251
|
Donzelli S, Mori F, Biagioni F, Bellissimo T, Pulito C, Muti P, Strano S, Blandino G. MicroRNAs: short non-coding players in cancer chemoresistance. MOLECULAR AND CELLULAR THERAPIES 2014; 2:16. [PMID: 26056584 PMCID: PMC4451970 DOI: 10.1186/2052-8426-2-16] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 04/17/2014] [Indexed: 12/18/2022]
Abstract
Chemoresistance is one of the main problems in the therapy of cancer. There are a number of different molecular mechanisms through which a cancer cell acquires resistance to a specific treatment, such as alterations in drug uptake, drug metabolism and drug targets. There are several lines of evidence showing that miRNAs are involved in drug sensitivity of cancer cells in different tumor types and by different treatments. In this review, we provide an overview of the more recent and significant findings on the role of miRNAs in cancer cell drug resistance. In particular, we focus on specific miRNA mechanisms of action that in various steps lead from drug cell sensitivity to drug cell resistance. We also provide evidence on how miRNA profiling may unveil relevant predictive biomarkers for therapy outcomes.
Collapse
Affiliation(s)
- Sara Donzelli
- Translational Oncogenomics Unit, Italian National Cancer Institute 'Regina Elena', Via Elio Chianesi 53, 00144 Rome, Italy
| | - Federica Mori
- Molecular Chemoprevention Unit, Italian National Cancer Institute 'Regina Elena', Rome, Italy
| | - Francesca Biagioni
- Translational Oncogenomics Unit, Italian National Cancer Institute 'Regina Elena', Via Elio Chianesi 53, 00144 Rome, Italy
| | - Teresa Bellissimo
- Translational Oncogenomics Unit, Italian National Cancer Institute 'Regina Elena', Via Elio Chianesi 53, 00144 Rome, Italy
| | - Claudio Pulito
- Molecular Chemoprevention Unit, Italian National Cancer Institute 'Regina Elena', Rome, Italy
| | - Paola Muti
- Department of Oncology, Juravinski Cancer Center-McMaster University, Hamilton, Ontario Canada
| | - Sabrina Strano
- Molecular Chemoprevention Unit, Italian National Cancer Institute 'Regina Elena', Rome, Italy ; Department of Oncology, Juravinski Cancer Center-McMaster University, Hamilton, Ontario Canada
| | - Giovanni Blandino
- Translational Oncogenomics Unit, Italian National Cancer Institute 'Regina Elena', Via Elio Chianesi 53, 00144 Rome, Italy ; College of Agriculture and Environmental Sciences, Unisa, Florida campus, Johannesburg, South Africa
| |
Collapse
|
252
|
MicroRNA regulation of DNA repair gene expression in 4-aminobiphenyl-treated HepG2 cells. Toxicology 2014; 322:69-77. [PMID: 24857880 DOI: 10.1016/j.tox.2014.05.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 05/13/2014] [Accepted: 05/13/2014] [Indexed: 11/22/2022]
Abstract
We examined the role of miRNAs in DNA damage response in HepG2 cells following exposure to 4-aminobiphenyl (4-ABP). The arylamine 4-ABP is a human carcinogen. Using the Comet assay, we showed that 4-ABP (18.75-300μM) induces DNA damage in HepG2 cells after 24h. DNA damage signaling pathway-based PCR arrays were used to investigate expression changes in genes involved in DNA damage response. Results showed down-regulation of 16 DNA repair-related genes in 4-ABP-treated cells. Among them, the expression of selected six genes (UNG, LIG1, EXO1, XRCC2, PCNA, and FANCG) from different DNA repair pathways was decreased with quantitative real-time PCR (qRT-PCR). In parallel, using the miRNA array, we reported that the expression of 27 miRNAs in 4-ABP-treated cells was at least 3-fold higher than that in the control group. Of these differential 27 miRNAs, the most significant expression of miRNA-513a-5p and miRNA-630 was further validated by qRT-PCR, and was predicted to be implicated in the deregulation of FANCG and RAD18 genes, respectively, via bioinformatic analysis. Both FANCG and RAD18 proteins were found to be down-regulated in 4-ABP-treated cells. In addition, overexpression and knockdown of miRNA-513a-5p and miRNA-630 reduced and increased the expression of FANCG and RAD18 proteins, respectively. Based on the above results, we indicated that miRNA-513a-5p and miRNA-630 could play a role in the suppression of DNA repair genes, and eventually lead to DNA damage.
Collapse
|
253
|
Wang S, Yang MH, Wang XY, Lin J, Ding YQ. Increased expression of miRNA-182 in colorectal carcinoma: an independent and tissue-specific prognostic factor. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2014; 7:3498-3503. [PMID: 25031782 PMCID: PMC4097234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 05/24/2014] [Indexed: 06/03/2023]
Abstract
Increasing evidence has revealed that miRNAs play a pivotal role in multiple processes of carcinogenesis, and are being explored as diagnostic, prognostic and predictive biomarker. In this study, we investigated the status of miR-182 expression in colorectal carcinoma (CRC) by in situ hybridization and its underlying clinicopathologic significance for patients with CRC. We found that 79/138 (57.25%) CRCs had high-level expression of miR-182, while 17/67 (25.37%) normal mucosa tissues had high-level expression of miR-182. The expression level of miR-182 was remarkably up-regulated in CRC tissues compared with non-neoplastic normal tissues (P < 0.001). The over-expression of miR-182 in cancer parenchyma cells in CRC were strongly correlated with T-stage (P = 0.020), lymph node metastasis (P = 0.003), distant metastasis (P = 0.002), and Dukes' stage (P = 0.005) in patients with CRC. Patients with high-level expression of miR-182 had short overall survival time than those with low-level expression of miR-182 (P < 0.001). Univariate and multivariate survival analyses further showed that miR-182 expression was a potential unfavorable prognostic factor for CRC, suggesting a potential application of miR-182 in prognosis prediction and therapeutic application in CRC.
Collapse
Affiliation(s)
- Shuang Wang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University Guangzhou 510515, China
| | - Min-Hui Yang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University Guangzhou 510515, China
| | - Xiao-Yan Wang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University Guangzhou 510515, China
| | - Jie Lin
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University Guangzhou 510515, China
| | - Yan-Qing Ding
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University Guangzhou 510515, China
| |
Collapse
|
254
|
Wang M, Kern AM, Hülskötter M, Greninger P, Singh A, Pan Y, Chowdhury D, Krause M, Baumann M, Benes CH, Efstathiou JA, Settleman J, Willers H. EGFR-mediated chromatin condensation protects KRAS-mutant cancer cells against ionizing radiation. Cancer Res 2014; 74:2825-34. [PMID: 24648348 PMCID: PMC4278592 DOI: 10.1158/0008-5472.can-13-3157] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Therapeutics that target the epidermal growth factor receptor (EGFR) can enhance the cytotoxic effects of ionizing radiation (IR). However, predictive genomic biomarkers of this radiosensitization have remained elusive. By screening 40 non-small cell lung cancer cell (NSCLC) lines, we established a surprising positive correlation between the presence of a KRAS mutation and radiosensitization by the EGFR inhibitors erlotinib and cetuximab. EGFR signaling in KRAS-mutant NSCLC cells promotes chromatin condensation in vitro and in vivo, thereby restricting the number of DNA double-strand breaks (DSB) produced by a given dose of IR. Chromatin condensation in interphase cells is characterized by an unexpected mitosis-like colocalization of serine 10 phosphorylation and lysine 9 trimethylation on histone H3. Aurora B promotes this process in a manner that is codependent upon EGFR and protein kinase C α (PKCα). PKCα, in addition to MEK/ERK signaling, is required for the suppression of DSB-inducible premature senescence by EGFR. Blockade of autophagy results in a mutant KRAS-dependent senescence-to-apoptosis switch in cancer cells treated with IR and erlotinib. In conclusion, we identify EGFR as a molecular target to overcome a novel mechanism of radioresistance in KRAS-mutant tumor cells, which stands in contrast to the unresponsiveness of KRAS-mutant cancers to EGFR-directed agents in monotherapy. Our findings may reposition EGFR-targeted agents for combination with DSB-inducing therapies in KRAS-mutant NSCLC.
Collapse
Affiliation(s)
- Meng Wang
- Authors' Affiliations: Department of Radiation Oncology, Massachusetts General Hospital; Center for Cancer Research, Massachusetts General Hospital Cancer Center; Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts; Department of Radiation Oncology, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden; OncoRay-National Center for Radiation Research in Oncology, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden; Institute of Radiation Oncology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden; and Cancer Consortium (DKTK) Partner Site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ashley M Kern
- Authors' Affiliations: Department of Radiation Oncology, Massachusetts General Hospital; Center for Cancer Research, Massachusetts General Hospital Cancer Center; Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts; Department of Radiation Oncology, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden; OncoRay-National Center for Radiation Research in Oncology, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden; Institute of Radiation Oncology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden; and Cancer Consortium (DKTK) Partner Site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marieke Hülskötter
- Authors' Affiliations: Department of Radiation Oncology, Massachusetts General Hospital; Center for Cancer Research, Massachusetts General Hospital Cancer Center; Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts; Department of Radiation Oncology, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden; OncoRay-National Center for Radiation Research in Oncology, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden; Institute of Radiation Oncology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden; and Cancer Consortium (DKTK) Partner Site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Patricia Greninger
- Authors' Affiliations: Department of Radiation Oncology, Massachusetts General Hospital; Center for Cancer Research, Massachusetts General Hospital Cancer Center; Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts; Department of Radiation Oncology, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden; OncoRay-National Center for Radiation Research in Oncology, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden; Institute of Radiation Oncology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden; and Cancer Consortium (DKTK) Partner Site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Anurag Singh
- Authors' Affiliations: Department of Radiation Oncology, Massachusetts General Hospital; Center for Cancer Research, Massachusetts General Hospital Cancer Center; Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts; Department of Radiation Oncology, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden; OncoRay-National Center for Radiation Research in Oncology, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden; Institute of Radiation Oncology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden; and Cancer Consortium (DKTK) Partner Site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Yunfeng Pan
- Authors' Affiliations: Department of Radiation Oncology, Massachusetts General Hospital; Center for Cancer Research, Massachusetts General Hospital Cancer Center; Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts; Department of Radiation Oncology, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden; OncoRay-National Center for Radiation Research in Oncology, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden; Institute of Radiation Oncology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden; and Cancer Consortium (DKTK) Partner Site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dipanjan Chowdhury
- Authors' Affiliations: Department of Radiation Oncology, Massachusetts General Hospital; Center for Cancer Research, Massachusetts General Hospital Cancer Center; Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts; Department of Radiation Oncology, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden; OncoRay-National Center for Radiation Research in Oncology, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden; Institute of Radiation Oncology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden; and Cancer Consortium (DKTK) Partner Site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mechthild Krause
- Authors' Affiliations: Department of Radiation Oncology, Massachusetts General Hospital; Center for Cancer Research, Massachusetts General Hospital Cancer Center; Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts; Department of Radiation Oncology, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden; OncoRay-National Center for Radiation Research in Oncology, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden; Institute of Radiation Oncology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden; and Cancer Consortium (DKTK) Partner Site Dresden and German Cancer Research Center (DKFZ), Heidelberg, GermanyAuthors' Affiliations: Department of Radiation Oncology, Massachusetts General Hospital; Center for Cancer Research, Massachusetts General Hospital Cancer Center; Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts; Department of Radiation Oncology, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden; OncoRay-National Center for Radiation Research in Oncology, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden; Institute of Radiation Oncology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden; and Cancer Consortium (DKTK) Partner Site Dresden and German Cancer Research Center (DKFZ), Heidelberg, GermanyAuthors' Affiliations: Department of Radiation Oncology, Massachusetts General Hospital; Center for Cancer Research, Massachusetts General Hospital Cancer Center; Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts; Department of Radiation Oncology, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden; OncoRay-National Center for Radiation Research in Oncology, Medical F
| | - Michael Baumann
- Authors' Affiliations: Department of Radiation Oncology, Massachusetts General Hospital; Center for Cancer Research, Massachusetts General Hospital Cancer Center; Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts; Department of Radiation Oncology, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden; OncoRay-National Center for Radiation Research in Oncology, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden; Institute of Radiation Oncology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden; and Cancer Consortium (DKTK) Partner Site Dresden and German Cancer Research Center (DKFZ), Heidelberg, GermanyAuthors' Affiliations: Department of Radiation Oncology, Massachusetts General Hospital; Center for Cancer Research, Massachusetts General Hospital Cancer Center; Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts; Department of Radiation Oncology, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden; OncoRay-National Center for Radiation Research in Oncology, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden; Institute of Radiation Oncology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden; and Cancer Consortium (DKTK) Partner Site Dresden and German Cancer Research Center (DKFZ), Heidelberg, GermanyAuthors' Affiliations: Department of Radiation Oncology, Massachusetts General Hospital; Center for Cancer Research, Massachusetts General Hospital Cancer Center; Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts; Department of Radiation Oncology, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden; OncoRay-National Center for Radiation Research in Oncology, Medical F
| | - Cyril H Benes
- Authors' Affiliations: Department of Radiation Oncology, Massachusetts General Hospital; Center for Cancer Research, Massachusetts General Hospital Cancer Center; Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts; Department of Radiation Oncology, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden; OncoRay-National Center for Radiation Research in Oncology, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden; Institute of Radiation Oncology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden; and Cancer Consortium (DKTK) Partner Site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jason A Efstathiou
- Authors' Affiliations: Department of Radiation Oncology, Massachusetts General Hospital; Center for Cancer Research, Massachusetts General Hospital Cancer Center; Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts; Department of Radiation Oncology, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden; OncoRay-National Center for Radiation Research in Oncology, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden; Institute of Radiation Oncology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden; and Cancer Consortium (DKTK) Partner Site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jeff Settleman
- Authors' Affiliations: Department of Radiation Oncology, Massachusetts General Hospital; Center for Cancer Research, Massachusetts General Hospital Cancer Center; Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts; Department of Radiation Oncology, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden; OncoRay-National Center for Radiation Research in Oncology, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden; Institute of Radiation Oncology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden; and Cancer Consortium (DKTK) Partner Site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Henning Willers
- Authors' Affiliations: Department of Radiation Oncology, Massachusetts General Hospital; Center for Cancer Research, Massachusetts General Hospital Cancer Center; Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts; Department of Radiation Oncology, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden; OncoRay-National Center for Radiation Research in Oncology, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden; Institute of Radiation Oncology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden; and Cancer Consortium (DKTK) Partner Site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
255
|
De Summa S, Pinto R, Sambiasi D, Petriella D, Paradiso V, Paradiso A, Tommasi S. BRCAness: a deeper insight into basal-like breast tumors. Ann Oncol 2014; 24 Suppl 8:viii13-viii21. [PMID: 24131964 DOI: 10.1093/annonc/mdt306] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The molecular scenario of breast cancer has become more complex in the last few years. Distinguishing between BRCA-associated, sporadic, HER2-enriched and triple-negative tumors is not sufficient to allow effective clinical management. Basal-like breast cancer, a subtype of triple-negative breast cancer, differs from others grouped under this heading. Commonalities between BRCA-related tumors and basal-like breast cancers (BRCAness phenotype) are highly relevant to ongoing clinical trials, in particular those investigating targeted therapies (e.g. PARP inhibitors) in sporadic breast tumors. The 'gold standard' to identify basal-like phenotype is DNA microarray, but integrated results could provide a panel of biomarkers helpful in identifying 'BRCAness' tumors (e.g. copy number aberrations, abnormal protein localization and altered transcriptional levels) and other molecular targets, such as APE1,the inhibition of which is emerging as an attractive breast cancer treatment in certain therapeutic settings.
Collapse
Affiliation(s)
- S De Summa
- NCRC Istituto Tumori 'Giovanni Paolo II', Bari, Italy
| | | | | | | | | | | | | |
Collapse
|
256
|
Calvano Filho CMC, Calvano-Mendes DC, Carvalho KC, Maciel GA, Ricci MD, Torres AP, Filassi JR, Baracat EC. Triple-negative and luminal A breast tumors: differential expression of miR-18a-5p, miR-17-5p, and miR-20a-5p. Tumour Biol 2014; 35:7733-41. [DOI: 10.1007/s13277-014-2025-7] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 04/28/2014] [Indexed: 01/21/2023] Open
|
257
|
Yang MH, Yu J, Jiang DM, Li WL, Wang S, Ding YQ. microRNA-182 targets special AT-rich sequence-binding protein 2 to promote colorectal cancer proliferation and metastasis. J Transl Med 2014; 12:109. [PMID: 24884732 PMCID: PMC4020308 DOI: 10.1186/1479-5876-12-109] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Accepted: 04/25/2014] [Indexed: 02/07/2023] Open
Abstract
Background Increasing evidence has revealed that microRNAs (miRNA) played a pivotal role in regulating cancer cell proliferation and metastasis. The deregulation of miR-182 has been identified in colorectal cancer (CRC). However, the role and mechanism of miR-182 in CRC have not been completely understood yet. Methods The expression levels of miR-182 in CRC tissues and CRC cell lines were examined by performing stem-loop quantitative RT-PCR. The stable over-expression miR-182 cell lines and control cell lines were constructed by lentivirus infection. Subsequently, CCK-8 assay, plate colony formation assay, cell migration, invasion assay and experimental animal models were performed to detect the biological functions of miR-182 in vitro and in vivo. A luciferase reporter assay was conducted to confirm target associations. Western blot and immunohistochemical analysis were performed to examine the expression changes of molecular markers that are regulated by miR-182. Results We found that miR-182 expression is increased in CRC cells that originated from metastatic foci and human primary CRC tissues with lymph node metastases. The ectopic expression of miR-182 enhanced cell proliferation, invasion, and migration in vitro. Stable overexpression of miR-182 also facilitated tumor growth and metastasis in vivo too. Further research showed that miR-182 could directly target the 3’untranslated region (3’UTR) of SATB2 mRNA and subsequently repress both the mRNA and protein expressions of SATB2, which we identified in previous studies as a CRC metastasis-associated protein. Restoring SATB2 expression could reverse the effects of miR-182 on CRC cell proliferation and migration. Investigations of possible mechanisms underlying these behaviors induced by miR-182 revealed that miR-182 induced epithelial-mesenchymal transition (EMT) by modulating the expression of key cellular molecules in EMT. Conclusions Our results illustrated that the up-regulation of miR-182 played a pivotal role in CRC tumorigenesis and metastasis, which suggesting a potential implication of miR-182 in the molecular therapy for CRC.
Collapse
Affiliation(s)
| | | | | | | | - Shuang Wang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | | |
Collapse
|
258
|
Choi YE, Pan Y, Park E, Konstantinopoulos P, De S, D'Andrea A, Chowdhury D. MicroRNAs down-regulate homologous recombination in the G1 phase of cycling cells to maintain genomic stability. eLife 2014; 3:e02445. [PMID: 24843000 PMCID: PMC4031983 DOI: 10.7554/elife.02445] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Homologous recombination (HR)-mediated repair of DNA double-strand break (DSB)s is restricted to the post-replicative phases of the cell cycle. Initiation of HR in the G1 phase blocks non-homologous end joining (NHEJ) impairing DSB repair. Completion of HR in G1 cells can lead to the loss-of-heterozygosity (LOH), which is potentially carcinogenic. We conducted a gain-of-function screen to identify miRNAs that regulate HR-mediated DSB repair, and of these miRNAs, miR-1255b, miR-148b*, and miR-193b* specifically suppress the HR-pathway in the G1 phase. These miRNAs target the transcripts of HR factors, BRCA1, BRCA2, and RAD51, and inhibiting miR-1255b, miR-148b*, and miR-193b* increases expression of BRCA1/BRCA2/RAD51 specifically in the G1-phase leading to impaired DSB repair. Depletion of CtIP, a BRCA1-associated DNA end resection protein, rescues this phenotype. Furthermore, deletion of miR-1255b, miR-148b*, and miR-193b* in independent cohorts of ovarian tumors correlates with significant increase in LOH events/chromosomal aberrations and BRCA1 expression. DOI:http://dx.doi.org/10.7554/eLife.02445.001 The DNA in a cell is damaged thousands of times every day. One of the most serious types of damage involves something breaking both of the strands in the double helix. Such a double-strand break can delete genes or even kill the cell. In fact, conventional cancer therapy kills cancer cells by causing irreparable double-strand breaks. Conversely, a normal cell that is constantly exposed to DNA damaging agents can become a tumor if double-strand breaks are incorrectly repaired. An efficient and accurate double-strand break repair system needs to be in place to prevent this transformation. Therefore, an in-depth understanding of double-strand break repair and the factors involved are important for both gaining insight into the cause of cancer and to improve cancer therapy. Cells have evolved several different ways to detect and repair double-strand breaks. A method called homologous recombination, for example, uses an undamaged DNA molecule as a template that can be copied to make new DNA. Since it needs a readily available DNA template, this method only works in phases of the cell growth cycle where there are many copies of DNA—that is, in the post-DNA replication phases. In particular, homologous recombination does not work during the pre-replication, G1 phase. If homologous recombination is attempted during G1, it will block the other methods employed by cells to repair broken strands of DNA. An important challenge is to understand how homologous recombination is restricted to particular parts of the cell cycle. Although certain proteins associated with the early stages of double-strand repair are thought to determine the type of DNA repair that occurs, the details of this process are not fully understood. One group of molecules that are thought to be involved are microRNAs, which normally limit the number of proteins produced from certain genes. However, since a single microRNA molecule can be associated with several proteins, and since a single protein can be associated with several microRNA molecules, it has proved difficult to establish the exact effects of a specific microRNA molecule. Choi et al. now show that seven microRNA molecules can control homologous recombination, and three microRNAs in particular restrict homologous recombination during the G1 phase of the cell cycle. If these microRNAs are inhibited during the G1 phase, which allows homologous recombination to start, and counter-intuitively more double-stranded breaks are seen. However, if a gene involved in starting homologous repair–called CtIP—is silenced while the microRNAs are inhibited, then the DNA breaks are repaired. Exactly, how the microRNA molecules produce different effects during different phases of the cell cycle will be need to be investigated by future studies. DOI:http://dx.doi.org/10.7554/eLife.02445.002
Collapse
Affiliation(s)
- Young Eun Choi
- Department of Radiation Oncology, Division of Genomic Stability and DNA Repair, Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States
| | - Yunfeng Pan
- Department of Radiation Oncology, Division of Genomic Stability and DNA Repair, Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States
| | - Eunmi Park
- Department of Radiation Oncology, Division of Genomic Stability and DNA Repair, Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States
| | | | - Subhajyoti De
- Department of Medicine, University of Colorado School of Medicine, Aurora, United States
| | - Alan D'Andrea
- Department of Radiation Oncology, Division of Genomic Stability and DNA Repair, Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States
| | - Dipanjan Chowdhury
- Department of Radiation Oncology, Division of Genomic Stability and DNA Repair, Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States
| |
Collapse
|
259
|
Cellini F, Morganti AG, Genovesi D, Silvestris N, Valentini V. Role of microRNA in response to ionizing radiations: evidences and potential impact on clinical practice for radiotherapy. Molecules 2014; 19:5379-401. [PMID: 24879584 PMCID: PMC6271831 DOI: 10.3390/molecules19045379] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 04/17/2014] [Accepted: 04/23/2014] [Indexed: 01/06/2023] Open
Abstract
MicroRNAs (miRNA) are small, non-coding, RNAs with gene expression regulator roles. As an important class of regulators of many cellular pathways, miRNAs are involved in many signaling pathways and DNA damage repair processes, affecting cellular radiosensitivity. Their role has led to interest in oncological implications to improve treatment results. MiRNAs represent a great opportunity to enhance the efficacy of radiotherapy treatments-they can be used to profile the radioresistance of tumors before radiotherapy, monitor their response throughout the treatment, thus helping to select intensification strategies, and also to define the final response to therapy along with risks of recurrence or metastatization. Even though many interesting studies support such potential, nowadays most studies on patient data are limited to experiments profiling tumor aggressiveness and response to radiotherapy. Moreover many studies report different although not conflicting results on the miRNAs evaluated for each tumor type. Without doubt, the clinical potential of such molecules for radiotherapy is striking and of high interest.
Collapse
Affiliation(s)
- Francesco Cellini
- Radiation Oncology Department, Policlinico Universitario Campus Bio-Medico; Via Álvaro del Portillo 200, 00144 Rome, Italy.
| | - Alessio G Morganti
- Radiotherapy Department, Università Cattolica del Sacro Cuore; Fondazione di Ricerca e Cura "Giovanni Paolo II", Largo Agostino Gemelli 1, 86100 Campobasso, Italy.
| | - Domenico Genovesi
- Radiation Oncology Department, Università "G. D'Annunzio"; Via dei Vestini 31, 66100 Chieti, Italy.
| | - Nicola Silvestris
- Medical Oncology Unit - Cancer Institute "Giovanni Paolo II"; Viale Orazio Flacco, 65, 70124 Bari, Italy.
| | - Vincenzo Valentini
- Radiation Oncology Department, Università Cattolica del Sacro Cuore; L.go Francesco Vito 1, 00168 Roma, Italy.
| |
Collapse
|
260
|
GPC1 regulated by miR-96-5p, rather than miR-182-5p, in inhibition of pancreatic carcinoma cell proliferation. Int J Mol Sci 2014; 15:6314-27. [PMID: 24736782 PMCID: PMC4013630 DOI: 10.3390/ijms15046314] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 03/09/2014] [Accepted: 03/18/2014] [Indexed: 01/05/2023] Open
Abstract
To determine the relationships between miR-96-5p/-182-5p and GPC1 in pancreatic cancer (PC), we conducted the population and in vitro studies. We followed 38 pancreatic cancer patients, measured and compared the expression of miR-96-5p/-182-5p, GPC1, characteristics and patients’ survival time of different miR-96-5p/-182-5p expression levels in PC tissues. In an in vitro study, we investigated the proliferation, cycle and apotosis in cells transfected with mimics/inhibitors of the two miRNAs, and determine their effects on GPC1 by dual-luciferase assay. In the follow-up study, we found that the expressions of miR-96-5p/-182-5p were lower/higher in PC tissues; patients with lower/higher levels of miR-96-5p/-182-5p suffered poorer characteristics and decreased survival time. In the in vitro study, the expressions of miR-96-5p/-182-5p were different in cells. Proliferation of cells transfected with miR-96-5p mimics/inhibitors was lower/higher in Panc-1/BxPC-3; when transfected with miR-182-5p mimics/inhibitors, proliferation of cells were higher/lower in AsPC-1/Panc-1. In a cell cycle study, panc-1 cells transfected with miR-96-5p mimics was arrested at G0/G1; BxPC-3 cells transfected with miR-96-5p inhibitors showed a significantly decrease at G0/G1; AsPC-1 cells transfected with miR-182-5p mimics was arrested at S; Panc-1 cells transfected with miR-182-5p inhibitors showed a decrease at S. MiR-96-5p mimics increased the apoptosis rate in Panc-1 cells, and its inhibitors decreased the apoptosis rate in BxPC-3. Dual luciferase assay revealed that GPC1 was regulated by miR-96-5p, not -182-5p. We found that miR-96-5p/-182-5p as good markers for PC; miR-96-5p, rather than -182-5p, inhibits GPC1 to suppress proliferation of PC cells.
Collapse
|
261
|
Xu X, Lu Z, Qiang W, Vidimar V, Kong B, Kim JJ, Wei JJ. Inactivation of AKT induces cellular senescence in uterine leiomyoma. Endocrinology 2014; 155:1510-9. [PMID: 24476133 PMCID: PMC3959594 DOI: 10.1210/en.2013-1929] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Uterine leiomyomas (fibroids) are a major public health problem. Current medical treatments with GnRH analogs do not provide long-term benefit. Thus, permanent shrinkage or inhibition of fibroid growth via medical means remains a challenge. The AKT pathway is a major growth and survival pathway for fibroids. We propose that AKT inhibition results in a transient regulation of specific mechanisms that ultimately drive cells into cellular senescence or cell death. In this study, we investigated specific mechanisms of AKT inhibition that resulted in senescence. We observed that administration of MK-2206, an allosteric AKT inhibitor, increased levels of reactive oxygen species, up-regulated the microRNA miR-182 and several senescence-associated genes (including p16, p53, p21, and β-galactosidase), and drove leiomyoma cells into stress-induced premature senescence (SIPS). Moreover, induction of SIPS was mediated by HMGA2, which colocalized to senescence-associated heterochromatin foci. This study provides a conceivable molecular mechanism of SIPS by AKT inhibition in fibroids.
Collapse
Affiliation(s)
- Xiaofei Xu
- Department of Pathology (X.X., J.-J.W.) and Department of Obstetrics and Gynecology (Z.L., W.Q., J.J.K., J.-J.W., V.V.), Northwestern University Feinberg School of Medicine, Northwestern University, Chicago, Illinois; and Department of Obstetrics and Gynecology (X.X., B.K.), Shandong University, Shandong, China
| | | | | | | | | | | | | |
Collapse
|
262
|
Gasparini P, Lovat F, Fassan M, Casadei L, Cascione L, Jacob NK, Carasi S, Palmieri D, Costinean S, Shapiro CL, Huebner K, Croce CM. Protective role of miR-155 in breast cancer through RAD51 targeting impairs homologous recombination after irradiation. Proc Natl Acad Sci U S A 2014; 111:4536-4541. [PMID: 24616504 PMCID: PMC3970505 DOI: 10.1073/pnas.1402604111] [Citation(s) in RCA: 152] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cell survival after DNA damage relies on DNA repair, the abrogation of which causes genomic instability and development of cancer. However, defective DNA repair in cancer cells can be exploited for cancer therapy using DNA-damaging agents. DNA double-strand breaks are the major lethal lesions induced by ionizing radiation (IR) and can be efficiently repaired by DNA homologous recombination, a system that requires numerous factors including the recombinase RAD51 (RAD51). Therapies combined with adjuvant radiotherapy have been demonstrated to improve the survival of triple-negative breast cancer patients; however, such therapy is challenged by the emergence of resistance in tumor cells. It is, therefore, essential to develop novel therapeutic strategies to overcome radioresistance and improve radiosensitivity. In this study we show that overexpression of microRNA 155 (miR-155) in human breast cancer cells reduces the levels of RAD51 and affects the cellular response to IR. miR-155 directly targets the 3'-untranslated region of RAD51. Overexpression of miR-155 decreased the efficiency of homologous recombination repair and enhanced sensitivity to IR in vitro and in vivo. High miR-155 levels were associated with lower RAD51 expression and with better overall survival of patients in a large series of triple-negative breast cancers. Taken together, our findings indicate that miR-155 regulates DNA repair activity and sensitivity to IR by repressing RAD51 in breast cancer. Testing for expression levels of miR-155 may be useful in the identification of breast cancer patients who will benefit from an IR-based therapeutic approach.
Collapse
Affiliation(s)
- Pierluigi Gasparini
- Department of Molecular Virology, Immunology and Medical Genetics, Wexner Medical Center and Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210
| | - Francesca Lovat
- Department of Molecular Virology, Immunology and Medical Genetics, Wexner Medical Center and Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210
| | - Matteo Fassan
- Department of Molecular Virology, Immunology and Medical Genetics, Wexner Medical Center and Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210
- Applied Research on Cancer Network (ARC-NET) Research Centre, University and Hospital Trust of Verona, Verona 37126, Italy
| | - Lucia Casadei
- Department of Molecular Virology, Immunology and Medical Genetics, Wexner Medical Center and Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210
| | - Luciano Cascione
- Department of Molecular Virology, Immunology and Medical Genetics, Wexner Medical Center and Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210
- Lymphoma and Genomics Research Program, Institute of Oncology Research, Bellinzona 6500, Switzerland
| | - Naduparambil K. Jacob
- Department of Radiation Oncology, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210
| | - Stefania Carasi
- Department of Molecular Virology, Immunology and Medical Genetics, Wexner Medical Center and Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210
| | - Dario Palmieri
- Department of Molecular Virology, Immunology and Medical Genetics, Wexner Medical Center and Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210
| | - Stefan Costinean
- Department of Pathology, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210; and
| | - Charles L. Shapiro
- Division of Medical Oncology and the Breast Program, James Cancer Hospital and Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210
| | - Kay Huebner
- Department of Molecular Virology, Immunology and Medical Genetics, Wexner Medical Center and Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210
| | - Carlo M. Croce
- Department of Molecular Virology, Immunology and Medical Genetics, Wexner Medical Center and Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
263
|
Martin HC, Wani S, Steptoe AL, Krishnan K, Nones K, Nourbakhsh E, Vlassov A, Grimmond SM, Cloonan N. Imperfect centered miRNA binding sites are common and can mediate repression of target mRNAs. Genome Biol 2014; 15:R51. [PMID: 24629056 PMCID: PMC4053950 DOI: 10.1186/gb-2014-15-3-r51] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 02/19/2014] [Indexed: 12/31/2022] Open
Abstract
Background MicroRNAs (miRNAs) bind to mRNAs and target them for translational inhibition or transcriptional degradation. It is thought that most miRNA-mRNA interactions involve the seed region at the 5′ end of the miRNA. The importance of seed sites is supported by experimental evidence, although there is growing interest in interactions mediated by the central region of the miRNA, termed centered sites. To investigate the prevalence of these interactions, we apply a biotin pull-down method to determine the direct targets of ten human miRNAs, including four isomiRs that share centered sites, but not seeds, with their canonical partner miRNAs. Results We confirm that miRNAs and their isomiRs can interact with hundreds of mRNAs, and that imperfect centered sites are common mediators of miRNA-mRNA interactions. We experimentally demonstrate that these sites can repress mRNA activity, typically through translational repression, and are enriched in regions of the transcriptome bound by AGO. Finally, we show that the identification of imperfect centered sites is unlikely to be an artifact of our protocol caused by the biotinylation of the miRNA. However, the fact that there was a slight bias against seed sites in our protocol may have inflated the apparent prevalence of centered site-mediated interactions. Conclusions Our results suggest that centered site-mediated interactions are much more frequent than previously thought. This may explain the evolutionary conservation of the central region of miRNAs, and has significant implications for decoding miRNA-regulated genetic networks, and for predicting the functional effect of variants that do not alter protein sequence.
Collapse
|
264
|
MicroRNA-223 Enhances Radiation Sensitivity of U87MG Cells In Vitro and In Vivo by Targeting Ataxia Telangiectasia Mutated. Int J Radiat Oncol Biol Phys 2014; 88:955-60. [DOI: 10.1016/j.ijrobp.2013.12.036] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 12/19/2013] [Accepted: 12/21/2013] [Indexed: 12/21/2022]
|
265
|
Abstract
MicroRNAs (miRNAs) are a class of small, non-coding, and endogenous RNA molecules, which are evolutionarily conserved but play a significant role in regulation of protein-coding gene expression at posttranscriptional and translational levels. Strikingly, a single miRNA is able to trigger hundreds of putative target genes by incomplete or complete complementary binding to their 3' untranslated regions. Given their appearance in almost all types of tissues, miRNAs have been demonstrated to be intensively involved in normal and pathological processes of human cells. Aside from the role as invaluable biomarkers in indication of tumorigenesis and tumor progression, numerous studies have revealed the potential of miRNAs as novel targets of anticancer drugs in cancer therapy. In this review article, we focus on the summary of the latest publications on the topic of miRNA and anticancer drugs, and expect to shed light on understanding the molecular mechanisms of chemoresistance involving miRNA regulation. These pieces of evidence will eventually provide insight into the development of novel and more efficacious anticancer drugs in the future.
Collapse
Affiliation(s)
- Zhiwei Xing
- Clinical Medical Research Center of the Affiliated Hospital, Inner Mongolia Medical University, Hohhot 010050, China
| | | | | | | | | |
Collapse
|
266
|
Stenvold H, Donnem T, Andersen S, Al-Saad S, Busund LT, Bremnes RM. Stage and tissue-specific prognostic impact of miR-182 in NSCLC. BMC Cancer 2014; 14:138. [PMID: 24575749 PMCID: PMC3996062 DOI: 10.1186/1471-2407-14-138] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 02/12/2014] [Indexed: 11/10/2022] Open
Abstract
Background MicroRNA (miR)-182 is frequently upregulated in cancers, has generally been viewed as an oncogene and is possibly connected to angiogenesis. We aimed to explore what impact miR-182 has in non-small cell lung cancer (NSCLC), and more explicitly its correlation with angiogenic markers. Methods From 335 unselected stage I to IIIA NSCLC carcinomas, duplicate tumor and tumor-associated stromal cores were collected in tissue microarray blocks (TMAs). In situ hybridization (ISH) was used to detect the expression of miR-182 in tumor cells, and immunohistochemistry (IHC) was used to detect the expression of angiogenesis related protein markers. Results In univariate analyses, high tumor cell expression of miR-182 was a positive prognostic factor for patients with squamous cell carcinoma (SCC, P = 0.042) and stage II patients (P = 0.003). Also in the multivariate analysis, high tumor cell miR-182 expression was associated with a good prognosis in the same groups (SCC: HR 0.57, CI 95% 0.33-0.99, P = 0.048; stage II: HR 0.50, CI 95% 0.28-0.90, P = 0.020). We found significant correlations between miR-182 and the angiogenesis related markers FGF2, HIF2α and MMP-7. Conclusion In patients with SCC and in stage II patients, high tumor cell miR-182 expression is an independent positive prognostic factor.
Collapse
Affiliation(s)
- Helge Stenvold
- Institute of Clinical Medicine, University of Tromso, Tromso, Norway.
| | | | | | | | | | | |
Collapse
|
267
|
Carvalho JFS, Kanaar R. Targeting homologous recombination-mediated DNA repair in cancer. Expert Opin Ther Targets 2014; 18:427-58. [PMID: 24491188 DOI: 10.1517/14728222.2014.882900] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION DNA is the target of many traditional non-specific chemotherapeutic drugs. New drugs or therapeutic approaches with a more rational and targeted component are mandatory to improve the success of cancer therapy. The homologous recombination (HR) pathway is an attractive target for the development of inhibitors because cancer cells rely heavily on HR for repair of DNA double-strand breaks resulting from chemotherapeutic treatments. Additionally, the discovery that poly(ADP)ribose polymerase-1 inhibitors selectively kill cells with genetic defects in HR has spurned an even greater interest in inhibitors of HR. AREAS COVERED HR drives the repair of broken DNA via numerous protein-mediated sequential DNA manipulations. Due to extensive number of steps and proteins involved, the HR pathway provides a rich pool of potential drug targets. This review discusses the latest developments concerning the strategies being explored to inhibit HR. Particular attention is given to the identification of small molecule inhibitors of key HR proteins, including the BRCA proteins and RAD51. EXPERT OPINION Current HR inhibitors are providing the basis for pharmaceutical development of more potent and specific inhibitors to be applied in mono- or combinatorial therapy regimes, while novel targets will be uncovered by experiments aimed to gain a deeper mechanistic understanding of HR and its subpathways.
Collapse
Affiliation(s)
- João F S Carvalho
- Erasmus MC Cancer Institute, Department of Genetics, Department of Radiation Oncology, Cancer Genomics Netherlands , PO Box 2040, 3000 CA Rotterdam , The Netherlands
| | | |
Collapse
|
268
|
Abstract
SIGNIFICANCE The well-studied sequences in the human genome are those of protein-coding genes, which account for only 1%-2% of the total genome. However, with the advent of high-throughput transcriptome sequencing technology, we now know that about 90% of our genome is extensively transcribed and that the vast majority of them are transcribed into noncoding RNAs (ncRNAs). It is of great interest and importance to decipher the functions of these ncRNAs in humans. RECENT ADVANCES In the last decade, it has become apparent that ncRNAs play a crucial role in regulating gene expression in normal development, in stress responses to internal and environmental stimuli, and in human diseases. CRITICAL ISSUES In addition to those constitutively expressed structural RNA, such as ribosomal and transfer RNAs, regulatory ncRNAs can be classified as microRNAs (miRNAs), Piwi-interacting RNAs (piRNAs), small interfering RNAs (siRNAs), small nucleolar RNAs (snoRNAs), and long noncoding RNAs (lncRNAs). However, little is known about the biological features and functional roles of these ncRNAs in DNA repair and genome instability, although a number of miRNAs and lncRNAs are regulated in the DNA damage response. FUTURE DIRECTIONS A major goal of modern biology is to identify and characterize the full profile of ncRNAs with regard to normal physiological functions and roles in human disorders. Clinically relevant ncRNAs will also be evaluated and targeted in therapeutic applications.
Collapse
Affiliation(s)
- Guohui Wan
- 1 Department of Cancer Biology, The University of Texas MD Anderson Cancer Center , Houston, Texas
| | | | | | | | | |
Collapse
|
269
|
MicroRNAs in the DNA Damage/Repair Network and Cancer. Int J Genomics 2014; 2014:820248. [PMID: 24616890 PMCID: PMC3926391 DOI: 10.1155/2014/820248] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Accepted: 12/10/2013] [Indexed: 12/13/2022] Open
Abstract
Cancer is a multistep process characterized by various and different genetic lesions which cause the transformation of normal cells into tumor cells. To preserve the genomic integrity, eukaryotic cells need a complex DNA damage/repair response network of signaling pathways, involving many proteins, able to induce cell cycle arrest, apoptosis, or DNA repair. Chemotherapy and/or radiation therapy are the most commonly used therapeutic approaches to manage cancer and act mainly through the induction of DNA damage. Impairment in the DNA repair proteins, which physiologically protect cells from persistent DNA injury, can affect the efficacy of cancer therapies. Recently, increasing evidence has suggested that microRNAs take actively part in the regulation of the DNA damage/repair network. MicroRNAs are endogenous short noncoding molecules able to regulate gene expression at the post-transcriptional level. Due to their activity, microRNAs play a role in many fundamental physiological and pathological processes. In this review we report and discuss the role of microRNAs in the DNA damage/repair and cancer.
Collapse
|
270
|
Pierce A, McGowan PM, Cotter M, Mullooly M, O'Donovan N, Rani S, O'Driscoll L, Crown J, Duffy MJ. Comparative antiproliferative effects of iniparib and olaparib on a panel of triple-negative and non-triple-negative breast cancer cell lines. Cancer Biol Ther 2014; 14:537-45. [PMID: 23760496 DOI: 10.4161/cbt.24349] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
PARP inhibitors, both as monotherapy and in combination with cytotoxic drugs, are currently undergoing clinical trials in several different cancer types. In this investigation, we compared the antiproliferative activity of two PARP/putative PARP inhibitors, i.e., olaparib and iniparib, in a panel of 14 breast cancer cell lines (seven tripe-negative and seven non-triple-negative). In almost all cell lines investigated, olaparib was a more potent inhibitor of cell growth than iniparib. Inhibition by both drugs was cell line-dependent and independent of the molecular subtype status of the cells, i.e., whether cells were triple-negative or non-triple negative. Although the primary target of PARP inhibitors is PARP1, no significant association was found between baseline levels of PARP1 activity and inhibition with either agent. Similarly, no significant correlation was evident between sensitivity and levels of CDK1, BRCA1 or miR-182. Combined addition of olaparib and either the CDK1 inhibitor, RO-3306 or a pan HER inhibitor (neratinib, afatinib) resulted in superior growth inhibition to that obtained with olaparib alone. We conclude that olaparib, in contrast to iniparib, is a strong inhibitor of breast cancer cell growth and may have efficacy in breast cancer irrespective of its molecular subtype, i.e., whether HER2-positive, estrogen receptor (ER)-positive or triple-negative. Olaparib, in combination with a selective CDK1 inhibitor or a pan HER inhibitor, is a potential new approach for treating breast cancer.
Collapse
Affiliation(s)
- Aisling Pierce
- Education and Research Centre, St. Vincent's University Hospital, Dublin, Ireland
| | | | | | | | | | | | | | | | | |
Collapse
|
271
|
Wang Z, Yin H, Zhang Y, Feng Y, Yan Z, Jiang X, Bukhari I, Iqbal F, Cooke HJ, Shi Q. miR-214-mediated downregulation of RNF8 induces chromosomal instability in ovarian cancer cells. Cell Cycle 2014; 13:3519-3528. [PMID: 25483088 PMCID: PMC4615040 DOI: 10.4161/15384101.2014.958413] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 08/20/2014] [Accepted: 08/21/2014] [Indexed: 02/08/2023] Open
Abstract
Defective DNA damage response (DDR) is frequently associated with carcinogenesis. Abrogation of DDR leads to chromosomal instability, a most common characteristic of tumors. However, the molecular mechanisms underlying regulation of DDR are still elusive. The ubiquitin ligase RNF8 mediates the ubiquitination of γH2AX and recruits 53BP1 and BRCA1 to DNA damage sites which promotes DDR and inhibits chromosomal instability. Though RNF8 is a key player involved in DDR, regulation of its expression is still poorly understood. Here, we show that miR-214 could abrogate DDR by repressing RNF8 expression through direct binding to 3'-untranslated region (3' UTR) of RNF8 mRNA in human ovarian cancer cells. Antagonizing miR-214 by expressing its inhibitors in A2780 cells significantly increased RNF8 expression and thus promoted DNA damage repair. Consistent with the role of miR-214 in regulating RNF8 expression, the impaired DNA repair induced by miR-214 overexpression can be rescued by overexpressing RNF8 mRNA lacking the 3' UTR. Together, our results indicate that down-regulation of RNF8 mediated by miR-214 impedes DNA damage response to induce chromosomal instability in ovarian cancers, which may facilitate the understanding of mechanisms underlying chromosomal instability.
Collapse
Affiliation(s)
- Zheng Wang
- Laboratory of Molecular and Cell Genetics; CAS Key Laboratory of Innate Immunity and Chronic Disease; CAS Institute of Physics; Hefei National Laboratory for Physical Sciences at Microscale; School of Life Sciences; University of Science & Technology of China; Hefei, China
| | - Hao Yin
- Laboratory of Molecular and Cell Genetics; CAS Key Laboratory of Innate Immunity and Chronic Disease; CAS Institute of Physics; Hefei National Laboratory for Physical Sciences at Microscale; School of Life Sciences; University of Science & Technology of China; Hefei, China
| | - Yuanwei Zhang
- Laboratory of Molecular and Cell Genetics; CAS Key Laboratory of Innate Immunity and Chronic Disease; CAS Institute of Physics; Hefei National Laboratory for Physical Sciences at Microscale; School of Life Sciences; University of Science & Technology of China; Hefei, China
| | - Yukun Feng
- Laboratory of Molecular and Cell Genetics; CAS Key Laboratory of Innate Immunity and Chronic Disease; CAS Institute of Physics; Hefei National Laboratory for Physical Sciences at Microscale; School of Life Sciences; University of Science & Technology of China; Hefei, China
| | - Zhaofeng Yan
- Laboratory of Molecular and Cell Genetics; CAS Key Laboratory of Innate Immunity and Chronic Disease; CAS Institute of Physics; Hefei National Laboratory for Physical Sciences at Microscale; School of Life Sciences; University of Science & Technology of China; Hefei, China
| | - Xiaohua Jiang
- Laboratory of Molecular and Cell Genetics; CAS Key Laboratory of Innate Immunity and Chronic Disease; CAS Institute of Physics; Hefei National Laboratory for Physical Sciences at Microscale; School of Life Sciences; University of Science & Technology of China; Hefei, China
| | - Ihtisham Bukhari
- Laboratory of Molecular and Cell Genetics; CAS Key Laboratory of Innate Immunity and Chronic Disease; CAS Institute of Physics; Hefei National Laboratory for Physical Sciences at Microscale; School of Life Sciences; University of Science & Technology of China; Hefei, China
| | - Furhan Iqbal
- Laboratory of Molecular and Cell Genetics; CAS Key Laboratory of Innate Immunity and Chronic Disease; CAS Institute of Physics; Hefei National Laboratory for Physical Sciences at Microscale; School of Life Sciences; University of Science & Technology of China; Hefei, China
- Institute of Pure and Applied Biology; Zoology Division. Bahauddin Zakariya University Multan; Pakistan
| | - Howard J Cooke
- Laboratory of Molecular and Cell Genetics; CAS Key Laboratory of Innate Immunity and Chronic Disease; CAS Institute of Physics; Hefei National Laboratory for Physical Sciences at Microscale; School of Life Sciences; University of Science & Technology of China; Hefei, China
- MRC Human Genetics Unit and Institute of Genetics and Molecular Medicine; University of Edinburgh; Western General Hospital; Edinburgh, UK
| | - Qinghua Shi
- Laboratory of Molecular and Cell Genetics; CAS Key Laboratory of Innate Immunity and Chronic Disease; CAS Institute of Physics; Hefei National Laboratory for Physical Sciences at Microscale; School of Life Sciences; University of Science & Technology of China; Hefei, China
| |
Collapse
|
272
|
Dimitrov SD, Lu D, Naetar N, Hu Y, Pathania S, Kanellopoulou C, Livingston DM. Physiological modulation of endogenous BRCA1 p220 abundance suppresses DNA damage during the cell cycle. Genes Dev 2013; 27:2274-91. [PMID: 24142877 PMCID: PMC3814647 DOI: 10.1101/gad.225045.113] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BRCA1 p220 participates in DNA damage responses. Dimitrov et al. find that miR-545 directly reduces p220 expression. miR-545 inhibition increased p220 expression, and aberrant p220-associated DNA damage responses and de novo DNA strand breaks accumulated. Strand breaks were a product of p220 overexpression and were also dependent on aberrant, overexpressed p220-driven recruitment of RAD51 to DNA damage sites. These results suggest that, like its loss, an excess of p220 function represents a threat to genome integrity. Endogenous BRCA1 p220 expression peaks in S and G2 when it is activated, and the protein participates in certain key DNA damage responses. In contrast, its expression is markedly reduced in G0/G1. While variations in transcription represent a significant part of p220 expression control, there is at least one other relevant process. We found that a microRNA, miR-545, that is expressed throughout the cell cycle down-modulates endogenous p220 mRNA and protein abundance directly in both G0/G1 and S/G2. When miR-545 function was inhibited by a specific antagomir, endogenous p220 expression increased in G0/G1, and aberrant p220-associated DNA damage responses and de novo DNA strand breaks accumulated. Analogous results were observed upon inhibition of miR-545 function in S/G2. Both sets of antagomir effects were mimicked by infecting cells with a p220 cDNA-encoding adenoviral vector. Thus, strand breaks were a product of p220 overexpression, and their prevention by miR-545 depends on its modulation of p220 expression. Breaks were also dependent on aberrant, overexpressed p220-driven recruitment of RAD51 to either spontaneously arising or mutagen-based DNA damage sites. Hence, when its level is not physiologically maintained, endogenous p220 aberrantly directs at least one DNA repair protein, RAD51, to damage sites, where their action contributes to the development of de novo DNA damage. Thus, like its loss, a surfeit of endogenous p220 function represents a threat to genome integrity.
Collapse
Affiliation(s)
- Stoil D Dimitrov
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|
273
|
Abstract
miRNAs have emerged, in the last decade, as key players in the carcinogenic process, with many candidates identified as playing important roles in many aspects of tumor development, growth, metastasis, and drug resistance. More recently, polymorphisms in miRNAs themselves or in their binding sites in target genes have been identified to incur increased risk of breast cancer in certain populations. In addition, epigenetic regulation and differential expression of processing enzymes has been shown to contribute to the aberrant expression of miRNAs in breast cancer. This review focuses on the area of miRNA dysregulation in breast cancer through both genetic and epigenetic mechanisms, and the impact of this dysregulation on breast cancer risk and resistance to therapies.
Collapse
Affiliation(s)
- Laoighse Mulrane
- Authors' Affiliation: UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | | | | | | |
Collapse
|
274
|
Wang YQ, Guo RD, Guo RM, Sheng W, Yin LR. MicroRNA-182 promotes cell growth, invasion, and chemoresistance by targeting programmed cell death 4 (PDCD4) in human ovarian carcinomas. J Cell Biochem 2013; 114:1464-73. [PMID: 23296900 DOI: 10.1002/jcb.24488] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 12/21/2012] [Indexed: 12/12/2022]
Abstract
As an important tumor suppressor, programmed cell death 4 (PDCD4) influences transcription and translation of multiple genes, and modulates different signal transduction pathways. However, the upstream regulation of this gene is largely unknown. In this study, we found that microRNA-182 (miRNA-182, miR-182) was upregulated, whereas PDCD4 was downregulated in ovarian cancer tissues and cell lines. Blocking or increase of miR-182 in ovarian cancer cell lines led to an opposite alteration of endogenous PDCD4 protein level. Using fluorescent reporter assay, we confirmed the direct and negative regulation of PDCD4 by miR-182, which was dependent on the predicted miR-182 binding site within PDCD4 3' untranslated region (3' UTR). MTT and colony formation assays suggested that miR-182 blockage suppressed, whereas miR-182 mimics enhanced viability and colony formation of ovarian cancer cells. These effects may partly be attributed to the cell cycle promotion activity of miR-182. miR-182 also contributed to migration and invasion activities of ovarian cancer cells. Furthermore, miR-182 reduced the chemosensitivity of ovarian cancer cells to CDDP and Taxol, possibly by its anti-apoptosis activity. Importantly, all the alterations of the above cellular phenotypes by blocking or enhancing of miR-182 could be alleviated by subsequent suppression or ectopic expression of its target PDCD4, respectively. We conclude that in ovarian cancer cells, miR-182 acts as an oncogenic miRNA by directly and negatively regulating PDCD4.
Collapse
Affiliation(s)
- Yu-Quan Wang
- Department of Gynecology, the Second Hospital of Tianjin Medical University, Tianjin, China
| | | | | | | | | |
Collapse
|
275
|
Watanabe Y, Maeda I, Oikawa R, Wu W, Tsuchiya K, Miyoshi Y, Itoh F, Tsugawa KI, Ohta T. Aberrant DNA methylation status of DNA repair genes in breast cancer treated with neoadjuvant chemotherapy. Genes Cells 2013; 18:1120-30. [PMID: 24581343 DOI: 10.1111/gtc.12100] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 09/06/2013] [Indexed: 12/14/2022]
Abstract
Dysregulation of homologous recombination (HR) DNA repair has been implicated in breast carcinogenesis and chemosensitivity. Here, we investigated the methylation status of sixteen HR genes and analyzed their association with tumor subtypes and responses to neoadjuvant chemotherapy. Core specimens were obtained before neoadjuvant chemotherapy from sixty cases of primary breast cancer of the following four subgroups: luminal breast cancer (LBC) with pathological complete response (pCR), LBC with stable disease, triple-negative breast cancer (TNBC) with pCR and TNBC with poor response. The aberrant DNA methylation status of the following HR related-genes was analyzed using bisulfite-pyrosequencing: BRCA1, BRCA2, BARD1, MDC1, RNF8, RNF168, UBC13, ABRA1, PALB2, RAD50, RAD51, RAD51C, MRE11, NBS1, CtIP and ATM. Among the genes analyzed, only the incidence of BRCA1 and RNF8 methylation was significantly higher in TNBC than that in LBC. Whereas the incidence of BRCA1 methylation was tended to be higher in pCR cases than in poor-response cases in TNBC, that of RNF8 was significantly lower in pCR cases than in poor-response cases. Our results indicate that the methylation status of HR genes was not generally associated with TNBC subtype or chemosensitivity although hypermethylation of BRCA1 is associated with TNBC subtype and may impact chemosensitivity.
Collapse
Affiliation(s)
- Yoshiyuki Watanabe
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, St. Marianna University School of Medicine, Kawasaki, 216-8511, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
276
|
Azrak SS, Ginel-Picardo A, Drosten M, Barbacid M, Santos E. Reversible, interrelated mRNA and miRNA expression patterns in the transcriptome of Rasless fibroblasts: functional and mechanistic implications. BMC Genomics 2013; 14:731. [PMID: 24156637 PMCID: PMC4007593 DOI: 10.1186/1471-2164-14-731] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 10/04/2013] [Indexed: 12/13/2022] Open
Abstract
Background 4-Hydroxy-tamoxifen (4OHT) triggers Cre-mediated K-Ras removal in [H-Ras-/-;N-Ras-/-;K-Raslox/lox;RERTert/ert] fibroblasts, generating growth-arrested “Rasless” MEFs which are able to recover their proliferative ability after ectopic expression of Ras oncoproteins or constitutively active BRAF or MEK1. Results Comparison of the transcriptional profiles of Rasless fibroblasts with those of MEFs lacking only H-Ras and N-Ras identified a series of differentially expressed mRNAs and microRNAs specifically linked to the disappearance of K-Ras from these cells. The rescue of cell cycle progression in Rasless cells by activated BRAF or MEK1 resulted in the reversal of most such transcriptional mRNA and microRNA alterations. Functional analysis of the differentially expressed mRNAs uncovered a significant enrichment in the components of pathways regulating cell division, DNA/RNA processing and response to DNA damage. Consistent with G1/S blockade, Rasless cells displayed repression of a series of cell cycle-related genes, including Cyclins, Cyclin-dependent kinases, Myc and E2F transcription targets, and upregulation of Cyclin-dependent kinase inhibitors. The profile of differentially expressed microRNAs included a specific set of oncomiR families and clusters (repressed miR-17 ~ 92, miR-106a ~ 363, miR-106b ~ 25, miR-212 ~ 132, miR-183 ~ 182, and upregulated miR-335) known for their ability to target a specific set of cellular regulators and checkpoint sensors (including Rb, E2F and Cdkns) able to modulate the interplay between the pro- and anti-proliferative or stress-response pathways that are reversibly altered in Rasless cells. Conclusions Our data suggest that the reversible proliferation phenotype of Rasless cells is the pleiotropic result of interplay among distinct pro- and anti-proliferative, and stress-response pathways modulated by a regulatory circuitry constituted by a specific set of differentially expressed mRNAs and microRNAs and preferentially targeting two cross-talking signalling axes: Myc-Rb-E2F-dependent and Cdkns-p53-dependent pathways.
Collapse
Affiliation(s)
| | | | | | | | - Eugenio Santos
- Centro de Investigacion del Cancer, IBMCC (CSIC-USAL), University of Salamanca, Campus Unamuno, 37007, Salamanca, Spain.
| |
Collapse
|
277
|
d'Adda di Fagagna F. A direct role for small non-coding RNAs in DNA damage response. Trends Cell Biol 2013; 24:171-8. [PMID: 24156824 DOI: 10.1016/j.tcb.2013.09.008] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 09/16/2013] [Accepted: 09/17/2013] [Indexed: 10/26/2022]
Abstract
Historically, the role of cellular RNA has been subordinate and ancillary to DNA. Protein-coding mRNA conveys the information content of DNA, and transfer RNAs and ribosomal RNAs allow the polymerization of amino acids into proteins. The discovery of non-protein-coding RNAs (ncRNAs) provided an additional role for RNA in finely tuning DNA expression. However, it has recently become apparent that the safeguard of DNA integrity depends on small ncRNAs acting at the site of DNA lesions to signal the presence of DNA damage in the cell, and on the genes involved in their biogenesis to achieve accurate DNA repair. I review here evidence supporting a role for small ncRNAs, termed DNA damage-response RNAs (DDRNAs) or double-strand break (DSB)-induced RNAs (diRNAs), that are generated at sites of DNA damage and control the DNA damage response (DDR). I also discuss their biogenesis, potential mechanisms of action, and their relevance in cancer.
Collapse
Affiliation(s)
- Fabrizio d'Adda di Fagagna
- Istituto Firc di Oncologia Molecolare (IFOM) Foundation - Fondazione Italiana per la Ricerca sul Cancro (FIRC) Institute of Molecular Oncology Foundation, Via Adamello 16, 20139 Milan, Italy; Istituto di Genetica Molecolare - Consiglio Nazionale delle Ricerche, Via Abbiategrasso 207, 27100 Pavia, Italy.
| |
Collapse
|
278
|
Huang JW, Wang Y, Dhillon KK, Calses P, Villegas E, Mitchell PS, Tewari M, Kemp CJ, Taniguchi T. Systematic screen identifies miRNAs that target RAD51 and RAD51D to enhance chemosensitivity. Mol Cancer Res 2013; 11:1564-73. [PMID: 24088786 DOI: 10.1158/1541-7786.mcr-13-0292] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
UNLABELLED Homologous recombination mediates error-free repair of DNA double-strand breaks (DSB). RAD51 is an essential protein for catalyzing homologous recombination and its recruitment to DSBs is mediated by many factors including RAD51, its paralogs, and breast/ovarian cancer susceptibility gene products BRCA1/2. Deregulation of these factors leads to impaired DNA repair, genomic instability, and cellular sensitivity to chemotherapeutics such as cisplatin and PARP inhibitors. microRNAs (miRNA) are short, noncoding RNAs that posttranscriptionally regulate gene expression; however, the contribution of miRNAs in the regulation of homologous recombination is not well understood. To address this, a library of human miRNA mimics was systematically screened to pinpoint several miRNAs that significantly reduce RAD51 foci formation in response to ionizing radiation in human osteosarcoma cells. Subsequent study focused on two of the strongest candidates, miR-103 and miR-107, as they are frequently deregulated in cancer. Consistent with the inhibition of RAD51 foci formation, miR-103 and miR-107 reduced homology-directed repair and sensitized cells to various DNA-damaging agents, including cisplatin and a PARP inhibitor. Mechanistic analyses revealed that both miR-103 and miR-107 directly target and regulate RAD51 and RAD51D, which is critical for miR-103/107-mediated chemosensitization. Furthermore, endogenous regulation of RAD51D by miR-103/107 was observed in several tumor subtypes. Taken together, these data show that miR-103 and miR-107 overexpression promotes genomic instability and may be used therapeutically to chemosensitize tumors. IMPLICATIONS These findings demonstrate a role for miR-103 and -107 in regulating DNA damage repair, thereby identifying new players in the progression of cancer and response to chemotherapy.
Collapse
Affiliation(s)
- Jen-Wei Huang
- Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, C1-015, Seattle, WA 98109-1024.
| | | | | | | | | | | | | | | | | |
Collapse
|
279
|
Wu J, Wei JJ. HMGA2 and high-grade serous ovarian carcinoma. J Mol Med (Berl) 2013; 91:1155-65. [PMID: 23686260 DOI: 10.1007/s00109-013-1055-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 05/06/2013] [Accepted: 05/08/2013] [Indexed: 02/07/2023]
Abstract
HMGA2, the High Mobility Group A2 gene, plays a very important role in fetal development and carcinogenesis. As an oncofetal gene, it is upregulated in tumors of both epithelial and mesenchymal tissue origin. Chromosomal translocations of HMGA2 are common in mesenchymal tumors, whereas the regulatory mechanisms of HMGA2 in malignant epithelial tumors are much more complex. As an architectural transcription factor, it is involved in multiple biological pathways by targeting different downstream genes in different cancers. HMGA2 is upregulated in both the early and late stages of high-grade serous ovarian carcinoma (HGSOC) and, according to The Cancer Genomic Atlas, is among a signature of genes overexpressed in ovarian cancer. Recent identification of miR-182 as a mediator of BRCA1 and HMGA2 deregulation in ovarian cancer cells may guide us toward a better understanding of the roles of HMGA2 in ovarian carcinogenesis. In this article, we will review recent developments and findings related to HMGA2, including its regulation, oncogenic properties, major functional pathways associated with the tumorigenesis of HGSOC, and its potential role as a biomarker for clinical application.
Collapse
Affiliation(s)
- Jingjing Wu
- Department of Pathology, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | | |
Collapse
|
280
|
Wang PY, Gong HT, Li BF, Lv CL, Wang HT, Zhou HH, Li XX, Xie SY, Jiang BF. Higher expression of circulating miR-182 as a novel biomarker for breast cancer. Oncol Lett 2013; 6:1681-1686. [PMID: 24260062 PMCID: PMC3834356 DOI: 10.3892/ol.2013.1593] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2013] [Accepted: 09/09/2013] [Indexed: 01/07/2023] Open
Abstract
MicroRNAs (miRNAs), present in the serum in a stable and reproducible manner, may be used as biomarkers for various diseases. Few studies have previously investigated circulating miRNAs in the peripheral blood of breast cancer (BC) patients. To identify the role of serum miR-182 levels in BC, the present study detected miR-182 levels in the serum of 46 BC patients and 58 controls, by quantitative PCR. The results showed that the serum miR-182 levels in BC patients were significantly higher compared with the serum of healthy controls (P<0.01). The miR-182 was also overexpressed in the BC tissues compared with the para-carcinoma tissues. Furthermore, the serum levels of miR-182 in the estrogen receptor (ER)-positive patients were considerably lower compared with those in the ER-negative patients. The serum levels of miR-182 in the progesterone receptor (PR)-positive patients were also found to be lower compared with those in the PR-negative patients. The current study highlights results consistent with miR-182 as a novel and valuable biomarker for the diagnosis of BC.
Collapse
Affiliation(s)
- Ping-Yu Wang
- School of Public Health, Shandong University, Jinan, Shandong 250012, P.R. China ; Key Laboratory of Tumour Molecular Biology in Binzhou Medical University, Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | | | | | | | | | | | | | | | | |
Collapse
|
281
|
Báez A, Martín-Antonio B, Piruat JI, Prats C, Álvarez-Laderas I, Barbado MV, Carmona M, Urbano-Ispizua Á, Pérez-Simón JA. Granulocyte colony-stimulating factor produces long-term changes in gene and microRNA expression profiles in CD34+ cells from healthy donors. Haematologica 2013; 99:243-51. [PMID: 24056818 DOI: 10.3324/haematol.2013.086959] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Granulocyte colony-stimulating factor is the most commonly used cytokine for the mobilization of hematopoietic progenitor cells from healthy donors for allogeneic stem cell transplantation. Although the administration of this cytokine is considered safe, knowledge about its long-term effects, especially in hematopoietic progenitor cells, is limited. On this background, the aim of our study was to analyze whether or not granulocyte colony-stimulating factor induces changes in gene and microRNA expression profiles in hematopoietic progenitor cells from healthy donors, and to determine whether or not these changes persist in the long-term. For this purpose, we analyzed the whole genome expression profile and the expression of 384 microRNA in CD34(+) cells isolated from peripheral blood of six healthy donors, before mobilization and at 5, 30 and 365 days after mobilization with granulocyte colony-stimulating factor. Six microRNA were differentially expressed at all time points analyzed after mobilization treatment as compared to the expression in samples obtained before exposure to the drug. In addition, 2424 genes were also differentially expressed for at least 1 year after mobilization. Of interest, 109 of these genes are targets of the differentially expressed microRNA also identified in this study. These data strongly suggest that granulocyte colony-stimulating factor modifies gene and microRNA expression profiles in hematopoietic progenitor cells from healthy donors. Remarkably, some changes are present from early time-points and persist for at least 1 year after exposure to the drug. This effect on hematopoietic progenitor cells has not been previously reported.
Collapse
|
282
|
Chaudhry MA, Omaruddin RA, Brumbaugh CD, Tariq MA, Pourmand N. Identification of radiation-induced microRNA transcriptome by next-generation massively parallel sequencing. JOURNAL OF RADIATION RESEARCH 2013; 54:808-822. [PMID: 23447695 PMCID: PMC3766286 DOI: 10.1093/jrr/rrt014] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 01/28/2013] [Accepted: 01/31/2013] [Indexed: 05/29/2023]
Abstract
Gene regulation in cells exposed to ionizing radiation (IR) occurs at the transcriptional and post-transcriptional levels. Recent studies have suggested that micro-RNA (miRNA) play a significant role in post-transcriptional gene regulation in irradiated cells. miRNA are RNA molecules 18-24 nucleotides in length that are involved in negatively regulating the stability or translation of target messenger RNA. Previous studies from our laboratory have shown that the expression of various miRNA is altered in IR-treated cells. In the present study we monitored genome-wide expression changes of miRNA transcriptome by massively parallel sequencing of human cells irradiated with X-rays. The baseline expression of 402 miRNA indicated a wide range of modulation without exposure to IR. Differences in the expression of many miRNA were observed in a time-dependent fashion following radiation treatment. The Short Time-series Expression Miner (STEM) clustering tool was used to characterize 190 miRNA to six statistically significant temporal expression profiles. miR-19b and miR-93 were induced and miR-222, miR-92a, and miR-941 were repressed after radiation treatment. miR-142-3p, miR-142-5p, miR-107, miR-106b, miR-191, miR-21, miR-26a, miR-182, miR-16, miR-146a, miR-22 and miR-30e exhibited two peaks of induction: one at 8 h and the other at 24 h post-irradiation. miR-378, miR-let-7a, miR-let-7g, miR-let-7f, miR-103b, miR-486-3p, miR-423-5p, miR-4448, miR-3607-5p, miR-20b, miR-130b, miR-155, miR-181, miR-30d and miR-378c were induced only at the 8-h time-point. This catalogue of the inventory of miRNA that are modulated as a response to radiation exposure will be useful for explaining the mechanisms of gene regulation under conditions of stress.
Collapse
Affiliation(s)
- M. Ahmad Chaudhry
- Department of Medical Laboratory and Radiation Sciences, University of Vermont, Burlington, VT 05405, USA
| | - Romaica A. Omaruddin
- Department of Medical Laboratory and Radiation Sciences, University of Vermont, Burlington, VT 05405, USA
| | - Christopher D. Brumbaugh
- Department of Biomolecular Engineering, University of California at Santa Cruz, Santa Cruz, CA 95064, USA
| | - Muhammad A. Tariq
- Department of Biomolecular Engineering, University of California at Santa Cruz, Santa Cruz, CA 95064, USA
| | - Nader Pourmand
- Department of Biomolecular Engineering, University of California at Santa Cruz, Santa Cruz, CA 95064, USA
| |
Collapse
|
283
|
Huang CX, Zhu Y, Duan GL, Yao JF, Li ZY, Li D, Wang QQ. Screening for MiRNAs Related to Laryngeal Squamous Carcinoma Stem Cell Radiation. Asian Pac J Cancer Prev 2013; 14:4533-7. [DOI: 10.7314/apjcp.2013.14.8.4533] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
284
|
Repression of ATR pathway by miR-185 enhances radiation-induced apoptosis and proliferation inhibition. Cell Death Dis 2013; 4:e699. [PMID: 23807228 PMCID: PMC3702279 DOI: 10.1038/cddis.2013.227] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cellular responses to DNA damage induced by intrinsic and extrinsic genotoxic stresses are highly regulated by complex signaling pathways, such as activation of the phosphoinositide-3-kinase-like protein kinase family and their downstream genes. Disruption of these signaling pathways leads to genome instability and cell death, and thus may provide potential novel strategies for cancer therapy. Here, we find that the expression of a human microRNA (miRNA), hsa-miR-185, is downregulated in response to ionizing radiation. Elevation of miR-185 sensitizes renal cell carcinoma cells to X-rays both in vitro and in vivo. Bioinformatic analysis shows that the ATM- and Rad3-related (ATR) kinase, a master conductor of cellular responses to DNA damage and DNA replication stresses, is a target of miR-185. This prediction was validated by luciferase reporter and mutation assays. We also demonstrated that miR-185 negatively regulates ATR expression at post-transcriptional level. miR-185 enhances radiation-induced apoptosis and inhibition of proliferation by repressing ATR pathway. In conclusion, our findings indicate a previously unreported regulatory mechanism for ATR expression mediated by miR-185 and shed light on the potential application of miRNAs both as direct cancer therapeutics and as tools to sensitize tumor cells to radiotherapy.
Collapse
|
285
|
Wan G, Zhang X, Langley RR, Liu Y, Hu X, Han C, Peng G, Ellis LM, Jones SN, Lu X. DNA-damage-induced nuclear export of precursor microRNAs is regulated by the ATM-AKT pathway. Cell Rep 2013; 3:2100-12. [PMID: 23791529 DOI: 10.1016/j.celrep.2013.05.038] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 04/25/2013] [Accepted: 05/23/2013] [Indexed: 12/13/2022] Open
Abstract
Expression of microRNAs (miRNAs) involves transcription of miRNA genes and maturation of the primary transcripts. Recent studies have shown that posttranscriptional processing of primary and precursor miRNAs is induced after DNA damage through regulatory RNA-binding proteins in the Drosha and Dicer complexes, such as DDX5 and KSRP. However, little is known about the regulation of nuclear export of pre-miRNAs in the DNA-damage response, a critical step in miRNA maturation. Here, we show that nuclear export of pre-miRNAs is accelerated after DNA damage in an ATM-dependent manner. The ATM-activated AKT kinase phosphorylates Nup153, a key component of the nucleopore, leading to enhanced interaction between Nup153 and Exportin-5 (XPO5) and increased nuclear export of pre-miRNAs. These findings define an important role of DNA-damage signaling in miRNA transport and maturation.
Collapse
Affiliation(s)
- Guohui Wan
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
286
|
Lee YJ, Hallenbeck JM. SUMO and ischemic tolerance. Neuromolecular Med 2013; 15:771-81. [PMID: 23775726 DOI: 10.1007/s12017-013-8239-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 06/07/2013] [Indexed: 12/18/2022]
Abstract
Hibernating squirrels slow blood flow to a crawl, but sustain no damage to brain or other tissues. This phenomenon provides an excellent model of natural tolerance to ischemia. Small ubiquitin-like modifier (SUMO) is a 100-residue peptide that modifies other proteins by being attached to the epsilon amino group of specific lysine residues. The discovery of massive SUMOylation (by both SUMO-1 and SUMO-2/3) occurring in the brains of 13-lined ground squirrels (Ictidomys tridecemlineatus) during hibernation torpor had opened the door to the studies on SUMO and ischemic tolerance reviewed here. Ischemic stress was shown to increase the levels of SUMO conjugation, especially SUMO-2/3, mostly during reperfusion in animal models and during restoration of oxygen and glucose in cell culture systems. Over-expression or depletion of SUMOs and/or Ubc9 (the SUMO E2 conjugating enzyme) increases or decreases (respectively) the levels of SUMO conjugates. Elevated global SUMO conjugations were shown to cytoprotect from ischemic insults; conversely, depressed SUMOylation sensitized cells. Global protein conjugation not only by SUMOs, but also by other ubiquitin-like modifiers (ULMs) including NEDD8, ISG15, UFM1 and FUB1 was shown to be significantly increased in the brains of hibernating ground squirrels during torpor. These increases in multiple ULM conjugations may orchestrate the cellular events in hibernating ground squirrels that induce a state of natural tolerance through their multipronged effects. Certain miRNAs such as the miR-200 family and the miR-182 family were shown, at least partly, to control the levels of these ULM conjugations. Lowering the levels of these miRNAs leads to an increase in global SUMOylation/ULM conjugation, thereby providing the tolerance to ischemia. This suggests that these miRNAs may be good targets for therapeutic intervention in stroke.
Collapse
Affiliation(s)
- Yang-ja Lee
- Stroke Branch, National Institute of Neurological Disease and Stroke, National Institutes of Health (NINDS/NIH), Bldg10/Rm5B06, MSC 1401, 10 Center Drive, Bethesda, MD, 20892, USA,
| | | |
Collapse
|
287
|
MicroRNAs as therapeutic targets in chemoresistance. Drug Resist Updat 2013; 16:47-59. [PMID: 23757365 DOI: 10.1016/j.drup.2013.05.001] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2012] [Accepted: 01/10/2013] [Indexed: 12/19/2022]
Abstract
Despite substantial progress in understanding the cancer signaling network, effective therapies remain scarce due to insufficient disruption of oncogenic pathways, drug resistance and drug-induced toxicity. New and more creative approaches are therefore required for the treatment of cancer. MicroRNAs (miRNAs) are a family of small noncoding RNAs that regulate gene expression by sequence-selective targeting of mRNAs, leading to a translational repression or mRNA degradation. Experimental evidence demonstrates that dysregulation of specific miRNAs leads to drug resistance in different cancers and correction of these miRNAs using miRNA mimics or antagomiRs can normalize the gene regulatory network and signaling pathways and sensitize cancerous cells to chemotherapy. Therefore, miRNA-based gene therapy provides an attractive anti-tumor approach for integrated cancer therapy. Here, we will discuss the involvement of microRNAs in chemotherapy resistance and focus on recent advancements in the development and delivery of miRNA-based cancer therapeutics.
Collapse
|
288
|
Tsuchiyama K, Ito H, Taga M, Naganuma S, Oshinoya Y, Nagano KI, Yokoyama O, Itoh H. Expression of microRNAs associated with Gleason grading system in prostate cancer: miR-182-5p is a useful marker for high grade prostate cancer. Prostate 2013. [PMID: 23184537 DOI: 10.1002/pros.22626] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND Expression profiles of some microRNAs (miRNAs) were associated with clinicopathological findings in human prostate cancer (PC), but the relative expression of miRNAs among Gleason patterns (GPs) remains unclear. In this study, we investigated the expression of several known microRNAs in each GP of PC. METHODS Formalin-fixed, paraffin embedded (FFPE) tissue samples were obtained from radical prostatectomy (RP) (patient set 1, n = 43, including (GP 3) n = 22, (GP 4) n = 35, and (GP 5) n = 12) and needle biopsy (patient set 2, n = 10, (GP 4) n = 10). Cancer tissues from each GP and adjacent normal counterparts were separately collected using laser-captured microdissection (LCM). Real-time RT-PCR was performed to determine the relative expression of miRNAs, including miR-31-5p, -34c-5p, -96-5p, -182-5p, -183-5p, -205-5p, -221-3p, and -222-3p, which were currently reported to be involved in PC progression. RESULTS In radical prostatectomy samples, relative expression of miR-31-5p, miR-34c-5p, and miR-205-5p in any GP was significantly decreased compared to normal counterpart. However, no significant difference was detected among GP 3, GP 4, and GP 5. Meanwhile, in the same GP4, expression of miR-31-5p miR-182-5p, and miR-205-5p in cancer tissues obtained from high grade cancer was significantly higher than those obtained from intermediate grade cancer. Validation study using biopsy samples revealed that the relative expression of miR-182-5p was statistically higher in high grade cancer even in same GP4. CONCLUSIONS We confirmed the expression of miR-182-5p depended on the cancer grade even in same GP 4. Expression of miRNA associated with Gleason grading system may contribute to more accurate preoperative cancer risk evaluation.
Collapse
Affiliation(s)
- Katsuki Tsuchiyama
- Division of Tumor Pathology, Department of Pathological Sciences, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | | | | | | | | | | | | | | |
Collapse
|
289
|
Neijenhuis S, Bajrami I, Miller R, Lord CJ, Ashworth A. Identification of miRNA modulators to PARP inhibitor response. DNA Repair (Amst) 2013; 12:394-402. [PMID: 23570906 DOI: 10.1016/j.dnarep.2013.02.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 02/08/2013] [Accepted: 02/11/2013] [Indexed: 02/02/2023]
Abstract
Based on the principle of synthetic lethality, PARP inhibitors have been shown to be very effective in killing cells deficient in homologous recombination (HR), such as those bearing mutations in BRCA1/2. However, questions regarding their wider use persist and other determinants of responsiveness to PARP inhibitor remain to be fully explored. MicroRNAs (miRNAs) are small non-coding RNAs, which serve as post-transcriptional regulators of gene expression and are involved in a wide variety of cellular processes, including the DNA damage response (DDR). However, little is known about whether miRNAs might influence sensitivity to PARP inhibitors. To investigate this, we performed a high throughput miRNA mimetic screen, which identified several miRNAs whose over-expression results in sensitization to the clinical PARP inhibitor olaparib. In particular, our findings indicate that hsa-miR-107 and hsa-miR-222 regulate the DDR and sensitise tumour cells to olaparib by repressing expression of RAD51, thus impairing DSB repair by HR. Moreover, elevated expression of hsa-miR-107 has been observed in a subset of ovarian clear cell carcinomas, which correlates with PARP inhibitor sensitivity and reduced RAD51 expression. Taken together, these observations raise the possibility that these miRNAs could be used as biomarkers to identify patients that may benefit from treatment with PARP inhibitors.
Collapse
Affiliation(s)
- Sari Neijenhuis
- The Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, Fulham Road, London, SW3 6JB, UK
| | | | | | | | | |
Collapse
|
290
|
Kraggerud SM, Hoei-Hansen CE, Alagaratnam S, Skotheim RI, Abeler VM, Rajpert-De Meyts E, Lothe RA. Molecular characteristics of malignant ovarian germ cell tumors and comparison with testicular counterparts: implications for pathogenesis. Endocr Rev 2013; 34:339-76. [PMID: 23575763 PMCID: PMC3787935 DOI: 10.1210/er.2012-1045] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This review focuses on the molecular characteristics and development of rare malignant ovarian germ cell tumors (mOGCTs). We provide an overview of the genomic aberrations assessed by ploidy, cytogenetic banding, and comparative genomic hybridization. We summarize and discuss the transcriptome profiles of mRNA and microRNA (miRNA), and biomarkers (DNA methylation, gene mutation, individual protein expression) for each mOGCT histological subtype. Parallels between the origin of mOGCT and their male counterpart testicular GCT (TGCT) are discussed from the perspective of germ cell development, endocrinological influences, and pathogenesis, as is the GCT origin in patients with disorders of sex development. Integrated molecular profiles of the 3 main histological subtypes, dysgerminoma (DG), yolk sac tumor (YST), and immature teratoma (IT), are presented. DGs show genomic aberrations comparable to TGCT. In contrast, the genome profiles of YST and IT are different both from each other and from DG/TGCT. Differences between DG and YST are underlined by their miRNA/mRNA expression patterns, suggesting preferential involvement of the WNT/β-catenin and TGF-β/bone morphogenetic protein signaling pathways among YSTs. Characteristic protein expression patterns are observed in DG, YST and IT. We propose that mOGCT develop through different developmental pathways, including one that is likely shared with TGCT and involves insufficient sexual differentiation of the germ cell niche. The molecular features of the mOGCTs underline their similarity to pluripotent precursor cells (primordial germ cells, PGCs) and other stem cells. This similarity combined with the process of ovary development, explain why mOGCTs present so early in life, and with greater histological complexity, than most somatic solid tumors.
Collapse
Affiliation(s)
- Sigrid Marie Kraggerud
- Department of Cancer Prevention, Institute for Cancer Research, Oslo University Hospital, N-0310 Oslo, Norway
| | | | | | | | | | | | | |
Collapse
|
291
|
Abstract
Sensory hair cells are exquisitely sensitive vertebrate mechanoreceptors that mediate the senses of hearing and balance. Understanding the factors that regulate the development of these cells is important, not only to increase our understanding of ear development and its functional physiology but also to shed light on how these cells may be replaced therapeutically. In this review, we describe the signals and molecular mechanisms that initiate hair cell development in vertebrates, with particular emphasis on the transcription factor Atoh1, which is both necessary and sufficient for hair cell development. We then discuss recent findings on how microRNAs may modulate the formation and maturation of hair cells. Last, we review recent work on how hair cells are regenerated in many vertebrate groups and the factors that conspire to prevent this regeneration in mammals.
Collapse
Affiliation(s)
- Andrew K Groves
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA.
| | | | | |
Collapse
|
292
|
Hunsberger JG, Fessler EB, Chibane FL, Leng Y, Maric D, Elkahloun AG, Chuang DM. Mood stabilizer-regulated miRNAs in neuropsychiatric and neurodegenerative diseases: identifying associations and functions. Am J Transl Res 2013; 5:450-464. [PMID: 23724168 PMCID: PMC3665918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 04/27/2013] [Indexed: 06/02/2023]
Abstract
Identifying mechanisms to enhance neuroprotection holds tremendous promise in developing new treatments for neuropsychiatric and neurodegenerative diseases. We sought to determine the potential role for microRNAs (miRNAs) in neuroprotection following neuronal death. A neuronal culture system of rat cerebellar granule cells was used to examine miRNA expression changes following glutamate-induced excitotoxicity and neuroprotective treatments. Combination treatment with the mood stabilizers lithium and valproic acid provided near-complete protection from glutamate excitotoxicity. Numerous miRNAs were detected by microarrays to be regulated by the combined lithium and valproic acid treatment, and the following candidates were confirmed using real-time PCR: miR-34a, miR-147b, miR-182, miR-222, miR-495, and miR-690. We then verified the apoptotic actions of miR-34a mimic in a human neuroblastoma cell line (SH-SY5Y) under basal conditions and following endoplasmic reticulum stress. To gain insight into the function of these mood stabilizer-regulated miRNAs, we performed two separate analyses: a candidate approach using Ingenuity Pathway Analysis that was restricted to only our PCR-verified miRNAs, and a global approach using DIANA-mirPath that included all significantly regulated miRNAs. It was observed that the pathways associated with mood stabilizer-regulated miRNAs in our study (global approach) are strongly associated with pathways implicated in neuropsychiatric diseases such as schizophrenia. We also observed an overlap in the mood stabilizer-regulated miRNAs identified from our study along with dysregulated miRNAs in both neuropsychiatric and neurodegenerative disorders. We anticipate that these associations and overlaps implicate critical pathways and miRNAs in disease mechanisms for novel therapeutic treatments that may hold potential for many neurological diseases.
Collapse
Affiliation(s)
- Joshua G Hunsberger
- Molecular Neurobiology Section, National Institute of Mental Health (NIMH), National Institutes of HealthBethesda, MD, USA
| | - Emily B Fessler
- Molecular Neurobiology Section, National Institute of Mental Health (NIMH), National Institutes of HealthBethesda, MD, USA
| | - Fairouz L Chibane
- Molecular Neurobiology Section, National Institute of Mental Health (NIMH), National Institutes of HealthBethesda, MD, USA
| | - Yan Leng
- Molecular Neurobiology Section, National Institute of Mental Health (NIMH), National Institutes of HealthBethesda, MD, USA
| | - Dragan Maric
- National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of HealthBethesda, MD, USA
| | - Abdel G Elkahloun
- National Human Genome Research Institute (NHGRI), National Institutes of HealthBethesda, MD, USA
| | - De-Maw Chuang
- Molecular Neurobiology Section, National Institute of Mental Health (NIMH), National Institutes of HealthBethesda, MD, USA
| |
Collapse
|
293
|
Yu N, Huangyang P, Yang X, Han X, Yan R, Jia H, Shang Y, Sun L. microRNA-7 suppresses the invasive potential of breast cancer cells and sensitizes cells to DNA damages by targeting histone methyltransferase SET8. J Biol Chem 2013; 288:19633-42. [PMID: 23720754 DOI: 10.1074/jbc.m113.475657] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
SET8 (SET domain containing 8) is a histone H4 lysine 20 (H4K20)-specific monomethyltransferase in higher eukaryotes that exerts diverse functions in transcription regulation, DNA repair, tumor metastasis, and genome integrity. The activity of SET8 is tightly controlled during cell cycle through post-translational modifications, including ubiquitination, phosphorylation, and sumoylation. However, how the expression of SET8 is regulated is not fully understood. Here, we report that microRNA-7 is a negative regulator of SET8. We demonstrated that microRNA-7 inhibits H4K20 monomethylation and suppresses epithelial-mesenchymal transition and the invasive potential of breast cancer cells. We showed that microRNA-7 promotes spontaneous DNA damages and sensitizes cells to induced DNA damages. Our experiments provide a molecular mechanism for the regulation of SET8 and extend the biological function of microRNA-7 to DNA damage response, supporting the pursuit of microRNA-7 as a potential target for breast cancer intervention.
Collapse
Affiliation(s)
- Na Yu
- Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China
| | | | | | | | | | | | | | | |
Collapse
|
294
|
Sharma V, Misteli T. Non-coding RNAs in DNA damage and repair. FEBS Lett 2013; 587:1832-9. [PMID: 23684639 DOI: 10.1016/j.febslet.2013.05.006] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 05/03/2013] [Accepted: 05/06/2013] [Indexed: 02/07/2023]
Abstract
Non-coding RNAs (ncRNAs) are increasingly recognized as central players in diverse biological processes. Upon DNA damage, the DNA damage response (DDR) elicits a complex signaling cascade, which includes the induction of multiple ncRNA species. Recent studies indicate that DNA-damage induced ncRNAs contribute to regulation of cell cycle, apoptosis and DNA repair, and thus play a key role in maintaining genome stability. This review summarizes the emerging role of ncRNAs in DNA damage and repair.
Collapse
Affiliation(s)
- Vivek Sharma
- National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|
295
|
Bisso A, Faleschini M, Zampa F, Capaci V, De Santa J, Santarpia L, Piazza S, Cappelletti V, Daidone M, Agami R, Del Sal G. Oncogenic miR-181a/b affect the DNA damage response in aggressive breast cancer. Cell Cycle 2013; 12:1679-87. [PMID: 23656790 PMCID: PMC3713126 DOI: 10.4161/cc.24757] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Breast cancer is a heterogeneous tumor type characterized by a complex spectrum of molecular aberrations, resulting in a diverse array of malignant features and clinical outcomes. Deciphering the molecular mechanisms that fuel breast cancer development and act as determinants of aggressiveness is a primary need to improve patient management. Among other alterations, aberrant expression of microRNAs has been found in breast cancer and other human tumors, where they act as either oncogenes or tumor suppressors by virtue of their ability to finely modulate gene expression at the post-transcriptional level. In this study, we describe a new role for miR-181a/b as negative regulators of the DNA damage response in breast cancer, impacting on the expression and activity of the stress-sensor kinase ataxia telangiectasia mutated (ATM). We report that miR-181a and miR-181b were overexpressed in more aggressive breast cancers, and their expression correlates inversely with ATM levels. Moreover we demonstrate that deregulated expression of miR-181a/b determines the sensitivity of triple-negative breast cancer cells to the poly-ADP-ribose-polymerase1 (PARP1) inhibition. These evidences suggest that monitoring the expression of miR-181a/b could be helpful in tailoring more effective treatments based on inhibition of PARP1 in breast and other tumor types.
Collapse
Affiliation(s)
- Andrea Bisso
- Laboratorio Nazionale CIB, AREA Science Park, Trieste, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
296
|
Mapping genetic alterations causing chemoresistance in cancer: identifying the roads by tracking the drivers. Oncogene 2013; 32:5315-30. [PMID: 23474753 DOI: 10.1038/onc.2013.48] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 01/16/2013] [Accepted: 01/16/2013] [Indexed: 12/12/2022]
Abstract
Although new agents are implemented to cancer therapy, we lack fundamental understandings of the mechanisms of chemoresistance, the main obstacle to cure in cancer. Here we review clinical evidence linking molecular defects to drug resistance across different tumour forms and discuss contemporary experimental evidence exploring these mechanisms. Although evidence, in general, is sparse and fragmentary, merging knowledge links drug resistance, and also sensitivity, to defects in functional pathways having a key role in cell growth arrest or death and DNA repair. As these pathways may act in concert, there is a need to explore multiple mechanisms in parallel. Taking advantage of massive parallel sequencing and other novel high-throughput technologies and base research on biological hypotheses, we now have the possibility to characterize functional defects related to these key pathways and to design a new generation of studies identifying the mechanisms controlling resistance to different treatment regimens in different tumour forms.
Collapse
|
297
|
Suppression of MIM by microRNA-182 activates RhoA and promotes breast cancer metastasis. Oncogene 2013; 33:1287-96. [DOI: 10.1038/onc.2013.65] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 12/18/2012] [Accepted: 01/05/2013] [Indexed: 02/07/2023]
|
298
|
MicroRNAs in the ionizing radiation response and in radiotherapy. Curr Opin Genet Dev 2013; 23:12-9. [PMID: 23453900 DOI: 10.1016/j.gde.2013.01.002] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 12/28/2012] [Accepted: 01/09/2013] [Indexed: 12/15/2022]
Abstract
Radiotherapy is a form of cancer treatment that utilizes the ability of ionizing radiation to induce cell inactivation and cell death, generally via inflicting DNA double-strand breaks. However, different tumors and their normal surrounding tissues are not equally sensitive to radiation, posing a major challenge in the field: to seek out factors that influence radiosensitivity. In this review, we summarize the evidence for microRNA (miRNA) involvement in the radioresponse and discuss their potential as radiosensitizers. MicroRNAs are endogenous small, noncoding RNAs that regulate gene expression posttranscriptionally, influencing many processes including, as highlighted here, cellular sensitivity to radiation. Profiling studies demonstrate that miRNA expression levels change in response to radiation, while certain miRNAs, when overexpressed or knocked down, alter radiosensitivity. Finally, we discuss specific miRNA-target pairs that affect response to radiation and DNA damage as good potential targets for modulating radioresponsitivity.
Collapse
|
299
|
Mueller AC, Sun D, Dutta A. The miR-99 family regulates the DNA damage response through its target SNF2H. Oncogene 2013; 32:1164-72. [PMID: 22525276 PMCID: PMC3407337 DOI: 10.1038/onc.2012.131] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2011] [Revised: 03/05/2012] [Accepted: 03/09/2012] [Indexed: 01/07/2023]
Abstract
Chromatin remodeling factors are becoming known as crucial facilitators of recruitment of repair proteins to sites of DNA damage. Multiple chromatin remodeling protein complexes are now known to be required for efficient double strand break repair. In a screen for microRNAs (miRNAs) that modulate the DNA damage response, we discovered that expression of the miR-99 family of miRNAs correlates with radiation sensitivity. These miRNAs were also transiently induced following radiation. The miRNAs target the SWI/SNF chromatin remodeling factor SNF2H/SMARCA5, a component of the ACF1 complex. We found that by reducing levels of SNF2H, miR-99a and miR-100 reduced BRCA1 localization to sites of DNA damage. Introduction of the miR-99 family of miRNAs into cells reduced the rate and overall efficiency of repair by both homologous recombination and non-homologous end joining. Finally, induction of the miR-99 family following radiation prevents an increase in SNF2H expression and reduces the recruitment of BRCA1 to the sites of DNA damage following a second dose of radiation, reducing the efficiency of repair after multiple rounds of radiation, as used in fractionated radiotherapy.
Collapse
Affiliation(s)
- Adam Christopher Mueller
- Dept. of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Dandan Sun
- Dept. of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Anindya Dutta
- Dept. of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908
| |
Collapse
|
300
|
Montoni A, Robu M, Pouliot E, Shah GM. Resistance to PARP-Inhibitors in Cancer Therapy. Front Pharmacol 2013; 4:18. [PMID: 23450678 PMCID: PMC3583007 DOI: 10.3389/fphar.2013.00018] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Accepted: 02/05/2013] [Indexed: 12/21/2022] Open
Abstract
The pharmacological inhibitors of poly(ADP-ribose) polymerase (PARP) family of proteins have shown promising results in preclinical studies and clinical trials as a monotherapy or in combination therapy for some cancers. Thus, usage of PARP-inhibitors (PARPi) in cancer therapy is bound to increase with time, but resistance of cancer cells to PARPi is also beginning to be observed. Here we review different known and potential mechanisms by which: (i) PARPi kill cancer cells; and (ii) cancer cells develop resistance to PARPi. Understanding the lethality caused by PARPi and the countermeasures deployed by cancers cells to survive PARPi will help us rationalize the use of this new class of drugs in cancer therapy.
Collapse
Affiliation(s)
- Alicia Montoni
- Laboratory for Skin Cancer Research, (CHU-Q) Hospital Research Centre of Laval University, Laval University Québec, QC, Canada
| | | | | | | |
Collapse
|