251
|
Zhan X, Kaoud TS, Dalby KN, Gurevich VV. Nonvisual arrestins function as simple scaffolds assembling the MKK4-JNK3α2 signaling complex. Biochemistry 2011; 50:10520-10529. [PMID: 22047447 PMCID: PMC3227541 DOI: 10.1021/bi201506g] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Arrestins make up a small family of proteins with four mammalian members that play key roles in the regulation of multiple G protein-coupled receptor-dependent and -independent signaling pathways. Although arrestins were reported to serve as scaffolds for MAP kinase cascades, promoting the activation of JNK3, ERK1/2, and p38, the molecular mechanisms involved were not elucidated, and even the direct binding of arrestins with MAP kinases was never demonstrated. Here, using purified proteins, we show that both nonvisual arrestins directly bind JNK3α2 and its upstream activator MKK4, and that the affinity of arrestin-3 for these kinases is higher than that of arrestin-2. Reconstitution of the MKK4-JNK3α2 signaling module from pure proteins in the presence of different arrestin-3 concentrations showed that arrestin-3 acts as a "true" scaffold, facilitating JNK3α2 phosphorylation by bringing the two kinases together. Both the level of JNK3α2 phosphorylation by MKK4 and JNK3α2 activity toward its substrate ATF2 increase at low and then decrease at high arrestin-3 levels, yielding a bell-shaped concentration dependence expected with true scaffolds that do not activate the upstream kinase or its substrate. Thus, direct binding of both kinases and true scaffolding is the molecular mechanism of action of arrestin-3 on the MKK4-JNK3α2 signaling module.
Collapse
Affiliation(s)
- Xuanzhi Zhan
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232
| | - Tamer S. Kaoud
- Division of Medicinal Chemistry, The University of Texas at Austin, Austin, TX 78712
| | - Kevin N. Dalby
- Division of Medicinal Chemistry, The University of Texas at Austin, Austin, TX 78712
| | | |
Collapse
|
252
|
Abstract
Somatostatin (SS) and dopamine (DA) receptors have been highlighted as two critical regulators in the negative control of hormonal secretion in a wide group of human endocrine tumors. Both families of receptors belong to the superfamily of G protein-coupled receptors and share a number of structural and functional characteristics. Because of the generally reported high expression of somatostatin receptors (SSTRs) in neuroendocrine tumors (NET), somatostatin analogs (SSA) have a pronounced role in the medical therapy for this class of tumors, especially pituitary adenomas and well-differentiated gastroenteropancreatic NET (GEP NET). Moreover, NET express not only SSTR but also frequently dopamine receptors (DRs), and DA agonists targeting the D(2) receptor (D(2)) have been demonstrated to be effective in controlling hormone secretion and cell proliferation in in vivo and in vitro studies. The treatment with SSAs combined with DA agonists has already been demonstrated efficacious in a subgroup of patients with GH-secreting pituitary adenomas and few reported cases of carcinoids. The recent availability of new selective and universal SSA and DA agonists, as well as the chimeric SS/DA compounds, may shed new light on the potential role of SSTR and D(2) as combined targets for biotherapy in NET. This review provides an overview of the latest studies evaluating the expression of SSTR and DR in NET, focusing on their co-expression and the possible clinical implications of such co-expression. Moreover, the most recent insights in SSTR and D(2) pathophysiology and the future perspectives for treatment with SSA, DA agonists, and SS/DA chimeric compounds are discussed.
Collapse
Affiliation(s)
- Federico Gatto
- Division of Endocrinology, Department of Internal Medicine, Erasmus Medical Center, Room Ee530b, Dr. Molewaterplein 50, 3015 GE Rotterdam, The Netherlands
| | | |
Collapse
|
253
|
Raehal KM, Schmid CL, Groer CE, Bohn LM. Functional selectivity at the μ-opioid receptor: implications for understanding opioid analgesia and tolerance. Pharmacol Rev 2011; 63:1001-19. [PMID: 21873412 PMCID: PMC3186080 DOI: 10.1124/pr.111.004598] [Citation(s) in RCA: 206] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Opioids are the most effective analgesic drugs for the management of moderate or severe pain, yet their clinical use is often limited because of the onset of adverse side effects. Drugs in this class produce most of their physiological effects through activation of the μ opioid receptor; however, an increasing number of studies demonstrate that different opioids, while presumably acting at this single receptor, can activate distinct downstream responses, a phenomenon termed functional selectivity. Functional selectivity of receptor-mediated events can manifest as a function of the drug used, the cellular or neuronal environment examined, or the signaling or behavioral measure recorded. This review summarizes both in vitro and in vivo work demonstrating functional selectivity at the μ opioid receptor in terms of G protein coupling, receptor phosphorylation, interactions with β-arrestins, receptor desensitization, internalization and signaling, and details on how these differences may relate to the progression of analgesic tolerance after their extended use.
Collapse
Affiliation(s)
- Kirsten M Raehal
- Molecular Therapeutics and Neuroscience, The Scripps Research Institute, Jupiter, Florida, USA
| | | | | | | |
Collapse
|
254
|
One-step purification of a functional, constitutively activated form of visual arrestin. Protein Expr Purif 2011; 82:55-60. [PMID: 22133714 DOI: 10.1016/j.pep.2011.11.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Revised: 11/06/2011] [Accepted: 11/07/2011] [Indexed: 01/24/2023]
Abstract
Desensitization of agonist-activated G protein-coupled receptors (GPCRs) requires phosphorylation followed by the binding of arrestin, a ~48 kDa soluble protein. While crystal structures for the inactive, 'basal' state of various arrestins are available, the conformation of 'activated' arrestin adopted upon interaction with activated GPCRs remains unknown. As a first step towards applying high-resolution structural methods to study arrestin conformation and dynamics, we have utilized the subtilisin prodomain/Profinity eXact™ fusion-tag system for the high-level bacterial expression and one-step purification of wild-type visual arrestin (arrestin 1) as well as a mutant form (R175E) of the protein that binds to non-phosphorylated, light-activated rhodopsin (Rho∗). The results show that both prodomain/Profinity eXact™ fusion-tagged wild-type and R175E arrestins can be expressed to levels approaching 2-3 mg/l in Luria-Bertani media, and that the processed, tag-free mature forms can be purified to near homogeneity using a Bio-Scale™ Mini Profinity eXact™ cartridge on the Profinia™ purification system. Functional analysis of R175E arrestin generated using this approach shows that it binds to non-phosphorylated rhodopsin in a light-dependent manner. These findings should facilitate the structure determination of this 'constitutively activated' state of arrestin 1 as well as the monitoring of conformational changes upon interaction with Rho∗.
Collapse
|
255
|
Bennett LD, Fox JM, Signoret N. Mechanisms regulating chemokine receptor activity. Immunology 2011; 134:246-56. [PMID: 21977995 PMCID: PMC3209565 DOI: 10.1111/j.1365-2567.2011.03485.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 07/04/2011] [Accepted: 07/12/2011] [Indexed: 12/21/2022] Open
Abstract
Co-ordinated movement and controlled positioning of leucocytes is key to the development, maintenance and proper functioning of the immune system. Chemokines and their receptors play an essential role in these events by mediating directed cell migration, often referred to as chemotaxis. The chemotactic property of these molecules is also thought to contribute to an array of pathologies where inappropriate recruitment of specific chemokine receptor-expressing leucocytes is observed, including cancer and inflammatory diseases. As a result, chemokine receptors have become major targets for therapeutic intervention, and during the past 15 years much research has been devoted to understanding the regulation of their biological activity. From these studies, processes which govern the availability of functional chemokine receptors at the cell surface have emerged as playing a central role. In this review, we summarize and discuss current knowledge on the molecular mechanisms contributing to the regulation of chemokine receptor surface expression, from gene transcription and protein degradation to post-translational modifications, multimerization, intracellular transport and cross-talk.
Collapse
Affiliation(s)
- Laura D Bennett
- Centre for Immunology and Infection, Department of Biology and Hull York Medical School, University of York, York, UK
| | | | | |
Collapse
|
256
|
Gurevich VV, Hanson SM, Song X, Vishnivetskiy SA, Gurevich EV. The functional cycle of visual arrestins in photoreceptor cells. Prog Retin Eye Res 2011; 30:405-430. [PMID: 21824527 PMCID: PMC3196764 DOI: 10.1016/j.preteyeres.2011.07.002] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 07/20/2011] [Accepted: 07/21/2011] [Indexed: 01/14/2023]
Abstract
Visual arrestin-1 plays a key role in the rapid and reproducible shutoff of rhodopsin signaling. Its highly selective binding to light-activated phosphorylated rhodopsin is an integral part of the functional perfection of rod photoreceptors. Structure-function studies revealed key elements of the sophisticated molecular mechanism ensuring arrestin-1 selectivity and paved the way to the targeted manipulation of the arrestin-1 molecule to design mutants that can compensate for congenital defects in rhodopsin phosphorylation. Arrestin-1 self-association and light-dependent translocation in photoreceptor cells work together to keep a constant supply of active rhodopsin-binding arrestin-1 monomer in the outer segment. Recent discoveries of arrestin-1 interaction with other signaling proteins suggest that it is a much more versatile signaling regulator than previously thought, affecting the function of the synaptic terminals and rod survival. Elucidation of the fine molecular mechanisms of arrestin-1 interactions with rhodopsin and other binding partners is necessary for the comprehensive understanding of rod function and for devising novel molecular tools and therapeutic approaches to the treatment of visual disorders.
Collapse
Affiliation(s)
- Vsevolod V Gurevich
- Department of Pharmacology, Vanderbilt University, 2200 Pierce Ave, PRB, Rm 417D, Nashville, TN 37232, USA.
| | | | | | | | | |
Collapse
|
257
|
Conformational dynamics of helix 8 in the GPCR rhodopsin controls arrestin activation in the desensitization process. Proc Natl Acad Sci U S A 2011; 108:18690-5. [PMID: 22039220 DOI: 10.1073/pnas.1015461108] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Arrestins are regulatory molecules for G-protein coupled receptor function. In visual rhodopsin, selective binding of arrestin to the cytoplasmic side of light-activated, phosphorylated rhodopsin (P-Rh*) terminates signaling via the G-protein transducin. While the "phosphate-sensor" of arrestin for the recognition of receptor-attached phosphates is identified, the molecular mechanism of arrestin binding and the involvement of receptor conformations in this process are still largely hypothetic. Here we used fluorescence pump-probe and time-resolved fluorescence depolarization measurements to investigate the kinetics of arrestin conformational changes and the corresponding nanosecond dynamical changes at the receptor surface. We show that at least two sequential conformational changes of arrestin occur upon interaction with P-Rh*, thus providing a kinetic proof for the suggested multistep nature of arrestin binding. At the cytoplasmic surface of P-Rh*, the structural dynamics of the amphipathic helix 8 (H8), connecting transmembrane helix 7 and the phosphorylated C-terminal tail, depends on the arrestin interaction state. We find that a high mobility of H8 is required in the low-affinity (prebinding) but not in the high-affinity binding state. High-affinity arrestin binding is inhibited when a bulky, inflexible group is bound to H8, indicating close interaction. We further show that this close steric interaction of H8 with arrestin is mandatory for the transition from prebinding to high-affinity binding; i.e., for arrestin activation. This finding implies a regulatory role for H8 in activation of visual arrestin, which shows high selectivity to P-Rh* in contrast to the broad receptor specificity displayed by the two nonvisual arrestins.
Collapse
|
258
|
Katritch V, Cherezov V, Stevens RC. Diversity and modularity of G protein-coupled receptor structures. Trends Pharmacol Sci 2011; 33:17-27. [PMID: 22032986 DOI: 10.1016/j.tips.2011.09.003] [Citation(s) in RCA: 351] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 09/19/2011] [Accepted: 09/19/2011] [Indexed: 01/21/2023]
Abstract
G protein-coupled receptors (GPCRs) comprise the most 'prolific' family of cell membrane proteins, which share a general mechanism of signal transduction, but greatly vary in ligand recognition and function. Crystal structures are now available for rhodopsin, adrenergic, and adenosine receptors in both inactive and activated forms, as well as for chemokine, dopamine, and histamine receptors in inactive conformations. Here we review common structural features, outline the scope of structural diversity of GPCRs at different levels of homology, and briefly discuss the impact of the structures on drug discovery. Given the current set of GPCR crystal structures, a distinct modularity is now being observed between the extracellular (ligand-binding) and intracellular (signaling) regions. The rapidly expanding repertoire of GPCR structures provides a solid framework for experimental and molecular modeling studies, and helps to chart a roadmap for comprehensive structural coverage of the whole superfamily and an understanding of GPCR biological and therapeutic mechanisms.
Collapse
Affiliation(s)
- Vsevolod Katritch
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
259
|
Sonoyama H, Shinoda K, Ishigami C, Tada Y, Ideta H, Ideta R, Takahashi M, Miyake Y. Oguchi disease masked by retinitis pigmentosa. Doc Ophthalmol 2011; 123:127-33. [DOI: 10.1007/s10633-011-9286-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2011] [Accepted: 08/25/2011] [Indexed: 12/01/2022]
|
260
|
Abstract
A fundamental question of cell signaling biology is how faint external signals produce robust physiological responses. One universal mechanism relies on signal amplification via intracellular cascades mediated by heterotrimeric G-proteins. This high amplification system allows retinal rod photoreceptors to detect single photons of light. Although much is now known about the role of the α-subunit of the rod-specific G-protein transducin in phototransduction, the physiological function of the auxiliary βγ-complex in this process remains a mystery. Here, we show that elimination of the transducin γ-subunit drastically reduces signal amplification in intact mouse rods. The consequence is a striking decline in rod visual sensitivity and severe impairment of nocturnal vision. Our findings demonstrate that transducin βγ-complex controls signal amplification of the rod phototransduction cascade and is critical for the ability of rod photoreceptors to function in low light conditions.
Collapse
|
261
|
Coffa S, Breitman M, Spiller BW, Gurevich VV. A single mutation in arrestin-2 prevents ERK1/2 activation by reducing c-Raf1 binding. Biochemistry 2011; 50:6951-6958. [PMID: 21732673 PMCID: PMC3153575 DOI: 10.1021/bi200745k] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Arrestins regulate the signaling and trafficking of G protein-coupled receptors (GPCRs). GPCR complexes with both nonvisual arrestins channel signaling to G protein-independent pathways, one of which is the activation of extracellular signal regulated kinase 1/2 (ERK1/2). Here we used alanine-scanning mutagenesis of residues on the nonreceptor-binding surface conserved between arrestin-2 and arrestin-3. We show that an Arg307Ala mutation significantly reduced arrestin-2 binding to c-Raf1, whereas the binding of the mutant to active phosphorylated receptor and downstream kinases MEK1 and ERK2 was not affected. In contrast to wild-type arrestin-2, the Arg307Ala mutant failed to rescue arrestin-dependent ERK1/2 activation via β2-adrenergic receptor in arrestin-2/3 double knockout mouse embryonic fibroblasts. Thus, Arg307 plays a specific role in arrestin-2 binding to c-Raf1 and is indispensable in the productive scaffolding of c-Raf1-MEK1-ERK1/2 signaling cascade. Arg307Ala mutation specifically eliminates arrestin-2 signaling through ERK, which makes arrestin-2-Arg307Ala the first signaling-biased arrestin mutant constructed. In the crystal structure the side chain of homologous arrestin-3 residue Lys308 points in a different direction. Alanine substitution of Lys308 does not significantly affect c-Raf1 binding to arrestin-3 and its ability to promote ERK1/2 activation, suggesting that the two nonvisual arrestins perform the same function via distinct molecular mechanisms.
Collapse
Affiliation(s)
- Sergio Coffa
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232
| | - Maya Breitman
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232
| | | | | |
Collapse
|
262
|
Seo J, Tsakem EL, Breitman M, Gurevich VV. Identification of arrestin-3-specific residues necessary for JNK3 kinase activation. J Biol Chem 2011; 286:27894-27901. [PMID: 21715332 PMCID: PMC3151035 DOI: 10.1074/jbc.m111.260448] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 06/17/2011] [Indexed: 12/29/2022] Open
Abstract
Arrestins bind active phosphorylated G protein-coupled receptors, blocking G protein activation and channeling the signaling to G protein-independent pathways. Free arrestin-3 and receptor-bound arrestin-3 scaffold the ASK1-MKK4-JNK3 module, promoting JNK3 phosphorylation, whereas highly homologous arrestin-2 does not. Here, we used arrestin-2/3 chimeras and mutants to identify key residues of arrestin-3 responsible for its ability to facilitate JNK3 activation. Our data demonstrate that both arrestin domains are involved in JNK3 activation, with the C-terminal domain being more important than the N-terminal domain. We found that Val-343 is the key contributor to this function, whereas Leu-278, Ser-280, His-350, Asp-351, His-352, and Ile-353 play supporting roles. We also show that the arrestin-3-specific difference in the arrangement of the β-strands in the C-terminal domain that underlies its lower selectivity for active phosphoreceptors does not play an appreciable role in its ability to enhance JNK3 activation. Importantly, the strength of the binding of ASK1 or JNK3, as revealed by the efficiency of co-immunoprecipitation, does not correlate with the ability of arrestin proteins to promote ASK1-dependent JNK3 phosphorylation. Thus, multiple residues on the non-receptor-binding side of arrestin-3 are crucial for JNK3 activation, and this function and the receptor-binding characteristics of arrestin can be manipulated independently by targeted mutagenesis.
Collapse
Affiliation(s)
- Jungwon Seo
- From the Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232
| | - Elviche L. Tsakem
- From the Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232
| | - Maya Breitman
- From the Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232
| | - Vsevolod V. Gurevich
- From the Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232
| |
Collapse
|
263
|
Wang D, Yuen EY, Zhou Y, Yan Z, Xiang YK. Amyloid beta peptide-(1-42) induces internalization and degradation of beta2 adrenergic receptors in prefrontal cortical neurons. J Biol Chem 2011; 286:31852-63. [PMID: 21757762 DOI: 10.1074/jbc.m111.244335] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Emerging evidence indicates that amyloid β peptide (Aβ) initially induces subtle alterations in synaptic function in Alzheimer disease. We have recently shown that Aβ binds to β(2) adrenergic receptor (β(2)AR) and activates protein kinase A (PKA) signaling for glutamatergic regulation of synaptic activities. Here we show that in the cerebrums of mice expressing human familial mutant presenilin 1 and amyloid precursor protein genes, the levels of β(2)AR are drastically reduced. Moreover, Aβ induces internalization of transfected human β(2)AR in fibroblasts and endogenous β(2)AR in primary prefrontal cortical neurons. In fibroblasts, Aβ treatment also induces transportation of β(2)AR into lysosome, and prolonged Aβ treatment causes β(2)AR degradation. The Aβ-induced β(2)AR internalization requires the N terminus of the receptor containing the peptide binding sites and phosphorylation of β(2)AR by G protein-coupled receptor kinase, not by PKA. However, the G protein-coupled receptor kinase phosphorylation of β(2)AR and the receptor internalization are much slower than that induced by βAR agonist isoproterenol. The Aβ-induced β(2)AR internalization is also dependent on adaptor protein arrestin 3 and GTPase dynamin, but not arrestin 2. Functionally, pretreatment of primary prefrontal cortical neurons with Aβ induces desensitization of β(2)AR, which leads to attenuated response to subsequent stimulation with isoproterenol, including decreased cAMP levels, PKA activities, PKA phosphorylation of serine 845 on α-amino-2,3-dihydro-5-methyl-3-oxo-4-isoxazolepropanoic acid (AMPA) receptor subunit 1 (GluR1), and AMPA receptor-mediated miniature excitatory postsynaptic currents. This study indicates that Aβ induces β(2)AR internalization and degradation leading to impairment of adrenergic and glutamatergic activities.
Collapse
Affiliation(s)
- Dayong Wang
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | | | | | |
Collapse
|
264
|
Vishnivetskiy SA, Gimenez LE, Francis DJ, Hanson SM, Hubbell WL, Klug CS, Gurevich VV. Few residues within an extensive binding interface drive receptor interaction and determine the specificity of arrestin proteins. J Biol Chem 2011; 286:24288-24299. [PMID: 21471193 PMCID: PMC3129209 DOI: 10.1074/jbc.m110.213835] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 02/25/2011] [Indexed: 01/25/2023] Open
Abstract
Arrestins bind active phosphorylated forms of G protein-coupled receptors, terminating G protein activation, orchestrating receptor trafficking, and redirecting signaling to alternative pathways. Visual arrestin-1 preferentially binds rhodopsin, whereas the two non-visual arrestins interact with hundreds of G protein-coupled receptor subtypes. Here we show that an extensive surface on the concave side of both arrestin-2 domains is involved in receptor binding. We also identified a small number of residues on the receptor binding surface of the N- and C-domains that largely determine the receptor specificity of arrestins. We show that alanine substitution of these residues blocks the binding of arrestin-1 to rhodopsin in vitro and of arrestin-2 and -3 to β2-adrenergic, M2 muscarinic cholinergic, and D2 dopamine receptors in intact cells, suggesting that these elements critically contribute to the energy of the interaction. Thus, in contrast to arrestin-1, where direct phosphate binding is crucial, the interaction of non-visual arrestins with their cognate receptors depends to a lesser extent on phosphate binding and more on the binding to non-phosphorylated receptor elements.
Collapse
Affiliation(s)
| | - Luis E. Gimenez
- From the Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232
| | - Derek J. Francis
- the Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, and
| | - Susan M. Hanson
- From the Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232
| | - Wayne L. Hubbell
- the Jules Stein Eye Institute and Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095
| | - Candice S. Klug
- the Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, and
| | - Vsevolod V. Gurevich
- From the Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232
| |
Collapse
|
265
|
Maurice P, Kamal M, Jockers R. Asymmetry of GPCR oligomers supports their functional relevance. Trends Pharmacol Sci 2011; 32:514-20. [PMID: 21715028 DOI: 10.1016/j.tips.2011.05.006] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 05/19/2011] [Accepted: 05/20/2011] [Indexed: 01/29/2023]
Abstract
G protein-coupled receptors (GPCRs) can exist as dimers or as larger oligomeric clusters that enable intercommunication between different receptor protomers within the same complex. This phenomenon is observed at three distinct levels: (i) at the level of ligand binding where the activation of one protomer can allosterically inhibit or facilitate ligand binding to the second protomer; (ii) at the level of ligand-induced conformational switches, which occur between transmembrane domains of the two protomers; and (iii) within GPCR-associated protein complexes, either directly at the level of GPCR-interacting proteins or at further downstream levels of the complex. Intercommunication at these different levels introduces asymmetry within GPCR dimers wherein each protomer fulfills its specific task. In this review, we discuss how the asymmetric behavior of GPCRs highlights the advantage of oligomeric receptor organization and supports the functional relevance of GPCR dimerization.
Collapse
Affiliation(s)
- Pascal Maurice
- Inserm, U1016, Institut Cochin, 22 rue Méchain, 75014 Paris, France
| | | | | |
Collapse
|
266
|
Chutkow WA, Lee RT. Thioredoxin regulates adipogenesis through thioredoxin-interacting protein (Txnip) protein stability. J Biol Chem 2011; 286:29139-29145. [PMID: 21705327 DOI: 10.1074/jbc.m111.267666] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Txnip (thioredoxin-interacting protein) is a critical mediator of metabolism and adipogenesis in vivo. The mechanisms of action of Txnip are believed to operate at least in part by inhibiting the redox signaling functions of thioredoxin. We tested here whether Txnip suppressed adipogenesis by inhibiting thioredoxin and discovered a reversal of roles; Txnip inhibits adipogenesis directly, and thioredoxin binding regulates Txnip by enhancing Txnip protein stability. Unlike Txnip, a Txnip mutant that cannot bind thioredoxin (C247S) did not prevent adipocyte differentiation, but was degraded more quickly by proteasomal targeting. Finding that endogenous Txnip protein is also rapidly degraded at the onset of adipogenesis suggested that Txnip degradation is required for adipocyte differentiation. Thioredoxin overexpression stabilized Txnip protein levels to inhibit adipogenesis, and adipogenic stimulants such as insulin promoted Txnip-thioredoxin dissociation to the more labile free Txnip state. As an α-arrestin protein, Txnip has two C-terminal tail PPXY motifs that mediate E3 ubiquitin ligase binding and Txnip protein stability. Mutating the PPXY motifs prevented Txnip degradation, even when thioredoxin binding was lost, and restored the ability of C247S Txnip to inhibit adipogenesis. These studies present a novel reconsideration of Txnip-thioredoxin signaling by showing that thioredoxin regulates the intrinsic function of Txnip as an inhibitor of adipogenesis through protein stabilization.
Collapse
Affiliation(s)
- William A Chutkow
- Harvard Stem Cell Institute and the Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115 and; Veterans Healthcare System, West Roxbury, Massachusetts 02132.
| | - Richard T Lee
- Harvard Stem Cell Institute and the Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115 and
| |
Collapse
|
267
|
Lundell I, Rabe Bernhardt N, Johnsson AK, Larhammar D. Internalization studies of chimeric neuropeptide Y receptors Y1 and Y2 suggest complex interactions between cytoplasmic domains. ACTA ACUST UNITED AC 2011; 168:50-8. [DOI: 10.1016/j.regpep.2011.03.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Revised: 02/18/2011] [Accepted: 03/28/2011] [Indexed: 11/25/2022]
|
268
|
吴 正, 童 文, 谭 子, 王 思, 林 鹏. [The clinical significance of β-arrestin 2 expression in the serum of non-small cell lung cancer patients]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2011; 14:497-501. [PMID: 21645452 PMCID: PMC5999888 DOI: 10.3779/j.issn.1009-3419.2011.06.04] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 02/23/2011] [Indexed: 01/01/2023]
Abstract
BACKGROUND AND OBJECTIVE Non-small cell lung cancer (NSCLC) with high morbidity and mortality is the most common types of lung cancer. beta-arrestin 2 is a kind of soluble protein regulating signal transduction mediated by G protein coupling receptor. The aim of this research is to evaluate the clinical significance of β-arrestin 2 expression in the serum of NSCLC patients. METHODS The clinical and follow-up data of 20 healthy candidates and 67 patients diagnosed with NSCLC in Sun Yat-sen University Cancer Center from January 2005 to December 2006 was retrospectively analyzed. ELISA was applied to detect the expression of beta-arrestin 2. RESULTS The serum level of β-arrestin 2 in NSCLC patients were all Significantly lower than those in healthy controls (P<0.001, P<0.001, P<0.001). The serum level of β-arrestin 2 in stage I NSCLC patients were higher than those in stage III as well as in stage IV (P<0.001, P<0.001). No statistical difference of β-arrestin 2' serum level was found between with stage III and stage IV patients (P=0.273). Univariate prognostic factor analyzed by Kaplan-Meier method indicated patients' prognosis with high serum level of β-arrestin 2 was better than patients with low and middle (P<0.001, P<0.001). The serum level of β-arrestin 2 and the stage of NSCLC signally affected prognosis in COX regression model (P=0.003, P=0.004). CONCLUSION The serum level of β-arrestin 2 had significant difference between NSCLC patients and healthy controls, likewise between the early and advanced NSCLC patients. The serum level of β-arrestin 2 affected NSCLC patients' prognosis.
Collapse
Affiliation(s)
- 正清 吴
- 510060 广州,中山大学肿瘤防治中心胸科Department of Chest Surgery, Cancer Center, Sun Yat-sen University, Guangzhou 510060, China
- 510060 广州,华南肿瘤学国家重点实验室State Key Laboratory of Oncology, Guangzhou 510060, China
| | - 文侠 童
- 510060 广州,华南肿瘤学国家重点实验室State Key Laboratory of Oncology, Guangzhou 510060, China
- 510060 广州,中山大学肿瘤防治中心妇科Department of Gynecologic Oncology, Cancer Center, Sun Yat-sen University, Guangzhou 510060, China
| | - 子辉 谭
- 510060 广州,中山大学肿瘤防治中心胸科Department of Chest Surgery, Cancer Center, Sun Yat-sen University, Guangzhou 510060, China
- 510060 广州,华南肿瘤学国家重点实验室State Key Laboratory of Oncology, Guangzhou 510060, China
| | - 思愚 王
- 510060 广州,中山大学肿瘤防治中心胸科Department of Chest Surgery, Cancer Center, Sun Yat-sen University, Guangzhou 510060, China
- 510060 广州,华南肿瘤学国家重点实验室State Key Laboratory of Oncology, Guangzhou 510060, China
| | - 鹏 林
- 510060 广州,中山大学肿瘤防治中心胸科Department of Chest Surgery, Cancer Center, Sun Yat-sen University, Guangzhou 510060, China
- 510060 广州,华南肿瘤学国家重点实验室State Key Laboratory of Oncology, Guangzhou 510060, China
| |
Collapse
|
269
|
Ahmed MR, Zhan X, Song X, Kook S, Gurevich VV, Gurevich EV. Ubiquitin ligase parkin promotes Mdm2-arrestin interaction but inhibits arrestin ubiquitination. Biochemistry 2011; 50:3749-3763. [PMID: 21466165 PMCID: PMC3091828 DOI: 10.1021/bi200175q] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Numerous mutations in E3 ubiquitin ligase parkin were shown to associate with familial Parkinson's disease. Here we show that parkin binds arrestins, versatile regulators of cell signaling. Arrestin-parkin interaction was demonstrated by coimmunoprecipitation of endogenous proteins from brain tissue and shown to be direct using purified proteins. Parkin binding enhances arrestin interactions with another E3 ubiquitin ligase, Mdm2, apparently by shifting arrestin conformational equilibrium to the basal state preferred by Mdm2. Although Mdm2 was reported to ubiquitinate arrestins, parkin-dependent increase in Mdm2 binding dramatically reduces the ubiquitination of both nonvisual arrestins, basal and stimulated by receptor activation, without affecting receptor internalization. Several disease-associated parkin mutations differentially affect the stimulation of Mdm2 binding. All parkin mutants tested effectively suppress arrestin ubiquitination, suggesting that bound parkin shields arrestin lysines targeted by Mdm2. Parkin binding to arrestins along with its effects on arrestin interaction with Mdm2 and ubiquitination is a novel function of this protein with implications for Parkinson's disease pathology.
Collapse
Affiliation(s)
| | - Xuanzhi Zhan
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232
| | - Xiufeng Song
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232
| | - Seunghyi Kook
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232
| | | | | |
Collapse
|
270
|
Kao YJ, Ghosh M, Schonbrunn A. Ligand-dependent mechanisms of sst2A receptor trafficking: role of site-specific phosphorylation and receptor activation in the actions of biased somatostatin agonists. Mol Endocrinol 2011; 25:1040-54. [PMID: 21493671 DOI: 10.1210/me.2010-0398] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The somatostatin receptor subtype 2A (sst2A) mediates many of somatostatin's neuroendocrine actions and is the primary therapeutic target for the stable somatostatin analogs used to inhibit hormone secretion by pituitary and gastroenteropancreatic tumors. Two new multireceptor targeting somatostatin analogs currently under clinical investigation, the multisomatostatin receptor agonist cyclo-[diaminoethylcarbamoyl-HydroxyPro-Phenylglycine-D-Trp-Lys-(4-O-benzyl)Tyr-Phe] (SOM230) (Pasireotide) and pan-somatostatin receptor agonist Tyr-cyclo-[D-diaminobutyric acid-Arg-Phe-Phe-D-Trp-Lys-Thr-Phe] (KE108), behave as functionally selective ligands at the sst2A receptor, mimicking some of somatostatin's actions but antagonizing others. Further, SOM230 and KE108 are less able to induce receptor internalization than somatostatin, indicating that they exhibit functional selectivity for receptor regulation as well as signaling. Here, we identify agonist-specific differences in the molecular events regulating sst2A receptor endocytosis. SOM230 and KE108 were less potent and less effective than somatostatin at stimulating sst2A receptor phosphorylation at two pairs of residues, Ser341/343 and Thr353/354. Only the pattern of Thr353/354 phosphorylation correlated with receptor internalization, consistent with the known importance of Thr phosphorylation for sst2A receptor endocytosis. As expected, arrestin recruitment to membrane receptors was reduced with SOM230 and KE108. In addition, both receptor dephosphorylation and receptor recycling occurred more rapidly with SOM230 and KE108 than with somatostatin. Surprisingly, however, SOM230 and KE108 also altered sst2A internalization in a phosphorylation-independent manner, because these analogs were less effective than somatostatin at stimulating the endocytosis of a phosphorylation-negative receptor mutant. These results show that the decreased receptor internalization produced by SOM230 and KE108 compared with somatostatin result from phosphorylation-independent effects as well as reduced site-specific receptor phosphorylation and receptor-arrestin association.
Collapse
Affiliation(s)
- Yachu J Kao
- Department of Integrative Biology and Pharmacology, University of Texas, Health Science Center-Houston, Houston, Texas 77030, USA
| | | | | |
Collapse
|
271
|
Seifert R, Schneider EH, Dove S, Brunskole I, Neumann D, Strasser A, Buschauer A. Paradoxical stimulatory effects of the "standard" histamine H4-receptor antagonist JNJ7777120: the H4 receptor joins the club of 7 transmembrane domain receptors exhibiting functional selectivity. Mol Pharmacol 2011; 79:631-8. [PMID: 21266488 DOI: 10.1124/mol.111.071266] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The histamine H(4) receptor (H(4)R) is expressed in several cell types of the immune system and is assumed to play an important pro-inflammatory role in various diseases, including bronchial asthma, atopic dermatitis, and pruritus. Accordingly, H(4)R antagonists have been suggested to provide valuable drugs for the treatment of these diseases. Over the past decade, the indole derivative 1-[(5-chloro-1H-indol-2-yl)carbonyl]-4-methylpiperazine (JNJ7777120) has become the "standard" H(4)R antagonist and has been extensively used to assess the pathophysiological role of the H(4)R. However, the situation has now become more complicated by recent data (p. 749 and Naunyn Schmiedebergs Arch Pharmacol doi: 10.1007/s00210-011-0612-3) showing that JNJ7777120 can also activate β-arrestin in a supposedly G(i)-protein-independent (pertussis toxin-insensitive) manner and that at certain H(4)R species orthologs, JNJ7777120 exhibits partial agonist efficacy with respect to G(i)-protein activation (steady-state high-affinity GTPase activity). These novel findings can be explained within the concept of functional selectivity or biased signaling, assuming unique ligand-specific receptor conformations with distinct signal transduction capabilities. Thus, great caution must be exerted when interpreting in vivo effects of JNJ7777120 as H(4)R antagonism. We discuss future directions to get out of the current dilemma in which there is no "standard" H(4)R antagonist available to the scientific community.
Collapse
Affiliation(s)
- Roland Seifert
- Institute of Pharmacology, Medical School of Hannover, Hannover, Germany.
| | | | | | | | | | | | | |
Collapse
|
272
|
Bianco SDC, Vandepas L, Correa-Medina M, Gereben B, Mukherjee A, Kuohung W, Carroll R, Teles MG, Latronico AC, Kaiser UB. KISS1R intracellular trafficking and degradation: effect of the Arg386Pro disease-associated mutation. Endocrinology 2011; 152:1616-26. [PMID: 21285314 PMCID: PMC3060635 DOI: 10.1210/en.2010-0903] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The goal of this study was to investigate how the Arg386Pro mutation prolongs KiSS-1 receptor (KISS1R) responsiveness to kisspeptin, contributing to human central precocious puberty. Confocal imaging showed colocalization of wild-type (WT) KISS1R with a membrane marker, which persisted for up to 5 h of stimulation. Conversely, no colocalization with a lysosome marker was detected. Also, overnight treatment with a lysosome inhibitor did not affect WT KISS1R protein, whereas overnight treatment with a proteasome inhibitor increased protein levels by 24-fold. WT and Arg386Pro KISS1R showed time-dependent internalization upon stimulation. However, both receptors were recycled back to the membrane. The Arg386Pro mutation did not affect the relative distribution of KISS1R in membrane and internalized fractions when compared to WT KISS1R for up to 120 min of stimulation, demonstrating that this mutation does not affect KISS1R trafficking rate. Nonetheless, total Arg386Pro KISS1R was substantially increased compared with WT after 120 min of kisspeptin stimulation. This net increase was eliminated by blockade of detection of recycled receptors, demonstrating that recycled receptors account for the increased responsiveness of this mutant to kisspeptin. We therefore conclude the following: 1) WT KISS1R is degraded by proteasomes rather than lysosomes; 2) WT and Arg386Pro KISS1R are internalized upon stimulation, but most of the internalized receptors are recycled back to the membrane rather than degraded; 3) the Arg386Pro mutation does not affect the rate of KISS1R trafficking--instead, it prolongs responsiveness to kisspeptin by decreasing KISS1R degradation, resulting in the net increase on mutant receptor recycled back to the plasma membrane.
Collapse
Affiliation(s)
- Suzy D C Bianco
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida 33136, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
273
|
Feng B, Li Z, Wang JB. Protein kinase C-mediated phosphorylation of the μ-opioid receptor and its effects on receptor signaling. Mol Pharmacol 2011; 79:768-75. [PMID: 21212139 PMCID: PMC3063727 DOI: 10.1124/mol.110.069096] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Accepted: 01/05/2011] [Indexed: 11/22/2022] Open
Abstract
Phosphorylation of the μ opioid receptor (MOPr), mediated by several protein kinases, is a critical process in the regulation of MOPr signaling. Although G protein-coupled receptor kinases are known to play an essential role in the agonist-induced phosphorylation and desensitization of MOPr, evidence suggests that other protein kinases, especially protein kinase C (PKC), also participate in the regulation of MOPr signaling. In this study, we investigated the biochemical nature and downstream effects of PKC-mediated MOPr phosphorylation. We observed in vitro phosphorylation of the MOPr C terminus by purified PKC. Protein mass spectrometry and site-directed mutagenesis implicated Ser363 of MOPr as the primary substrate for PKC, and this was confirmed in Chinese hamster ovary cells stably expressing full-length MOPr using an antibody that specifically recognizes phosphorylated Ser363. Alanine mutation of Ser363 did not affect the affinity of MOPr-ligand binding and the efficiency of receptor G-protein coupling. However, the S363A mutation attenuated the desensitization of receptor G-protein coupling induced by phorbol 12-myristate. Our research thus has identified a specific PKC phosphorylation site in MOPr and demonstrated that PKC-mediated phosphorylation of MOPr induces receptor desensitization at the G protein coupling level.
Collapse
Affiliation(s)
- Bo Feng
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD 21201, USA
| | | | | |
Collapse
|
274
|
Dalrymple MB, Jaeger WC, Eidne KA, Pfleger KDG. Temporal profiling of orexin receptor-arrestin-ubiquitin complexes reveals differences between receptor subtypes. J Biol Chem 2011; 286:16726-33. [PMID: 21378163 PMCID: PMC3089514 DOI: 10.1074/jbc.m111.223537] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Orexin G protein-coupled receptors (OxRs) and their cognate agonists have been implicated in a number of disorders since their recent discovery, ranging from narcolepsy to formation of addictive behavior. Bioluminescence resonance energy transfer assays of agonist-occupied OxRs provided evidence for a strong dose-dependent interaction with both trafficking proteins β-arrestin 1 and 2 that required unusually high agonist concentrations compared with inositol phosphate signaling. This appears to be reflected in functional differences in potency with respect to orexin A (OxA) and OxR2-dependent ERK1/2 phosphorylation after 90 min compared with 2 min, potentially consistent with β-arrestin-mediated versus G protein-mediated signaling, respectively. Furthermore, extended bioluminescence resonance energy transfer kinetic data monitoring OxA-dependent receptor-β-arrestin and β-arrestin-ubiquitin proximity suggested subtype-specific differences in receptor trafficking, with OxR2 activation resulting in more sustained receptor-β-arrestin-ubiquitin complex formation than elicited by OxR1 activation. Enzyme-linked immunosorbent assay (ELISA) data also revealed that OxR1 underwent significantly more rapid recycling compared with OxR2. Finally, we have observed sustained OxA-dependent ERK1/2 phosphorylation in the presence of OxR2 compared with OxR1. Although both OxR subtypes could be classified as class B receptors for β-arrestin usage based on the initial strength of interaction with both β-arrestins, our temporal profiling revealed tangible differences between OxR subtypes. Consequently, OxR1 appears to fit uneasily into the commonly used β-arrestin classification scheme. More importantly, it is hoped that this improved profiling capability, enabling the subtleties of protein complex formation, stability, and duration to be assessed in live cells, will help unlock the therapeutic potential of targeting these receptors.
Collapse
Affiliation(s)
- Matthew B Dalrymple
- Laboratory for Molecular Endocrinology-G Protein-Coupled Receptors, Western Australian Institute for Medical Research and Centre for Medical Research, University of Western Australia, Nedlands, Perth, Western Australia 6009, Australia
| | | | | | | |
Collapse
|
275
|
Singh SN, Bakshi K, Mercier RW, Makriyannis A, Pavlopoulos S. Binding between a distal C-terminus fragment of cannabinoid receptor 1 and arrestin-2. Biochemistry 2011; 50:2223-34. [PMID: 21306178 DOI: 10.1021/bi1018144] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Internalization of G-protein-coupled receptors is mediated by phosphorylation of the C-terminus, followed by binding with the cytosolic protein arrestin. To explore structural factors that may play a role in internalization of cannabinoid receptor 1 (CB1), we utilize a phosphorylated peptide derived from the distal C-terminus of CB1 (CB1(5P)(454-473)). Complexes formed between the peptide and human arrestin-2 (wt-arr2(1-418)) were compared to those formed with a truncated arrestin-2 mutant (tr-arr2(1-382)) using isothermal titration calorimetry and nuclear magnetic resonance spectroscopy. The pentaphosphopeptide CB1(5P)(454-473) adopts a helix-loop conformation, whether binding to full-length arrestin-2 or its truncated mutant. This structure is similar to that of a heptaphosphopeptide, mimicking the distal segment of the rhodopsin C-tail (Rh(7P)(330-348)), binding to visual arrestin, suggesting that this adopted structure bears functional significance. Isothermal titration calorimetry (ITC) experiments show that the CB1(5P)(454-473) peptide binds to tr-arr2(1-382) with higher affinity than to the full-length wt-arr2(1-418). As the observed structure of the bound peptides is similar in either case, we attribute the increased affinity to a more exposed binding site on the N-domain of the truncated arrestin construct. The transferred NOE data from the bound phosphopeptides are used to predict a model describing the interaction with arrestin, using the data driven HADDOCK docking program. The truncation of arrestin-2 provides scope for positively charged residues in the polar core of the protein to interact with phosphates present in the loop of the CB1(5P)(454-473) peptide.
Collapse
Affiliation(s)
- Shubhadra N Singh
- Center for Drug Discovery, 360 Huntington Avenue, 116 Mugar Hall, Boston, Massachusetts 02115, United States
| | | | | | | | | |
Collapse
|
276
|
Zhan X, Gimenez LE, Gurevich VV, Spiller BW. Crystal structure of arrestin-3 reveals the basis of the difference in receptor binding between two non-visual subtypes. J Mol Biol 2011; 406:467-478. [PMID: 21215759 PMCID: PMC3034793 DOI: 10.1016/j.jmb.2010.12.034] [Citation(s) in RCA: 161] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2010] [Revised: 12/02/2010] [Accepted: 12/21/2010] [Indexed: 12/13/2022]
Abstract
Arrestins are multi-functional proteins that regulate signaling and trafficking of the majority of G protein-coupled receptors (GPCRs), as well as sub-cellular localization and activity of many other signaling proteins. We report the first crystal structure of arrestin-3, solved at 3.0 Å resolution. Arrestin-3 is an elongated two-domain molecule with overall fold and key inter-domain interactions that hold the free protein in the basal conformation similar to the other subtypes. Arrestin-3 is the least selective member of the family, binding a wide variety of GPCRs with high affinity and demonstrating lower preference for active phosphorylated forms of the receptors. In contrast to the other three arrestins, part of the receptor-binding surface in the arrestin-3 C-domain does not form a contiguous β-sheet, which is consistent with increased flexibility. By swapping the corresponding elements between arrestin-2 and arrestin-3 we show that the presence of this loose structure is correlated with reduced arrestin selectivity for activated receptors, consistent with a conformational change in this β-sheet upon receptor binding.
Collapse
Affiliation(s)
- Xuanzhi Zhan
- Department of Pharmacology Vanderbilt University, Nashville, TN 37232
| | - Luis E. Gimenez
- Department of Pharmacology Vanderbilt University, Nashville, TN 37232
| | | | - Benjamin W. Spiller
- Department of Pharmacology Vanderbilt University, Nashville, TN 37232
- Department of Microbiology and Immunology, Vanderbilt University, Nashville, TN 37232
| |
Collapse
|
277
|
Stadel R, Ahn KH, Kendall DA. The cannabinoid type-1 receptor carboxyl-terminus, more than just a tail. J Neurochem 2011; 117:1-18. [PMID: 21244428 DOI: 10.1111/j.1471-4159.2011.07186.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The cannabinoid type-1 (CB(1)) receptor is a G protein-coupled receptor that binds the main active ingredient of marijuana, Δ(9)-tetrahydrocannabinol, and has been implicated in several disease states, including drug addiction, anxiety, depression, obesity, and chronic pain. In the two decades since the discovery of CB(1), studies at the molecular level have centered on the transmembrane core. This interest has now expanded as we discover that other regions of CB(1), including the CB(1) carboxyl-terminus, have critical structures that are important for CB(1) activity and regulation. Following the recent description of the three dimensional structure of the full-length CB(1) carboxyl-terminal tail [Biopolymers (2009) vol. 91, pp. 565-573], several residues and structural motifs including two α-helices (termed H8 and H9) have been postulated to interact with common G protein-coupled receptor accessory proteins, such as G-proteins and β-arrestins. This discourse will focus on the CB(1) carboxyl-terminus; our current understanding of the structural features of this region, evidence for its interaction with proteins, and the impact of structure on the binding and regulatory function of CB(1) accessory proteins. The involvement of the carboxyl-terminus in the receptor life cycle including activation, desensitization, and internalization will be highlighted.
Collapse
Affiliation(s)
- Rebecca Stadel
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut, USA
| | | | | |
Collapse
|
278
|
Lukashova V, Szabó EZ, Jinadasa T, Mokhov A, Litchfield DW, Orlowski J. CK2 phosphorylation of an acidic Ser/Thr di-isoleucine motif in the Na+/H+ exchanger NHE5 isoform promotes association with beta-arrestin2 and endocytosis. J Biol Chem 2011; 286:11456-68. [PMID: 21296876 DOI: 10.1074/jbc.m110.182881] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Internalization of the Na(+)/H(+) exchanger NHE5 into recycling endosomes is enhanced by the endocytic adaptor proteins β-arrestin1 and -2, best known for their preferential recognition of ligand-activated G protein-coupled receptors (GPCRs). However, the mechanism underlying their atypical association with non-GPCRs, such as NHE5, is unknown. In this study, we identified a highly acidic, serine/threonine-rich, di-isoleucine motif (amino acids 697-723) in the cytoplasmic C terminus of NHE5 that is recognized by β-arrestin2. Gross deletions of this site decreased the state of phosphorylation of NHE5 as well as its binding and responsiveness to β-arrestin2 in intact cells. More refined in vitro analyses showed that this site was robustly phosphorylated by the acidotropic protein kinase CK2, whereas other kinases, such as CK1 or the GPCR kinase GRK2, were considerably less potent. Simultaneous mutation of five Ser/Thr residues within 702-714 to Ala ((702)ST/AA(714)) abolished phosphorylation and binding of β-arrestin2. In transfected cells, the CK2 catalytic α subunit formed a complex with NHE5 and decreased wild-type but not (702)ST/AA(714) NHE5 activity, further supporting a regulatory role for this kinase. The rate of internalization of (702)ST/AA(714) was also diminished and relatively insensitive to overexpression of β-arrestin2. However, unlike in vitro, this mutant retained its ability to form a complex with β-arrestin2 despite its lack of responsiveness. Additional mutations of two di-isoleucine-based motifs (I697A/L698A and I722A/I723A) that immediately flank the acidic cluster, either separately or together, were required to disrupt their association. These data demonstrate that discrete elements of an elaborate sorting signal in NHE5 contribute to β-arrestin2 binding and trafficking along the recycling endosomal pathway.
Collapse
|
279
|
Zheng H, Chu J, Zhang Y, Loh HH, Law PY. Modulating micro-opioid receptor phosphorylation switches agonist-dependent signaling as reflected in PKCepsilon activation and dendritic spine stability. J Biol Chem 2011; 286:12724-33. [PMID: 21292762 DOI: 10.1074/jbc.m110.177089] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
A new role of G protein-coupled receptor (GPCR) phosphorylation was demonstrated in the current studies by using the μ-opioid receptor (OPRM1) as a model. Morphine induces a low level of receptor phosphorylation and uses the PKCε pathway to induce ERK phosphorylation and receptor desensitization, whereas etorphine, fentanyl, and [D-Ala2,N-Me-Phe4,Gly5-ol]-enkephalin (DAMGO) induce extensive receptor phosphorylation and use the β-arrestin2 pathway. Blocking OPRM1 phosphorylation (by mutating Ser363, Thr370 and Ser375 to Ala) enabled etorphine, fentanyl, and DAMGO to use the PKCε pathway. This was not due to the decreased recruitment of β-arrestin2 to the receptor signaling complex, because these agonists were unable to use the PKCε pathway when β-arrestin2 was absent. In addition, overexpressing G protein-coupled receptor kinase 2 (GRK2) decreased the ability of morphine to activate PKCε, whereas overexpressing dominant-negative GRK2 enabled etorphine, fentanyl, and DAMGO to activate PKCε. Furthermore, by overexpressing wild-type OPRM1 and a phosphorylation-deficient mutant in primary cultures of hippocampal neurons, we demonstrated that receptor phosphorylation contributes to the differential effects of agonists on dendritic spine stability. Phosphorylation blockage made etorphine, fentanyl, and DAMGO function as morphine in the primary cultures. Therefore, agonist-dependent phosphorylation of GPCR regulates the activation of the PKC pathway and the subsequent responses.
Collapse
Affiliation(s)
- Hui Zheng
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota 55455-0217, USA.
| | | | | | | | | |
Collapse
|
280
|
Sex differences in the activity of signalling pathways and expression of G-protein-coupled receptor kinases in the neonatal ventral hippocampal lesion model of schizophrenia. Int J Neuropsychopharmacol 2011; 14:1-15. [PMID: 20158934 PMCID: PMC2992801 DOI: 10.1017/s1461145710000118] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Animals with the neonatal ventral hippocampal lesion (NVHL) demonstrate altered responsiveness to stress and various drugs reminiscent of that in schizophrenia. Post-pubertal onset of abnormalities suggests the possibility of sex differences in NVHL effects that may model sex differences in schizophrenia. Here we demonstrate that novelty- and MK-801-induced hyperactivity is evident in both male and female NVHL rats, whereas only NVHL males were hyperactive in response to apomorphine. Next, we examined the sex- and NVHL-dependent differences in the activity of the ERK and Akt pathways. The basal activity of both pathways was higher in females than in males. NVHL reduces the level of phosphorylation of ERK1/2, Akt, and GSK-3 in both sexes, although males show more consistent down-regulation. Females had higher levels of G-protein-coupled kinases [G-protein-coupled receptor kinase (GRK)] 3 and 5, whereas the concentrations of other GRKs and arrestins were the same. In the nucleus accumbens, the concentration of GRK5 in females was elevated by NVHL to the male level. The data demonstrate profound sex differences in the expression and activity of signalling molecules that may underlie differential susceptibility to schizophrenia.
Collapse
|
281
|
Bayburt TH, Vishnivetskiy SA, McLean MA, Morizumi T, Huang CC, Tesmer JJG, Ernst OP, Sligar SG, Gurevich VV. Monomeric rhodopsin is sufficient for normal rhodopsin kinase (GRK1) phosphorylation and arrestin-1 binding. J Biol Chem 2011; 286:1420-1428. [PMID: 20966068 PMCID: PMC3020750 DOI: 10.1074/jbc.m110.151043] [Citation(s) in RCA: 157] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Revised: 10/20/2010] [Indexed: 11/06/2022] Open
Abstract
G-protein-coupled receptor (GPCR) oligomerization has been observed in a wide variety of experimental contexts, but the functional significance of this phenomenon at different stages of the life cycle of class A GPCRs remains to be elucidated. Rhodopsin (Rh), a prototypical class A GPCR of visual transduction, is also capable of forming dimers and higher order oligomers. The recent demonstration that Rh monomer is sufficient to activate its cognate G protein, transducin, prompted us to test whether the same monomeric state is sufficient for rhodopsin phosphorylation and arrestin-1 binding. Here we show that monomeric active rhodopsin is phosphorylated by rhodopsin kinase (GRK1) as efficiently as rhodopsin in the native disc membrane. Monomeric phosphorylated light-activated Rh (P-Rh*) in nanodiscs binds arrestin-1 essentially as well as P-Rh* in native disc membranes. We also measured the affinity of arrestin-1 for P-Rh* in nanodiscs using a fluorescence-based assay and found that arrestin-1 interacts with monomeric P-Rh* with low nanomolar affinity and 1:1 stoichiometry, as previously determined in native disc membranes. Thus, similar to transducin activation, rhodopsin phosphorylation by GRK1 and high affinity arrestin-1 binding only requires a rhodopsin monomer.
Collapse
Affiliation(s)
- Timothy H. Bayburt
- From the Department of Biochemistry, University of Illinois, Urbana, Illinois 61801
| | | | - Mark A. McLean
- From the Department of Biochemistry, University of Illinois, Urbana, Illinois 61801
| | | | | | - John J. G. Tesmer
- the Life Sciences Institute and
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109-2216
| | - Oliver P. Ernst
- Charité-Universitätsmedizin Berlin, D-10117 Berlin, Germany, and
| | - Stephen G. Sligar
- From the Department of Biochemistry, University of Illinois, Urbana, Illinois 61801
| | - Vsevolod V. Gurevich
- the Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232
| |
Collapse
|
282
|
Huang CC, Tesmer JJG. Recognition in the face of diversity: interactions of heterotrimeric G proteins and G protein-coupled receptor (GPCR) kinases with activated GPCRs. J Biol Chem 2011; 286:7715-7721. [PMID: 21199869 DOI: 10.1074/jbc.r109.051847] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
G protein-coupled receptors (GPCRs) represent the largest class of integral membrane protein receptors in the human genome. Despite the great diversity of ligands that activate these GPCRs, they interact with a relatively small number of intracellular proteins to induce profound physiological change. Both heterotrimeric G proteins and GPCR kinases are well known for their ability to specifically recognize GPCRs in their active state. Recent structural studies now suggest that heterotrimeric G proteins and GPCR kinases identify activated receptors via a common molecular mechanism despite having completely different folds.
Collapse
Affiliation(s)
| | - John J G Tesmer
- From the Life Sciences Institute and; Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109-2216.
| |
Collapse
|
283
|
Walther C, Nagel S, Gimenez LE, Mörl K, Gurevich VV, Beck-Sickinger AG. Ligand-induced internalization and recycling of the human neuropeptide Y2 receptor is regulated by its carboxyl-terminal tail. J Biol Chem 2010; 285:41578-41590. [PMID: 20959467 PMCID: PMC3009885 DOI: 10.1074/jbc.m110.162156] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Revised: 10/07/2010] [Indexed: 11/06/2022] Open
Abstract
Agonist-induced internalization of G protein-coupled receptors plays an important role in signal regulation. The underlying mechanisms of the internalization of the human neuropeptide Y(2) receptor (hY(2)R), as well as its desensitization, endocytosis, and resensitization are mainly unknown. In the present study we have investigated the role of carboxyl-terminal (C-terminal) Ser/Thr residues and acidic amino acids in regulating receptor internalization, arrestin interaction, and recycling by fluorescence microscopy, cell surface enzyme-linked immunosorbent assay, and bioluminescence resonance energy transfer in several cell lines. Strikingly, C-terminal truncation mutants revealed two different internalization motifs. Whereas a distal motif (373)DSXTEXT(379) was found to be the primary regulatory internalization sequence acting in concert with arrestin-3, the proximal motif (347)DXXXSEXSXT(356) promoted ligand-induced internalization in an arrestin-3-independent manner. Moreover, we identified a regulatory sequence located between these internalization motifs ((357)FKAKKNLEVRKN(368)), which serves as an inhibitory element. We found that hY(2)R recycling is also governed by structural determinants within the proximal internalization motif. In conclusion, these results indicate that the hY(2)R C terminus is involved in multiple molecular events that regulate internalization, interaction with arrestin-3, and receptor resensitization. Our findings provide novel insights into complex mechanisms of controlled internalization of hY(2)R, which is likely applicable to other GPCRs.
Collapse
Affiliation(s)
- Cornelia Walther
- From the Institute of Biochemistry, Faculty of Biosciences, Pharmacy and Psychology, Leipzig University, Brüderstrasse 34, 04103 Leipzig, Germany and
| | - Stefanie Nagel
- From the Institute of Biochemistry, Faculty of Biosciences, Pharmacy and Psychology, Leipzig University, Brüderstrasse 34, 04103 Leipzig, Germany and
| | - Luis E. Gimenez
- the Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232
| | - Karin Mörl
- From the Institute of Biochemistry, Faculty of Biosciences, Pharmacy and Psychology, Leipzig University, Brüderstrasse 34, 04103 Leipzig, Germany and
| | - Vsevolod V. Gurevich
- the Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232
| | - Annette G. Beck-Sickinger
- From the Institute of Biochemistry, Faculty of Biosciences, Pharmacy and Psychology, Leipzig University, Brüderstrasse 34, 04103 Leipzig, Germany and
| |
Collapse
|
284
|
Magnan R, Masri B, Escrieut C, Foucaud M, Cordelier P, Fourmy D. Regulation of membrane cholecystokinin-2 receptor by agonists enables classification of partial agonists as biased agonists. J Biol Chem 2010; 286:6707-19. [PMID: 21156802 DOI: 10.1074/jbc.m110.196048] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Given the importance of G-protein-coupled receptors as pharmacological targets in medicine, efforts directed at understanding the molecular mechanism by which pharmacological compounds regulate their presence at the cell surface is of paramount importance. In this context, using confocal microscopy and bioluminescence resonance energy transfer, we have investigated internalization and intracellular trafficking of the cholecystokinin-2 receptor (CCK2R) in response to both natural and synthetic ligands with different pharmacological features. We found that CCK and gastrin, which are full agonists on CCK2R-induced inositol phosphate production, rapidly and abundantly stimulate internalization. Internalized CCK2R did not rapidly recycle to plasma membrane but instead was directed to late endosomes/lysosomes. CCK2R endocytosis involves clathrin-coated pits and dynamin and high affinity and prolonged binding of β-arrestin1 or -2. Partial agonists and antagonists on CCK2R-induced inositol phosphate formation and ERK1/2 phosphorylation did not stimulate CCK2R internalization or β-arrestin recruitment to the CCK2R but blocked full agonist-induced internalization and β-arrestin recruitment. The extreme C-terminal region of the CCK2R (and more precisely phosphorylatable residues Ser(437)-Xaa(438)-Thr(439)-Thr(440)-Xaa(441)-Ser(442)-Thr(443)) were critical for β-arrestin recruitment. However, this region and β-arrestins were dispensable for CCK2R internalization. In conclusion, this study allowed us to classify the human CCK2R as a member of class B G-protein-coupled receptors with regard to its endocytosis features and identified biased agonists of the CCK2R. These new important insights will allow us to investigate the role of internalized CCK2R·β-arrestin complexes in cancers expressing this receptor and to develop new diagnosis and therapeutic strategies targeting this receptor.
Collapse
Affiliation(s)
- Rémi Magnan
- INSERM, Unit 858, 12 MR, 1 Avenue Jean Poulhés, 31432 Toulouse Cedex 4, France
| | | | | | | | | | | |
Collapse
|
285
|
Zhuang T, Vishnivetskiy SA, Gurevich VV, Sanders CR. Elucidation of inositol hexaphosphate and heparin interaction sites and conformational changes in arrestin-1 by solution nuclear magnetic resonance. Biochemistry 2010; 49:10473-10485. [PMID: 21050017 PMCID: PMC3074303 DOI: 10.1021/bi101596g] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Arrestins specifically bind activated and phosphorylated G protein-coupled receptors and orchestrate both receptor trafficking and channel signaling through G protein-independent pathways via direct interactions with numerous nonreceptor partners. Here we report the first successful use of solution NMR in mapping the binding sites in arrestin-1 (visual arrestin) for two polyanionic compounds that mimic phosphorylated light-activated rhodopsin: inositol hexaphosphate (IP6) and heparin. This yielded an identification of residues involved in the binding with these ligands that was more complete than what has previously been feasible. IP6 and heparin appear to bind to the same site on arrestin-1, centered on a positively charged region in the N-domain. We present the first direct evidence that both IP6 and heparin induced a complete release of the arrestin C-tail. These observations provide novel insight into the nature of the transition of arrestin from the basal to active state and demonstrate the potential of NMR-based methods in the study of protein-protein interactions involving members of the arrestin family.
Collapse
Affiliation(s)
| | | | - Vsevolod V. Gurevich
- To whom correspondence should be addressed., (CRS) (VVG); Phone: 615-936-3756 (CRS) 615-322-7070 (VVG); Fax: 615-936-2211 (CRS), 615-343-6532 (VVG)
| | - Charles R. Sanders
- To whom correspondence should be addressed., (CRS) (VVG); Phone: 615-936-3756 (CRS) 615-322-7070 (VVG); Fax: 615-936-2211 (CRS), 615-343-6532 (VVG)
| |
Collapse
|
286
|
Smith NJ, Milligan G. Allostery at G protein-coupled receptor homo- and heteromers: uncharted pharmacological landscapes. Pharmacol Rev 2010; 62:701-25. [PMID: 21079041 PMCID: PMC2993260 DOI: 10.1124/pr.110.002667] [Citation(s) in RCA: 211] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
For many years seven transmembrane domain G protein-coupled receptors (GPCRs) were thought to exist and function exclusively as monomeric units. However, evidence both from native cells and heterologous expression systems has demonstrated that GPCRs can both traffic and signal within higher-order complexes. As for other protein-protein interactions, conformational changes in one polypeptide, including those resulting from binding of pharmacological ligands, have the capacity to alter the conformation and therefore the response of the interacting protein(s), a process known as allosterism. For GPCRs, allosterism across homo- or heteromers, whether dimers or higher-order oligomers, represents an additional topographical landscape that must now be considered pharmacologically. Such effects may offer the opportunity for novel therapeutic approaches. Allosterism at GPCR heteromers is particularly exciting in that it offers additional scope to provide receptor subtype selectivity and tissue specificity as well as fine-tuning of receptor signal strength. Herein, we introduce the concept of allosterism at both GPCR homomers and heteromers and discuss the various questions that must be addressed before significant advances can be made in drug discovery at these GPCR complexes.
Collapse
Affiliation(s)
- Nicola J Smith
- Molecular Pharmacology Laboratory,University Avenue, University of Glasgow, Glasgow, Scotland
| | | |
Collapse
|
287
|
Wyatt D, Malik R, Vesecky AC, Marchese A. Small ubiquitin-like modifier modification of arrestin-3 regulates receptor trafficking. J Biol Chem 2010; 286:3884-93. [PMID: 21118812 DOI: 10.1074/jbc.m110.152116] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nonvisual arrestins are regulated by direct post-translational modifications, such as phosphorylation, ubiquitination, and nitrosylation. However, whether arrestins are regulated by other post-translational modifications remains unknown. Here we show that nonvisual arrestins are modified by small ubiquitin-like modifier 1 (SUMO-1) upon activation of β(2)-adrenergic receptor (β(2)AR). Lysine residues 295 and 400 in arrestin-3 fall within canonical SUMO consensus sites, and mutagenic analysis reveals that Lys-400 represents the main SUMOylation site. Depletion of the SUMO E2 modifying enzyme Ubc9 blocks arrestin-3 SUMOylation and attenuates β(2)AR internalization, suggesting that arrestin SUMOylation mediates G protein-coupled receptor endocytosis. Consistent with this, expression of a SUMO-deficient arrestin mutant failed to promote β(2)AR internalization as compared with wild-type arrestin-3. Our data reveal an unprecedented role for SUMOylation in mediating GPCR endocytosis and provide novel mechanistic insight into arrestin function and regulation.
Collapse
Affiliation(s)
- Debra Wyatt
- Department of Pharmacology, School of Medicine, Loyola University Chicago, Maywood, Illinois 60153, USA
| | | | | | | |
Collapse
|
288
|
Feng X, Wang W, Liu J, Liu Y. β-Arrestins: multifunctional signaling adaptors in type 2 diabetes. Mol Biol Rep 2010; 38:2517-28. [PMID: 21086182 DOI: 10.1007/s11033-010-0389-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Accepted: 11/08/2010] [Indexed: 02/06/2023]
Abstract
β-arrestins are not only well-known negative regulators of G protein-coupled receptor (GPCR) signaling, but also important adaptors in modulating the strength and duration of cellular signaling by scaffolding and interacting with a lot of cytoplasmic proteins. While β-arrestins are rather well described signal-mediated molecules, they are not generally associated with insulin signaling. But recent work has confirmed the difference from original thought. The current review aims to explore the emerging roles for β-arrestins in regulating insulin action, inflammatory signal pathway and other cellular signaling which are associated with type 2 diabetes.
Collapse
Affiliation(s)
- Xiaotao Feng
- Institute of Chinese Integrative Medicine, Huashan Hospital, Fudan University, No.12 Wulumuqi Zhong Road, Shanghai, 200040, China
| | | | | | | |
Collapse
|
289
|
By Y, Durand-Gorde JM, Condo J, Lejeune PJ, Fenouillet E, Guieu R, Ruf J. Monoclonal antibody–assisted stimulation of adenosine A2A receptors induces simultaneous downregulation of CXCR4 and CCR5 on CD4+ T-cells. Hum Immunol 2010; 71:1073-6. [DOI: 10.1016/j.humimm.2010.08.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Revised: 07/29/2010] [Accepted: 08/16/2010] [Indexed: 01/09/2023]
|
290
|
Bohn LM, Schmid CL. Serotonin receptor signaling and regulation via β-arrestins. Crit Rev Biochem Mol Biol 2010; 45:555-66. [PMID: 20925600 DOI: 10.3109/10409238.2010.516741] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Serotonin receptors are the product of 15 distinct genes, 14 of which are G protein-coupled receptors. These receptors are expressed in a wide range of cell types, including distinct neuronal populations, and promote diverse functional responses in multiple organ systems. These receptors are important for mediating the in vivo effects of their cognate neurotransmitter, serotonin, as well as the endogenous tryptamines. In addition, the actions of many drugs are mediated, either directly or indirectly, through serotonin receptors, including antidepressants, antipsychotics, anxiolytics, sleep aids, migraine therapies, gastrointestinal therapeutics and hallucinogenic drugs. It is becoming increasingly evident that serotonin receptors can engage in differential signaling that is determined by the chemical nature of the ligand and that ligands that demonstrate a predilection for inducing a particular signaling cascade are considered to have "functional selectivity". The elucidation of the cellular signaling pathways that mediate the physiological responses to serotonin and other agonists is an active area of investigation and will be an onward-looking focal point for determining how to effectively and selectively promote beneficial serotonergic mimicry while avoiding unwanted clinical side effects. This review highlights the modulation of serotonin 2A, 2C, and four receptors by β-arrestins, which may represent a fulcrum for biasing receptor responsiveness in vivo.
Collapse
Affiliation(s)
- Laura M Bohn
- The Scripps Research Institute, Molecular Therapeutics & Neuroscience, Jupiter, FL, USA.
| | | |
Collapse
|
291
|
Arrestin domain-containing protein 3 recruits the NEDD4 E3 ligase to mediate ubiquitination of the beta2-adrenergic receptor. EMBO Rep 2010; 11:605-11. [PMID: 20559325 DOI: 10.1038/embor.2010.80] [Citation(s) in RCA: 127] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Revised: 05/03/2010] [Accepted: 05/10/2010] [Indexed: 11/09/2022] Open
Abstract
Prolonged stimulation of the beta2-adrenergic receptor (beta2AR) leads to receptor ubiquitination and downregulation. Using a genome-wide RNA interference screen, we identified arrestin domain-containing 3 (ARRDC3) as a gene required for beta2AR regulation. The ARRDC3 protein interacts with ubiquitin ligase neural precursor development downregulated protein 4 (NEDD4) through two conserved PPXY motifs and recruits NEDD4 to the activated receptor. The ARRDC3 protein also interacts and co-localizes with activated beta2AR. Knockdown of ARRDC3 expression abolishes the association between NEDD4 and beta2AR. Furthermore, functional inactivation of ARRDC3, either through small interfering RNA (siRNA)-mediated knockdown or overexpression of a mutant that does not interact with NEDD4, blocks receptor ubiquitination and degradation. Our results establish ARRDC3 as an essential adaptor for beta2AR ubiquitination.
Collapse
|
292
|
Mundell S, Kelly E. Adenosine receptor desensitization and trafficking. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1808:1319-28. [PMID: 20550943 DOI: 10.1016/j.bbamem.2010.06.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Revised: 05/28/2010] [Accepted: 06/06/2010] [Indexed: 11/26/2022]
Abstract
As with the majority of G-protein-coupled receptors, all four of the adenosine receptor subtypes are known to undergo agonist-induced regulation in the form of desensitization and trafficking. These processes can limit the ability of adenosine receptors to couple to intracellular signalling pathways and thus reduce the ability of adenosine receptor agonists as well as endogenous adenosine to produce cellular responses. In addition, since adenosine receptors couple to multiple signalling pathways, these pathways may desensitize differentially, while the desensitization of one pathway could even trigger signalling via another. Thus, the overall picture of adenosine receptor regulation can be complex. For all adenosine receptor subtypes, there is evidence to implicate arrestins in agonist-induced desensitization and trafficking, but there is also evidence for other possible forms of regulation, including second messenger-dependent kinase regulation, heterologous effects involving G proteins, and the involvement of non-clathrin trafficking pathways such as caveolae. In this review, the evidence implicating these mechanisms is summarized for each adenosine receptor subtype, and we also discuss those issues of adenosine receptor regulation that remain to be resolved as well as likely directions for future research in this field.
Collapse
Affiliation(s)
- Stuart Mundell
- Department of Physiology and Pharmacology, University of Bristol, Bristol, UK
| | | |
Collapse
|
293
|
Soh UJK, Dores MR, Chen B, Trejo J. Signal transduction by protease-activated receptors. Br J Pharmacol 2010; 160:191-203. [PMID: 20423334 DOI: 10.1111/j.1476-5381.2010.00705.x] [Citation(s) in RCA: 226] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The family of G protein-coupled receptors (GPCRs) constitutes the largest class of signalling receptors in the human genome, controlling vast physiological responses and are the target of many drugs. After activation, GPCRs are rapidly desensitized by phosphorylation and beta-arrestin binding. Most classic GPCRs are internalized through a clathrin, dynamin and beta-arrestin-dependent pathway and then recycled back to the cell surface or sorted to lysosomes for degradation. Given the vast number and diversity of GPCRs, different mechanisms are likely to exist to precisely regulate the magnitude, duration and spatial aspects of receptor signalling. The G protein-coupled protease-activated receptors (PARs) provide elegant examples of GPCRs that are regulated by distinct desensitization and endocytic sorting mechanisms, processes that are critically important for the spatial and temporal fidelity of PAR signalling. PARs are irreversibly activated through proteolytic cleavage and transmit cellular responses to extracellular proteases. Activated PAR(1) internalizes through a clathrin- and dynamin-dependent pathway independent of beta-arrestins. Interestingly, PAR(1) is basally ubiquitinated and deubiquitinated after activation and traffics from endosomes to lysosomes independent of ubiquitination. In contrast, beta-arrestins mediate activated PAR(2) internalization and function as scaffolds that promote signalling from endocytic vesicles. Moreover, activated PAR(2) is modified with ubiquitin, which facilitates lysosomal degradation. Activated PARs also adopt distinct active conformations that signal to diverse effectors and are likely regulated by different mechanisms. Thus, the identification of the molecular machinery important for PAR signal regulation will enable the development of new strategies to manipulate receptor signalling and will provide novel targets for the development of drugs.
Collapse
Affiliation(s)
- Unice J K Soh
- Department of Pharmacology, University of California, San Diego, 92093-0636, USA
| | | | | | | |
Collapse
|
294
|
Kenakin T, Miller LJ. Seven transmembrane receptors as shapeshifting proteins: the impact of allosteric modulation and functional selectivity on new drug discovery. Pharmacol Rev 2010; 62:265-304. [PMID: 20392808 PMCID: PMC2879912 DOI: 10.1124/pr.108.000992] [Citation(s) in RCA: 464] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
It is useful to consider seven transmembrane receptors (7TMRs) as disordered proteins able to allosterically respond to a number of binding partners. Considering 7TMRs as allosteric systems, affinity and efficacy can be thought of in terms of energy flow between a modulator, conduit (the receptor protein), and a number of guests. These guests can be other molecules, receptors, membrane-bound proteins, or signaling proteins in the cytosol. These vectorial flows of energy can yield standard canonical guest allostery (allosteric modification of drug effect), effects along the plane of the cell membrane (receptor oligomerization), or effects directed into the cytosol (differential signaling as functional selectivity). This review discusses these apparently diverse pharmacological effects in terms of molecular dynamics and protein ensemble theory, which tends to unify 7TMR behavior toward cells. Special consideration will be given to functional selectivity (biased agonism and biased antagonism) in terms of mechanism of action and potential therapeutic application. The explosion of technology that has enabled observation of diverse 7TMR behavior has also shown how drugs can have multiple (pluridimensional) efficacies and how this can cause paradoxical drug classification and nomenclatures.
Collapse
Affiliation(s)
- Terry Kenakin
- GlaxoSmithKline, 5 Moore Drive, Mailtstop V-287, Research Triangle Park, NC 27709, USA.
| | | |
Collapse
|
295
|
Luttrell LM, Gesty-Palmer D. Beyond desensitization: physiological relevance of arrestin-dependent signaling. Pharmacol Rev 2010; 62:305-30. [PMID: 20427692 PMCID: PMC2879915 DOI: 10.1124/pr.109.002436] [Citation(s) in RCA: 304] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Heptahelical G protein-coupled receptors are the most diverse and therapeutically important family of receptors in the human genome. Ligand binding activates heterotrimeric G proteins that transmit intracellular signals by regulating effector enzymes or ion channels. G protein signaling is terminated, in large part, by arrestin binding, which uncouples the receptor and G protein and targets the receptor for internalization. It is clear, however, that heptahelical receptor signaling does not end with desensitization. Arrestins bind a host of catalytically active proteins and serve as ligand-regulated scaffolds that recruit protein and lipid kinase, phosphatase, phosphodiesterase, and ubiquitin ligase activity into the receptor-arrestin complex. Although many of these arrestin-bound effectors serve to modulate G protein signaling, degrading second messengers and regulating endocytosis and trafficking, other signals seem to extend beyond the receptor-arrestin complex to regulate such processes as protein translation and gene transcription. Although these findings have led to a re-envisioning of heptahelical receptor signaling, little is known about the physiological roles of arrestin-dependent signaling. In vivo, the duality of arrestin function makes it difficult to dissociate the consequences of arrestin-dependent desensitization from those that might be ascribed to arrestin-mediated signaling. Nonetheless, recent evidence generated using arrestin knockouts, G protein-uncoupled receptor mutants, and arrestin pathway-selective "biased agonists" is beginning to reveal that arrestin signaling plays important roles in the retina, central nervous system, cardiovascular system, bone remodeling, immune system, and cancer. Understanding the signaling roles of arrestins may foster the development of pathway-selective drugs that exploit these pathways for therapeutic benefit.
Collapse
Affiliation(s)
- Louis M Luttrell
- Department of Medicine, Medical University of South Carolina, USA
| | | |
Collapse
|
296
|
Importance of regions outside the cytoplasmic tail of G-protein-coupled receptors for phosphorylation and dephosphorylation. Biochem J 2010; 428:235-45. [PMID: 20345371 DOI: 10.1042/bj20100139] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Two GPCRs (G-protein-coupled receptors), TRHR (thyrotropin-releasing hormone receptor) and beta(2)AR (beta(2)-adrenergic receptor), are regulated in distinct manners. Following agonist binding, TRHR undergoes rapid phosphorylation attributable to GRKs (GPCR kinases); beta(2)AR is phosphorylated by both second messenger-activated PKA (protein kinase A) and GRKs with slower kinetics. TRHR co-internalizes with arrestin, whereas beta(2)AR recruits arrestin, but internalizes without it. Both receptors are dephosphorylated following agonist removal, but TRHR is dephosphorylated much more rapidly while it remains at the plasma membrane. We generated chimaeras swapping the C-terminal domains of these receptors to clarify the role of different receptor regions in phosphorylation, internalization and dephosphorylation. beta(2)AR with a TRHR cytoplasmic tail (beta(2)AR-TRHR) and TRHR with a beta(2)AR tail (TRHR-beta(2)AR) signalled to G-proteins normally. beta(2)AR-TRHR was phosphorylated well at the PKA site in the third intracellular loop, but poorly at GRK sites in the tail, whereas TRHR-beta(2)AR was phosphorylated strongly at GRK sites in the tail (Ser(355)/Ser(356) of the beta(2)AR). Both chimaeric receptors exhibited prolonged, but weak, association with arrestin at the plasma membrane, but high-affinity arrestin interactions and extensive co-internalization of receptor with arrestin required a phosphorylated TRHR tail. In contrast, swapping C-terminal domains did not change the rates of phosphorylation and dephosphorylation or the dependence of TRHR dephosphorylation on the length of agonist exposure. Thus the interactions of GPCRs with GRKs and phosphatases are determined not simply by the amino acid sequences of the substrates, but by regions outside the cytoplasmic tails.
Collapse
|
297
|
Kilpatrick LE, Briddon SJ, Hill SJ, Holliday ND. Quantitative analysis of neuropeptide Y receptor association with beta-arrestin2 measured by bimolecular fluorescence complementation. Br J Pharmacol 2010; 160:892-906. [PMID: 20438572 PMCID: PMC2901518 DOI: 10.1111/j.1476-5381.2010.00676.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND AND PURPOSE beta-Arrestins are critical scaffold proteins that shape spatiotemporal signalling from seven transmembrane domain receptors (7TMRs). Here, we study the association between neuropeptide Y (NPY) receptors and beta-arrestin2, using bimolecular fluorescence complementation (BiFC) to directly report underlying protein-protein interactions. EXPERIMENTAL APPROACH Y1 receptors were tagged with a C-terminal fragment, Yc, of yellow fluorescent protein (YFP), and beta-arrestin2 fused with the complementary N-terminal fragment, Yn. After Y receptor-beta-arrestin association, YFP fragment refolding to regenerate fluorescence (BiFC) was examined by confocal microscopy in transfected HEK293 cells. Y receptor/beta-arrestin2 BiFC responses were also quantified by automated imaging and granularity analysis. KEY RESULTS NPY stimulation promoted association between Y1-Yc and beta-arrestin2-Yn, and the specific development of BiFC in intracellular compartments, eliminated when using non-interacting receptor and arrestin mutants. Responses developed irreversibly and were slower than for downstream Y1 receptor-YFP internalization, a consequence of delayed maturation and stability of complemented YFP. However, beta-arrestin2 BiFC measurements delivered appropriate ligand pharmacology for both Y1 and Y2 receptors, and demonstrated higher affinity of Y1 compared to Y2 receptors for beta-arrestin2. Receptor mutagenesis combined with beta-arrestin2 BiFC revealed that alternative arrangements of Ser/Thr residues in the Y1 receptor C tail could support beta-arrestin2 association, and that Y2 receptor-beta-arrestin2 interaction was enhanced by the intracellular loop mutation H155P. CONCLUSIONS AND IMPLICATIONS The BiFC approach quantifies Y receptor ligand pharmacology focused on the beta-arrestin2 pathway, and provides insight into mechanisms of beta-arrestin2 recruitment by activated and phosphorylated 7TMRs, at the level of protein-protein interaction.
Collapse
Affiliation(s)
- L E Kilpatrick
- Institute of Cell Signalling, School of Biomedical Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, UK
| | | | | | | |
Collapse
|
298
|
Gurevich VV, Gurevich EV. Custom-designed proteins as novel therapeutic tools? The case of arrestins. Expert Rev Mol Med 2010; 12:e13. [PMID: 20412604 PMCID: PMC2933791 DOI: 10.1017/s1462399410001444] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Multiple genetic disorders can be associated with excessive signalling by mutant G-protein-coupled receptors (GPCRs) that are either constitutively active or have lost sites where phosphorylation by GPCR kinases is necessary for desensitisation by cognate arrestins. Phosphorylation-independent arrestin1 can compensate for defects in phosphorylation of the GPCR rhodopsin in retinal rod cells, facilitating recovery, improving light responsiveness, and promoting photoreceptor survival. These proof-of-principle experiments show that, based on mechanistic understanding of the inner workings of a protein, one can modify its functional characteristics to generate custom-designed mutants that improve the balance of signalling in congenital and acquired disorders. Manipulations of arrestin elements responsible for scaffolding mitogen-activated protein kinase cascades and binding other signalling proteins involved in life-or-death decisions in the cell are likely to yield mutants that affect cell survival and proliferation in the desired direction. Although this approach is still in its infancy, targeted redesign of individual functions of many proteins offers a promise of a completely new therapeutic toolbox with huge potential.
Collapse
|
299
|
Tsukamoto H, Sinha A, DeWitt M, Farrens DL. Monomeric rhodopsin is the minimal functional unit required for arrestin binding. J Mol Biol 2010; 399:501-11. [PMID: 20417217 DOI: 10.1016/j.jmb.2010.04.029] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Revised: 04/13/2010] [Accepted: 04/16/2010] [Indexed: 11/19/2022]
Abstract
We have tested whether arrestin binding requires the G-protein-coupled receptor be a dimer or a multimer. To do this, we encapsulated single-rhodopsin molecules into nanoscale phospholipid particles (so-called nanodiscs) and measured their ability to bind arrestin. Our data clearly show that both visual arrestin and beta-arrestin 1 can bind to monomeric rhodopsin and stabilize the active metarhodopsin II form. Interestingly, we find that the monomeric rhodopsin in nanodiscs has a higher affinity for wild-type arrestin binding than does oligomeric rhodopsin in liposomes or nanodiscs, as assessed by stabilization of metarhodopsin II. Together, these results establish that rhodopsin self-association is not required to enable arrestin binding.
Collapse
Affiliation(s)
- Hisao Tsukamoto
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239-3098, USA
| | | | | | | |
Collapse
|
300
|
Ayoub MA, Trinquet E, Pfleger KDG, Pin J. Differential association modes of the thrombin receptor PAR
1
with Gαil, Gα12, and β‐arrestin 1. FASEB J 2010; 24:3522-35. [DOI: 10.1096/fj.10-154997] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Mohammed Akli Ayoub
- CNRS UMR5203INSERM U661Universités Montpellier I and IIInstitut de Génomique FonctionnelleDépartement de Pharmacologie Moléculaire Montpellier France
- Laboratory for Molecular Endocrinology—GPCRsWestern Australian Institute for Medical Research and Centre for Medical ResearchUniversity of Western Australia Nedlands, Perth Western Australia Australia
| | | | - Kevin D. G. Pfleger
- Laboratory for Molecular Endocrinology—GPCRsWestern Australian Institute for Medical Research and Centre for Medical ResearchUniversity of Western Australia Nedlands, Perth Western Australia Australia
| | - Jean‐Philippe Pin
- CNRS UMR5203INSERM U661Universités Montpellier I and IIInstitut de Génomique FonctionnelleDépartement de Pharmacologie Moléculaire Montpellier France
| |
Collapse
|