251
|
|
252
|
Prax M, Bertram R. Metabolic aspects of bacterial persisters. Front Cell Infect Microbiol 2014; 4:148. [PMID: 25374846 PMCID: PMC4205924 DOI: 10.3389/fcimb.2014.00148] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 10/05/2014] [Indexed: 12/23/2022] Open
Abstract
Persister cells form a multi-drug tolerant subpopulation within an isogenic culture of bacteria that are genetically susceptible to antibiotics. Studies with different Gram negative and Gram positive bacteria have identified a large number of genes associated with the persister state. In contrast, the revelation of persister metabolism has only been addressed recently. We here summarize metabolic aspects of persisters, which includes an overview about the bifunctional role of selected carbohydrates as both triggers for the exit from the drug tolerant state and metabolites which persisters feed on. Also alarmones as indicators for starvation have been shown to influence persister levels via different signaling cascades involving the activation of toxin-antitoxin systems and other regulatory factors. Finally, recent data obtained by (13)C-isotopolog profiling demonstrated an active amino acid anabolism in Staphylococcus aureus cultures challenged with high drug concentrations. Understanding the metabolism of persister cells poses challenges but also paves the way for the development of anti-persister compounds.
Collapse
Affiliation(s)
- Marcel Prax
- Department of Microbial Genetics, Faculty of Science, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen Tübingen, Germany
| | - Ralph Bertram
- Department of Microbial Genetics, Faculty of Science, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen Tübingen, Germany
| |
Collapse
|
253
|
Kwan BW, Osbourne DO, Hu Y, Benedik MJ, Wood TK. Phosphodiesterase DosP increases persistence by reducing cAMP which reduces the signal indole. Biotechnol Bioeng 2014; 112:588-600. [PMID: 25219496 DOI: 10.1002/bit.25456] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 08/25/2014] [Accepted: 09/02/2014] [Indexed: 12/18/2022]
Abstract
Persisters are bacteria that are highly tolerant to antibiotics due to their dormant state and are of clinical significance owing to their role in infections. Given that the population of persisters increases in biofilms and that cyclic diguanylate (c-di-GMP) is an intracellular signal that increases biofilm formation, we sought to determine whether c-di-GMP has a role in bacterial persistence. By examining the effect of 30 genes from Escherichia coli, including diguanylate cyclases that synthesize c-di-GMP and phosphodiesterases that breakdown c-di-GMP, we determined that DosP (direct oxygen sensing phosphodiesterase) increases persistence by over a thousand fold. Using both transcriptomic and proteomic approaches, we determined that DosP increases persistence by decreasing tryptophanase activity and thus indole. Corroborating this effect, addition of indole reduced persistence. Despite the role of DosP as a c-di-GMP phosphodiesterase, the decrease in tryptophanase activity was found to be a result of cyclic adenosine monophosphate (cAMP) phosphodiesterase activity. Corroborating this result, the reduction of cAMP via CpdA, a cAMP-specific phosphodiesterase, increased persistence and reduced indole levels similarly to DosP. Therefore, phosphodiesterase DosP increases persistence by reducing the interkingdom signal indole via reduction of the global regulator cAMP.
Collapse
Affiliation(s)
- Brian W Kwan
- Department of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania
| | | | | | | | | |
Collapse
|
254
|
Abstract
The nucleotide second messengers pppGpp and ppGpp [(p)ppGpp] are responsible for the global downregulation of transcription, translation, DNA replication, and growth rate that occurs during the stringent response. More recent studies suggest that (p)ppGpp is also an important effector in many nonstringent processes, including virulence, persister cell formation, and biofilm production. In Bacillus subtilis, (p)ppGpp production is primarily determined by the net activity of RelA, a bifunctional (p)ppGpp synthetase/hydrolase, and two monofunctional (p)ppGpp synthetases, YwaC and YjbM. We observe that in B. subtilis, a relA mutant grows exclusively as unchained, motile cells, phenotypes regulated by the alternative sigma factor SigD. Our data indicate that the relA mutant is trapped in a SigD "on" state during exponential growth, implicating RelA and (p)ppGpp levels in the regulation of cell chaining and motility in B. subtilis. Our results also suggest that minor variations in basal (p)ppGpp levels can significantly skew developmental decision-making outcomes.
Collapse
|
255
|
Ayrapetyan M, Williams TC, Oliver JD. Bridging the gap between viable but non-culturable and antibiotic persistent bacteria. Trends Microbiol 2014; 23:7-13. [PMID: 25449050 DOI: 10.1016/j.tim.2014.09.004] [Citation(s) in RCA: 202] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 09/17/2014] [Accepted: 09/19/2014] [Indexed: 11/25/2022]
Abstract
Microbial dormancy is a widespread phenomenon employed by bacteria to evade environmental threats including antibiotics. This intrinsic mechanism of antibiotic tolerance has drawn special attention to the role of dormancy in human disease, particularly in regards to recurrent infections. Two dormancy states, the viable but non-culturable state and bacterial persistence, both produce antibiotic-tolerant populations capable of withstanding prolonged lethal treatment. Currently described as two distinct forms of dormancy, they are rarely discussed in the same context. We argue here that these two dormant states are closely related phenomena which are part of a shared 'dormancy continuum'. This discussion is intended to stimulate discourse about these seemingly different but very similar dormant states.
Collapse
Affiliation(s)
- Mesrop Ayrapetyan
- Department of Biological Sciences, The University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, NC 28223, USA
| | - Tiffany C Williams
- Department of Biological Sciences, The University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, NC 28223, USA
| | - James D Oliver
- Department of Biological Sciences, The University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, NC 28223, USA.
| |
Collapse
|
256
|
Yasui R, Washizaki A, Furihata Y, Yonesaki T, Otsuka Y. AbpA and AbpB provide anti-phage activity in Escherichia coli. Genes Genet Syst 2014; 89:51-60. [PMID: 25224971 DOI: 10.1266/ggs.89.51] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Bacteria have a variety of resistance mechanisms for surviving bacteriophage infections. Here, we describe a novel anti-phage mechanism in Escherichia coli. Cells harboring a plasmid with the genes abpA and abpB, formerly yfjL and yfjK, blocked the propagation of bacteriophages belonging to three families: T4, T2, T7 and λ phages. Both genes were necessary for the inhibition of phage propagation, and deletion of either chromosomal gene resulted in a 20% increase of progeny compared to wild-type cells. Neither overexpression nor deficiency of AbpA and AbpB had any apparent effect on E. coli growth. We isolated seven suppressor mutants of T4 phage that grew weakly on cells overexpressing AbpA and AbpB, and found that their mutations were all located in gene 41, which encodes a replicative DNA helicase that is essential for DNA replication. Furthermore, we demonstrated that AbpA and AbpB inhibited DNA replication and late gene expression of T4 phage. Similarly, DNA replication of T7 and λ phages was also inhibited by AbpA and AbpB. These results strongly suggest that E. coli AbpA and AbpB target DNA replication of phages to block their propagation.
Collapse
Affiliation(s)
- Ryota Yasui
- Department of Biological Sciences, Graduate School of Science, Osaka University
| | | | | | | | | |
Collapse
|
257
|
Conlon BP. Staphylococcus aureus chronic and relapsing infections: Evidence of a role for persister cells: An investigation of persister cells, their formation and their role in S. aureus disease. Bioessays 2014; 36:991-6. [PMID: 25100240 DOI: 10.1002/bies.201400080] [Citation(s) in RCA: 158] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Staphylococcus aureus is an opportunistic pathogen capable of causing a variety of diseases including osteomyelitis, endocarditis, infections of indwelling devices and wound infections. These infections are often chronic and highly recalcitrant to antibiotic treatment. Persister cells appear to be central to this recalcitrance. A multitude of factors contribute to S. aureus virulence and high levels of treatment failure. These include its ability to colonize the skin and nares of the host, its ability to evade the host immune system and its development of resistance to a variety of antibiotics. Less understood is the phenomenon of persister cells and their role in S. aureus infections and treatment outcome. Persister cells occur as a sub-population of phenotypic variants that are tolerant to antibiotic treatment. This review examines the importance of persisters in chronic and relapsing S. aureus infections and proposes methods for their eradication.
Collapse
Affiliation(s)
- Brian P Conlon
- Antimicrobial Discovery Center, Northeastern University, Boston, MA, USA
| |
Collapse
|
258
|
Isocitrate lyase mediates broad antibiotic tolerance in Mycobacterium tuberculosis. Nat Commun 2014; 5:4306. [PMID: 24978671 DOI: 10.1038/ncomms5306] [Citation(s) in RCA: 189] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 06/05/2014] [Indexed: 01/09/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) is a persistent intracellular pathogen intrinsically tolerant to most antibiotics. However, the specific factors that mediate this tolerance remain incompletely defined. Here we apply metabolomic profiling to discover a common set of metabolic changes associated with the activities of three clinically used tuberculosis drugs, isoniazid, rifampicin and streptomycin. Despite targeting diverse cellular processes, all three drugs trigger activation of Mtb's isocitrate lyases (ICLs), metabolic enzymes commonly assumed to be involved in replenishing of tricarboxylic acid (TCA) cycle intermediates. We further show that ICL-deficient Mtb strains are significantly more susceptible than wild-type Mtb to all three antibiotics, and that this susceptibility can be chemically rescued when Mtb is co-incubated with an antioxidant. These results identify a previously undescribed role for Mtb's ICLs in antioxidant defense as a mechanism of antibiotic tolerance.
Collapse
|
259
|
Lechner S, Prax M, Lange B, Huber C, Eisenreich W, Herbig A, Nieselt K, Bertram R. Metabolic and transcriptional activities of Staphylococcus aureus challenged with high-doses of daptomycin. Int J Med Microbiol 2014; 304:931-40. [PMID: 24980509 DOI: 10.1016/j.ijmm.2014.05.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 05/13/2014] [Accepted: 05/21/2014] [Indexed: 10/25/2022] Open
Abstract
Treatment of stationary growth phase Staphylococcus aureus SA113 with 100-fold of the MIC of the lipopeptide antibiotic daptomycin leaves alive a small fraction of drug tolerant albeit genetically susceptible bacteria. This study shows that cells of this subpopulation exhibit active metabolism even hours after the onset of the drug challenge. Isotopologue profiling using fully (13)C-labeled glucose revealed de novo biosynthesis of the amino acids Ala, Asp, Glu, Ser, Gly and His. The isotopologue composition in Asp and Glu suggested an increased activity of the TCA cycle under daptomycin treatment compared to unaffected stationary growth phase cells. Microarray analysis showed differential expression of specific genes 10 min and 3 h after addition of the drug. Besides factors involved in drug response, a number of metabolic genes appear to shape the signature of daptomycin-tolerant S. aureus cells. These observations will be useful toward the development of new strategies against persisters and related forms of bacterial cells with downshifted physiology.
Collapse
Affiliation(s)
- Sabrina Lechner
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin, Lehrbereich Mikrobielle Genetik, Waldhäuser Str. 70/8, Eberhard Karls Universität Tübingen, 72076 Tübingen, Germany
| | - Marcel Prax
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin, Lehrbereich Mikrobielle Genetik, Waldhäuser Str. 70/8, Eberhard Karls Universität Tübingen, 72076 Tübingen, Germany
| | - Birgit Lange
- Lehrstuhl für Biochemie, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany
| | - Claudia Huber
- Lehrstuhl für Biochemie, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany
| | - Wolfgang Eisenreich
- Lehrstuhl für Biochemie, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany
| | - Alexander Herbig
- Zentrum für Bioinformatik, Forschungsgruppe Integrative Transkriptomik, Eberhard Karls Universität Tübingen, Sand 14, 72076 Tübingen, Germany
| | - Kay Nieselt
- Zentrum für Bioinformatik, Forschungsgruppe Integrative Transkriptomik, Eberhard Karls Universität Tübingen, Sand 14, 72076 Tübingen, Germany
| | - Ralph Bertram
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin, Lehrbereich Mikrobielle Genetik, Waldhäuser Str. 70/8, Eberhard Karls Universität Tübingen, 72076 Tübingen, Germany.
| |
Collapse
|
260
|
Bag S, Das B, Dasgupta S, Bhadra RK. Mutational analysis of the (p)ppGpp synthetase activity of the Rel enzyme of Mycobacterium tuberculosis. Arch Microbiol 2014; 196:575-88. [PMID: 24859914 DOI: 10.1007/s00203-014-0996-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 04/23/2014] [Accepted: 05/13/2014] [Indexed: 11/26/2022]
Abstract
Rel(Mtb), a GTP pyrophosphokinase encoded by the Mycobacterium tuberculosis (Mtb) genome, catalyzes synthesis of (p)ppGpp from ATP and GDP(GTP) and its hydrolysis to GDP(GTP) and pyrophosphate to mediate stringent response, which helps bacteria to survive during nutrient limitation. Like other members of Rel_Spo homologs, Rel(Mtb) has four distinct domains: HD, Rel_Spo (RSD), TGS and ACT. The N-terminal HD and RSD are responsible for (p)ppGpp hydrolysis and synthesis, respectively. In this study, we have dissected the rel(Mtb) gene function and determined the minimal region essential for (p)ppGpp synthetic activity. The Rel(Mtb) and its truncated derivatives were expressed from an arabinose inducible promoter (P(BAD)), and in vivo functional analyses were done in a (p)ppGpp null Escherichia coli strain. Our results indicate that only 243 amino acids (188-430 residues) containing fragment are sufficient for Rel(Mtb) (p)ppGpp synthetic activity. The results were further confirmed by in vitro assays using purified proteins. We further characterized the RSD of Rel(Mtb) by substituting several conserved amino acids with structurally related residues and identified six such residues, which appeared to be critical for maintaining its catalytic activity. Furthermore, we have also extended our analysis to an RSD encoding gene rv1366 of Mtb, and experimental results indicated that the encoded protein Rv1366 is unable to synthesize (p)ppGpp.
Collapse
Affiliation(s)
- Satyabrata Bag
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata, 700 032, India
| | | | | | | |
Collapse
|
261
|
Willenborg J, Willms D, Bertram R, Goethe R, Valentin-Weigand P. Characterization of multi-drug tolerant persister cells in Streptococcus suis. BMC Microbiol 2014; 14:120. [PMID: 24885389 PMCID: PMC4040513 DOI: 10.1186/1471-2180-14-120] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 05/06/2014] [Indexed: 11/30/2022] Open
Abstract
Background Persister cells constitute a subpopulation of dormant cells within a microbial population which are genetically identical but phenotypically different to regular cells. Notably, persister cells show an elevated tolerance to antimicrobial agents. Thus, they are considered to represent a microbial ‘bet-hedging’ strategy and are of particular importance in pathogenic bacteria. Results We studied the ability of the zoonotic pathogen Streptococcus (S.) suis to form multi-drug tolerant variants and identified persister cells dependent on the initial bacterial growth phase. We observed lower numbers of persisters in exponential phase cultures than in stationary growth phase populations. S. suis persister cells showed a high tolerance to a variety of antibiotics, and the phenotype was not inherited as tested with four passages of S. suis populations. Furthermore, we provide evidence that the persister phenotype is related to expression of genes involved in general metabolic pathways since we found higher numbers of persister cells in a mutant strain defective in the catabolic arginine deiminase system as compared to its parental wild type strain. Finally, we observed persister cell formation also in other S. suis strains and pathogenic streptococcal species. Conclusions Taken together, this is the first study that reports multi-drug tolerant persister cells in the zoonotic pathogen S. suis.
Collapse
Affiliation(s)
- Jörg Willenborg
- Institute of Microbiology, University of Veterinary Medicine, Hannover, Germany.
| | | | | | | | | |
Collapse
|
262
|
Abstract
When bacteria grow in a medium with two sugars, they first use the preferred sugar and only then start metabolizing the second one. After the first exponential growth phase, a short lag phase of nongrowth is observed, a period called the diauxie lag phase. It is commonly seen as a phase in which the bacteria prepare themselves to use the second sugar. Here we reveal that, in contrast to the established concept of metabolic adaptation in the lag phase, two stable cell types with alternative metabolic strategies emerge and coexist in a culture of the bacterium Lactococcus lactis. Only one of them continues to grow. The fraction of each metabolic phenotype depends on the level of catabolite repression and the metabolic state-dependent induction of stringent response, as well as on epigenetic cues. Furthermore, we show that the production of alternative metabolic phenotypes potentially entails a bet-hedging strategy. This study sheds new light on phenotypic heterogeneity during various lag phases occurring in microbiology and biotechnology and adjusts the generally accepted explanation of enzymatic adaptation proposed by Monod and shared by scientists for more than half a century.
Collapse
|
263
|
Helaine S, Kugelberg E. Bacterial persisters: formation, eradication, and experimental systems. Trends Microbiol 2014; 22:417-24. [PMID: 24768561 DOI: 10.1016/j.tim.2014.03.008] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 03/16/2014] [Accepted: 03/21/2014] [Indexed: 01/02/2023]
Abstract
Persisters are multidrug-tolerant bacteria that could account for the relapse of infections. For a long time, persisters have been assumed to be nonreplicating dormant bacteria, but the growth status of these recalcitrant cells is still debated. Toxin-antitoxin (TA) modules have an important role in the formation of persisters and several studies show that they can form in response to different triggers. These findings, together with the invention of new tools to study persisters, could have important implications for the development of novel therapeutics to eradicate persisting subpopulations.
Collapse
Affiliation(s)
- Sophie Helaine
- Section of Microbiology, Medical Research Council (MRC) Centre for Molecular Bacteriology and Infection, Imperial College London, Armstrong Road, London SW7 2AZ, UK.
| | - Elisabeth Kugelberg
- Section of Microbiology, Medical Research Council (MRC) Centre for Molecular Bacteriology and Infection, Imperial College London, Armstrong Road, London SW7 2AZ, UK
| |
Collapse
|
264
|
Maisonneuve E, Gerdes K. Molecular Mechanisms Underlying Bacterial Persisters. Cell 2014; 157:539-48. [DOI: 10.1016/j.cell.2014.02.050] [Citation(s) in RCA: 389] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 02/20/2014] [Accepted: 02/25/2014] [Indexed: 10/25/2022]
|
265
|
Amato SM, Brynildsen MP. Nutrient transitions are a source of persisters in Escherichia coli biofilms. PLoS One 2014; 9:e93110. [PMID: 24667358 PMCID: PMC3965526 DOI: 10.1371/journal.pone.0093110] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 03/03/2014] [Indexed: 11/18/2022] Open
Abstract
Chronic and recurrent infections have been attributed to persisters in biofilms, and despite this importance, the mechanisms of persister formation in biofilms remain unclear. The plethora of biofilm characteristics that could give rise to persisters, including slower growth, quorum signaling, oxidative stress, and nutrient heterogeneity, have complicated efforts to delineate formation pathways that generate persisters during biofilm development. Here we sought to specifically determine whether nutrient transitions, which are a common metabolic stress encountered within surface-attached communities, stimulate persister formation in biofilms and if so, to then identify the pathway. To accomplish this, we established an experimental methodology where nutrient availability to biofilm cells could be controlled exogenously, and then used that method to discover that diauxic carbon source transitions stimulated persister formation in Escherichia coli biofilms. Previously, we found that carbon source transitions stimulate persister formation in planktonic E. coli cultures, through a pathway that involved ppGpp and nucleoid-associated proteins, and therefore, tested the functionality of that pathway in biofilms. Biofilm persister formation was also found to be dependent on ppGpp and nucleoid-associated proteins, but the importance of specific proteins and enzymes between biofilm and planktonic lifestyles was significantly different. Data presented here support the increasingly appreciated role of ppGpp as a central mediator of bacterial persistence and demonstrate that nutrient transitions can be a source of persisters in biofilms.
Collapse
Affiliation(s)
- Stephanie M. Amato
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey, United States of America
| | - Mark P. Brynildsen
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
266
|
Amato SM, Fazen CH, Henry TC, Mok WWK, Orman MA, Sandvik EL, Volzing KG, Brynildsen MP. The role of metabolism in bacterial persistence. Front Microbiol 2014; 5:70. [PMID: 24624123 PMCID: PMC3939429 DOI: 10.3389/fmicb.2014.00070] [Citation(s) in RCA: 177] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Accepted: 02/09/2014] [Indexed: 11/13/2022] Open
Abstract
Bacterial persisters are phenotypic variants with extraordinary tolerances toward antibiotics. Persister survival has been attributed to inhibition of essential cell functions during antibiotic stress, followed by reversal of the process and resumption of growth upon removal of the antibiotic. Metabolism plays a critical role in this process, since it participates in the entry, maintenance, and exit from the persister phenotype. Here, we review the experimental evidence that demonstrates the importance of metabolism to persistence, highlight the successes and potential of targeting metabolism in the search for anti-persister therapies, and discuss the current methods and challenges to understand persister physiology.
Collapse
Affiliation(s)
- Stephanie M Amato
- Department of Chemical and Biological Engineering, Princeton University Princeton, NJ, USA
| | - Christopher H Fazen
- Department of Chemical and Biological Engineering, Princeton University Princeton, NJ, USA
| | - Theresa C Henry
- Department of Molecular Biology, Princeton University Princeton, NJ, USA ; Rutgers Robert Wood Johnson Medical School, Rutgers University Piscataway, NJ, USA
| | - Wendy W K Mok
- Department of Chemical and Biological Engineering, Princeton University Princeton, NJ, USA
| | - Mehmet A Orman
- Department of Chemical and Biological Engineering, Princeton University Princeton, NJ, USA
| | - Elizabeth L Sandvik
- Department of Chemical and Biological Engineering, Princeton University Princeton, NJ, USA
| | - Katherine G Volzing
- Department of Chemical and Biological Engineering, Princeton University Princeton, NJ, USA
| | - Mark P Brynildsen
- Department of Chemical and Biological Engineering, Princeton University Princeton, NJ, USA ; Department of Molecular Biology, Princeton University Princeton, NJ, USA
| |
Collapse
|
267
|
Wen Y, Behiels E, Devreese B. Toxin-Antitoxin systems: their role in persistence, biofilm formation, and pathogenicity. Pathog Dis 2014; 70:240-9. [DOI: 10.1111/2049-632x.12145] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 01/15/2014] [Accepted: 01/15/2014] [Indexed: 11/29/2022] Open
Affiliation(s)
- Yurong Wen
- Unit for Biological Mass Spectrometry and Proteomics; Laboratory for Protein Biochemistry and Biomolecular Engineering (L-ProBE); Ghent University; Ghent Belgium
| | - Ester Behiels
- Unit for Biological Mass Spectrometry and Proteomics; Laboratory for Protein Biochemistry and Biomolecular Engineering (L-ProBE); Ghent University; Ghent Belgium
| | - Bart Devreese
- Unit for Biological Mass Spectrometry and Proteomics; Laboratory for Protein Biochemistry and Biomolecular Engineering (L-ProBE); Ghent University; Ghent Belgium
| |
Collapse
|
268
|
Cyclic AMP receptor protein regulates cspD, a bacterial toxin gene, in Escherichia coli. J Bacteriol 2014; 196:1569-77. [PMID: 24509317 DOI: 10.1128/jb.01476-13] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
cspD, a member of cspA family of cold shock genes in Escherichia coli, is not induced during cold shock. Its expression is induced during stationary phase. CspD inhibits DNA replication, and a high level of the protein is toxic to cells. Recently, CspD was proposed to be associated with persister cell formation in E. coli. Here, we show that cyclic AMP receptor protein (CRP) upregulates cspD transcription. Sequence analysis of the cspD upstream region revealed two tandem CRP target sites, CRP site-I (the proximal site centered at -83.5 with respect to the transcription start) and CRP site-II (the distal site centered at -112.5). The results from electrophoretic mobility shift assays showed that CRP indeed binds to these two target sites in PcspD. The promoter-proximal CRP target site was found to play a major role in PcspD activation by CRP, as studied by transcriptional fusions carrying mutations in the target sites. The results from in vitro transcription assays demonstrated that CRP activates PcspD transcription in the absence of additional factors other than RNA polymerase. The requirement for activating region 1 of CRP in PcspD activation, along with the involvement of the 287, 265, and 261 determinants of the α-CTD, suggest that CRP activates by a class I-type mechanism. However, only moderate activation in vitro was observed compared to high activation in vivo, suggesting there might be additional activators of PcspD. Overall, our findings show that CRP, a global metabolic regulator in E. coli, activates a gene potentially related to persistence.
Collapse
|
269
|
Tabone M, Lioy VS, Ayora S, Machón C, Alonso JC. Role of toxin ζ and starvation responses in the sensitivity to antimicrobials. PLoS One 2014; 9:e86615. [PMID: 24489751 PMCID: PMC3906061 DOI: 10.1371/journal.pone.0086615] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 12/13/2013] [Indexed: 11/23/2022] Open
Abstract
A fraction of otherwise antimicrobial-sensitive Bacillus subtilis cells, called persisters, are phenotypically tolerant of antimicrobial treatment. We report that, independently of B. subtilis' growth phase, transient ζ toxin expression induces a dormant state and alters cellular responses so that cells are more sensitive to antimicrobials with different modes of action. This outcome is modulated by fine tuning (p)ppGpp and GTP levels: i) in the presence of low “dysregulated” (p)ppGpp levels (as in relA− cells) hyper-tolerance to both toxin and antimicrobials was observed; ii) physiological or low (p)ppGpp levels (as in the wild-type, sasA−, sasB− and relA−sasA− context) show a normal toxin and antimicrobial tolerance; and iii) lower levels (in relA−sasB−) or absence of (p)ppGpp (in the relA−sasA−sasB− context), in concert with elevated GTP levels, potentiate the efficacy of both toxin and antimicrobial action, rendering tolerance vulnerable to eradication.
Collapse
Affiliation(s)
- Mariangela Tabone
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, (CNB-CSIC), Madrid, Spain
| | - Virginia S. Lioy
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, (CNB-CSIC), Madrid, Spain
| | - Silvia Ayora
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, (CNB-CSIC), Madrid, Spain
| | - Cristina Machón
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, (CNB-CSIC), Madrid, Spain
| | - Juan C. Alonso
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, (CNB-CSIC), Madrid, Spain
- * E-mail:
| |
Collapse
|
270
|
Naka K, Koga M, Yonesaki T, Otsuka Y. RNase HI stimulates the activity of RnlA toxin in Escherichia coli. Mol Microbiol 2014; 91:596-605. [PMID: 24308852 DOI: 10.1111/mmi.12479] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2013] [Indexed: 11/30/2022]
Abstract
A type II toxin-antitoxin system in Escherichia coli, rnlA-rnlB, functions as an anti-phage mechanism. RnlA is a toxin with an endoribonuclease activity and the cognate RnlB inhibits RnlA toxicity in E. coli cells. After bacteriophage T4 infection, RnlA is activated by the disappearance of RnlB, resulting in the rapid degradation of T4 mRNAs and consequently no T4 propagation, when T4 dmd is defective: Dmd is an antitoxin against RnlA for promoting own propagation. Previous studies suggested that the activation of RnlA after T4 infection was regulated by multiple components. Here, we provide the evidence that RNase HI is an essential factor for activation of RnlA. The dmd mutant phage could grow on ΔrnhA (encoding RNase HI) cells, in which RnlA-mediated mRNA cleavage activity was defective. RNase HI bound to RnlA in vivo and enhanced the RNA cleavage activity of RnlA in vitro. In addition, ectopic expression of RnlA in ΔrnlAB ΔrnhA cells has less effect on cell toxicity and RnlA-mediated mRNA degradation than in ΔrnlAB cells. This is the first example of a direct factor for activation of a toxin.
Collapse
Affiliation(s)
- Kenta Naka
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka-shi, Osaka, 560-0043, Japan
| | | | | | | |
Collapse
|
271
|
Persisters, persistent infections and the Yin-Yang model. Emerg Microbes Infect 2014; 3:e3. [PMID: 26038493 PMCID: PMC3913823 DOI: 10.1038/emi.2014.3] [Citation(s) in RCA: 151] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 10/30/2013] [Accepted: 11/26/2013] [Indexed: 12/15/2022]
Abstract
Persisters are a small fraction of quiescent bacterial cells that survive lethal antibiotics or stresses but can regrow under appropriate conditions. Persisters underlie persistent and latent infections and post-treatment relapse, posing significant challenges for the treatment of many bacterial infections. The current definition of persisters has drawbacks, and a Yin–Yang model is proposed to describe the heterogeneous nature of persisters that have to be defined in highly specific conditions. Despite their discovery more than 70 years ago, the mechanisms of persisters are poorly understood. Recent studies have identified a number of genes and pathways that shed light on the mechanisms of persister formation or survival. These include toxin–antitoxin modules, stringent response, DNA repair or protection, phosphate metabolism, alternative energy production, efflux, anti-oxidative defense and macromolecule degradation. More sensitive single-cell techniques are required for a better understanding of persister mechanisms. Studies of bacterial persisters have parallels in other microbes (fungi, parasites, viruses) and cancer stem cells in terms of mechanisms and treatment approaches. New drugs and vaccines targeting persisters are critical for improved treatment of persistent infections and perhaps cancers. Novel treatment strategies for persisters and persistent infections are discussed.
Collapse
|
272
|
Abstract
Microbial drug persistence is a widespread phenomenon in which a subpopulation of microorganisms is able to survive antimicrobial treatment without acquiring resistance-conferring genetic changes. Microbial persisters can cause recurrent or intractable infections, and, like resistant mutants, they carry an increasing clinical burden. In contrast to heritable drug resistance, however, the biology of persistence is only beginning to be unraveled. Persisters have traditionally been thought of as metabolically dormant, nondividing cells. As discussed in this review, increasing evidence suggests that persistence is in fact an actively maintained state, triggered and enabled by a network of intracellular stress responses that can accelerate processes of adaptive evolution. Beyond shedding light on the basis of persistence, these findings raise the possibility that persisters behave as an evolutionary reservoir from which resistant organisms can emerge. As persistence and its consequences come into clearer focus, so too does the need for clinically useful persister-eradication strategies.
Collapse
|
273
|
Kaspy I, Rotem E, Weiss N, Ronin I, Balaban NQ, Glaser G. HipA-mediated antibiotic persistence via phosphorylation of the glutamyl-tRNA-synthetase. Nat Commun 2013; 4:3001. [DOI: 10.1038/ncomms4001] [Citation(s) in RCA: 181] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 11/25/2013] [Indexed: 11/09/2022] Open
|
274
|
Mannitol enhances antibiotic sensitivity of persister bacteria in Pseudomonas aeruginosa biofilms. PLoS One 2013; 8:e84220. [PMID: 24349568 PMCID: PMC3862834 DOI: 10.1371/journal.pone.0084220] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 11/12/2013] [Indexed: 11/19/2022] Open
Abstract
The failure of antibiotic therapies to clear Pseudomonas aeruginosa lung infection, the key mortality factor for cystic fibrosis (CF) patients, is partly attributed to the high tolerance of P. aeruginosa biofilms. Mannitol has previously been found to restore aminoglycoside sensitivity in Escherichia coli by generating a proton-motive force (PMF), suggesting a potential new strategy to improve antibiotic therapy and reduce disease progression in CF. Here, we used the commonly prescribed aminoglycoside tobramycin to select for P. aeruginosa persister cells during biofilm growth. Incubation with mannitol (10-40 mM) increased tobramycin sensitivity of persister cells up to 1,000-fold. Addition of mannitol to pre-grown biofilms was able to revert the persister phenotype and improve the efficacy of tobramycin. This effect was blocked by the addition of a PMF inhibitor or in a P. aeruginosa mutant strain unable to metabolise mannitol. Addition of glucose and NaCl at high osmolarity also improved the efficacy of tobramycin although to a lesser extent compared to mannitol. Therefore, the primary effect of mannitol in reverting biofilm associated persister cells appears to be an active, physiological response, associated with a minor contribution of osmotic stress. Mannitol was tested against clinically relevant strains, showing that biofilms containing a subpopulation of persister cells are better killed in the presence of mannitol, but a clinical strain with a high resistance to tobramycin was not affected by mannitol. Overall, these results suggest that in addition to improvements in lung function by facilitating mucus clearance in CF, mannitol also affects antibiotic sensitivity in biofilms and does so through an active, physiological response.
Collapse
|
275
|
Maisonneuve E, Castro-Camargo M, Gerdes K. (p)ppGpp controls bacterial persistence by stochastic induction of toxin-antitoxin activity. Cell 2013; 154:1140-1150. [PMID: 23993101 DOI: 10.1016/j.cell.2013.07.048] [Citation(s) in RCA: 383] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 05/22/2013] [Accepted: 07/31/2013] [Indexed: 11/17/2022]
Abstract
Persistence refers to the phenomenon in which isogenic populations of antibiotic-sensitive bacteria produce rare cells that transiently become multidrug tolerant. Whether slow growth in a rare subset of cells underlies the persistence phenotype has not be examined in wild-type bacteria. Here, we show that an exponentially growing population of wild-type Escherichia coli cells produces rare cells that stochastically switch into slow growth, that the slow-growing cells are multidrug tolerant, and that they are able to resuscitate. The persistence phenotype depends hierarchically on the signaling nucleotide (p)ppGpp, Lon protease, inorganic polyphosphate, and toxin-antitoxins. We show that the level of (p)ppGpp varies stochastically in a population of exponentially growing cells and that the high (p)ppGpp level in rare cells induces slow growth and persistence. (p)ppGpp triggers slow growth by activating toxin-antitoxin loci through a regulatory cascade depending on inorganic polyphosphate and Lon protease.
Collapse
Affiliation(s)
- Etienne Maisonneuve
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Richardson Road, Newcastle upon Tyne NE2 4AX, UK
| | - Manuela Castro-Camargo
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Richardson Road, Newcastle upon Tyne NE2 4AX, UK
| | - Kenn Gerdes
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Richardson Road, Newcastle upon Tyne NE2 4AX, UK.
| |
Collapse
|
276
|
Basal levels of (p)ppGpp in Enterococcus faecalis: the magic beyond the stringent response. mBio 2013; 4:e00646-13. [PMID: 24065631 PMCID: PMC3781836 DOI: 10.1128/mbio.00646-13] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The stringent response (SR), mediated by the alarmone (p)ppGpp, is a conserved bacterial adaptation system controlling broad metabolic alterations necessary for survival under adverse conditions. In Enterococcus faecalis, production of (p)ppGpp is controlled by the bifunctional protein RSH (for "Rel SpoT homologue"; also known as RelA) and by the monofunctional synthetase RelQ. Previous characterization of E. faecalis strains lacking rsh, relQ, or both revealed that RSH is responsible for activation of the SR and that alterations in (p)ppGpp production negatively impact bacterial stress survival and virulence. Despite its well-characterized role as the effector of the SR, the significance of (p)ppGpp during balanced growth remains poorly understood. Microarrays of E. faecalis strains producing different basal amounts of (p)ppGpp identified several genes and pathways regulated by modest changes in (p)ppGpp. Notably, expression of numerous genes involved in energy generation were induced in the rsh relQ [(p)ppGpp(0)] strain, suggesting that a lack of basal (p)ppGpp places the cell in a "transcriptionally relaxed" state. Alterations in the fermentation profile and increased production of H2O2 in the (p)ppGpp(0) strain substantiate the observed transcriptional changes. We confirm that, similar to what is seen in Bacillus subtilis, (p)ppGpp directly inhibits the activity of enzymes involved in GTP biosynthesis, and complete loss of (p)ppGpp leads to dysregulation of GTP homeostasis. Finally, we show that the association of (p)ppGpp with antibiotic survival does not relate to the SR but rather relates to basal (p)ppGpp pools. Collectively, this study highlights the critical but still underappreciated role of basal (p)ppGpp pools under balanced growth conditions. IMPORTANCE Drug-resistant bacterial infections continue to pose a significant public health threat by limiting therapeutic options available to care providers. The stringent response (SR), mediated by the accumulation of two modified guanine nucleotides collectively known as (p)ppGpp, is a highly conserved stress response that broadly remodels bacterial physiology to a survival state. Given the strong correlation of the SR with the ability of bacteria to survive antibiotic treatment and the direct association of (p)ppGpp production with bacterial infectivity, understanding how bacteria produce and utilize (p)ppGpp may reveal potential targets for the development of new antimicrobial therapies. Using the multidrug-resistant pathogen Enterococcus faecalis as a model, we show that small alterations to (p)ppGpp levels, well below concentrations needed to trigger the SR, severely affected bacterial metabolism and antibiotic survival. Our findings highlight the often-underappreciated contribution of basal (p)ppGpp levels to metabolic balance and stress tolerance in bacteria.
Collapse
|
277
|
Abstract
Bacterial cells may escape the effects of antibiotics without undergoing genetic change; these cells are known as persisters. Unlike resistant cells that grow in the presence of antibiotics, persister cells do not grow in the presence of antibiotics. These persister cells are a small fraction of exponentially growing cells (due to carryover from the inoculum) but become a significant fraction in the stationary phase and in biofilms (up to 1%). Critically, persister cells may be a major cause of chronic infections. The mechanism of persister cell formation is not well understood, and even the metabolic state of these cells is debated. Here, we review studies relevant to the formation of persister cells and their metabolic state and conclude that the best model for persister cells is still dormancy, with the latest mechanistic studies shedding light on how cells reach this dormant state.
Collapse
|
278
|
|
279
|
Establishment of a method to rapidly assay bacterial persister metabolism. Antimicrob Agents Chemother 2013; 57:4398-409. [PMID: 23817376 DOI: 10.1128/aac.00372-13] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial persisters exhibit an extraordinary tolerance to antibiotics that is dependent on their metabolic state. Although persister metabolism promises to be a rich source of antipersister strategies, there is relatively little known about the metabolism of these rare and transient phenotypic variants. To address this knowledge gap, we explored the use of several techniques, and we found that only one measured persister metabolism. This assay was based on the phenomenon of metabolite-enabled aminoglycoside killing of persisters, and we used it to characterize the metabolic heterogeneity of different persister populations. From these investigations, we determined that glycerol and glucose are the most ubiquitously used carbon sources by various types of Escherichia coli persisters, suggesting that these metabolites might prove beneficial to deliver in conjunction with aminoglycosides for the treatment of chronic and recurrent infections. In addition, we demonstrated that the persister metabolic assay developed here is amenable to high-throughput screening with the use of phenotype arrays.
Collapse
|
280
|
Dormancy is not necessary or sufficient for bacterial persistence. Antimicrob Agents Chemother 2013; 57:3230-9. [PMID: 23629720 DOI: 10.1128/aac.00243-13] [Citation(s) in RCA: 184] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The antibiotic tolerances of bacterial persisters have been attributed to transient dormancy. While persisters have been observed to be growth inhibited prior to antibiotic exposure, we sought to determine whether such a trait was essential to the phenotype. Furthermore, we sought to provide direct experimental evidence of the persister metabolic state so as to determine whether the common assumption of metabolic inactivity was valid. Using fluorescence-activated cell sorting (FACS), a fluorescent indicator of cell division, a fluorescent measure of metabolic activity, and persistence assays, we found that bacteria that are rapidly growing prior to antibiotic exposure can give rise to persisters and that a lack of replication or low metabolic activity prior to antibiotic treatment simply increases the likelihood that a cell is a persister. Interestingly, a lack of significant growth or metabolic activity does not guarantee persistence, as the majority of even "dormant" subpopulations (>99%) were not persisters. These data suggest that persistence is far more complex than dormancy and point to additional characteristics needed to define the persister phenotype.
Collapse
|