251
|
Abstract
Many bacterial species contain dynamin-like proteins (DLPs). However, so far the functional mechanisms of bacterial DLPs are poorly understood. DynA in Bacillus subtilis is a 2-headed DLP, mediating nucleotide-independent membrane tethering in vitro and contributing to the innate immunity of bacteria against membrane stress and phage infection. Here, we employed content mixing and lipid mixing assays in reconstituted systems to study if DynA induces membrane full fusion, characterize its subunits in membrane fusion, and further test the possibility that GTP hydrolysis of DynA may act on the fusion-through-hemifusion pathway. Our results based on fluorescence resonance energy transfer indicated that DynA could induce aqueous content mixing even in the absence of GTP. Moreover, DynA-induced membrane fusion in vitro is a thermo-promoted slow process, and it has phospholipid and membrane curvature preferences. The D1 part of DynA is crucial for membrane binding and fusion, whereas D2 subunit plays a role in facilitating membrane fusion. Surprisingly, digestion of DynA mediated an instant rise of content exchange, supporting the assumption that disassembly of DynA is a driving force for fusion-through-hemifusion. DynA is a rare example of a membrane fusion catalyst that lacks a transmembrane domain and hence sets this system apart from well-characterized fusion systems such as the soluble N-ethyl maleimide sensitive factor attachment protein receptor complexes.-Guo, L., Bramkamp, M. Bacterial dynamin-like protein DynA mediates lipid and content mixing.
Collapse
Affiliation(s)
- Lijun Guo
- Ludwig-Maximilians-Universität München, Fakultät Biologie, Planegg-Martinsried, Germany
| | - Marc Bramkamp
- Ludwig-Maximilians-Universität München, Fakultät Biologie, Planegg-Martinsried, Germany
| |
Collapse
|
252
|
Liu X, Sun J, Yuan P, Shou K, Zhou Y, Gao W, She J, Hu J, Yang J, Yang J. Mfn2 inhibits proliferation and cell-cycle in Hela cells via Ras-NF-κB signal pathway. Cancer Cell Int 2019; 19:197. [PMID: 31384172 PMCID: PMC6664827 DOI: 10.1186/s12935-019-0916-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 07/19/2019] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Mitofusin 2 (Mfn2) is outer membrane protein, as the inhibitor of Ras protein. This study aimed to investigate the effect of Mfn2 on cell proliferation, and cell-cycle in Hela cervical carcinoma cell lines. METHODS After treated with Adv-mfn2 or Adv-control for 48 h and 60 h, the RNA and protein of Mfn2 in Hela cells were detected by qRT-PCR and western blot. The immunofluorescence assay was performed to observe the expression and sub-location of Mfn2 in Hela cells. The flow cytometry was performed to detect the cell cycle of Hela cells, while western blots were performed to observe the Ras-NF-κB signal pathway. Then, the xenografted cervix carcinoma mouse model was used to confirm the effect of Mfn2 in Hela cells in vivo and the expression of Ras-NF-κB signaling pathway in vivo. RESULTS In immunofluorescence detection, Mfn2 was located in cytoplasmic, not in the nucleus. In addition, Mfn2 inhibited cell proliferation of Hela cells through reducing PCNA protein expression. Mfn2 induced arrest in G0/G1 phase of the cell cycle in Hela cells. Meanwhile, Mfn2 reduced Cyclin D1 protein expression. Moreover, Mfn2 decreased the Ras signal pathway proteins such as Myc, NF-κB p65, STAT3 in a dose-dependent manner. Then, the in vivo experiment also confirmed that Mfn2 could inhibit the tumor growth, and depress the Cyclin D1, Ras, Myc, NF-κB p65, Erk1/2 and mTOR protein expression. CONCLUSIONS Mfn2 could significantly inhibit cell proliferation in Hela cells. It might be acted as an potential anti-cancer target through inducing cell cycle arrest in human cervical carcinoma cells.
Collapse
Affiliation(s)
- Xiaowen Liu
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, Medical College, China Three Gorges University, Yichang, China
- Institute of Cardiovascular Research & Department of Center Experiment Laboratory, the First College of Clinical Medical Science, China Three Gorges University, Yichang, 44300 China
| | - Jun Sun
- Department of Biochemistry and Molecular Biology, Basic Medical College, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ping Yuan
- Department of Biochemistry and Molecular Biology, Basic Medical College, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kangquan Shou
- Institute of Cardiovascular Research & Department of Center Experiment Laboratory, the First College of Clinical Medical Science, China Three Gorges University, Yichang, 44300 China
| | - Yuanhong Zhou
- Institute of Cardiovascular Research & Department of Center Experiment Laboratory, the First College of Clinical Medical Science, China Three Gorges University, Yichang, 44300 China
| | - Wenqi Gao
- Institute of Cardiovascular Research & Department of Center Experiment Laboratory, the First College of Clinical Medical Science, China Three Gorges University, Yichang, 44300 China
| | - Jin She
- Institute of Cardiovascular Research & Department of Center Experiment Laboratory, the First College of Clinical Medical Science, China Three Gorges University, Yichang, 44300 China
| | - Jun Hu
- Institute of Cardiovascular Research & Department of Center Experiment Laboratory, the First College of Clinical Medical Science, China Three Gorges University, Yichang, 44300 China
| | - Jun Yang
- Institute of Cardiovascular Research & Department of Center Experiment Laboratory, the First College of Clinical Medical Science, China Three Gorges University, Yichang, 44300 China
| | - Jian Yang
- Institute of Cardiovascular Research & Department of Center Experiment Laboratory, the First College of Clinical Medical Science, China Three Gorges University, Yichang, 44300 China
| |
Collapse
|
253
|
Seidlmayer LK, Mages C, Berbner A, Eder-Negrin P, Arias-Loza PA, Kaspar M, Song M, Dorn GW, Kohlhaas M, Frantz S, Maack C, Gerull B, Dedkova EN. Mitofusin 2 Is Essential for IP 3-Mediated SR/Mitochondria Metabolic Feedback in Ventricular Myocytes. Front Physiol 2019; 10:733. [PMID: 31379586 PMCID: PMC6658196 DOI: 10.3389/fphys.2019.00733] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 05/27/2019] [Indexed: 12/19/2022] Open
Abstract
Aim: Endothelin-1 (ET-1) and angiotensin II (Ang II) are multifunctional peptide hormones that regulate the function of the cardiovascular and renal systems. Both hormones increase the intracellular production of inositol-1,4,5-trisphosphate (IP3) by activating their membrane-bound receptors. We have previously demonstrated that IP3-mediated sarcoplasmic reticulum (SR) Ca2+ release results in mitochondrial Ca2+ uptake and activation of ATP production. In this study, we tested the hypothesis that intact SR/mitochondria microdomains are required for metabolic IP3-mediated SR/mitochondrial feedback in ventricular myocytes. Methods: As a model for disrupted mitochondrial/SR microdomains, cardio-specific tamoxifen-inducible mitofusin 2 (Mfn2) knock out (KO) mice were used. Mitochondrial Ca2+ uptake, membrane potential, redox state, and ATP generation were monitored in freshly isolated ventricular myocytes from Mfn2 KO mice and their control wild-type (WT) littermates. Results: Stimulation of ET-1 receptors in healthy control myocytes increases mitochondrial Ca2+ uptake, maintains mitochondrial membrane potential and redox balance leading to the enhanced ATP generation. Mitochondrial Ca2+ uptake upon ET-1 stimulation was significantly higher in interfibrillar (IFM) and perinuclear (PNM) mitochondria compared to subsarcolemmal mitochondria (SSM) in WT myocytes. Mfn2 KO completely abolished mitochondrial Ca2+ uptake in IFM and PNM mitochondria but not in SSM. However, mitochondrial Ca2+ uptake induced by beta-adrenergic receptors activation with isoproterenol (ISO) was highest in SSM, intermediate in IFM, and smallest in PNM regions. Furthermore, Mfn2 KO did not affect ISO-induced mitochondrial Ca2+ uptake in SSM and IFM mitochondria; however, enhanced mitochondrial Ca2+ uptake in PNM. In contrast to ET-1, ISO induced a decrease in ATP levels in WT myocytes. Mfn2 KO abolished ATP generation upon ET-1 stimulation but increased ATP levels upon ISO application with highest levels observed in PNM regions. Conclusion: When the physical link between SR and mitochondria by Mfn2 was disrupted, the SR/mitochondrial metabolic feedback mechanism was impaired resulting in the inability of the IP3-mediated SR Ca2+ release to induce ATP production in ventricular myocytes from Mfn2 KO mice. Furthermore, we revealed the difference in Mfn2-mediated SR-mitochondrial communication depending on mitochondrial location and type of communication (IP3R-mRyR1 vs. ryanodine receptor type 2-mitochondrial calcium uniporter).
Collapse
Affiliation(s)
- Lea K Seidlmayer
- Department of Internal Medicine, Cardiology, University Hospital Würzburg, Würzburg, Germany.,Comprehensive Heart Failure Center, University of Würzburg, Würzburg, Germany
| | - Christine Mages
- Department of Internal Medicine, Cardiology, University Hospital Würzburg, Würzburg, Germany.,Comprehensive Heart Failure Center, University of Würzburg, Würzburg, Germany
| | - Annette Berbner
- Comprehensive Heart Failure Center, University of Würzburg, Würzburg, Germany
| | - Petra Eder-Negrin
- Comprehensive Heart Failure Center, University of Würzburg, Würzburg, Germany
| | | | - Mathias Kaspar
- Comprehensive Heart Failure Center, University of Würzburg, Würzburg, Germany
| | - Moshi Song
- Department of Internal Medicine, Center for Pharmacogenomics, Washington University School of Medicine, St. Louis, MO, United States
| | - Gerald W Dorn
- Department of Internal Medicine, Center for Pharmacogenomics, Washington University School of Medicine, St. Louis, MO, United States
| | - Michael Kohlhaas
- Comprehensive Heart Failure Center, University of Würzburg, Würzburg, Germany
| | - Stefan Frantz
- Department of Internal Medicine, Cardiology, University Hospital Würzburg, Würzburg, Germany.,Comprehensive Heart Failure Center, University of Würzburg, Würzburg, Germany
| | - Christoph Maack
- Comprehensive Heart Failure Center, University of Würzburg, Würzburg, Germany
| | - Brenda Gerull
- Comprehensive Heart Failure Center, University of Würzburg, Würzburg, Germany
| | - Elena N Dedkova
- Department of Pharmacology, School of Medicine, University of California, Davis, Davis, CA, United States.,Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
254
|
Wang X, Wang X, Zhou Y, Peng C, Chen H, Lu Y. Mitofusin2 regulates the proliferation and function of fibroblasts: The possible mechanisms underlying pelvic organ prolapse development. Mol Med Rep 2019; 20:2859-2866. [PMID: 31322173 DOI: 10.3892/mmr.2019.10501] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 06/06/2019] [Indexed: 11/06/2022] Open
Abstract
The present study aimed to investigate the effects of Mitofusin2 (Mfn2) on the proliferation of human uterosacral ligament fibroblasts and on the expression of procollagen. We also aimed to identify the possible signal transduction pathway involved in the development of pelvic organ prolapse (POP). For this purpose, uterosacral ligaments were harvested from POP and non‑pelvic organ prolapse (NPOP) patients for fibroblast culture. Cellular proliferation and the cell cycle were assessed following transduction with lentiviral vectors for the overexpression and suppression of Mfn2. The expression levels of the proteins Mfn2, procollagens, phosphoprotein 21 wild‑type p53 activating fragment (p21Waf1), cyclin‑dependent kinase 2 (CDK2), extracellular signal‑regulated kinase1/2 (ERK1/2) and rapidly accelerated fibrosarcoma‑1 (Raf‑1) were examined. Overexpression of Mfn2 resulted in the decreased proliferation of cells and the induction of G0/G1 phase arrest. Concomitantly, the relative expression levels of procollagen proteins, CDK2 and the phosphorylation levels of ERK1/2 and Raf‑1 proteins were notably decreased, while the levels of the p21waf1 protein were increased in the Mfn2 overexpressing group. Opposing results were reported cells following Mfn2 silencing via RNA interference. The results of the present study indicated that the cell cycle of the fibroblasts, their cellular proliferation and the levels of the procollagen proteins could be inhibited via the Ras‑Raf‑ERK axis as a result of the increased levels of Mfn2 during the development of POP.
Collapse
Affiliation(s)
- Xiaoqing Wang
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing 100034, P.R. China
| | - Xiaoxiao Wang
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing 100034, P.R. China
| | - Yingfang Zhou
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing 100034, P.R. China
| | - Chao Peng
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing 100034, P.R. China
| | - Huayun Chen
- Department of Obstetrics and Gynecology, Beijing Tsinghua Changgeng Hospital, Beijing 102218, P.R. China
| | - Ye Lu
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing 100034, P.R. China
| |
Collapse
|
255
|
Kostyniuk DJ, Marandel L, Jubouri M, Dias K, de Souza RF, Zhang D, Martyniuk CJ, Panserat S, Mennigen JA. Profiling the rainbow trout hepatic miRNAome under diet-induced hyperglycemia. Physiol Genomics 2019; 51:411-431. [PMID: 31282806 DOI: 10.1152/physiolgenomics.00032.2019] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Carnivorous rainbow trout exhibit prolonged postprandial hyperglycemia when fed a diet exceeding 20% carbohydrate content. This poor capacity to utilize carbohydrates has led to rainbow trout being classified as "glucose-intolerant" (GI). The metabolic phenotype has spurred research to identify the underlying cellular and molecular mechanisms of glucose intolerance, largely because carbohydrate-rich diets provide economic and ecological advantages over traditionally used fish meal, considered unsustainable for rainbow trout aquaculture operations. Evidence points to a contribution of hepatic intermediary carbohydrate and lipid metabolism, as well as upstream insulin signaling. Recently, microRNAs (miRNAs), small noncoding RNAs acting as negative posttranscriptional regulators affecting target mRNA stability and translation, have emerged as critical regulators of hepatic control of glucose-homeostasis in mammals, revealing that dysregulated hepatic miRNAs might play a role in organismal hyperglycemia in metabolic disease. To determine whether hepatic regulatory miRNA networks may contribute to GI in rainbow trout, we induced prolonged postprandial hyperglycemia in rainbow trout by using a carbohydrate-rich diet and profiled genome-wide hepatic miRNAs in hyperglycemic rainbow trout compared with fasted trout and trout fed a diet devoid of carbohydrates. Using small RNA next-generation sequencing and real-time RT-PCR validation, we identified differentially regulated hepatic miRNAs between these groups and used an in silico approach to predict bona fide mRNA targets and enriched pathways. Diet-induced hyperglycemia resulted in differential regulation of hepatic miRNAs compared with fasted fish. Some of the identified miRNAs, such as miRNA-27b-3p and miRNA-200a-3p, are known to be responsive to hyperglycemia in the liver of hyperglycemic glucose-tolerant fish and mammals, suggesting an evolutionary conserved regulation. Using Gene Ontology term-based enrichment analysis, we identify intermediate carbohydrate and lipid metabolism and insulin signaling as potential targets of posttranscriptional regulation by hyperglycemia-regulated miRNAs and provide correlative expression analysis of specific predicted miRNA-target pairs. This study identifies hepatic miRNAs in rainbow trout that exhibit differential postprandial expression in response to diets with different carbohydrate content and predicts posttranscriptionally regulated target mRNAs enriched for pathways involved in glucoregulation. Together, these results provide a framework for testable hypotheses of functional involvement of specific hepatic miRNAs in GI in rainbow trout.
Collapse
Affiliation(s)
| | - Lucie Marandel
- INRA, Université de Pau et Pays d'Adour, UMR 1419, Nutrition, Metabolism and Aquaculture, E2S UPPA, Saint Pée-sur-Nivelle, France
| | - Mais Jubouri
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Karine Dias
- INRA, Université de Pau et Pays d'Adour, UMR 1419, Nutrition, Metabolism and Aquaculture, E2S UPPA, Saint Pée-sur-Nivelle, France
| | - Robson F de Souza
- Microbiology Department, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Dapeng Zhang
- Department of Biology, Saint Louis University, Saint Louis, Missouri
| | - Christopher J Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, UF Genetics Institute, College of Veterinary Medicine, University of Florida, Gainesville, Florida
| | - Stéphane Panserat
- INRA, Université de Pau et Pays d'Adour, UMR 1419, Nutrition, Metabolism and Aquaculture, E2S UPPA, Saint Pée-sur-Nivelle, France
| | - Jan A Mennigen
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
256
|
Mitochondrial Homeostasis and Cellular Senescence. Cells 2019; 8:cells8070686. [PMID: 31284597 PMCID: PMC6678662 DOI: 10.3390/cells8070686] [Citation(s) in RCA: 157] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 07/02/2019] [Accepted: 07/05/2019] [Indexed: 01/07/2023] Open
Abstract
Cellular senescence refers to a stress response aiming to preserve cellular and, therefore, organismal homeostasis. Importantly, deregulation of mitochondrial homeostatic mechanisms, manifested as impaired mitochondrial biogenesis, metabolism and dynamics, has emerged as a hallmark of cellular senescence. On the other hand, impaired mitostasis has been suggested to induce cellular senescence. This review aims to provide an overview of homeostatic mechanisms operating within mitochondria and a comprehensive insight into the interplay between cellular senescence and mitochondrial dysfunction.
Collapse
|
257
|
Mármol-Sánchez E, Quintanilla R, Cardoso TF, Jordana Vidal J, Amills M. Polymorphisms of the cryptochrome 2 and mitoguardin 2 genes are associated with the variation of lipid-related traits in Duroc pigs. Sci Rep 2019; 9:9025. [PMID: 31227735 PMCID: PMC6588565 DOI: 10.1038/s41598-019-45108-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 05/24/2019] [Indexed: 01/06/2023] Open
Abstract
The genetic factors determining the phenotypic variation of porcine fatness phenotypes are still largely unknown. We investigated whether the polymorphism of eight genes (MIGA2, CRY2, NPAS2, CIART, ARNTL2, PER1, PER2 and PCK1), which display differential expression in the skeletal muscle of fasted and fed sows, is associated with the variation of lipid and mRNA expression phenotypes in Duroc pigs. The performance of an association analysis with the GEMMA software demonstrated that the rs330779504 SNP in the MIGA2 gene is associated with LDL concentration at 190 days (LDL2, corrected P-value = 0.057). Moreover, the rs320439526 SNP of the CRY2 gene displayed a significant association with stearic acid content in the longissimus dorsi muscle (LD C18:0, corrected P-value = 0.015). Both SNPs were also associated with the mRNA levels of the corresponding genes in the gluteus medius skeletal muscle. From a biological perspective these results are meaningful because MIGA2 protein plays an essential role in mitochondrial fusion, a process tightly connected with the energy status of the cell, while CRY2 is a fundamental component of the circadian clock. However, inclusion of these two SNPs in chromosome-wide association analyses demonstrated that they are not located at the peaks of significance for the two traits under study (LDL2 for rs330779504 and LD C18:0 for rs320439526), thus implying that these two SNPs do not have causal effects.
Collapse
Affiliation(s)
- Emilio Mármol-Sánchez
- Department of Animal Genetics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus de la Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Raquel Quintanilla
- Animal Breeding and Genetics Programme, Institute for Research and Technology in Food and Agriculture (IRTA), Torre Marimon, Caldes de Montbui, Spain
| | - Taina F Cardoso
- Department of Animal Genetics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus de la Universitat Autònoma de Barcelona, Bellaterra, Spain.,CAPES Foundation, Ministry of Education of Brazil, Brasilia, D. F., Brazil
| | - Jordi Jordana Vidal
- Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Marcel Amills
- Department of Animal Genetics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus de la Universitat Autònoma de Barcelona, Bellaterra, Spain. .,Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, Bellaterra, Spain.
| |
Collapse
|
258
|
Abstract
Significance: In addition to their classical role in cellular ATP production, mitochondria are of key relevance in various (patho)physiological mechanisms including second messenger signaling, neuro-transduction, immune responses and death induction. Recent Advances: Within cells, mitochondria are motile and display temporal changes in internal and external structure ("mitochondrial dynamics"). During the last decade, substantial empirical and in silico evidence was presented demonstrating that mitochondrial dynamics impacts on mitochondrial function and vice versa. Critical Issues: However, a comprehensive and quantitative understanding of the bidirectional links between mitochondrial external shape, internal structure and function ("morphofunction") is still lacking. The latter particularly hampers our understanding of the functional properties and behavior of individual mitochondrial within single living cells. Future Directions: In this review we discuss the concept of mitochondrial morphofunction in mammalian cells, primarily using experimental evidence obtained within the last decade. The topic is introduced by briefly presenting the central role of mitochondria in cell physiology and the importance of the mitochondrial electron transport chain (ETC) therein. Next, we summarize in detail how mitochondrial (ultra)structure is controlled and discuss empirical evidence regarding the equivalence of mitochondrial (ultra)structure and function. Finally, we provide a brief summary of how mitochondrial morphofunction can be quantified at the level of single cells and mitochondria, how mitochondrial ultrastructure/volume impacts on mitochondrial bioreactions and intramitochondrial protein diffusion, and how mitochondrial morphofunction can be targeted by small molecules.
Collapse
Affiliation(s)
- Elianne P. Bulthuis
- Department of Biochemistry (286), Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Merel J.W. Adjobo-Hermans
- Department of Biochemistry (286), Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Peter H.G.M. Willems
- Department of Biochemistry (286), Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Werner J.H. Koopman
- Department of Biochemistry (286), Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
- Address correspondence to: Dr. Werner J.H. Koopman, Department of Biochemistry (286), Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, P.O. Box 9101, Nijmegen NL-6500 HB, The Netherlands
| |
Collapse
|
259
|
Wong YC, Peng W, Krainc D. Lysosomal Regulation of Inter-mitochondrial Contact Fate and Motility in Charcot-Marie-Tooth Type 2. Dev Cell 2019; 50:339-354.e4. [PMID: 31231042 DOI: 10.1016/j.devcel.2019.05.033] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 02/25/2019] [Accepted: 05/16/2019] [Indexed: 10/26/2022]
Abstract
Properly regulated mitochondrial networks are essential for cellular function and implicated in multiple diseases. Mitochondria undergo fission and fusion events, but the dynamics and regulation of a third event of inter-mitochondrial contact formation remain unclear. Using super-resolution imaging, we demonstrate that inter-mitochondrial contacts frequently form and play a fundamental role in mitochondrial networks by restricting mitochondrial motility. Inter-mitochondrial contact untethering events are marked and regulated by mitochondria-lysosome contacts, which are modulated by RAB7 GTP hydrolysis. Moreover, inter-mitochondrial contact formation and untethering are further regulated by Mfn1/2 and Drp1 GTP hydrolysis, respectively. Surprisingly, endoplasmic reticulum tubules are also present at inter-mitochondrial contact untethering events, in addition to mitochondrial fission and fusion events. Importantly, we find that multiple Charcot-Marie-Tooth type 2 disease-linked mutations in Mfn2 (CMT2A), RAB7 (CMT2B), and TRPV4 (CMT2C) converge on prolonged inter-mitochondrial contacts and defective mitochondrial motility, highlighting a role for inter-mitochondrial contacts in mitochondrial network regulation and disease.
Collapse
Affiliation(s)
- Yvette C Wong
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Wesley Peng
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Dimitri Krainc
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
260
|
Social status regulates the hepatic miRNAome in rainbow trout: Implications for posttranscriptional regulation of metabolic pathways. PLoS One 2019; 14:e0217978. [PMID: 31194802 PMCID: PMC6563994 DOI: 10.1371/journal.pone.0217978] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 05/21/2019] [Indexed: 11/19/2022] Open
Abstract
Juvenile rainbow trout develop social hierarchies when held in dyads, and the development of socially subordinate (SS) and social dominance (SD) phenotypes in this context has been linked to specific changes in the hepatic energy metabolism of all major macronutrients. Following our recently reported finding that transcript abundance of drosha, a key component of the microRNA (miRNA) biogenesis pathway, is increased in paired juvenile rainbow trout irrespective of social status compared to socially isolated (SI) controls, we here determined global changes of the hepatic miRNA pathway genes in detail at the transcript and protein level. Both SD and SS rainbow trout exhibited increased Ago2 protein abundance compared to SI rainbow trout, suggesting that hepatic miRNA function is increased in rainbow trout maintained in dyads. Given the well-described differences in hepatic intermediary metabolism between SD and SS rainbow trout, and the important role of miRNAs in the posttranscriptional regulation of metabolic pathways, we also identified changes in hepatic miRNA abundance between SS and SD rainbow trout using small RNA next generation sequencing. We identified a total of 24 differentially regulated miRNAs, with 15 miRNAs that exhibited increased expression, and 9 miRNAs that exhibited decreased expression in the liver of SS trout compared to SD trout. To identify potential miRNA-dependent posttranscriptional regulatory pathways important for social status-dependent regulation of hepatic metabolism in rainbow trout, we used an in silico miRNA target prediction and pathway enrichment approach. We identified enrichment for pathways related to metabolism of carbohydrates, lipids and proteins in addition to organelle-specific processes involved in energy metabolism, especially mitochondrial fusion and fission. Select predicted miRNA-mRNA target pairs within these categories were quantitatively analyzed by real-time RT-PCR to validate candidates for future studies that will probe the functional metabolic roles of specific hepatic miRNAs in the development of SD and SS metabolic phenotypes.
Collapse
|
261
|
Sênos Demarco R, Uyemura BS, D'Alterio C, Jones DL. Mitochondrial fusion regulates lipid homeostasis and stem cell maintenance in the Drosophila testis. Nat Cell Biol 2019; 21:710-720. [PMID: 31160709 DOI: 10.1038/s41556-019-0332-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 04/23/2019] [Indexed: 01/02/2023]
Abstract
The capacity of stem cells to self-renew or differentiate has been attributed to distinct metabolic states. A genetic screen targeting regulators of mitochondrial dynamics revealed that mitochondrial fusion is required for the maintenance of male germline stem cells (GSCs) in Drosophila melanogaster. Depletion of Mitofusin (dMfn) or Opa1 led to dysfunctional mitochondria, activation of Target of rapamycin (TOR) and a marked accumulation of lipid droplets. Enhancement of lipid utilization by the mitochondria attenuated TOR activation and rescued the loss of GSCs that was caused by inhibition of mitochondrial fusion. Moreover, constitutive activation of the TOR-pathway target and lipogenesis factor Sterol regulatory element binding protein (SREBP) also resulted in GSC loss, whereas inhibition of SREBP rescued GSC loss triggered by depletion of dMfn. Our findings highlight a critical role for mitochondrial fusion and lipid homeostasis in GSC maintenance, providing insight into the potential impact of mitochondrial and metabolic diseases on the function of stem and/or germ cells.
Collapse
Affiliation(s)
- Rafael Sênos Demarco
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Bradley S Uyemura
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Cecilia D'Alterio
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - D Leanne Jones
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA. .,Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA. .,Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
262
|
Mitochondria and the Brain: Bioenergetics and Beyond. Neurotox Res 2019; 36:219-238. [DOI: 10.1007/s12640-019-00061-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 05/06/2019] [Indexed: 12/20/2022]
|
263
|
Duraisamy AJ, Mohammad G, Kowluru RA. Mitochondrial fusion and maintenance of mitochondrial homeostasis in diabetic retinopathy. Biochim Biophys Acta Mol Basis Dis 2019; 1865:1617-1626. [PMID: 30922813 DOI: 10.1016/j.bbadis.2019.03.013] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 03/11/2019] [Accepted: 03/22/2019] [Indexed: 01/01/2023]
Abstract
Mitochondria are dynamic in structure, and undergo continuous fusion-fission to maintain their homeostasis. In diabetes, retinal mitochondria are swollen, their membrane is damaged and mitochondrial fusion protein, mitofusin 2 (Mfn2), is decreased. DNA methylation machinery is also activated and methylation status of genes implicated in mitochondrial damage and biogenesis is altered. This study aims to investigate the role of mitochondrial fusion in the development of diabetic retinopathy, and to illustrate the molecular mechanism responsible for Mfn2 suppression. Using human retinal endothelial cells, manipulated for Mfn2, we investigated the role of fusion in mitochondrial structural and functional damage in diabetes. The molecular mechanism of its suppression in diabetic milieu was determined by investigating Mfn2 promoter DNA methylation, and confirmed using molecular and pharmacological inhibitors of DNA methylation. Similar studies were performed in the retinal microvasculature (prepared by hypotonic shock method) of diabetic rats, and human donors with documented diabetic retinopathy. Overexpression of Mfn2 prevented glucose-induced increase in mitochondrial fragmentation, decrease in complex III activity and increase in membrane permeability, mtDNA damage and apoptosis. High glucose hypermethylated Mfn2 promoter and decreased transcription factor (SP1) binding, and Dnmt inhibition protected Mfn2 promoter from these changes. In streptozotocin-induced diabetic rats, intravitreal administration of Dnmt1-siRNA attenuated Mfn2 promoter hypermethylation and restored its expression. Human donors with diabetic retinopathy confirmed Mfn2 promoter DNA hypermethylation. Thus, regulating Mfn2 and its epigenetic modifications by molecular/pharmacological means will protect mitochondrial homeostasis in diabetes, and could attenuate the development of retinopathy in diabetic patients.
Collapse
MESH Headings
- Adult
- Aged
- Animals
- Cell Line
- DNA (Cytosine-5-)-Methyltransferase 1/antagonists & inhibitors
- DNA (Cytosine-5-)-Methyltransferase 1/genetics
- DNA (Cytosine-5-)-Methyltransferase 1/metabolism
- DNA Methylation
- Diabetes Mellitus, Experimental/chemically induced
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/pathology
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/pathology
- Diabetic Retinopathy/genetics
- Diabetic Retinopathy/metabolism
- Diabetic Retinopathy/pathology
- Endothelial Cells/metabolism
- Endothelial Cells/pathology
- Epigenesis, Genetic
- GTP Phosphohydrolases/genetics
- GTP Phosphohydrolases/metabolism
- Homeostasis/genetics
- Humans
- Male
- Middle Aged
- Mitochondria/genetics
- Mitochondria/metabolism
- Mitochondria/pathology
- Mitochondrial Dynamics
- Mitochondrial Proteins/genetics
- Mitochondrial Proteins/metabolism
- Promoter Regions, Genetic
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Rats
- Rats, Wistar
- Retina/metabolism
- Retina/pathology
- Signal Transduction
- Sp1 Transcription Factor/genetics
- Sp1 Transcription Factor/metabolism
- Streptozocin/administration & dosage
Collapse
Affiliation(s)
- Arul J Duraisamy
- Kresge Eye Institute, Department of Ophthalmology, Visual & Anatomical Sciences, Wayne State University, Detroit, MI, United States of America
| | - Ghulam Mohammad
- Kresge Eye Institute, Department of Ophthalmology, Visual & Anatomical Sciences, Wayne State University, Detroit, MI, United States of America
| | - Renu A Kowluru
- Kresge Eye Institute, Department of Ophthalmology, Visual & Anatomical Sciences, Wayne State University, Detroit, MI, United States of America.
| |
Collapse
|
264
|
Rao G, Zhang W, Song S. MicroRNA‑217 inhibition relieves cerebral ischemia/reperfusion injury by targeting SIRT1. Mol Med Rep 2019; 20:1221-1229. [PMID: 31173187 PMCID: PMC6625453 DOI: 10.3892/mmr.2019.10317] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 03/29/2019] [Indexed: 12/17/2022] Open
Abstract
MicroRNAs (miRs) have been proposed to be involved in the pathological processes of cerebral ischemia/reperfusion (CIR) injury. The present study aimed to investigate the potential role and molecular mechanisms of miR-217 in the regulation of neuronal survival in CIR injury. To perform the investigation, an in vitro cellular model of CIR injury was established by treating neurons with oxygen-glucose deprivation and reoxygenation (OGD/R). miR-217 levels in neurons were detected using reverse transcription-quantitative PCR. The association between miR-217 and sirtuin 1 (SIRT1) was identified using TargetScan and validated in a dual-luciferase reporter assay. Cell viability and apoptosis were measured using a Cell Counting Kit-8 assay and flow cytometry, respectively. The release of lactate dehydrogenase, and the production of proinflammatory factors and oxidative stress biomarkers were analyzed by ELISAs and using specific assay kits. It was revealed that miR-217 was significantly upregulated in OGD/R-treated neurons. SIRT1 was a direct target of miR-217, and was downregulated in neurons following OGD/R treatment. Downregulation of miR-217 significantly ameliorated OGD/R-induced neuronal injury, inflammatory responses and oxidative stress. The effects of miR-217 inhibitor on OGD/R treated neurons were attenuated by SIRT1 knockdown. Additionally, western blotting revealed that the SIRT1/AMP-activated protein kinase-α/NF-κB pathway was partially involved in the regulation of OGD/R-induced neuronal injury by miR-217. In conclusion, the data of the present study indicated that the downregulation of miR-217 protected neurons against OGD/R-induced injury by targeting SIRT1.
Collapse
Affiliation(s)
- Gaofeng Rao
- Department of Rehabilitation Medicine, The First People's Hospital of Wenling, The Affiliated Wenling Hospital of Wenzhou Medical University, Wenling, Zhejiang 317500, P.R. China
| | - Wenfu Zhang
- Department of Rehabilitation Medicine, The First People's Hospital of Wenling, The Affiliated Wenling Hospital of Wenzhou Medical University, Wenling, Zhejiang 317500, P.R. China
| | - Shegeng Song
- Department of Rehabilitation Medicine, The First People's Hospital of Wenling, The Affiliated Wenling Hospital of Wenzhou Medical University, Wenling, Zhejiang 317500, P.R. China
| |
Collapse
|
265
|
Rimessi A, Pedriali G, Vezzani B, Tarocco A, Marchi S, Wieckowski MR, Giorgi C, Pinton P. Interorganellar calcium signaling in the regulation of cell metabolism: A cancer perspective. Semin Cell Dev Biol 2019; 98:167-180. [PMID: 31108186 DOI: 10.1016/j.semcdb.2019.05.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/13/2019] [Accepted: 05/14/2019] [Indexed: 01/22/2023]
Abstract
Organelles were originally considered to be individual cellular compartments with a defined organization and function. However, recent studies revealed that organelles deeply communicate within each other via Ca2+ exchange. This communication, mediated by specialized membrane regions in close apposition between two organelles, regulate cellular functions, including metabolism and cell fate decisions. Advances in microscopy techniques, molecular biology and biochemistry have increased our understanding of these interorganelle platforms. Research findings suggest that interorganellar Ca2+ signaling, which is altered in cancer, influences tumorigenesis and tumor progression by controlling cell death programs and metabolism. Here, we summarize the available data on the existence and composition of interorganelle platforms connecting the endoplasmic reticulum with mitochondria, the plasma membrane, or endolysosomes. Finally, we provide a timely overview of the potential function of interorganellar Ca2+ signaling in maintaining cellular homeostasis.
Collapse
Affiliation(s)
- Alessandro Rimessi
- Dept. of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy.
| | - Gaia Pedriali
- Dept. of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Bianca Vezzani
- Dept. of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Anna Tarocco
- Dept. of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy; Neonatal Intensive Care Unit, University Hospital S. Anna Ferrara, 44124 Ferrara, Italy
| | - Saverio Marchi
- Dept. of Clinical and Molecular Sciences, Polytechnical University of Marche, 60126 Ancona, Italy
| | | | - Carlotta Giorgi
- Dept. of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Paolo Pinton
- Dept. of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy; Maria Cecilia Hospital, GVM Care & Research, 48033 Cotignola, Ravenna, Italy.
| |
Collapse
|
266
|
Escobar-Henriques M, Joaquim M. Mitofusins: Disease Gatekeepers and Hubs in Mitochondrial Quality Control by E3 Ligases. Front Physiol 2019; 10:517. [PMID: 31156446 PMCID: PMC6533591 DOI: 10.3389/fphys.2019.00517] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 04/11/2019] [Indexed: 02/06/2023] Open
Abstract
Mitochondria are dynamic organelles engaged in quality control and aging processes. They constantly undergo fusion, fission, transport, and anchoring events, which empower mitochondria with a very interactive behavior. The membrane remodeling processes needed for fusion require conserved proteins named mitofusins, MFN1 and MFN2 in mammals and Fzo1 in yeast. They are the first determinants deciding on whether communication and content exchange between different mitochondrial populations should occur. Importantly, each cell possesses hundreds of mitochondria, with a different severity of mitochondrial mutations or dysfunctional proteins, which potentially spread damage to the entire network. Therefore, the degree of their merging capacity critically influences cellular fitness. In turn, the mitochondrial network rapidly and dramatically changes in response to metabolic and environmental cues. Notably, cancer or obesity conditions, and stress experienced by neurons and cardiomyocytes, for example, triggers the downregulation of mitofusins and thus fragmentation of mitochondria. This places mitofusins upfront in sensing and transmitting stress. In fact, mitofusins are almost entirely exposed to the cytoplasm, a topology suitable for a critical relay point in information exchange between mitochondria and their cellular environment. Consistent with their topology, mitofusins are either activated or repressed by cytosolic post-translational modifiers, mainly by ubiquitin. Ubiquitin is a ubiquitous small protein orchestrating multiple quality control pathways, which is covalently attached to lysine residues in its substrates, or in ubiquitin itself. Importantly, from a chain of events also mediated by E1 and E2 enzymes, E3 ligases perform the ultimate and determinant step in substrate choice. Here, we review the ubiquitin E3 ligases that modify mitofusins. Two mitochondrial E3 enzymes—March5 and MUL1—one ligase located to the ER—Gp78—and finally three cytosolic enzymes—MGRN1, HUWE1, and Parkin—were shown to ubiquitylate mitofusins, in response to a variety of cellular inputs. The respective outcomes on mitochondrial morphology, on contact sites to the endoplasmic reticulum and on destructive processes, like mitophagy or apoptosis, are presented. Ultimately, understanding the mechanisms by which E3 ligases and mitofusins sense and bi-directionally signal mitochondria-cytosolic dysfunctions could pave the way for therapeutic approaches in neurodegenerative, cardiovascular, and obesity-linked diseases.
Collapse
Affiliation(s)
- Mafalda Escobar-Henriques
- Center for Molecular Medicine Cologne (CMMC), Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Mariana Joaquim
- Center for Molecular Medicine Cologne (CMMC), Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| |
Collapse
|
267
|
Kuo IY, Brill AL, Lemos FO, Jiang JY, Falcone JL, Kimmerling EP, Cai Y, Dong K, Kaplan DL, Wallace DP, Hofer AM, Ehrlich BE. Polycystin 2 regulates mitochondrial Ca 2+ signaling, bioenergetics, and dynamics through mitofusin 2. Sci Signal 2019; 12:12/580/eaat7397. [PMID: 31064883 DOI: 10.1126/scisignal.aat7397] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mitochondria and the endoplasmic reticulum (ER) have an intimate functional relationship due to tethering proteins that bring their membranes in close (~30 nm) apposition. One function of this interorganellar junction is to increase the efficiency of Ca2+ transfer into mitochondria, thus stimulating mitochondrial respiration. Here, we showed that the ER cation-permeant channel polycystin 2 (PC2) functions to reduce mitochondria-ER contacts. In cell culture models, PC2 knockdown led to a 50% increase in mitofusin 2 (MFN2) expression, an outer mitochondrial membrane GTPase. Live-cell super-resolution and electron microscopy analyses revealed enhanced MFN2-dependent tethering between the ER and mitochondria in PC2 knockdown cells. PC2 knockdown also led to increased ER-mediated mitochondrial Ca2+ signaling, bioenergetic activation, and mitochondrial density. Mutation or deletion of the gene encoding for PC2 results in autosomal dominant polycystic kidney disease (ADPKD), a condition characterized by numerous fluid-filled cysts. In cell culture models and mice with kidney-specific PC2 knockout, knockdown of MFN2 rescued defective mitochondrial Ca2+ transfer and diminished cell proliferation in kidney cysts. Consistent with these results, cyst-lining epithelial cells from human ADPKD kidneys had a twofold increase in mitochondria and MFN2 expression. Our data suggest that PC2 normally serves to limit key mitochondrial proteins at the ER-mitochondrial interface and acts as a checkpoint for mitochondrial biogenesis and bioenergetics. Loss of this regulation may contribute to the increased oxidative metabolism and aberrant cell proliferation typical of kidney cysts in ADPKD.
Collapse
Affiliation(s)
- Ivana Y Kuo
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06510, USA.
| | - Allison L Brill
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Fernanda O Lemos
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Jason Y Jiang
- Department of Surgery, Harvard Medical School, Brigham and Women's Hospital, MA 02132, USA.,VA Boston Healthcare System, West Roxbury, MA 02132, USA
| | - Jeffrey L Falcone
- Department of Surgery, Harvard Medical School, Brigham and Women's Hospital, MA 02132, USA.,VA Boston Healthcare System, West Roxbury, MA 02132, USA
| | - Erica P Kimmerling
- Department of Biomedical Engineering, Tufts University. Medford, MA 02155, USA
| | - Yiqiang Cai
- Department of Internal Medicine, Yale University School of Medicine. New Haven, CT 06510, USA
| | - Ke Dong
- Department of Internal Medicine, Yale University School of Medicine. New Haven, CT 06510, USA
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University. Medford, MA 02155, USA
| | - Darren P Wallace
- Department of Medicine and the Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Aldebaran M Hofer
- Department of Surgery, Harvard Medical School, Brigham and Women's Hospital, MA 02132, USA.,VA Boston Healthcare System, West Roxbury, MA 02132, USA
| | - Barbara E Ehrlich
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06510, USA. .,Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
268
|
Spurlock B, Gupta P, Basu MK, Mukherjee A, Hjelmeland AB, Darley-Usmar V, Parker D, Foxall ME, Mitra K. New quantitative approach reveals heterogeneity in mitochondrial structure-function relations in tumor-initiating cells. J Cell Sci 2019; 132:jcs.230755. [PMID: 30910831 DOI: 10.1242/jcs.230755] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 03/18/2019] [Indexed: 12/12/2022] Open
Abstract
Steady-state mitochondrial structure or morphology is primarily maintained by a balance of opposing fission and fusion events between individual mitochondria, which is collectively referred to as mitochondrial dynamics. The details of the bidirectional relationship between the status of mitochondrial dynamics (structure) and energetics (function) require methods to integrate these mitochondrial aspects. To study the quantitative relationship between the status of mitochondrial dynamics (fission, fusion, matrix continuity and diameter) and energetics (ATP and redox), we have developed an analytical approach called mito-SinCe2 After validating and providing proof of principle, we applied mito-SinCe2 on ovarian tumor-initiating cells (ovTICs). Mito-SinCe2 analyses led to the hypothesis that mitochondria-dependent ovTICs interconvert between three states, that have distinct relationships between mitochondrial energetics and dynamics. Interestingly, fusion and ATP increase linearly with each other only once a certain level of fusion is attained. Moreover, mitochondrial dynamics status changes linearly with ATP or with redox, but not simultaneously with both. Furthermore, mito-SinCe2 analyses can potentially predict new quantitative features of the opposing fission versus fusion relationship and classify cells into functional classes based on their mito-SinCe2 states.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Brian Spurlock
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Priyanka Gupta
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Malay Kumar Basu
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Avik Mukherjee
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Anita B Hjelmeland
- Department of Cell Development and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Victor Darley-Usmar
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Danitra Parker
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - McKenzie E Foxall
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Kasturi Mitra
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
269
|
Dietz JV, Bohovych I, Viana MP, Khalimonchuk O. Proteolytic regulation of mitochondrial dynamics. Mitochondrion 2019; 49:289-304. [PMID: 31029640 DOI: 10.1016/j.mito.2019.04.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 04/19/2019] [Indexed: 12/23/2022]
Abstract
Spatiotemporal changes in the abundance, shape, and cellular localization of the mitochondrial network, also known as mitochondrial dynamics, are now widely recognized to play a key role in mitochondrial and cellular physiology as well as disease states. This process involves coordinated remodeling of the outer and inner mitochondrial membranes by conserved dynamin-like guanosine triphosphatases and their partner molecules in response to various physiological and stress stimuli. Although the core machineries that mediate fusion and partitioning of the mitochondrial network have been extensively characterized, many aspects of their function and regulation are incompletely understood and only beginning to emerge. In the present review we briefly summarize current knowledge about how the key mitochondrial dynamics-mediating factors are regulated via selective proteolysis by mitochondrial and cellular proteolytic machineries.
Collapse
Affiliation(s)
- Jonathan V Dietz
- Department of Biochemistry, University of Nebraska, Lincoln, NE 68588, United States of America
| | - Iryna Bohovych
- Department of Biochemistry, University of Nebraska, Lincoln, NE 68588, United States of America
| | - Martonio Ponte Viana
- Department of Biochemistry, University of Nebraska, Lincoln, NE 68588, United States of America
| | - Oleh Khalimonchuk
- Department of Biochemistry, University of Nebraska, Lincoln, NE 68588, United States of America; Nebraska Redox Biology Center, University of Nebraska, Lincoln, NE 68588, United States of America; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, United States of America.
| |
Collapse
|
270
|
Yu R, Jin SB, Lendahl U, Nistér M, Zhao J. Human Fis1 regulates mitochondrial dynamics through inhibition of the fusion machinery. EMBO J 2019; 38:e99748. [PMID: 30842096 PMCID: PMC6463211 DOI: 10.15252/embj.201899748] [Citation(s) in RCA: 197] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 01/25/2019] [Accepted: 01/29/2019] [Indexed: 12/27/2022] Open
Abstract
Mitochondrial dynamics is important for life. At center stage for mitochondrial dynamics, the balance between mitochondrial fission and fusion is a set of dynamin-related GTPases that drive mitochondrial fission and fusion. Fission is executed by the GTPases Drp1 and Dyn2, whereas the GTPases Mfn1, Mfn2, and OPA1 promote fusion. Recruitment of Drp1 to mitochondria is a critical step in fission. In yeast, Fis1p recruits the Drp1 homolog Dnm1p to mitochondria through Mdv1p and Caf4p, but whether human Fis1 (hFis1) promotes fission through a similar mechanism as in yeast is not established. Here, we show that hFis1-mediated mitochondrial fragmentation occurs in the absence of Drp1 and Dyn2, suggesting that they are dispensable for hFis1 function. hFis1 instead binds to Mfn1, Mfn2, and OPA1 and inhibits their GTPase activity, thus blocking the fusion machinery. Consistent with this, disruption of the fusion machinery in Drp1-/- cells phenocopies the fragmentation phenotype induced by hFis1 overexpression. In sum, our data suggest a novel role for hFis1 as an inhibitor of the fusion machinery, revealing an important functional evolutionary divergence between yeast and mammalian Fis1 proteins.
Collapse
Affiliation(s)
- Rong Yu
- Department of Oncology-Pathology, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Shao-Bo Jin
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Urban Lendahl
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Monica Nistér
- Department of Oncology-Pathology, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Jian Zhao
- Department of Oncology-Pathology, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| |
Collapse
|
271
|
Chang JYA, Yu F, Shi L, Ko ML, Ko GYP. Melatonin Affects Mitochondrial Fission/Fusion Dynamics in the Diabetic Retina. J Diabetes Res 2019; 2019:8463125. [PMID: 31098384 PMCID: PMC6487082 DOI: 10.1155/2019/8463125] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/14/2019] [Accepted: 02/10/2019] [Indexed: 02/07/2023] Open
Abstract
Mitochondrial fission and fusion are dependent on cellular nutritional states, and maintaining this dynamics is critical for the health of cells. Starvation triggers mitochondrial fusion to maintain bioenergetic efficiency, but during nutrient overloads (as with hyperglycemic conditions), fragmenting mitochondria is a way to store nutrients to avoid waste of energy. In addition to ATP production, mitochondria play an important role in buffering intracellular calcium (Ca2+). We found that in cultured 661W cells, a photoreceptor-derived cell line, hyperglycemic conditions triggered an increase of the expression of dynamin-related protein 1 (DRP1), a protein marker of mitochondrial fission, and a decrease of mitofusin 2 (MFN2), a protein for mitochondrial fusion. Further, these hyperglycemic cells also had decreased mitochondrial Ca2+ but increased cytosolic Ca2+. Treating these hyperglycemic cells with melatonin, a multifaceted antioxidant, averted hyperglycemia-altered mitochondrial fission-and-fusion dynamics and mitochondrial Ca2+ levels. To mimic how people most commonly take melatonin supplements, we gave melatonin to streptozotocin- (STZ-) induced type 1 diabetic mice by daily oral gavage and determined the effects of melatonin on diabetic eyes. We found that melatonin was not able to reverse the STZ-induced systemic hyperglycemic condition, but it prevented STZ-induced damage to the neural retina and retinal microvasculature. The beneficial effects of melatonin in the neural retina in part were through alleviating STZ-caused changes in mitochondrial dynamics and Ca2+ buffering.
Collapse
Affiliation(s)
- Janet Ya-An Chang
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, USA
- Interdisciplinary Toxicology Program, Texas A&M University, College Station, Texas, USA
| | - Fei Yu
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, USA
| | - Liheng Shi
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, USA
| | - Michael L. Ko
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, USA
| | - Gladys Y.-P. Ko
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, USA
- Interdisciplinary Toxicology Program, Texas A&M University, College Station, Texas, USA
- Texas A&M Institute of Neuroscience, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
272
|
Vantaggiato C, Castelli M, Giovarelli M, Orso G, Bassi MT, Clementi E, De Palma C. The Fine Tuning of Drp1-Dependent Mitochondrial Remodeling and Autophagy Controls Neuronal Differentiation. Front Cell Neurosci 2019; 13:120. [PMID: 31019453 PMCID: PMC6458285 DOI: 10.3389/fncel.2019.00120] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 03/11/2019] [Indexed: 12/22/2022] Open
Abstract
Mitochondria play a critical role in neuronal function and neurodegenerative disorders, including Alzheimer’s, Parkinson’s and Huntington diseases and amyotrophic lateral sclerosis, that show mitochondrial dysfunctions associated with excessive fission and increased levels of the fission protein dynamin-related protein 1 (Drp1). Our data demonstrate that Drp1 regulates the transcriptional program induced by retinoic acid (RA), leading to neuronal differentiation. When Drp1 was overexpressed, mitochondria underwent remodeling but failed to elongate and this enhanced autophagy and apoptosis. When Drp1 was blocked during differentiation by overexpressing the dominant negative form or was silenced, mitochondria maintained the same elongated shape, without remodeling and this increased cell death. The enhanced apoptosis, observed with both fragmented or elongated mitochondria, was associated with increased induction of unfolded protein response (UPR) and ER-associated degradation (ERAD) processes that finally affect neuronal differentiation. These findings suggest that physiological fission and mitochondrial remodeling, associated with early autophagy induction are essential for neuronal differentiation. We thus reveal the importance of mitochondrial changes to generate viable neurons and highlight that, rather than multiple parallel events, mitochondrial changes, autophagy and apoptosis proceed in a stepwise fashion during neuronal differentiation affecting the nuclear transcriptional program.
Collapse
Affiliation(s)
- Chiara Vantaggiato
- Scientific Institute, IRCCS E. Medea, Laboratory of Molecular Biology, Lecco, Italy
| | - Marianna Castelli
- Scientific Institute, IRCCS E. Medea, Laboratory of Molecular Biology, Lecco, Italy
| | - Matteo Giovarelli
- Unit of Clinical Pharmacology, Department of Biomedical and Clinical Sciences "Luigi Sacco", "Luigi Sacco" University Hospital, Università di Milano, Milan, Italy
| | - Genny Orso
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Milan, Italy
| | - Maria Teresa Bassi
- Scientific Institute, IRCCS E. Medea, Laboratory of Molecular Biology, Lecco, Italy
| | - Emilio Clementi
- Scientific Institute, IRCCS E. Medea, Laboratory of Molecular Biology, Lecco, Italy.,Unit of Clinical Pharmacology, Department of Biomedical and Clinical Sciences "Luigi Sacco", "Luigi Sacco" University Hospital, Università di Milano, Milan, Italy
| | - Clara De Palma
- Unit of Clinical Pharmacology, "Luigi Sacco" University Hospital, ASST Fatebenefratelli Sacco, Milan, Italy
| |
Collapse
|
273
|
Iwata K, Scorrano L. Finding a new balance to cure Charcot-Marie-Tooth 2A. J Clin Invest 2019; 129:1533-1535. [PMID: 30882369 DOI: 10.1172/jci127820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Motoneurons are particularly sensitive to mutations in mitofusin-2 (MFN2) that cause the neurological disorder Charcot-Marie-Tooth disease type 2A (CMT2A). MFN2 is a mitochondrial outer membrane protein that, together with its homologue MFN1, fuses mitochondria in most tissues. In this issue of the JCI, Zhou and colleagues show that increasing MFN1 expression in neurons can curtail neurological defects in a CMT2A mouse model. These results show that the ratio of MFN1 to MFN2 can explain the tissue specificity of CMT2A and indicate that augmentation of MFN1 in the nervous system has potential as a possible therapeutic strategy for CMT2A.
Collapse
Affiliation(s)
- Keiko Iwata
- Venetian Institute of Molecular Medicine, Padova, Italy.,Research Center for Child Mental Development, University of Fukui, Fukui, Japan
| | - Luca Scorrano
- Venetian Institute of Molecular Medicine, Padova, Italy.,Department of Biology, University of Padova, Padova, Italy
| |
Collapse
|
274
|
De la Fuente S, Sheu SS. SR-mitochondria communication in adult cardiomyocytes: A close relationship where the Ca 2+ has a lot to say. Arch Biochem Biophys 2019; 663:259-268. [PMID: 30685253 PMCID: PMC6377816 DOI: 10.1016/j.abb.2019.01.026] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 01/14/2019] [Accepted: 01/22/2019] [Indexed: 02/07/2023]
Abstract
In adult cardiomyocytes, T-tubules, junctional sarcoplasmic reticulum (jSR), and mitochondria juxtapose each other and form a unique and highly repetitive functional structure along the cell. The close apposition between jSR and mitochondria creates high Ca2+ microdomains at the contact sites, increasing the efficiency of the excitation-contraction-bioenergetics coupling, where the Ca2+ transfer from SR to mitochondria plays a critical role. The SR-mitochondria contacts are established through protein tethers, with mitofusin 2 the most studied SR-mitochondrial "bridge", albeit controversial. Mitochondrial Ca2+ uptake is further optimized with the mitochondrial Ca2+ uniporter preferentially localized in the jSR-mitochondria contact sites and the mitochondrial Na+/Ca2+ exchanger localized away from these sites. Despite all these unique features facilitating the privileged transport of Ca2+ from SR to mitochondria in adult cardiomyocytes, the question remains whether mitochondrial Ca2+ concentrations oscillate in synchronicity with cytosolic Ca2+ transients during heartbeats. Proper Ca2+ transfer controls not only the process of mitochondrial bioenergetics, but also of mitochondria-mediated cell death, autophagy/mitophagy, mitochondrial fusion/fission dynamics, reactive oxygen species generation, and redox signaling, among others. Our review focuses specifically on Ca2+ signaling between SR and mitochondria in adult cardiomyocytes. We discuss the physiological and pathological implications of this SR-mitochondrial Ca2+ signaling, research gaps, and future trends.
Collapse
Affiliation(s)
- Sergio De la Fuente
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, PA, 19107, USA.
| | - Shey-Shing Sheu
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, PA, 19107, USA.
| |
Collapse
|
275
|
Cao YP, Zheng M. Mitochondrial dynamics and inter-mitochondrial communication in the heart. Arch Biochem Biophys 2019; 663:214-219. [DOI: 10.1016/j.abb.2019.01.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 01/06/2019] [Accepted: 01/15/2019] [Indexed: 02/07/2023]
|
276
|
Fiorenza M, Gunnarsson TP, Ehlers TS, Bangsbo J. High-intensity exercise training ameliorates aberrant expression of markers of mitochondrial turnover but not oxidative damage in skeletal muscle of men with essential hypertension. Acta Physiol (Oxf) 2019; 225:e13208. [PMID: 30339318 DOI: 10.1111/apha.13208] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 09/18/2018] [Accepted: 10/14/2018] [Indexed: 12/21/2022]
Abstract
AIM To examine whether hypertensive individuals exhibit altered muscle mitochondrial turnover and redox homeostasis compared with healthy normotensive counterparts, and whether the antihypertensive effect of high-intensity exercise training is associated with improved mitochondrial quality and enhanced anti-oxidant defence. METHODS In a cross-sectional and longitudinal parallel design, 24 essential hypertensive (HYP) and 13 healthy normotensive (NORM) men completed 6 weeks of high-intensity interval training (HIIT). Twenty four-hour ambulatory blood pressure, body composition, cardiorespiratory fitness, exercise capacity and skeletal muscle characteristics were examined before and after HIIT. Expression of markers of mitochondrial turnover, anti-oxidant protection and oxidative damage was determined in vastus lateralis muscle biopsies. Muscle protein levels of eNOS and VEGF, and muscle capillarity were also evaluated. RESULTS At baseline, HYP exhibited lower expression of markers of mitochondrial volume/biogenesis, mitochondrial fusion/fission and autophagy along with depressed eNOS expression compared with NORM. Expression of markers of anti-oxidant protection was similar in HYP and NORM, whereas oxidative damage was higher in HYP than in NORM. In HYP, HIIT lowered blood pressure, improved body composition, cardiorespiratory fitness and exercise capacity, up-regulated markers of mitochondrial volume/biogenesis and autophagy and increased eNOS and VEGF protein content. Furthermore, in HYP, HIIT induced divergent responses in markers of mitochondrial fusion and anti-oxidant protection, did not affect markers of mitochondrial fission, and increased apoptotic susceptibility and oxidative damage. CONCLUSION The present results indicate aberrant muscle mitochondrial turnover and augmented oxidative damage in hypertensive individuals. High-intensity exercise training can partly reverse hypertension-related impairments in muscle mitochondrial turnover, but not redox imbalance.
Collapse
Affiliation(s)
- Matteo Fiorenza
- Department of Nutrition, Exercise and Sports University of Copenhagen Copenhagen Denmark
- Department of Neurosciences, Biomedicine and Movement Sciences University of Verona Verona Italy
| | - Thomas P. Gunnarsson
- Department of Nutrition, Exercise and Sports University of Copenhagen Copenhagen Denmark
| | - Thomas S. Ehlers
- Department of Nutrition, Exercise and Sports University of Copenhagen Copenhagen Denmark
| | - Jens Bangsbo
- Department of Nutrition, Exercise and Sports University of Copenhagen Copenhagen Denmark
| |
Collapse
|
277
|
Carra S, Alberti S, Benesch JLP, Boelens W, Buchner J, Carver JA, Cecconi C, Ecroyd H, Gusev N, Hightower LE, Klevit RE, Lee HO, Liberek K, Lockwood B, Poletti A, Timmerman V, Toth ME, Vierling E, Wu T, Tanguay RM. Small heat shock proteins: multifaceted proteins with important implications for life. Cell Stress Chaperones 2019; 24:295-308. [PMID: 30758704 PMCID: PMC6439001 DOI: 10.1007/s12192-019-00979-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2019] [Indexed: 12/21/2022] Open
Abstract
Small Heat Shock Proteins (sHSPs) evolved early in the history of life; they are present in archaea, bacteria, and eukaryota. sHSPs belong to the superfamily of molecular chaperones: they are components of the cellular protein quality control machinery and are thought to act as the first line of defense against conditions that endanger the cellular proteome. In plants, sHSPs protect cells against abiotic stresses, providing innovative targets for sustainable agricultural production. In humans, sHSPs (also known as HSPBs) are associated with the development of several neurological diseases. Thus, manipulation of sHSP expression may represent an attractive therapeutic strategy for disease treatment. Experimental evidence demonstrates that enhancing the chaperone function of sHSPs protects against age-related protein conformation diseases, which are characterized by protein aggregation. Moreover, sHSPs can promote longevity and healthy aging in vivo. In addition, sHSPs have been implicated in the prognosis of several types of cancer. Here, sHSP upregulation, by enhancing cellular health, could promote cancer development; on the other hand, their downregulation, by sensitizing cells to external stressors and chemotherapeutics, may have beneficial outcomes. The complexity and diversity of sHSP function and properties and the need to identify their specific clients, as well as their implication in human disease, have been discussed by many of the world's experts in the sHSP field during a dedicated workshop in Québec City, Canada, on 26-29 August 2018.
Collapse
Affiliation(s)
- Serena Carra
- Department of Biomedical, Metabolic and Neural Sciences, and Centre for Neuroscience and Nanotechnology, University of Modena and Reggio Emilia, via G. Campi 287, 41125, Modena, Italy.
| | - Simon Alberti
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307, Dresden, Germany
- Center for Molecular and Cellular Bioengineering (CMCB), Biotechnology Center (BIOTEC), Technische Universität Dresden, Tatzberg 47/49, 01307, Dresden, Germany
| | - Justin L P Benesch
- Department of Chemistry, Physical and Theoretical Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK
| | - Wilbert Boelens
- Department of Biomolecular Chemistry, Institute of Molecules and Materials, Radboud University, NL-6500, Nijmegen, The Netherlands
| | - Johannes Buchner
- Center for Integrated Protein Science Munich (CIPSM) and Department Chemie, Technische Universität München, D-85748, Garching, Germany
| | - John A Carver
- Research School of Chemistry, The Australian National University, Acton, ACT, 2601, Australia
| | - Ciro Cecconi
- Department of Physics, Informatics and Mathematics, University of Modena and Reggio Emilia, 41125, Modena, Italy
- Center S3, CNR Institute Nanoscience, Via Campi 213/A, 41125, Modena, Italy
| | - Heath Ecroyd
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
| | - Nikolai Gusev
- Department of Biochemistry, School of Biology, Moscow State University, Moscow, Russian Federation, 117234
| | - Lawrence E Hightower
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, CT, 06269-3125, USA
| | - Rachel E Klevit
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Hyun O Lee
- Department of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Krzysztof Liberek
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology UG-MUG, University of Gdansk, Abrahama 58, 80-307, Gdansk, Poland
| | - Brent Lockwood
- Department of Biology, University of Vermont, Burlington, VT, 05405, USA
| | - Angelo Poletti
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza sulle Malattie Neurodegenerative, Univrsità degli Studi di Milano, Milan, Italy
| | - Vincent Timmerman
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, University of Antwerp, 2610, Antwerp, Belgium
| | - Melinda E Toth
- Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary
| | - Elizabeth Vierling
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Tangchun Wu
- MOE Key Lab of Environment and Health, Tongji School of Public Health, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, 430030, Hubei, China
| | - Robert M Tanguay
- Laboratory of Cell and Developmental Genetics, IBIS, and Department of Molecular Biology, Medical Biochemistry and Pathology, Medical School, Université Laval, QC, Québec, G1V 0A6, Canada.
| |
Collapse
|
278
|
Chen Y, Xiong S, Zhao F, Lu X, Wu B, Yang B. Effect of magnesium on reducing the UV-induced oxidative damage in marrow mesenchymal stem cells. J Biomed Mater Res A 2019; 107:1253-1263. [PMID: 30701665 DOI: 10.1002/jbm.a.36634] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 11/30/2018] [Accepted: 12/30/2018] [Indexed: 12/30/2022]
Abstract
Oxidative stress could cause damage to lipids, proteins and DNA, which is induced by the imbalance between the production of reactive oxygen species (ROS) and the biological system ability to counteract or detoxify their harmful effects. The oxidative stress damage significantly contributes to a number of diseases. Magnesium (Mg) is endowed with a novel function of removing excess ROS by releasing H2 during the degradation. In this study, in order to explore the property of anti-oxidative damage of Mg metal, rat bone marrow mesenchymal stem cells (MSCs) oxidative damaged by ultraviolet (UV) radiation was employed to co-culture with Mg metal. The effect of Mg metal on the response of antioxidant enzymes and mitochondria in MSCs was studied. We found that Mg metal could reduce the cellular oxidative stress damage and elevate the activities of antioxidant enzymes to maintain redox homeostasis. In addition, Mg metal could reduce the risk of UV-induced cell apoptosis by increasing the ratio of Bcl-2/Bax, elevating the mitochondrial membrane potential and blocking the release of cytochrome c. This finding showed Mg metal might have the potential for treating diseases caused by oxidative stress damage. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 1253-1263, 2019.
Collapse
Affiliation(s)
- Yangmei Chen
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, China.,National Engineering Research Center for Biomaterials, Chengdu 610064, China.,Sichuan Guojia Biomaterials Co., Ltd, Chengdu, Sichuan 610064, China
| | - Shibing Xiong
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, China.,National Engineering Research Center for Biomaterials, Chengdu 610064, China.,Sichuan Guojia Biomaterials Co., Ltd, Chengdu, Sichuan 610064, China
| | - Fenghua Zhao
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, China.,National Engineering Research Center for Biomaterials, Chengdu 610064, China.,Sichuan Guojia Biomaterials Co., Ltd, Chengdu, Sichuan 610064, China
| | - Xugang Lu
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, China.,National Engineering Research Center for Biomaterials, Chengdu 610064, China.,Sichuan Guojia Biomaterials Co., Ltd, Chengdu, Sichuan 610064, China
| | - Boyao Wu
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, China.,National Engineering Research Center for Biomaterials, Chengdu 610064, China.,Sichuan Guojia Biomaterials Co., Ltd, Chengdu, Sichuan 610064, China
| | - Bangcheng Yang
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, China.,National Engineering Research Center for Biomaterials, Chengdu 610064, China.,Sichuan Guojia Biomaterials Co., Ltd, Chengdu, Sichuan 610064, China.,Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210046, China
| |
Collapse
|
279
|
Adaniya SM, O-Uchi J, Cypress MW, Kusakari Y, Jhun BS. Posttranslational modifications of mitochondrial fission and fusion proteins in cardiac physiology and pathophysiology. Am J Physiol Cell Physiol 2019; 316:C583-C604. [PMID: 30758993 DOI: 10.1152/ajpcell.00523.2018] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mitochondrial fragmentation frequently occurs in chronic pathological conditions as seen in various human diseases. In fact, abnormal mitochondrial morphology and mitochondrial dysfunction are hallmarks of heart failure (HF) in both human patients and HF animal models. A link between mitochondrial fragmentation and cardiac pathologies has been widely proposed, but the physiological relevance of mitochondrial fission and fusion in the heart is still unclear. Recent studies have increasingly shown that posttranslational modifications (PTMs) of fission and fusion proteins are capable of directly modulating the stability, localization, and/or activity of these proteins. These PTMs include phosphorylation, acetylation, ubiquitination, conjugation of small ubiquitin-like modifier proteins, O-linked-N-acetyl-glucosamine glycosylation, and proteolysis. Thus, understanding the PTMs of fission and fusion proteins may allow us to understand the complexities that determine the balance of mitochondrial fission and fusion as well as mitochondrial function in various cell types and organs including cardiomyocytes and the heart. In this review, we summarize present knowledge regarding the function and regulation of mitochondrial fission and fusion in cardiomyocytes, specifically focusing on the PTMs of each mitochondrial fission/fusion protein. We also discuss the molecular mechanisms underlying abnormal mitochondrial morphology in HF and their contributions to the development of cardiac diseases, highlighting the crucial roles of PTMs of mitochondrial fission and fusion proteins. Finally, we discuss the future potential of manipulating PTMs of fission and fusion proteins as a therapeutic strategy for preventing and/or treating HF.
Collapse
Affiliation(s)
- Stephanie M Adaniya
- Lillehei Heart Institute, Cardiovascular Division, Department of Medicine, University of Minnesota , Minneapolis, Minnesota.,Cardiovascular Research Center, Department of Medicine, Rhode Island Hospital and the Alpert Medical School of Brown University , Providence, Rhode Island
| | - Jin O-Uchi
- Lillehei Heart Institute, Cardiovascular Division, Department of Medicine, University of Minnesota , Minneapolis, Minnesota
| | - Michael W Cypress
- Lillehei Heart Institute, Cardiovascular Division, Department of Medicine, University of Minnesota , Minneapolis, Minnesota
| | - Yoichiro Kusakari
- Department of Cell Physiology, The Jikei University School of Medicine , Tokyo , Japan
| | - Bong Sook Jhun
- Lillehei Heart Institute, Cardiovascular Division, Department of Medicine, University of Minnesota , Minneapolis, Minnesota
| |
Collapse
|
280
|
Arribat Y, Broskey NT, Greggio C, Boutant M, Conde Alonso S, Kulkarni SS, Lagarrigue S, Carnero EA, Besson C, Cantó C, Amati F. Distinct patterns of skeletal muscle mitochondria fusion, fission and mitophagy upon duration of exercise training. Acta Physiol (Oxf) 2019; 225:e13179. [PMID: 30144291 DOI: 10.1111/apha.13179] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 08/17/2018] [Accepted: 08/20/2018] [Indexed: 12/17/2022]
Abstract
AIM Healthy ageing interventions encompass regular exercise to prevent mitochondrial dysfunction, key player in sarcopenia pathogenesis. Mitochondrial biogenesis has been well documented, but mitochondrial remodelling in response to exercise training is poorly understood. Here we investigated fusion, fission and mitophagy before and after an exercise intervention in older adults. METHODS Skeletal muscle biopsies were collected from 22 healthy sedentary men and women before and after 4 months of supervised training. Eight lifelong trained age- and gender-matched volunteers served as positive controls. Transmission electron microscopy was used to estimate mitochondrial content. Western blotting and qRT-PCR were used to detect changes in specific proteins and transcripts. RESULTS After intervention, mitochondrial content increased to levels of controls. While enhancement of fusion was prevalent after intervention, inhibition of fission and increased mitophagy were dominant in controls. Similarly to PARKIN, BCL2L13 content was higher in controls. The observed molecular adaptations paralleled long-term effects of training on physical fitness, exercise efficiency and oxidative capacity. CONCLUSIONS This study describes distinct patterns of molecular adaptations in human skeletal muscle under chronic exercise training. After 16 weeks of exercise, the pattern was dominated by fusion to increase mitochondrial content to the metabolic demands of exercise. In lifelong exercise, the pattern was dominated by mitophagy synchronized with increased fusion and decreased fission, indicating an increased mitochondrial turnover. In addition to these temporally distinct adaptive mechanisms, this study suggests for the first time a specific role of BCL2L13 in chronic exercise that requires constant maintenance of mitochondrial quality.
Collapse
Affiliation(s)
- Yoan Arribat
- Aging and Muscle Metabolism Lab; Department of Physiology; University of Lausanne; Lausanne Switzerland
| | - Nicholas T. Broskey
- Aging and Muscle Metabolism Lab; Department of Physiology; University of Lausanne; Lausanne Switzerland
| | - Chiara Greggio
- Aging and Muscle Metabolism Lab; Department of Physiology; University of Lausanne; Lausanne Switzerland
| | - Marie Boutant
- Nestlé Institute of Health Sciences; Lausanne Switzerland
| | - Sonia Conde Alonso
- Aging and Muscle Metabolism Lab; Department of Physiology; University of Lausanne; Lausanne Switzerland
| | | | - Sylviane Lagarrigue
- Aging and Muscle Metabolism Lab; Department of Physiology; University of Lausanne; Lausanne Switzerland
| | - Elvis A. Carnero
- Aging and Muscle Metabolism Lab; Department of Physiology; University of Lausanne; Lausanne Switzerland
| | - Cyril Besson
- Sport Medicine Unit; University Hospital (CHUV); Lausanne Switzerland
| | - Carles Cantó
- Nestlé Institute of Health Sciences; Lausanne Switzerland
| | - Francesca Amati
- Aging and Muscle Metabolism Lab; Department of Physiology; University of Lausanne; Lausanne Switzerland
- Sport Medicine Unit; University Hospital (CHUV); Lausanne Switzerland
- Institute of Sports Sciences (ISSUL); University of Lausanne; Lausanne Switzerland
- Department of Medicine; Service of Endocrinology, Diabetology and Metabolism; University Hospital (CHUV); Lausanne Switzerland
| |
Collapse
|
281
|
van Oorschot R, Hansen M, Koornneef JM, Marneth AE, Bergevoet SM, van Bergen MGJM, van Alphen FPJ, van der Zwaan C, Martens JHA, Vermeulen M, Jansen PWTC, Baltissen MPA, Gorkom BAPLV, Janssen H, Jansen JH, von Lindern M, Meijer AB, van den Akker E, van der Reijden BA. Molecular mechanisms of bleeding disorderassociated GFI1B Q287* mutation and its affected pathways in megakaryocytes and platelets. Haematologica 2019; 104:1460-1472. [PMID: 30655368 PMCID: PMC6601108 DOI: 10.3324/haematol.2018.194555] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 01/09/2019] [Indexed: 12/13/2022] Open
Abstract
Dominant-negative mutations in the transcription factor Growth Factor Independence-1B (GFI1B), such as GFI1BQ287*, cause a bleeding disorder characterized by a plethora of megakaryocyte and platelet abnormalities. The deregulated molecular mechanisms and pathways are unknown. Here we show that both normal and Q287* mutant GFI1B interacted most strongly with the lysine specific demethylase-1 – REST corepressor - histone deacetylase (LSD1-RCOR-HDAC) complex in megakaryoblasts. Sequestration of this complex by GFI1BQ287* and chemical separation of GFI1B from LSD1 induced abnormalities in normal megakaryocytes comparable to those seen in patients. Megakaryocytes derived from GFI1BQ287*-induced pluripotent stem cells also phenocopied abnormalities seen in patients. Proteome studies on normal and mutant-induced pluripotent stem cell-derived megakaryocytes identified a multitude of deregulated pathways downstream of GFI1BQ287* including cell division and interferon signaling. Proteome studies on platelets from GFI1BQ287* patients showed reduced expression of proteins implicated in platelet function, and elevated expression of proteins normally downregulated during megakaryocyte differentiation. Thus, GFI1B and LSD1 regulate a broad developmental program during megakaryopoiesis, and GFI1BQ287* deregulates this program through LSD1-RCOR-HDAC sequestering.
Collapse
Affiliation(s)
- Rinske van Oorschot
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen
| | - Marten Hansen
- Department of Hematopoiesis, Sanquin Research-Academic Medical Center Landsteiner Laboratory, Amsterdam
| | | | - Anna E Marneth
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen
| | - Saskia M Bergevoet
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen
| | - Maaike G J M van Bergen
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen
| | | | | | - Joost H A Martens
- Department of Molecular Biology, Faculty of Science, Radboud University Nijmegen, Radboud Institute for Molecular Life Sciences, Nijmegen
| | - Michiel Vermeulen
- Department of Molecular Biology, Faculty of Science, Radboud University Nijmegen, Radboud Institute for Molecular Life Sciences, Nijmegen
| | - Pascal W T C Jansen
- Department of Molecular Biology, Faculty of Science, Radboud University Nijmegen, Radboud Institute for Molecular Life Sciences, Nijmegen
| | - Marijke P A Baltissen
- Department of Molecular Biology, Faculty of Science, Radboud University Nijmegen, Radboud Institute for Molecular Life Sciences, Nijmegen
| | | | - Hans Janssen
- Department of Biochemistry, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Joop H Jansen
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen
| | - Marieke von Lindern
- Department of Hematopoiesis, Sanquin Research-Academic Medical Center Landsteiner Laboratory, Amsterdam
| | | | - Emile van den Akker
- Department of Hematopoiesis, Sanquin Research-Academic Medical Center Landsteiner Laboratory, Amsterdam
| | - Bert A van der Reijden
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen
| |
Collapse
|
282
|
Aydogan Mathyk B, Temel Yuksel I, Tayyar A, Aslan Cetin B, Tayyar AT, Koroglu N. Maternal serum mitofusin-2 levels in patients with preeclampsia: the possible role of mitochondrial dysfunction in preeclampsia. J Matern Fetal Neonatal Med 2019; 33:1861-1866. [PMID: 30614327 DOI: 10.1080/14767058.2018.1532497] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Purpose: Hypoxia alters mitochondria function and our aim was to measure mitochondrial fusion protein mitofusin-2 (Mfn2) in patients with preeclampsia.Materials and methods: This cross-sectional study was conducted including 82 pregnant women, 27 with normal pregnancy and 55 with preeclampsia (27 with early-onset preeclampsia and 28 with late-onset preeclampsia). Maternal serum levels of Mfn2 were measured by using enzyme-linked immunosorbent assay kits.Results: The mean serum mitofusin-2 levels were higher in women with preeclampsia than in the control group (68.02 ± 8.7 pg/mL vs. 99.72 ± 37.27 pg/mL, p < .0001). The mean serum mitofusin-2 level was found to be the highest in the early-onset preeclampsia (EOPE) group (EOPE: 101.6 ± 38.5 pg/mL). Maternal serum mitofusin-2 levels correlated with both systolic and diastolic blood pressures as well as uterine artery pulsatility index. The optimal cutoff value of Mfn2 for determining preeclampsia was 75.3 pg/mL.Conclusion: Mfn2 has regulatory roles in stress response. Maternal serum Mfn2 is higher in patients with preeclampsia suggesting that Mfn2 increases in the maternal system as a stress response against hypoxia and endothelial dysfunction.What do the results of this study add? Hypoxia causes mitochondrial dysfunction that has been linked to the etiology of many diseases including preeclampsia. Mitofusin-2 is a mitochondrial fusion protein, and the levels can be altered in preeclampsia. For the first time, we showed that maternal levels of mitofusin-2 are higher in patients with preeclampsia. Further, we reported the correlation of mitofusin-2 with blood pressures and uterine artery pulsatility index. These findings will open up other avenues for researchers to investigate other mitochondrial molecules while under stress.
Collapse
Affiliation(s)
- Begum Aydogan Mathyk
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, University of North Carolina, Chapel Hill, NC, USA
| | - Ilkbal Temel Yuksel
- Department of Obstetrics and Gynecology and Kanuni Sultan Suleyman Research and Training Hospital, Istanbul, Turkey
| | - Ahmet Tayyar
- Department of Obstetrics and Gynecology and Kanuni Sultan Suleyman Research and Training Hospital, Istanbul, Turkey
| | - Berna Aslan Cetin
- Department of Obstetrics and Gynecology and Kanuni Sultan Suleyman Research and Training Hospital, Istanbul, Turkey
| | - Ahter Tanay Tayyar
- Department of Obstetrics and Gynecology, Health Sciences University, Zeynep Kamil Research and Training Hospital, Istanbul, Turkey
| | - Nadiye Koroglu
- Department of Obstetrics and Gynecology and Kanuni Sultan Suleyman Research and Training Hospital, Istanbul, Turkey
| |
Collapse
|
283
|
Dai W, Jiang L. Dysregulated Mitochondrial Dynamics and Metabolism in Obesity, Diabetes, and Cancer. Front Endocrinol (Lausanne) 2019; 10:570. [PMID: 31551926 PMCID: PMC6734166 DOI: 10.3389/fendo.2019.00570] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 08/05/2019] [Indexed: 12/21/2022] Open
Abstract
Metabolism describes the life-sustaining chemical reactions in organisms that provide both energy and building blocks for cellular survival and proliferation. Dysregulated metabolism leads to many life-threatening diseases including obesity, diabetes, and cancer. Mitochondria, subcellular organelles, contain the central energy-producing metabolic pathway, the tricarboxylic acid (TCA) cycle. Also, mitochondria exist in a dynamic network orchestrated by extracellular nutrient levels and intracellular energy needs. Upon stimulation, mitochondria undergo consistent interchange through fusion (small to big) and fission (big to small) processes. Mitochondrial fusion is primarily controlled by three GTPases, mitofusin 1 (Mfn1), Mfn2, and optic atrophy 1 (Opa1), while mitochondrial fission is primarily regulated by GTPase dynamin-related protein 1 (Drp1). Dysregulated activity of these GTPases results in disrupted mitochondrial dynamics and cellular metabolism. This review will update the metabolic roles of these GTPases in obesity, diabetes, and cancer.
Collapse
Affiliation(s)
- Wenting Dai
- Department of Molecular and Cellular Endocrinology, Diabetes and Metabolism Research Institute, Duarte, CA, United States
| | - Lei Jiang
- Department of Molecular and Cellular Endocrinology, Diabetes and Metabolism Research Institute, Duarte, CA, United States
- Comprehensive Cancer Center, City of Hope Medical Center, Duarte, CA, United States
- *Correspondence: Lei Jiang
| |
Collapse
|
284
|
Allegra A, Innao V, Allegra AG, Musolino C. Relationship between mitofusin 2 and cancer. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2018; 116:209-236. [PMID: 31036292 DOI: 10.1016/bs.apcsb.2018.11.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Mitochondria are dynamic organelles whose actions are fundamental for cell viability. Within the cell, the mitochondrial system is incessantly modified via the balance between fusion and fission processes. Among other proteins, mitofusin 2 is a central protagonist in all these mitochondrial events (fusion, trafficking, contacts with other organelles), the balance of which causes the correct mitochondrial action, shape, and distribution within the cell. Here we examine the structural and functional characteristics of mitofusin 2, underlining its essential role in numerous intracellular pathways, as well as in the pathogenesis of cancer.
Collapse
Affiliation(s)
- Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, Messina, Italy.
| | - Vanessa Innao
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, Messina, Italy
| | - Andrea Gaetano Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, Messina, Italy
| | - Caterina Musolino
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, Messina, Italy
| |
Collapse
|
285
|
Two separate functions of NME3 critical for cell survival underlie a neurodegenerative disorder. Proc Natl Acad Sci U S A 2018; 116:566-574. [PMID: 30587587 DOI: 10.1073/pnas.1818629116] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
We report a patient who presented with congenital hypotonia, hypoventilation, and cerebellar histopathological alterations. Exome analysis revealed a homozygous mutation in the initiation codon of the NME3 gene, which encodes an NDP kinase. The initiation-codon mutation leads to deficiency in NME3 protein expression. NME3 is a mitochondrial outer-membrane protein capable of interacting with MFN1/2, and its depletion causes dysfunction in mitochondrial dynamics. Consistently, the patient's fibroblasts were characterized by a slow rate of mitochondrial dynamics, which was reversed by expression of wild-type or catalytic-dead NME3. Moreover, glucose starvation caused mitochondrial fragmentation and cell death in the patient's cells. The expression of wild-type and catalytic-dead but not oligomerization-attenuated NME3 restored mitochondrial elongation. However, only wild-type NME3 sustained ATP production and viability. Thus, the separate functions of NME3 in mitochondrial fusion and NDP kinase cooperate in metabolic adaptation for cell survival in response to glucose starvation. Given the critical role of mitochondrial dynamics and energy requirements in neuronal development, the homozygous mutation in NME3 is linked to a fatal mitochondrial neurodegenerative disorder.
Collapse
|
286
|
Wang L, Song S, Liu X, Zhang M, Xiang W. Low MFN2 expression related to ageing in granulosa cells is associated with assisted reproductive technology outcome. Reprod Biomed Online 2018; 38:152-158. [PMID: 30593438 DOI: 10.1016/j.rbmo.2018.10.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 10/20/2018] [Accepted: 10/23/2018] [Indexed: 12/29/2022]
Abstract
RESEARCH QUESTION Is low MFN2 expression associated with ageing in granulosa cells as well as assisted reproductive technology (ART) outcome, and what is the underlying mechanism of action of MFN2? DESIGN In a prospective study, fresh granulosa cells were obtained from 161 women aged 20-40 years who underwent IVF with embryo transfer and who were divided into two groups: the diminished ovarian reserve (DOR) group (n = 51) and the control group (n = 110). Patient characteristics including age, infertility duration, body mass index, FSH, anti-Müllerian hormone (AMH), antral follicle count (AFC) and husband's semen parameters and granulosa cell MFN2 expression levels, cell apoptosis, mitochondrial membrane potential (ΔΨm) and ATP levels were analysed. RESULTS There were no significant differences between the DOR and control groups in terms of age, infertility duration and husband'' semen parameters; however, significant (P< 0.05) changes were found between the two groups in FSH, AMH and AFC levels. MFN2 expression was remarkably lower in granulosa cells from the DOR group and decreased in both groups as age increased. Furthermore, among young patients, MFN2 levels significantly increased in patients with pregnancy. MFN2 protein levels and cell apoptosis were lower in the MFN2 knockdown (MFN2-siRNA) group than in the control (Cy3-siRNA) group. ΔΨm and ATP levels were reduced in the MFN2-siRNA group compared with the Cy3-siRNA group. CONCLUSIONS Low MFN2 expression levels in granulosa cells were related to ageing, which may be involved in the clinical outcome of ART by promoting cell apoptosis and affecting mitochondrial function.
Collapse
Affiliation(s)
- Lingjuan Wang
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, China; Centre of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Su Song
- Centre of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Xuemei Liu
- Reproductive Medicine Centre, Yantai Yuhuangding Hospital of Qingdao University, China
| | - Mengdi Zhang
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, China; Centre of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Wenpei Xiang
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, China; Centre of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, China.
| |
Collapse
|
287
|
Insights into leptin signaling and male reproductive health: the missing link between overweight and subfertility? Biochem J 2018; 475:3535-3560. [DOI: 10.1042/bcj20180631] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 09/28/2018] [Accepted: 10/19/2018] [Indexed: 12/24/2022]
Abstract
Obesity stands as one of the greatest healthcare challenges of the 21st century. Obesity in reproductive-age men is ever more frequent and is reaching upsetting levels. At the same time, fertility has taken an inverse direction and is decreasing, leading to an increased demand for fertility treatments. In half of infertile couples, there is a male factor alone or combined with a female factor. Furthermore, male fertility parameters such as sperm count and concentration went on a downward spiral during the last few decades and are now approaching the minimum levels established to achieve successful fertilization. Hence, the hypothesis that obesity and deleterious effects in male reproductive health, as reflected in deterioration of sperm parameters, are somehow related is tempting. Most often, overweight and obese individuals present leptin levels directly proportional to the increased fat mass. Leptin, besides the well-described central hypothalamic effects, also acts in several peripheral organs, including the testes, thus highlighting a possible regulatory role in male reproductive function. In the last years, research focusing on leptin effects in male reproductive function has unveiled additional roles and molecular mechanisms of action for this hormone at the testicular level. Herein, we summarize the novel molecular signals linking metabolism and male reproductive function with a focus on leptin signaling, mitochondria and relevant pathways for the nutritional support of spermatogenesis.
Collapse
|
288
|
Albert M, Bécares M, Falqui M, Fernández-Lozano C, Guerra S. ISG15, a Small Molecule with Huge Implications: Regulation of Mitochondrial Homeostasis. Viruses 2018; 10:v10110629. [PMID: 30428561 PMCID: PMC6265978 DOI: 10.3390/v10110629] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 11/08/2018] [Accepted: 11/09/2018] [Indexed: 12/12/2022] Open
Abstract
Viruses are responsible for the majority of infectious diseases, from the common cold to HIV/AIDS or hemorrhagic fevers, the latter with devastating effects on the human population. Accordingly, the development of efficient antiviral therapies is a major goal and a challenge for the scientific community, as we are still far from understanding the molecular mechanisms that operate after virus infection. Interferon-stimulated gene 15 (ISG15) plays an important antiviral role during viral infection. ISG15 catalyzes a ubiquitin-like post-translational modification termed ISGylation, involving the conjugation of ISG15 molecules to de novo synthesized viral or cellular proteins, which regulates their stability and function. Numerous biomedically relevant viruses are targets of ISG15, as well as proteins involved in antiviral immunity. Beyond their role as cellular powerhouses, mitochondria are multifunctional organelles that act as signaling hubs in antiviral responses. In this review, we give an overview of the biological consequences of ISGylation for virus infection and host defense. We also compare several published proteomic studies to identify and classify potential mitochondrial ISGylation targets. Finally, based on our recent observations, we discuss the essential functions of mitochondria in the antiviral response and examine the role of ISG15 in the regulation of mitochondrial processes, specifically OXPHOS and mitophagy.
Collapse
Affiliation(s)
- Manuel Albert
- Department of Preventive Medicine, Public Health and Microbiology, Universidad Autónoma, E-28029 Madrid, Spain.
| | - Martina Bécares
- Department of Preventive Medicine, Public Health and Microbiology, Universidad Autónoma, E-28029 Madrid, Spain.
| | - Michela Falqui
- Department of Preventive Medicine, Public Health and Microbiology, Universidad Autónoma, E-28029 Madrid, Spain.
| | - Carlos Fernández-Lozano
- Department of Preventive Medicine, Public Health and Microbiology, Universidad Autónoma, E-28029 Madrid, Spain.
| | - Susana Guerra
- Department of Preventive Medicine, Public Health and Microbiology, Universidad Autónoma, E-28029 Madrid, Spain.
| |
Collapse
|
289
|
Whitley BN, Lam C, Cui H, Haude K, Bai R, Escobar L, Hamilton A, Brady L, Tarnopolsky MA, Dengle L, Picker J, Lincoln S, Lackner LL, Glass IA, Hoppins S. Aberrant Drp1-mediated mitochondrial division presents in humans with variable outcomes. Hum Mol Genet 2018; 27:3710-3719. [PMID: 30085106 PMCID: PMC6196655 DOI: 10.1093/hmg/ddy287] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 07/06/2018] [Accepted: 07/24/2018] [Indexed: 12/13/2022] Open
Abstract
Mitochondrial dynamics, including mitochondrial division, fusion and transport, are integral parts of mitochondrial and cellular function. DNM1L encodes dynamin-related protein 1 (Drp1), a member of the dynamin-related protein family that is required for mitochondrial division. Several de novo mutations in DNM1L are associated with a range of disease states. Here we report the identification of five patients with pathogenic or likely pathogenic variants of DNM1L, including two novel variants. Interestingly, all of the positions identified in these Drp1 variants are fully conserved among all members of the dynamin-related protein family that are involved in membrane division and organelle division events. This work builds upon and expands the clinical spectrum associated with Drp1 variants in patients and their impact on mitochondrial division in model cells.
Collapse
Affiliation(s)
- Brittany N Whitley
- University of Washington School of Medicine, Department of Biochemistry, Seattle, WA, USA
| | - Christina Lam
- University of Washington School of Medicine, Division of Genetic Medicine, Department of Pediatrics, Seattle, WA, USA
| | - Hong Cui
- GeneDx, 207 Perry Parkway, Gaithersburg, MD, USA
| | | | - Renkui Bai
- GeneDx, 207 Perry Parkway, Gaithersburg, MD, USA
| | - Luis Escobar
- Peyton Manning Children’s Hospital at St. Vincent, Medical Genetics & Neurodevelopment Center, Indianapolis, IN, USA
| | - Afifa Hamilton
- Peyton Manning Children’s Hospital at St. Vincent, Medical Genetics & Neurodevelopment Center, Indianapolis, IN, USA
| | - Lauren Brady
- Department of Pediatrics, McMaster University, Hamilton, ON, Canada
| | - Mark A Tarnopolsky
- Department of Pediatrics, McMaster University, Hamilton, ON, Canada
- Department of Medicine, McMaster University, Hamilton, ON, L8N, Canada
| | - Lauren Dengle
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jonathan Picker
- Boston Children’s Hospital, 300 Longwood Ave., Boston, MA, USA
| | - Sharyn Lincoln
- Boston Children’s Hospital, 300 Longwood Ave., Boston, MA, USA
| | - Laura L Lackner
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Ian A Glass
- University of Washington School of Medicine, Division of Genetic Medicine, Department of Pediatrics, Seattle, WA, USA
| | - Suzanne Hoppins
- University of Washington School of Medicine, Department of Biochemistry, Seattle, WA, USA
| |
Collapse
|
290
|
Basit F, Mathan T, Sancho D, de Vries IJM. Human Dendritic Cell Subsets Undergo Distinct Metabolic Reprogramming for Immune Response. Front Immunol 2018; 9:2489. [PMID: 30455688 PMCID: PMC6230993 DOI: 10.3389/fimmu.2018.02489] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 10/09/2018] [Indexed: 12/31/2022] Open
Abstract
Toll-like receptor (TLR) agonists induce metabolic reprogramming, which is required for immune activation. We have investigated mechanisms that regulate metabolic adaptation upon TLR-stimulation in human blood DC subsets, CD1c+ myeloid DCs (mDCs) and plasmacytoid DCs (pDCs). We show that TLR-stimulation changes expression of genes regulating oxidative phosphorylation (OXPHOS) and glutamine metabolism in pDC. TLR-stimulation increases mitochondrial content and intracellular glutamine in an autophagy-dependent manner in pDC. TLR-induced glutaminolysis fuels OXPHOS in pDCs. Notably, inhibition of glutaminolysis and OXPHOS prevents pDC activation. Conversely, TLR-stimulation reduces mitochondrial content, OXPHOS activity and induces glycolysis in CD1c+ mDC. Inhibition of mitochondrial fragmentation or promotion of mitochondrial fusion impairs TLR-stimulation induced glycolysis and activation of CD1c+ mDCs. TLR-stimulation triggers BNIP3-dependent mitophagy, which regulates transcriptional activity of AMPKα1. BNIP3-dependent mitophagy is required for induction of glycolysis and activation of CD1c+ mDCs. Our findings reveal that TLR stimulation differentially regulates mitochondrial dynamics in distinct human DC subsets, which contributes to their activation.
Collapse
Affiliation(s)
- Farhan Basit
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Till Mathan
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - David Sancho
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - I Jolanda M de Vries
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands.,Department of Medical Oncology, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
291
|
De R, Sarkar S, Mazumder S, Debsharma S, Siddiqui AA, Saha SJ, Banerjee C, Nag S, Saha D, Pramanik S, Bandyopadhyay U. Macrophage migration inhibitory factor regulates mitochondrial dynamics and cell growth of human cancer cell lines through CD74-NF-κB signaling. J Biol Chem 2018; 293:19740-19760. [PMID: 30366984 DOI: 10.1074/jbc.ra118.003935] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 09/25/2018] [Indexed: 12/13/2022] Open
Abstract
The indispensable role of macrophage migration inhibitory factor (MIF) in cancer cell proliferation is unambiguous, although which specific roles the cytokine plays to block apoptosis by preserving cell growth is still obscure. Using different cancer cell lines (AGS, HepG2, HCT116, and HeLa), here we report that the silencing of MIF severely deregulated mitochondrial structural dynamics by shifting the balance toward excess fission, besides inducing apoptosis with increasing sub-G0 cells. Furthermore, enhanced mitochondrial Bax translocation along with cytochrome c release, down-regulation of Bcl-xL, and Bcl-2 as well as up-regulation of Bad, Bax, and p53 indicated the activation of a mitochondrial pathway of apoptosis upon MIF silencing. The data also indicate a concerted down-regulation of Opa1 and Mfn1 along with a significant elevation of Drp1, cumulatively causing mitochondrial fragmentation upon MIF silencing. Up-regulation of Drp1 was found to be further coupled with fissogenic serine 616 phosphorylation and serine 637 dephosphorylation, thus ensuring enhanced mitochondrial translocation. Interestingly, MIF silencing was found to be associated with decreased NF-κB activation. In fact, NF-κB knockdown in turn increased mitochondrial fission and cell death. In addition, the silencing of CD74, the cognate receptor of MIF, remarkably increased mitochondrial fragmentation in addition to preventing cell proliferation, inducing mitochondrial depolarization, and increasing apoptotic cell death. This indicates the active operation of a MIF-regulated CD74-NF-κB signaling axis for maintaining mitochondrial stability and cell growth. Thus, we propose that MIF, through CD74, constitutively activates NF-κB to control mitochondrial dynamics and stability for promoting carcinogenesis via averting apoptosis.
Collapse
Affiliation(s)
- Rudranil De
- From the Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata 700032, West Bengal, India
| | - Souvik Sarkar
- From the Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata 700032, West Bengal, India
| | - Somnath Mazumder
- From the Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata 700032, West Bengal, India
| | - Subhashis Debsharma
- From the Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata 700032, West Bengal, India
| | - Asim Azhar Siddiqui
- From the Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata 700032, West Bengal, India
| | - Shubhra Jyoti Saha
- From the Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata 700032, West Bengal, India
| | - Chinmoy Banerjee
- From the Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata 700032, West Bengal, India
| | - Shiladitya Nag
- From the Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata 700032, West Bengal, India
| | - Debanjan Saha
- From the Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata 700032, West Bengal, India
| | - Saikat Pramanik
- From the Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata 700032, West Bengal, India
| | - Uday Bandyopadhyay
- From the Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata 700032, West Bengal, India
| |
Collapse
|
292
|
Björklund M. Cell size homeostasis: Metabolic control of growth and cell division. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1866:409-417. [PMID: 30315834 DOI: 10.1016/j.bbamcr.2018.10.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 09/25/2018] [Accepted: 10/03/2018] [Indexed: 12/14/2022]
Abstract
Joint regulation of growth rate and cell division rate determines cell size. Here we discuss how animal cells achieve cell size homeostasis potentially involving multiple signaling pathways converging at metabolic regulation of growth rate and cell cycle progression. While several models have been developed to explain cell size control, comparison of the two predominant models shows that size homeostasis is dependent on the ability to adjust cellular growth rate based on cell size. Consequently, maintenance of size homeostasis requires that larger cells can grow slower than small cells in relative terms. We review recent experimental evidence showing that such size adjustment occurs primarily at or immediately before the G1/S transition of the cell cycle. We further propose that bidirectional feedback between growth rate and size results in cell size sensing and discuss potential mechanisms how this may be accomplished.
Collapse
Affiliation(s)
- Mikael Björklund
- Zhejiang University-University of Edinburgh (ZJU-UoE) Institute, Zhejiang University School of Medicine, International Campus, 718 East Haizhou Rd., Haining, Zhejiang 314400, PR China.
| |
Collapse
|
293
|
Mariano V, Domínguez-Iturza N, Neukomm LJ, Bagni C. Maintenance mechanisms of circuit-integrated axons. Curr Opin Neurobiol 2018; 53:162-173. [PMID: 30241058 DOI: 10.1016/j.conb.2018.08.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 08/14/2018] [Indexed: 12/21/2022]
Abstract
Adult, circuit-integrated neurons must be maintained and supported for the life span of their host. The attenuation of either maintenance or plasticity leads to impaired circuit function and ultimately to neurodegenerative disorders. Over the last few years, significant discoveries of molecular mechanisms were made that mediate the formation and maintenance of axons. Here, we highlight intrinsic and extrinsic mechanisms that ensure the health and survival of axons. We also briefly discuss examples of mutations associated with impaired axonal maintenance identified in specific neurological conditions. A better understanding of these mechanisms will therefore help to define targets for therapeutic interventions.
Collapse
Affiliation(s)
- Vittoria Mariano
- Department of Fundamental Neurosciences, University of Lausanne, Switzerland; Department of Neurosciences KU Leuven, VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Nuria Domínguez-Iturza
- Department of Fundamental Neurosciences, University of Lausanne, Switzerland; Department of Neurosciences KU Leuven, VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Lukas J Neukomm
- Department of Fundamental Neurosciences, University of Lausanne, Switzerland.
| | - Claudia Bagni
- Department of Fundamental Neurosciences, University of Lausanne, Switzerland; Department of Biomedicine and Prevention, University of Rome Tor Vergata, Italy.
| |
Collapse
|
294
|
Cai H, Chen L, Zhang M, Xiang W, Su P. Low expression of MFN2 is associated with early unexplained miscarriage by regulating autophagy of trophoblast cells. Placenta 2018; 70:34-40. [PMID: 30316324 DOI: 10.1016/j.placenta.2018.08.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 08/10/2018] [Accepted: 08/23/2018] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Miscarriage is a common complication during pregnancy. Mitofusin-2 (MFN2) deficiency in trophoblastic cells is reported to be an important cause for early miscarriage. MFN2 can regulate mitochondrial autophagy, although the mechanisms remain unknown. This study aims to investigate the roles of MFN2 and autophagy in early unexplained miscarriage. METHODS Immunohistochemistry and western blotting were used to detect the MFN2 expression in villous tissues from women who had early unexplained miscarriage. Western blotting was used to detect the expression of autophagy-related proteins (ATG5, BECLIN1, and LC3), MMP-2, MMP-9, and integrin β1. Immunofluorescence was used to detect the expression of autophagosome after transfection with GFP-LC3. We used JC-1 to measure the mitochondrial membrane potential and transmission electron microscopy (TEM) to observe the ultrastructure of mitochondria. The levels of β-hCG and progesterone in the trophoblast were determined by the chemiluminescence method. RESULTS Immunofluorescence analysis demonstrated that MFN2 in the villous tissues of women with early unexplained miscarriage was significantly lower than that of women in the normal pregnancy group. Increased levels of LC3, ATG5, and BECLIN1 were observed by western blotting. After transfection with MFN2-siRNA, the level of MFN2 decreased, whereas LC3, ATG5, and BECLIN1 levels increased significantly in the trophoblasts. More autophagosomes and significant impairment of mitochondrial function were observed by TEM. The levels of β-hCG, progesterone, MMP-2, MMP-9, and integrin β1 were significantly reduced in the MFN2-siRNA group. CONCLUSION Low expression of MFN2 leads to mitochondrial dysfunction, increased level of autophagy, and trophoblast cell dysfunction, which could be accounted for early unexplained miscarriage.
Collapse
Affiliation(s)
- Hongcai Cai
- Family Planning Research Institute, Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Li Chen
- Family Planning Research Institute, Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Mengdi Zhang
- Family Planning Research Institute, Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Wenpei Xiang
- Family Planning Research Institute, Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, China.
| | - Ping Su
- Family Planning Research Institute, Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, China.
| |
Collapse
|
295
|
Ježek P, Holendová B, Garlid KD, Jabůrek M. Mitochondrial Uncoupling Proteins: Subtle Regulators of Cellular Redox Signaling. Antioxid Redox Signal 2018; 29:667-714. [PMID: 29351723 PMCID: PMC6071544 DOI: 10.1089/ars.2017.7225] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
SIGNIFICANCE Mitochondria are the energetic, metabolic, redox, and information signaling centers of the cell. Substrate pressure, mitochondrial network dynamics, and cristae morphology state are integrated by the protonmotive force Δp or its potential component, ΔΨ, which are attenuated by proton backflux into the matrix, termed uncoupling. The mitochondrial uncoupling proteins (UCP1-5) play an eminent role in the regulation of each of the mentioned aspects, being involved in numerous physiological events including redox signaling. Recent Advances: UCP2 structure, including purine nucleotide and fatty acid (FA) binding sites, strongly support the FA cycling mechanism: UCP2 expels FA anions, whereas uncoupling is achieved by the membrane backflux of protonated FA. Nascent FAs, cleaved by phospholipases, are preferential. The resulting Δp dissipation decreases superoxide formation dependent on Δp. UCP-mediated antioxidant protection and its impairment are expected to play a major role in cell physiology and pathology. Moreover, UCP2-mediated aspartate, oxaloacetate, and malate antiport with phosphate is expected to alter metabolism of cancer cells. CRITICAL ISSUES A wide range of UCP antioxidant effects and participations in redox signaling have been reported; however, mechanisms of UCP activation are still debated. Switching off/on the UCP2 protonophoretic function might serve as redox signaling either by employing/releasing the extra capacity of cell antioxidant systems or by directly increasing/decreasing mitochondrial superoxide sources. Rapid UCP2 degradation, FA levels, elevation of purine nucleotides, decreased Mg2+, or increased pyruvate accumulation may initiate UCP-mediated redox signaling. FUTURE DIRECTIONS Issues such as UCP2 participation in glucose sensing, neuronal (synaptic) function, and immune cell activation should be elucidated. Antioxid. Redox Signal. 29, 667-714.
Collapse
Affiliation(s)
- Petr Ježek
- 1 Department of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences , Prague, Czech Republic
| | - Blanka Holendová
- 1 Department of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences , Prague, Czech Republic
| | - Keith D Garlid
- 2 UCLA Cardiovascular Research Laboratory, David Geffen School of Medicine at UCLA , Los Angeles, California
| | - Martin Jabůrek
- 1 Department of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences , Prague, Czech Republic
| |
Collapse
|
296
|
MeHg Causes Ultrastructural Changes in Mitochondria and Autophagy in the Spinal Cord Cells of Chicken Embryo. J Toxicol 2018; 2018:8460490. [PMID: 30228816 PMCID: PMC6136469 DOI: 10.1155/2018/8460490] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/06/2018] [Indexed: 01/16/2023] Open
Abstract
Methylmercury (MeHg) is a known neurodevelopmental toxicant, which causes changes in various structures of the central nervous system (CNS). However, ultrastructural studies of its effects on the developing CNS are still scarce. Here, we investigated the effect of MeHg on the ultrastructure of the cells in spinal cord layers. Chicken embryos at E3 were treated in ovo with 0.1 μg MeHg/50 μL saline solution and analyzed at E10. Then, we used transmission electron microscopy (TEM) to identify possible damage caused by MeHg to the structures and organelles of the spinal cord cells. After MeHg treatment, we observed, in the spinal cord mantle layer, a significant number of altered mitochondria with external membrane disruptions, crest disorganization, swelling in the mitochondrial matrix, and vacuole formation between the internal and external mitochondrial membranes. We also observed dilations in the Golgi complex and endoplasmic reticulum cisterns and the appearance of myelin-like cytoplasmic inclusions. We observed no difference in the total mitochondria number between the control and MeHg-treated groups. However, the MeHg-treated embryos showed an increased number of altered mitochondria and a decreased number of mitochondrial fusion profiles. Additionally, unusual mitochondrial shapes were found in MeHg-treated embryos as well as autophagic vacuoles similar to mitophagic profiles. In addition, we observed autophagic vacuoles with amorphous, homogeneous, and electron-dense contents, similar to the autophagy. Our results showed, for the first time, the neurotoxic effect of MeHg on the ultrastructure of the developing spinal cord. Using TEM we demonstrate that changes in the endomembrane system, mitochondrial damage, disturbance in mitochondrial dynamics, and increase in mitophagy were caused by MeHg exposure.
Collapse
|
297
|
Dudek J, Hartmann M, Rehling P. The role of mitochondrial cardiolipin in heart function and its implication in cardiac disease. Biochim Biophys Acta Mol Basis Dis 2018; 1865:810-821. [PMID: 30837070 DOI: 10.1016/j.bbadis.2018.08.025] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 08/14/2018] [Accepted: 08/17/2018] [Indexed: 01/21/2023]
Abstract
Mitochondria play an essential role in the energy metabolism of the heart. Many of the essential functions are associated with mitochondrial membranes and oxidative phosphorylation driven by the respiratory chain. Mitochondrial membranes are unique in the cell as they contain the phospholipid cardiolipin. The important role of cardiolipin in cardiovascular health is highlighted by several cardiac diseases, in which cardiolipin plays a fundamental role. Barth syndrome, Sengers syndrome, and Dilated cardiomyopathy with ataxia (DCMA) are genetic disorders, which affect cardiolipin biosynthesis. Other cardiovascular diseases including ischemia/reperfusion injury and heart failure are also associated with changes in the cardiolipin pool. Here, we summarize molecular functions of cardiolipin in mitochondrial biogenesis and morphology. We highlight the role of cardiolipin for the respiratory chain, metabolite carriers, and mitochondrial metabolism and describe links to apoptosis and mitochondria specific autophagy (mitophagy) with possible implications in cardiac disease.
Collapse
Affiliation(s)
- Jan Dudek
- Institute of Cellular Biochemistry, University Medical Center Göttingen, D-37073 Göttingen, Germany
| | - Magnus Hartmann
- Institute of Cellular Biochemistry, University Medical Center Göttingen, D-37073 Göttingen, Germany
| | - Peter Rehling
- Institute of Cellular Biochemistry, University Medical Center Göttingen, D-37073 Göttingen, Germany; Max Planck Institute for Biophysical Chemistry, D-37077 Göttingen, Germany.
| |
Collapse
|
298
|
Cannino G, Ciscato F, Masgras I, Sánchez-Martín C, Rasola A. Metabolic Plasticity of Tumor Cell Mitochondria. Front Oncol 2018; 8:333. [PMID: 30197878 PMCID: PMC6117394 DOI: 10.3389/fonc.2018.00333] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/02/2018] [Indexed: 01/17/2023] Open
Abstract
Mitochondria are dynamic organelles that exchange a multiplicity of signals with other cell compartments, in order to finely adjust key biological routines to the fluctuating metabolic needs of the cell. During neoplastic transformation, cells must provide an adequate supply of the anabolic building blocks required to meet a relentless proliferation pressure. This can occur in conditions of inconstant blood perfusion leading to variations in oxygen and nutrient levels. Mitochondria afford the bioenergetic plasticity that allows tumor cells to adapt and thrive in this ever changing and often unfavorable environment. Here we analyse how mitochondria orchestrate the profound metabolic rewiring required for neoplastic growth.
Collapse
Affiliation(s)
- Giuseppe Cannino
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Francesco Ciscato
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Ionica Masgras
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | | | - Andrea Rasola
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| |
Collapse
|
299
|
Joshi AU, Mochly-Rosen D. Mortal engines: Mitochondrial bioenergetics and dysfunction in neurodegenerative diseases. Pharmacol Res 2018; 138:2-15. [PMID: 30144530 DOI: 10.1016/j.phrs.2018.08.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 08/06/2018] [Accepted: 08/13/2018] [Indexed: 12/14/2022]
Abstract
Mitochondria are best known for their role in ATP generation. However, studies over the past two decades have shown that mitochondria do much more than that. Mitochondria regulate both necrotic and apoptotic cell death pathways, they store and therefore coordinate cellular Ca2+ signaling, they generate and metabolize important building blocks, by-products and signaling molecules, and they also generate and are targets of free radical species that modulate many aspects of cell physiology and pathology. Most estimates suggest that although the brain makes up only 2 percent of body weight, utilizes about 20 percent of the body's total ATP. Thus, mitochondrial dysfunction greatly impacts brain functions and is indeed associated with numerous neurodegenerative diseases. Furthermore, a number of abnormal disease-associated proteins have been shown to interact directly with mitochondria, leading to mitochondrial dysfunction and subsequent neuronal cell death. Here, we discuss the role of mitochondrial dynamics impairment in the pathological processes associated with neurodegeneration and suggest that a therapy targeting mitochondrialdysfunction holds a great promise.
Collapse
Affiliation(s)
- Amit U Joshi
- Department of Chemical and Systems Biology, School of Medicine, Stanford University, CA, 94305-5174, USA
| | - Daria Mochly-Rosen
- Department of Chemical and Systems Biology, School of Medicine, Stanford University, CA, 94305-5174, USA.
| |
Collapse
|
300
|
Chiaratti MR, Garcia BM, Carvalho KF, Macabelli CH, Ribeiro FKDS, Zangirolamo AF, Sarapião FD, Seneda MM, Meirelles FV, Guimarães FEG, Machado TS. Oocyte mitochondria: role on fertility and disease transmission. Anim Reprod 2018; 15:231-238. [PMID: 34178146 PMCID: PMC8202466 DOI: 10.21451/1984-3143-ar2018-0069] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Oocyte mitochondria are increased in number, smaller, and rounder in appearance than mitochondria in somatic cells. Moreover, mitochondrial numbers and activity are narrowly tied with oocyte quality because of the key role of mitochondria to oocyte maturation. During oocyte maturation, mitochondria display great mobility and cluster at specific sites to meet the high energy demand. Conversely, oocyte mitochondria are not required during early oogenesis as coupling with granulosa cells is sufficient to support gamete's needs. In part, this might be explained by the importance of protecting mitochondria from oxidative damage that result in mutations in mitochondrial DNA (mtDNA). Considering mitochondria are transmitted exclusively by the mother, oocytes with mtDNA mutations may lead to diseases in offspring. Thus, to counterbalance mutation expansion, the oocyte has developed specific mechanisms to filter out deleterious mtDNA molecules. Herein, we discuss the role of mitochondria on oocyte developmental potential and recent evidence supporting a purifying filter against deleterious mtDNA mutations in oocytes.
Collapse
Affiliation(s)
- Marcos R Chiaratti
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, Brazil.,Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Bruna M Garcia
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, Brazil
| | - Karen F Carvalho
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, Brazil
| | - Carolina H Macabelli
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, Brazil
| | | | | | | | | | - Flávio V Meirelles
- Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, SP, Brazil.,Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, SP, Brazil
| | | | - Thiago S Machado
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, Brazil.,Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|