Research Institute, 307 Westlake Ave. N., Seattle, WA 98109-5219 USA
| | - Amanda Green
- Seattle Biomedical Research Institute, 307 Westlake Ave. N., Seattle, WA 98109-5219 USA
| | - Aaron Leland
- Seattle Biomedical Research Institute, 307 Westlake Ave. N., Seattle, WA 98109-5219 USA
| | - Peter J. Myler
- Seattle Biomedical Research Institute, 307 Westlake Ave. N., Seattle, WA 98109-5219 USA
- Department of Pathobiology, University of Washington, Seattle, WA 98195 USA
- Department of Medical Education and Biomedical Informatics, University of Washington, Seattle, WA 98195 USA
| |
Collapse
|
280
|
Abstract
Chromatin structure imposes significant obstacles on all aspects of transcription that are mediated by RNA polymerase II. The dynamics of chromatin structure are tightly regulated through multiple mechanisms including histone modification, chromatin remodeling, histone variant incorporation, and histone eviction. In this Review, we highlight advances in our understanding of chromatin regulation and discuss how such regulation affects the binding of transcription factors as well as the initiation and elongation steps of transcription.
Collapse
Affiliation(s)
- Bing Li
- Stowers Medical Research Institute, 1000 East 50(th) Street, Kansas City, MO 64110, USA
| | | | | |
Collapse
|
281
|
Guiguen A, Soutourina J, Dewez M, Tafforeau L, Dieu M, Raes M, Vandenhaute J, Werner M, Hermand D. Recruitment of P-TEFb (Cdk9-Pch1) to chromatin by the cap-methyl transferase Pcm1 in fission yeast. EMBO J 2007; 26:1552-9. [PMID: 17332744 PMCID: PMC1829387 DOI: 10.1038/sj.emboj.7601627] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2006] [Accepted: 02/05/2007] [Indexed: 12/31/2022] Open
Abstract
Capping of nascent pre-mRNAs is thought to be a prerequisite for productive elongation and associated serine 2 phosphorylation of the C-terminal domain (CTD) of RNA polymerase II (PolII). The mechanism mediating this link is unknown, but is likely to include the capping machinery and P-TEPb. We report that the fission yeast P-TEFb (Cdk9-Pch1) forms a complex with the cap-methyltransferase Pcm1 and these proteins colocalise on chromatin. Ablation of Cdk9 function through chemical genetics causes growth arrest and abolishes serine 2 phosphorylation on the PolII CTD. Strikingly, depletion of Pcm1 also leads to a dramatic decrease of phospho-serine 2. Chromatin immunoprecipitations show a severe decrease of chromatin-bound Cdk9-Pch1 when Pcm1 is depleted. On the contrary, Cdk9 is not required for association of Pcm1 with chromatin. Furthermore, compromising Cdk9 activity leads to a promoter-proximal PolII stalling and sensitivity to 6-azauracil, reflecting elongation defects. The in vivo data presented here strongly support the existence of a molecular mechanism where the cap-methyltransferase recruits P-TEFb to chromatin, thereby ensuring that only properly capped transcripts are elongated.
Collapse
Affiliation(s)
- Allan Guiguen
- Laboratoire de Génétique Moléculaire (GEMO), Facultés Universitaires Notre-Dame de la Paix, Namur, Belgium
| | | | - Monique Dewez
- Laboratoire de Génétique Moléculaire (GEMO), Facultés Universitaires Notre-Dame de la Paix, Namur, Belgium
| | - Lionel Tafforeau
- Laboratoire de Génétique Moléculaire (GEMO), Facultés Universitaires Notre-Dame de la Paix, Namur, Belgium
| | - Marc Dieu
- Unité de spectrométrie de masse, Facultés Universitaires Notre-Dame de la Paix, Namur, Belgium
| | - Martine Raes
- Unité de spectrométrie de masse, Facultés Universitaires Notre-Dame de la Paix, Namur, Belgium
| | - Jean Vandenhaute
- Laboratoire de Génétique Moléculaire (GEMO), Facultés Universitaires Notre-Dame de la Paix, Namur, Belgium
| | | | - Damien Hermand
- Laboratoire de Génétique Moléculaire (GEMO), Facultés Universitaires Notre-Dame de la Paix, Namur, Belgium
- Laboratoire de Génétique Moléculaire (GEMO), Facultés Universitaires Notre-Dame de la Paix, Rue de Bruxelles 61, Namur 5000, Belgium. Tel: +32 81 724241; Fax: +32 81 724297; E-mail:
| |
Collapse
|
282
|
Sherriff JA, Kent NA, Mellor J. The Isw2 chromatin-remodeling ATPase cooperates with the Fkh2 transcription factor to repress transcription of the B-type cyclin gene CLB2. Mol Cell Biol 2007; 27:2848-60. [PMID: 17283050 PMCID: PMC1899929 DOI: 10.1128/mcb.01798-06] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Forkhead (Fkh) transcription factors influence cell death, proliferation, and differentiation and the cell cycle. In Saccharomyces cerevisiae, Fkh2 both activates and represses transcription of CLB2, encoding a B-type cyclin. CLB2 is expressed during G(2)/M phase and repressed during G(1). Fkh2 recruits the coactivator Ndd1, an interaction which is promoted by Clb2/Cdk1-dependent phosphorylation of Ndd1, suggesting that CLB2 is autoregulated. Ndd1 is proposed to function by antagonizing Fkh2-mediated repression, but nothing is known about the mechanism. Here we ask how Fkh2 represses CLB2. We show that Fkh2 controls a repressive chromatin structure that initiates in the early coding region of CLB2 and spreads up the promoter during the M and G(1) phases. The Isw2 chromatin-remodeling ATPase cooperates with Fkh2 to remodel the chromatin and repress CLB2 expression throughout the cell cycle. In addition, the related factors Isw1 and Fkh1 configure the chromatin at the early coding region and negatively regulate CLB2 expression but only during G(2)/M phase. Thus, the cooperative actions of two forkhead transcription factors and two chromatin-remodeling ATPases combine to regulate CLB2. We propose that chromatin-mediated repression by Isw1 and Isw2 may serve to limit activation of CLB2 expression by the Clb2/Cdk1 kinase during G(2)/M and to fully repress expression during G(1).
Collapse
Affiliation(s)
- Julia A Sherriff
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | | | | |
Collapse
|
283
|
Reyes-Reyes M, Hampsey M. Role for the Ssu72 C-terminal domain phosphatase in RNA polymerase II transcription elongation. Mol Cell Biol 2007; 27:926-36. [PMID: 17101794 PMCID: PMC1800697 DOI: 10.1128/mcb.01361-06] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2006] [Revised: 08/18/2006] [Accepted: 11/01/2006] [Indexed: 12/31/2022] Open
Abstract
The RNA polymerase II (RNAP II) transcription cycle is accompanied by changes in the phosphorylation status of the C-terminal domain (CTD), a reiterated heptapeptide sequence (Y(1)S(2)P(3)T(4)S(5)P(6)S(7)) present at the C terminus of the largest RNAP II subunit. One of the enzymes involved in this process is Ssu72, a CTD phosphatase with specificity for serine-5-P. Here we report that the ssu72-2-encoded Ssu72-R129A protein is catalytically impaired in vitro and that the ssu72-2 mutant accumulates the serine-5-P form of RNAP II in vivo. An in vitro transcription system derived from the ssu72-2 mutant exhibits impaired elongation efficiency. Mutations in RPB1 and RPB2, the genes encoding the two largest subunits of RNAP II, were identified as suppressors of ssu72-2. The rpb1-1001 suppressor encodes an R1281A replacement, whereas rpb2-1001 encodes an R983G replacement. This information led us to identify the previously defined rpb2-4 and rpb2-10 alleles, which encode catalytically slow forms of RNAP II, as additional suppressors of ssu72-2. Furthermore, deletion of SPT4, which encodes a subunit of the Spt4-Spt5 early elongation complex, also suppresses ssu72-2, whereas the spt5-242 allele is suppressed by rpb2-1001. These results define Ssu72 as a transcription elongation factor. We propose a model in which Ssu72 catalyzes serine-5-P dephosphorylation subsequent to addition of the 7-methylguanosine cap on pre-mRNA in a manner that facilitates the RNAP II transition into the elongation stage of the transcription cycle.
Collapse
Affiliation(s)
- Mariela Reyes-Reyes
- Department of Biochemistry, Robert Wood Johnson Medical School, 683 Hoes Lane West, Piscataway, NJ 08854, USA
| | | |
Collapse
|
284
|
Ronai D, Iglesias-Ussel MD, Fan M, Li Z, Martin A, Scharff MD. Detection of chromatin-associated single-stranded DNA in regions targeted for somatic hypermutation. ACTA ACUST UNITED AC 2007; 204:181-90. [PMID: 17227912 PMCID: PMC2118410 DOI: 10.1084/jem.20062032] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
After encounter with antigen, the antibody repertoire is shaped by somatic hypermutation (SHM), which leads to an increase in the affinity of antibodies for the antigen, and class-switch recombination (CSR), which results in a change in the effector function of antibodies. Both SHM and CSR are initiated by activation-induced cytidine deaminase (AID), which deaminates deoxycytidine to deoxyuridine in single-stranded DNA (ssDNA). The precise mechanism responsible for the formation of ssDNA in V regions undergoing SHM has yet to be experimentally established. In this study, we searched for ssDNA in mutating V regions in which DNA–protein complexes were preserved in the context of chromatin in human B cell lines and in primary mouse B cells. We found that V regions that undergo SHM were enriched in short patches of ssDNA, rather than R loops, on both the coding and noncoding strands. Detection of these patches depended on the presence of DNA-associated proteins and required active transcription. Consistent with this, we found that both DNA strands in the V region were transcribed. We conclude that regions of DNA that are targets of SHM assemble protein–DNA complexes in which ssDNA is exposed, making it accessible to AID.
Collapse
Affiliation(s)
- Diana Ronai
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | | | |
Collapse
|
285
|
Govind CK, Zhang F, Qiu H, Hofmeyer K, Hinnebusch AG. Gcn5 Promotes Acetylation, Eviction, and Methylation of Nucleosomes in Transcribed Coding Regions. Mol Cell 2007; 25:31-42. [PMID: 17218269 DOI: 10.1016/j.molcel.2006.11.020] [Citation(s) in RCA: 192] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2006] [Revised: 10/07/2006] [Accepted: 11/22/2006] [Indexed: 10/23/2022]
Abstract
We report that coactivator SAGA, containing the HAT Gcn5p, occupies the GAL1 and ARG1 coding sequences during transcriptional induction, dependent on PIC assembly and Ser5 phosphorylation of the Pol II CTD. Induction of GAL1 increases H3 acetylation per nucleosome in the ORF, dependent on SAGA integrity but not the alternative Gcn5p-HAT complex ADA. Unexpectedly, H3 acetylation in ARG1 coding sequences does not increase during induction due to the opposing activities of multiple HDAs associated with the ORF. Remarkably, inactivation of Gcn5p decreases nucleosome eviction from both GAL1 and a long ( approximately 8 kb) ORF transcribed from the GAL1 promoter. This is associated with reduced Pol II occupancy at the 3' end and decreased mRNA production, selectively, for the long ORF. Gcn5p also enhances H3-K4 trimethylation in the ARG1 ORF and bulk histones. Thus, Gcn5p, most likely in SAGA, stimulates modification and eviction of nucleosomes in transcribed coding sequences and promotes Pol II elongation.
Collapse
Affiliation(s)
- Chhabi K Govind
- Laboratory of Gene Regulation and Development, National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
286
|
Xiao T, Shibata Y, Rao B, Laribee RN, O'Rourke R, Buck MJ, Greenblatt JF, Krogan NJ, Lieb JD, Strahl BD. The RNA polymerase II kinase Ctk1 regulates positioning of a 5' histone methylation boundary along genes. Mol Cell Biol 2007; 27:721-31. [PMID: 17088384 PMCID: PMC1800795 DOI: 10.1128/mcb.01628-06] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2006] [Revised: 10/05/2006] [Accepted: 10/24/2006] [Indexed: 01/28/2023] Open
Abstract
In yeast and other eukaryotes, the histone methyltransferase Set1 mediates methylation of lysine 4 on histone H3 (H3K4me). This modification marks the 5' end of transcribed genes in a 5'-to-3' tri- to di- to monomethyl gradient and promotes association of chromatin-remodeling and histone-modifying enzymes. Here we show that Ctk1, the serine 2 C-terminal domain (CTD) kinase for RNA polymerase II (RNAP II), regulates H3K4 methylation. We found that CTK1 deletion nearly abolished H3K4 monomethylation yet caused a significant increase in H3K4 di- and trimethylation. Both in individual genes and genome-wide, loss of CTK1 disrupted the H3K4 methylation patterns normally observed. H3K4me2 and H3K4me3 spread 3' into the bodies of genes, while H3K4 monomethylation was diminished. These effects were dependent on the catalytic activity of Ctk1 but are independent of Set2-mediated H3K36 methylation. Furthermore, these effects are not due to spurious transcription initiation in the bodies of genes, to changes in RNAP II occupancy, to changes in serine 5 CTD phosphorylation patterns, or to "transcriptional stress." These data show that Ctk1 acts to restrict the spread of H3K4 methylation through a mechanism that is independent of a general transcription defect. The evidence presented suggests that Ctk1 controls the maintenance of suppressive chromatin in the coding regions of genes by both promoting H3K36 methylation, which leads to histone deacetylation, and preventing the 3' spread of H3K4 trimethylation, a mark associated with transcriptional initiation.
Collapse
Affiliation(s)
- Tiaojiang Xiao
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, 405 Mary Ellen Jones, Chapel Hill, NC 27599-7260, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
287
|
Charlet-Berguerand N, Feuerhahn S, Kong SE, Ziserman H, Conaway JW, Conaway R, Egly JM. RNA polymerase II bypass of oxidative DNA damage is regulated by transcription elongation factors. EMBO J 2006; 25:5481-91. [PMID: 17110932 PMCID: PMC1679758 DOI: 10.1038/sj.emboj.7601403] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2006] [Accepted: 10/04/2006] [Indexed: 12/15/2022] Open
Abstract
Oxidative lesions represent the most abundant DNA lesions within the cell. In the present study, we investigated the impact of the oxidative lesions 8-oxoguanine, thymine glycol and 5-hydroxyuracil on RNA polymerase II (RNA pol II) transcription using a well-defined in vitro transcription system. We found that in a purified, reconstituted transcription system, these lesions block elongation by RNA pol II to different extents, depending on the type of lesion. Suggesting the presence of a bypass activity, the block to elongation is alleviated when transcription is carried out in HeLa cell nuclear extracts. By purifying this activity, we discovered that TFIIF could promote elongation through a thymine glycol lesion. The elongation factors Elongin and CSB, but not TFIIS, can also stimulate bypass of thymine glycol lesions, whereas Elongin, CSB and TFIIS can all enhance bypass of an 8-oxoguanine lesion. By increasing the efficiency with which RNA pol II reads through oxidative lesions, elongation factors can contribute to transcriptional mutagenesis, an activity that could have implications for the generation or progression of human diseases.
Collapse
Affiliation(s)
| | - Sascha Feuerhahn
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch Cedex, CU Strasbourg, France
| | | | - Howard Ziserman
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Joan W Conaway
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Ronald Conaway
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Jean Marc Egly
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch Cedex, CU Strasbourg, France
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 1 rue Laurent Fries, BP 10142, 67404 Illkirch Cedex 67000, CU Strasbourg, France. Tel.: +33 388 65 34 47; Fax: +33 388 65 32 01; E-mail:
| |
Collapse
|
288
|
Wood A, Shukla A, Schneider J, Lee JS, Stanton JD, Dzuiba T, Swanson SK, Florens L, Washburn MP, Wyrick J, Bhaumik SR, Shilatifard A. Ctk complex-mediated regulation of histone methylation by COMPASS. Mol Cell Biol 2006; 27:709-20. [PMID: 17088385 PMCID: PMC1800791 DOI: 10.1128/mcb.01627-06] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
A comparative global proteomic screen identified factors required for COMPASS (complex of proteins associated with Set1)-mediated mono-, di-, and trimethylation of the fourth lysine of histone H3 (H3K4), which included components of a cyclin-dependent protein kinase (Ctk complex) that phosphorylates the C-terminal domain of the largest subunit of RNA polymerase II (Pol II). Our results indicate that histone H3K4 methylation levels are regulated by the Ctk1, Ctk2, and Ctk3 components of the Ctk complex. We show that loss of Ctk1 kinase activity results in reduced histone H3K4 monomethylation levels, followed by a global increase in histone H3K4 trimethylation levels on chromatin. Ctk1 loss does not appear to have a substantial effect on histone H2B monoubiquitination levels or COMPASS and Paf1 complex phosphorylation. Our chromatin immunoprecipitation studies demonstrate that histone H3 eviction during active transcription is decelerated in a CTK1 deletion strain in response to reduced levels of Pol II recruitment. Our in vitro studies show that the onset of monomethylation on an unmethylated histone H3 by COMPASS is virtually immediate, while the onset of trimethylation occurs upon extended time of association between the histone tail and COMPASS. Our study suggests a role for the Ctk complex in the regulation of the pattern of H3K4 mono-, di-, and trimethylation via COMPASS.
Collapse
Affiliation(s)
- Adam Wood
- Saint Louis University School of Medicine, Department of Biochemistry, 1402 South Grand Blvd., St. Louis, MO 63104, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
289
|
Jia L, Shen HC, Wantroba M, Khalid O, Liang G, Wang Q, Gentzschein E, Pinski JK, Stanczyk FZ, Jones PA, Coetzee GA. Locus-wide chromatin remodeling and enhanced androgen receptor-mediated transcription in recurrent prostate tumor cells. Mol Cell Biol 2006; 26:7331-41. [PMID: 16980632 PMCID: PMC1592894 DOI: 10.1128/mcb.00581-06] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Prostate cancers (PCas) become resistant to hormone withdrawal through increased androgen receptor (AR) signaling. Here we show increased AR-mediated transcription efficiency in PCa cells that have acquired the ability to grow in low concentrations of androgen. Compared to androgen-dependent PCa cells, these cells showed increased activity of transiently transfected reporters and increased mRNA synthesis relative to levels of AR occupancy of the prostate-specific antigen (PSA) gene. The locus also displayed up to 10-fold-higher levels of histone H3-K9/K14 acetylation and H3-K4 methylation across the entire body of the gene. Although similar increased mRNA expression and locus-wide histone acetylation were also observed at another kallikrein locus (KLK2), at a third AR target locus (TMPRSS2) increased gene expression and locus-wide histone acetylation were not seen in the absence of ligand. Androgen-independent PCa cells have thus evolved three distinctive alterations in AR-mediated transcription. First, increased RNA polymerase initiation and processivity contributed to increased gene expression. Second, AR signaling was more sensitive to ligand. Third, locus-wide chromatin remodeling conducive to the increased gene expression in the absence of ligand was apparent and depended on sustained AR activity. Therefore, increased AR ligand sensitivity as well as locus-specific chromatin alterations contribute to basal gene expression of a subpopulation of specific AR target genes in androgen-independent PCa cells. These features contribute to the androgen-independent phenotype of these cells.
Collapse
Affiliation(s)
- Li Jia
- Department of Urology, Norris Cancer Center, USC Keck School of Medicine, Los Angeles, California, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
290
|
Gwizdek C, Iglesias N, Rodriguez MS, Ossareh-Nazari B, Hobeika M, Divita G, Stutz F, Dargemont C. Ubiquitin-associated domain of Mex67 synchronizes recruitment of the mRNA export machinery with transcription. Proc Natl Acad Sci U S A 2006; 103:16376-81. [PMID: 17056718 PMCID: PMC1637590 DOI: 10.1073/pnas.0607941103] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The mRNA nuclear export receptor Mex67/Mtr2 is recruited to mRNAs through RNA-binding adaptors, including components of the THO/TREX complex that couple transcription to mRNA export. Here we show that the ubiquitin-associated (UBA) domain of Mex67 is not only required for proper nuclear export of mRNA but also contributes to recruitment of Mex67 to transcribing genes. Our results reveal that the UBA domain of Mex67 directly interacts with polyubiquitin chains and with Hpr1, a component of the THO/TREX complex, which is regulated by ubiquitylation in a transcription-dependent manner. This interaction transiently protects Hpr1 from ubiquitin/proteasome-mediated degradation and thereby coordinates recruitment of the mRNA export machinery with transcription and early messenger ribonucleoproteins assembly.
Collapse
Affiliation(s)
- Carole Gwizdek
- *Institut Jacques Monod, Unité Mixte de Recherche 7592, Centre National de la Recherche Scientifique, Universités Paris VI and VII, 2 Place Jussieu, Tour 43, 75251 Paris Cedex 05, France
| | - Nahid Iglesias
- Department of Cell Biology, Sciences III, 30 Quai Ernest Ansermet, 1211 Geneva 4, Switzerland; and
| | - Manuel S. Rodriguez
- *Institut Jacques Monod, Unité Mixte de Recherche 7592, Centre National de la Recherche Scientifique, Universités Paris VI and VII, 2 Place Jussieu, Tour 43, 75251 Paris Cedex 05, France
| | - Batool Ossareh-Nazari
- *Institut Jacques Monod, Unité Mixte de Recherche 7592, Centre National de la Recherche Scientifique, Universités Paris VI and VII, 2 Place Jussieu, Tour 43, 75251 Paris Cedex 05, France
| | - Maria Hobeika
- *Institut Jacques Monod, Unité Mixte de Recherche 7592, Centre National de la Recherche Scientifique, Universités Paris VI and VII, 2 Place Jussieu, Tour 43, 75251 Paris Cedex 05, France
| | - Gilles Divita
- Centre de Recherches de Biochimie Macromoléculaire, Centre National de la Recherche Scientifique Formation de Recherche en Evolution-2593, Molecular Biophysics and Therapeutics, 1919 Route de Mende, 34293 Montpellier Cedex 5, France
| | - Françoise Stutz
- Department of Cell Biology, Sciences III, 30 Quai Ernest Ansermet, 1211 Geneva 4, Switzerland; and
- To whom correspondence may be addressed. E-mail:
or
| | - Catherine Dargemont
- *Institut Jacques Monod, Unité Mixte de Recherche 7592, Centre National de la Recherche Scientifique, Universités Paris VI and VII, 2 Place Jussieu, Tour 43, 75251 Paris Cedex 05, France
- To whom correspondence may be addressed. E-mail:
or
| |
Collapse
|
291
|
Biswas D, Dutta-Biswas R, Mitra D, Shibata Y, Strahl BD, Formosa T, Stillman DJ. Opposing roles for Set2 and yFACT in regulating TBP binding at promoters. EMBO J 2006; 25:4479-89. [PMID: 16977311 PMCID: PMC1589996 DOI: 10.1038/sj.emboj.7601333] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2006] [Accepted: 08/02/2006] [Indexed: 01/27/2023] Open
Abstract
Previous work links histone methylation by Set2 with transcriptional elongation. yFACT (Spt16-Pob3 and Nhp6) reorganizes nucleosomes and functions in both transcriptional initiation and elongation. We show that growth defects caused by spt16 or pob3 mutations can be suppressed by deleting SET2, suggesting that Set2 and yFACT have opposing roles. Set2 methylates K36 of histone H3, and K36 substitutions also suppress yFACT mutations. In contrast, set1 enhances yFACT mutations. Methylation at H3 K4 by Set1 is required for set2 to suppress yFACT defects. We did not detect an elongation defect at an 8 kb ORF in yFACT mutants. Instead, pob3 mutants displayed reduced binding of both pol II and TBP to the GAL1 promoter. Importantly, both GAL1 transcription and promoter binding of pol II and TBP are significantly restored in the pob3 set2 double mutant. Defects caused by an spt16 mutation are enhanced by either TBP or TFIIA mutants. These synthetic defects are suppressed by set2, demonstrating that yFACT and Set2 oppose one another during transcriptional initiation at a step involving DNA binding by TBP and TFIIA.
Collapse
Affiliation(s)
- Debabrata Biswas
- Department of Pathology, University of Utah Health Sciences Center, Salt Lake City, UT, USA
| | - Rinku Dutta-Biswas
- Department of Pathology, University of Utah Health Sciences Center, Salt Lake City, UT, USA
| | - Doyel Mitra
- Department of Pathology, University of Utah Health Sciences Center, Salt Lake City, UT, USA
| | - Yoichiro Shibata
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Brian D Strahl
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Tim Formosa
- Department of Biochemistry, University of Utah Health Sciences Center, Salt Lake City, UT, USA
| | - David J Stillman
- Department of Pathology, University of Utah Health Sciences Center, Salt Lake City, UT, USA
| |
Collapse
|
292
|
Saunders A, Core LJ, Lis JT. Breaking barriers to transcription elongation. Nat Rev Mol Cell Biol 2006; 7:557-67. [PMID: 16936696 DOI: 10.1038/nrm1981] [Citation(s) in RCA: 387] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Abbie Saunders
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| | | | | |
Collapse
|
293
|
Jimeno-González S, Gómez-Herreros F, Alepuz PM, Chávez S. A gene-specific requirement for FACT during transcription is related to the chromatin organization of the transcribed region. Mol Cell Biol 2006; 26:8710-21. [PMID: 17000768 PMCID: PMC1636840 DOI: 10.1128/mcb.01129-06] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The FACT complex stimulates transcription elongation on nucleosomal templates. In vivo experiments also involve FACT in the reassembly of nucleosomes traversed by RNA polymerase II. Since several features of chromatin organization vary throughout the genome, we wondered whether FACT is equally required for all genes. We show in this study that the in vivo depletion of Spt16, one of the subunits of Saccharomyces cerevisiae FACT, strongly affects transcription of three genes, GAL1, PHO5, and Kluyveromyces lactis LAC4, which exhibit positioned nucleosomes at their transcribed regions. In contrast, showing a random nucleosome structure, YAT1 and Escherichia coli lacZ are only mildly influenced by Spt16 depletion. We also show that the effect of Spt16 depletion on GAL1 expression is suppressed by a histone mutation and that the insertion of a GAL1 fragment, which allows the positioning of two nucleosomes, at the 5' end of YAT1 makes the resulting transcription unit sensitive to Spt16 depletion. These results indicate that FACT requirement for transcription depends on the chromatin organization of the 5' end of the transcribed region.
Collapse
Affiliation(s)
- Silvia Jimeno-González
- Departamento de Genética, Facultad de Biología, Avda. Reina Mercedes 6, 41012-Seville, Spain
| | | | | | | |
Collapse
|
294
|
Peterlin BM, Price DH. Controlling the elongation phase of transcription with P-TEFb. Mol Cell 2006; 23:297-305. [PMID: 16885020 DOI: 10.1016/j.molcel.2006.06.014] [Citation(s) in RCA: 883] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2006] [Indexed: 11/16/2022]
Abstract
The positive transcription elongation factor b (P-TEFb) is a cyclin-dependent kinase that controls the elongation phase of transcription by RNA polymerase II (RNAPII). This process is made possible by the reversal of effects of negative elongation factors that include NELF and DSIF. In complex organisms, elongation control is critical for the regulated expression of most genes. In those organisms, the function of P-TEFb is influenced negatively by HEXIM proteins and 7SK snRNA and positively by a variety of recruiting factors. Phylogenetic analyses of the components of the human elongation control machinery indicate that the number of mechanisms utilized to regulate P-TEFb function increased as organisms developed more complex developmental patterns.
Collapse
Affiliation(s)
- B Matija Peterlin
- Department of Medicine, Microbiology and Immunology, Rosalind Russell Medical Research Center, University of California, San Francisco, San Francisco, California 94143, USA.
| | | |
Collapse
|
295
|
Abruzzi KC, Belostotsky DA, Chekanova JA, Dower K, Rosbash M. 3'-end formation signals modulate the association of genes with the nuclear periphery as well as mRNP dot formation. EMBO J 2006; 25:4253-62. [PMID: 16946703 PMCID: PMC1570430 DOI: 10.1038/sj.emboj.7601305] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2006] [Accepted: 08/02/2006] [Indexed: 11/09/2022] Open
Abstract
Multiple studies indicate that mRNA processing defects cause mRNAs to accumulate in discrete nuclear foci or dots, in mammalian cells as well as yeast. To investigate this phenomenon, we have studied a series of GAL reporter constructs integrated into the yeast genome adjacent to an array of TetR-GFP-bound TetO sites. mRNA within dots is predominantly post-transcriptional, and dots are adjacent to but distinct from their transcription site. These reporter genes also localize to the nuclear periphery upon gene induction, like their endogenous GAL counterparts. Surprisingly, this peripheral localization persists long after transcriptional shutoff, and there is a comparable persistence of the RNA in the dots. Moreover, dot disappearance and gene delocalization from the nuclear periphery occur with similar kinetics after transcriptional shutoff. Both kinetics depend in turn on reporter gene 3'-end formation signals. Our experiments indicate that gene association with the nuclear periphery does not require ongoing transcription and suggest that the mRNPs within dots may make a major contribution to the gene-nuclear periphery tether.
Collapse
Affiliation(s)
- Katharine C Abruzzi
- Howard Hughes Medical Institute and Department of Biology, Brandeis University, Waltham, MA, USA
| | - Dmitry A Belostotsky
- Howard Hughes Medical Institute and Department of Biology, Brandeis University, Waltham, MA, USA
- Department of Biological Sciences, State University of New York at Albany, Albany, NY, USA
| | - Julia A Chekanova
- Howard Hughes Medical Institute and Department of Biology, Brandeis University, Waltham, MA, USA
- Department of Biological Sciences, State University of New York at Albany, Albany, NY, USA
| | - Ken Dower
- Howard Hughes Medical Institute and Department of Biology, Brandeis University, Waltham, MA, USA
| | - Michael Rosbash
- Howard Hughes Medical Institute and Department of Biology, Brandeis University, Waltham, MA, USA
- Department of Biological Sciences, State University of New York at Albany, Albany, NY, USA
- Department of Biology, Howard Hughes Medical Institute, Brandeis University, 415 South Street, Waltham, MA 02454, USA. Tel.: +1 781 736 3160; Fax: +1 781 736 3164; E-mail:
| |
Collapse
|
296
|
Proft M, Mas G, de Nadal E, Vendrell A, Noriega N, Struhl K, Posas F. The stress-activated Hog1 kinase is a selective transcriptional elongation factor for genes responding to osmotic stress. Mol Cell 2006; 23:241-50. [PMID: 16857590 DOI: 10.1016/j.molcel.2006.05.031] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2005] [Revised: 03/07/2006] [Accepted: 05/18/2006] [Indexed: 10/24/2022]
Abstract
Regulation of gene expression by stress-activated protein kinases (SAPKs) is essential for cell adaptation to extracellular stimuli. Exposure of yeast to high osmolarity results in activation of the SAPK Hog1, which associates with transcription factors bound at target promoters and stimulates transcriptional initiation. Unexpectedly, activated Hog1 also associates with elongating Pol II and components of the elongation complex. Hog1 is selectively recruited to the entire coding region of osmotic stress genes, but not to constitutively expressed genes. Selective association of Hog1 with the transcribed region of osmoresponsive genes is determined by the 3' untranslated region (3' UTR). Lastly, Hog1 is important for the amount of the RNA polymerase II (Pol II) elongation complex and of mRNA produced from genes containing osmoresponsive coding regions. Thus, in addition to its various functions during transcriptional initiation, Hog1 behaves as a transcriptional elongation factor that is selective for genes induced upon osmotic stress.
Collapse
Affiliation(s)
- Markus Proft
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|
297
|
Huertas P, García-Rubio ML, Wellinger RE, Luna R, Aguilera A. An hpr1 point mutation that impairs transcription and mRNP biogenesis without increasing recombination. Mol Cell Biol 2006; 26:7451-65. [PMID: 16908536 PMCID: PMC1636866 DOI: 10.1128/mcb.00684-06] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
THO/TREX, a conserved eukaryotic protein complex, is a key player at the interface between transcription and mRNP metabolism. The lack of a functional THO complex impairs transcription, leads to transcription-dependent hyperrecombination, causes mRNA export defects and fast mRNA decay, and retards replication fork progression in a transcription-dependent manner. To get more insight into the interconnection between mRNP biogenesis and genomic instability, we searched for HPR1 mutations that differentially affect gene expression and recombination. We isolated mutants that were barely affected in gene expression but exhibited a hyperrecombination phenotype. In addition, we isolated a mutant, hpr1-101, with a strong defect in transcription, as observed for lacZ, and a general defect in mRNA export that did not display a relevant hyperrecombination phenotype. In THO single-null mutants, but not in the hpr1 point mutants studied, THO and its subunits were unstable. Interestingly, in contrast to hyperrecombinant null mutants, hpr1-101 did not cause retardation of replication fork progression. Transcription and mRNP biogenesis can therefore be impaired by THO/TREX dysfunction without increasing recombination, suggesting that it is possible to separate the mechanism(s) responsible for mRNA biogenesis defects from the further step of triggering transcription-dependent recombination.
Collapse
Affiliation(s)
- Pablo Huertas
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Avd. Reina Mercedes 6, 41012 Sevilla, Spain
| | | | | | | | | |
Collapse
|
298
|
Schneider DA, French SL, Osheim YN, Bailey AO, Vu L, Dodd J, Yates JR, Beyer AL, Nomura M. RNA polymerase II elongation factors Spt4p and Spt5p play roles in transcription elongation by RNA polymerase I and rRNA processing. Proc Natl Acad Sci U S A 2006; 103:12707-12. [PMID: 16908835 PMCID: PMC1568913 DOI: 10.1073/pnas.0605686103] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Previous investigations into the mechanisms that control RNA Polymerase (Pol) I transcription have primarily focused on the process of transcription initiation, thus little is known regarding postinitiation steps in the transcription cycle. Spt4p and Spt5p are conserved throughout eukaryotes, and they affect elongation by Pol II. We have found that these two proteins copurify with Pol I and associate with the rDNA in vivo. Disruption of the gene for Spt4p resulted in a modest decrease in growth and rRNA synthesis rates at the permissive temperature, 30 degrees C. Furthermore, biochemical and EM analyses showed clear defects in rRNA processing. These data suggest that Spt4p, Spt5p, and, potentially, other regulators of Pol I transcription elongation play important roles in coupling rRNA transcription to its processing and ribosome assembly.
Collapse
Affiliation(s)
- D. A. Schneider
- *Department of Biological Chemistry, University of California, Irvine, CA 92697-1700
| | - S. L. French
- Department of Microbiology, University of Virginia Health System, Charlottesville, VA 22908-0734; and
| | - Y. N. Osheim
- Department of Microbiology, University of Virginia Health System, Charlottesville, VA 22908-0734; and
| | - A. O. Bailey
- Department of Cell Biology, The Scripps Research Institute, La Jolla, CA 92130
| | - L. Vu
- *Department of Biological Chemistry, University of California, Irvine, CA 92697-1700
| | - J. Dodd
- *Department of Biological Chemistry, University of California, Irvine, CA 92697-1700
| | - J. R. Yates
- Department of Cell Biology, The Scripps Research Institute, La Jolla, CA 92130
| | - A. L. Beyer
- Department of Microbiology, University of Virginia Health System, Charlottesville, VA 22908-0734; and
- To whom correspondence may be addressed. E-mail:
or
| | - M. Nomura
- *Department of Biological Chemistry, University of California, Irvine, CA 92697-1700
- To whom correspondence may be addressed. E-mail:
or
| |
Collapse
|
299
|
Lacadie SA, Tardiff DF, Kadener S, Rosbash M. In vivo commitment to yeast cotranscriptional splicing is sensitive to transcription elongation mutants. Genes Dev 2006; 20:2055-66. [PMID: 16882983 PMCID: PMC1536057 DOI: 10.1101/gad.1434706] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2006] [Accepted: 06/01/2006] [Indexed: 11/25/2022]
Abstract
Spliceosome assembly in the budding yeast Saccharomyces cerevisiae was recently shown to occur at the site of transcription. However, evidence for cotranscriptional splicing as well as for coupling between transcription and splicing is still lacking. Using modifications of a previously published chromatin immunoprecipitation (ChIP) assay, we show that cotranscriptional splicing occurs approximately 1 kb after transcription of the 3' splice site (3'SS). This pathway furthermore protects most intron-containing nascent transcripts from the effects of cleavage by an intronic hammerhead ribozyme. This suggests that a high percentage of introns are recognized cotranscriptionally. This observation led us to screen a small deletion library for strains that sensitize a splicing reporter to ribozyme cleavage. Characterization of the Deltamud2 strain indicates that the early splicing factor Mud2p functions with U1 snRNP to form a cross-intron bridging complex on nascent pre-mRNA. The complex helps protect the transcript from ribozyme-mediated destruction and suggests an intron-definition event early in the spliceosome assembly process. The transcription elongation mutant strains Deltadst1 and Deltapaf1 show different cotranscriptional splicing phenotypes, suggesting that different transcription pathways differentially impact the efficiency of nascent intron definition.
Collapse
Affiliation(s)
- Scott A Lacadie
- Howard Hughes Medical Institute, Biology Department, Brandeis University, Waltham, Massachusetts 02454, USA
| | | | | | | |
Collapse
|
300
|
Jimeno S, Luna R, García-Rubio M, Aguilera A. Tho1, a novel hnRNP, and Sub2 provide alternative pathways for mRNP biogenesis in yeast THO mutants. Mol Cell Biol 2006; 26:4387-98. [PMID: 16738307 PMCID: PMC1489133 DOI: 10.1128/mcb.00234-06] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
THO is a protein complex that functions in cotranscriptional mRNP formation. Yeast THO1 and SUB2 (Saccharomyces cerevisiae) were identified as multicopy suppressors of the expression defects of the hpr1Delta mutant of THO. Here we show that multicopy THO1 suppresses the mRNA accumulation and export defects and the hyperrecombination phenotype of THO mutants but not those of sub2Delta, thp1Delta, or spt4Delta. Similarly, Sub2 overexpression suppresses the RNA export defect of hpr1Delta. Tho1 is a conserved RNA binding nuclear protein that specifically binds to transcribed chromatin in a THO- and RNA-dependent manner and genetically interacts with the shuttling hnRNP Nab2. The ability of Tho1 to suppress hpr1Delta resides in its C-terminal half, which contains the RNA binding activity and is located after a SAP/SAF (scaffold-associated protein/scaffold-associated factor) domain. Altogether, these results suggest that Tho1 is an hnRNP that, similarly to Sub2, assembles onto the nascent mRNA during transcription and participates in mRNP biogenesis and export. Overexpression of Tho1 or Sub2 may provide alternative ways for mRNP formation and export in the absence of a functional THO complex.
Collapse
Affiliation(s)
- Sonia Jimeno
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Avd. Reina Mercedes 6, 41012 Sevilla, Spain
| | | | | | | |
Collapse
|