251
|
Arias-Ramos N, Ibarra LE, Serrano-Torres M, Yagüe B, Caverzán MD, Chesta CA, Palacios RE, López-Larrubia P. Iron Oxide Incorporated Conjugated Polymer Nanoparticles for Simultaneous Use in Magnetic Resonance and Fluorescent Imaging of Brain Tumors. Pharmaceutics 2021; 13:1258. [PMID: 34452219 PMCID: PMC8400017 DOI: 10.3390/pharmaceutics13081258] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/03/2021] [Accepted: 08/09/2021] [Indexed: 12/13/2022] Open
Abstract
Conjugated polymer nanoparticles (CPNs) have emerged as advanced polymeric nanoplatforms in biomedical applications by virtue of extraordinary properties including high fluorescence brightness, large absorption coefficients of one and two-photons, and excellent photostability and colloidal stability in water and physiological medium. In addition, low cytotoxicity, easy functionalization, and the ability to modify CPN photochemical properties by the incorporation of dopants, convert them into excellent theranostic agents with multifunctionality for imaging and treatment. In this work, CPNs were designed and synthesized by incorporating a metal oxide magnetic core (Fe3O4 and NiFe2O4 nanoparticles, 5 nm) into their matrix during the nanoprecipitation method. This modification allowed the in vivo monitoring of nanoparticles in animal models using magnetic resonance imaging (MRI) and intravital fluorescence, techniques widely used for intracranial tumors evaluation. The modified CPNs were assessed in vivo in glioblastoma (GBM) bearing mice, both heterotopic and orthotopic developed models. Biodistribution studies were performed with MRI acquisitions and fluorescence images up to 24 h after the i.v. nanoparticles administration. The resulting IONP-doped CPNs were biocompatible in GBM tumor cells in vitro with an excellent cell incorporation depending on nanoparticle concentration exposure. IONP-doped CPNs were detected in tumor and excretory organs of the heterotopic GBM model after i.v. and i.t. injection. However, in the orthotopic GBM model, the size of the nanoparticles is probably hindering a higher effect on intratumorally T2-weighted images (T2WI) signals and T2 values. The photodynamic therapy (PDT)-cytotoxicity of CPNs was not either affected by the IONPs incorporation into the nanoparticles.
Collapse
Affiliation(s)
- Nuria Arias-Ramos
- Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), 28029 Madrid, Spain; (N.A.-R.); (M.S.-T.); (B.Y.)
| | - Luis Exequiel Ibarra
- Instituto de Biotecnología Ambiental y Salud (INBIAS), Universidad Nacional de Río Cuarto (UNRC) y CONICET, Córdoba X5800BIA, Argentina
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Fisicoquímicas y Naturales, Universidad Nacional de Río Cuarto (UNRC), Córdoba X5800BIA, Argentina; (M.D.C.)
| | - María Serrano-Torres
- Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), 28029 Madrid, Spain; (N.A.-R.); (M.S.-T.); (B.Y.)
| | - Balbino Yagüe
- Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), 28029 Madrid, Spain; (N.A.-R.); (M.S.-T.); (B.Y.)
| | - Matías Daniel Caverzán
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Fisicoquímicas y Naturales, Universidad Nacional de Río Cuarto (UNRC), Córdoba X5800BIA, Argentina; (M.D.C.)
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto y CONICET, Córdoba X5800BIA, Argentina; (C.A.C.); (R.E.P.)
| | - Carlos Alberto Chesta
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto y CONICET, Córdoba X5800BIA, Argentina; (C.A.C.); (R.E.P.)
- Departamento de Química, Facultad de Ciencias Exactas, Fisicoquímicas y Naturales, UNRC, Córdoba X5800BIA, Argentina
| | - Rodrigo Emiliano Palacios
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto y CONICET, Córdoba X5800BIA, Argentina; (C.A.C.); (R.E.P.)
- Departamento de Química, Facultad de Ciencias Exactas, Fisicoquímicas y Naturales, UNRC, Córdoba X5800BIA, Argentina
| | - Pilar López-Larrubia
- Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), 28029 Madrid, Spain; (N.A.-R.); (M.S.-T.); (B.Y.)
| |
Collapse
|
252
|
Xavier MA, Rezende F, Titze-de-Almeida R, Cornelissen B. BRCAness as a Biomarker of Susceptibility to PARP Inhibitors in Glioblastoma Multiforme. Biomolecules 2021; 11:1188. [PMID: 34439854 PMCID: PMC8394995 DOI: 10.3390/biom11081188] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/19/2021] [Accepted: 07/21/2021] [Indexed: 12/20/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common primary brain cancer. GBMs commonly acquire resistance to standard-of-care therapies. Among the novel means to sensitize GBM to DNA-damaging therapies, a promising strategy is to combine them with inhibitors of the DNA damage repair (DDR) machinery, such as inhibitors for poly(ADP-ribose) polymerase (PARP). PARP inhibitors (PARPis) have already shown efficacy and have received regulatory approval for breast, ovarian, prostate, and pancreatic cancer treatment. In these cancer types, after PARPi administration, patients carrying specific mutations in the breast cancer 1 (BRCA1) and 2 (BRCA2) suppressor genes have shown better response when compared to wild-type carriers. Mutated BRCA genes are infrequent in GBM tumors, but their cells can carry other genetic alterations that lead to the same phenotype collectively referred to as 'BRCAness'. The most promising biomarkers of BRCAness in GBM are related to isocitrate dehydrogenases 1 and 2 (IDH1/2), epidermal growth factor receptor (EGFR), phosphatase and tensin homolog (PTEN), MYC proto-oncogene, and estrogen receptors beta (ERβ). BRCAness status identified by accurate biomarkers can ultimately predict responsiveness to PARPi therapy, thereby allowing patient selection for personalized treatment. This review discusses potential biomarkers of BRCAness for a 'precision medicine' of GBM patients.
Collapse
Affiliation(s)
- Mary-Ann Xavier
- Central Institute of Sciences, Technology for Gene Therapy Laboratory, University of Brasília—UnB/FAV, Brasília 70910-900, Brazil; (F.R.); (R.T.-d.-A.)
| | - Fernando Rezende
- Central Institute of Sciences, Technology for Gene Therapy Laboratory, University of Brasília—UnB/FAV, Brasília 70910-900, Brazil; (F.R.); (R.T.-d.-A.)
| | - Ricardo Titze-de-Almeida
- Central Institute of Sciences, Technology for Gene Therapy Laboratory, University of Brasília—UnB/FAV, Brasília 70910-900, Brazil; (F.R.); (R.T.-d.-A.)
| | - Bart Cornelissen
- Department of Oncology, Radiobiology Research Institute, University of Oxford, Oxford OX3 7LJ, UK;
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, 9700 RB Groningen, The Netherlands
| |
Collapse
|
253
|
Pototskiy E, Dellinger JR, Bumgarner S, Patel J, Sherrerd-Smith W, Musto AE. Brain injuries can set up an epileptogenic neuronal network. Neurosci Biobehav Rev 2021; 129:351-366. [PMID: 34384843 DOI: 10.1016/j.neubiorev.2021.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 08/01/2021] [Indexed: 10/20/2022]
Abstract
Development of epilepsy or epileptogenesis promotes recurrent seizures. As of today, there are no effective prophylactic therapies to prevent the onset of epilepsy. Contributing to this deficiency of preventive therapy is the lack of clarity in fundamental neurobiological mechanisms underlying epileptogenesis and lack of reliable biomarkers to identify patients at risk for developing epilepsy. This limits the development of prophylactic therapies in epilepsy. Here, neural network dysfunctions reflected by oscillopathies and microepileptiform activities, including neuronal hyperexcitability and hypersynchrony, drawn from both clinical and experimental epilepsy models, have been reviewed. This review suggests that epileptogenesis reflects a progressive and dynamic dysfunction of specific neuronal networks which recruit further interconnected groups of neurons, with this resultant pathological network mediating seizure occurrence, recurrence, and progression. In the future, combining spatial and temporal resolution of neuronal non-invasive recordings from patients at risk of developing epilepsy, together with analytics and computational tools, may contribute to determining whether the brain is undergoing epileptogenesis in asymptomatic patients following brain injury.
Collapse
Affiliation(s)
- Esther Pototskiy
- Department of Anatomy & Pathology, Eastern Virginia Medical School, Department of Pathology, Norfolk, Virginia, USA; College of Sciences, Old Dominion University, Norfolk, Virginia
| | - Joshua Ryan Dellinger
- Department of Anatomy & Pathology, Eastern Virginia Medical School, Department of Pathology, Norfolk, Virginia, USA
| | - Stuart Bumgarner
- Department of Anatomy & Pathology, Eastern Virginia Medical School, Department of Pathology, Norfolk, Virginia, USA
| | - Jay Patel
- Department of Anatomy & Pathology, Eastern Virginia Medical School, Department of Pathology, Norfolk, Virginia, USA
| | - William Sherrerd-Smith
- Department of Anatomy & Pathology, Eastern Virginia Medical School, Department of Pathology, Norfolk, Virginia, USA
| | - Alberto E Musto
- Department of Anatomy & Pathology, Eastern Virginia Medical School, Department of Pathology, Norfolk, Virginia, USA; Department of Neurology, Eastern Virginia Medical School, Department of Pathology, Norfolk, Virginia, USA.
| |
Collapse
|
254
|
Laurentino TDS, Soares RDS, Lerario AM, Marie SKN, Oba-Shinjo SM. LOXL3 Silencing Affected Cell Adhesion and Invasion in U87MG Glioma Cells. Int J Mol Sci 2021; 22:ijms22158072. [PMID: 34360836 PMCID: PMC8347215 DOI: 10.3390/ijms22158072] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 01/22/2023] Open
Abstract
Lysyl oxidase-like 3 (LOXL3), belonging to the lysyl oxidase family, is responsible for the crosslinking in collagen or elastin. The cellular localization of LOXL3 is in the extracellular space by reason of its canonical function. In tumors, the presence of LOXL3 has been associated with genomic stability, cell proliferation, and metastasis. In silico analysis has shown that glioblastoma was among tumors with the highest LOXL3 expression levels. LOXL3 silencing of U87MG cells by siRNA led to the spreading of the tumor cell surface, and the transcriptome analysis of these cells revealed an upregulation of genes coding for extracellular matrix, cell adhesion, and cytoskeleton components, convergent to an increase in cell adhesion and a decrease in cell invasion observed in functional assays. Significant correlations of LOXL3 expression with genes coding for tubulins were observed in the mesenchymal subtype in the TCGA RNA-seq dataset of glioblastoma (GBM). Conversely, genes involved in endocytosis and lysosome formation, along with MAPK-binding proteins related to focal adhesion turnover, were downregulated, which may corroborate the observed decrease in cell viability and increase in the rate of cell death. Invasiveness is a major determinant of the recurrence and poor outcome of GBM patients, and downregulation of LOXL3 may contribute to halting the tumor cell invasion.
Collapse
Affiliation(s)
- Talita de S. Laurentino
- Cellular and Molecular Biology Laboratory (LIM 15), Neurology Department, Faculdade de Medicina (FMUSP), Universidade de Sao Paulo, Sao Paulo 01246-000, SP, Brazil; (R.d.S.S.); (S.K.N.M.)
- Correspondence: (T.d.S.L.); (S.M.O.-S.); Tel.: +55-11-3061-8310 (T.d.S.L. & S.M.O.-S.)
| | - Roseli da S. Soares
- Cellular and Molecular Biology Laboratory (LIM 15), Neurology Department, Faculdade de Medicina (FMUSP), Universidade de Sao Paulo, Sao Paulo 01246-000, SP, Brazil; (R.d.S.S.); (S.K.N.M.)
| | - Antonio M. Lerario
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Suely K. N. Marie
- Cellular and Molecular Biology Laboratory (LIM 15), Neurology Department, Faculdade de Medicina (FMUSP), Universidade de Sao Paulo, Sao Paulo 01246-000, SP, Brazil; (R.d.S.S.); (S.K.N.M.)
| | - Sueli M. Oba-Shinjo
- Cellular and Molecular Biology Laboratory (LIM 15), Neurology Department, Faculdade de Medicina (FMUSP), Universidade de Sao Paulo, Sao Paulo 01246-000, SP, Brazil; (R.d.S.S.); (S.K.N.M.)
- Correspondence: (T.d.S.L.); (S.M.O.-S.); Tel.: +55-11-3061-8310 (T.d.S.L. & S.M.O.-S.)
| |
Collapse
|
255
|
Hispolon Induces Apoptosis, Suppresses Migration and Invasion of Glioblastoma Cells and Inhibits GBM Xenograft Tumor Growth In Vivo. Molecules 2021; 26:molecules26154497. [PMID: 34361649 PMCID: PMC8348445 DOI: 10.3390/molecules26154497] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 07/20/2021] [Accepted: 07/23/2021] [Indexed: 11/20/2022] Open
Abstract
Hispolon, a polyphenol compound isolated from Phellinus linteus, has been reported to exhibit antioxidant, antiproliferative, and antitumor activities. This study aimed to explore the antitumor effects of hispolon on glioblastoma multiforme (GBM) cells in vitro and in vivo. The results revealed that hispolon significantly inhibited GBM cell proliferation and induced apoptosis through caspase-9 and caspase-3 activation and PARP cleavage. Hispolon also induced cell cycle G2/M phase arrest in GBM cells, as supported by flow cytometry analysis and confirmed by a decrease in cyclin B1, cdc2, and cdc25c protein expressions in a dose- and time-dependent manner. Furthermore, hispolon suppressed the migration and invasion of GBM cells by modulating epithelial–mesenchymal transition (EMT) markers via wound healing, transwell assays, and real-time PCR. Moreover, hispolon significantly reduced tumor growth in DBTRG xenograft mice and activated caspase-3 in hispolon-treated tumors. Thus, our findings revealed that hispolon is a potential candidate for the treatment of GBM.
Collapse
|
256
|
Exosomal noncoding RNAs: key players in glioblastoma drug resistance. Mol Cell Biochem 2021; 476:4081-4092. [PMID: 34273059 DOI: 10.1007/s11010-021-04221-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 07/07/2021] [Indexed: 12/12/2022]
Abstract
Glioma, as one of the most severe human malignancies, is defined as the Central Nervous System's (CNS) tumors. Glioblastoma (GBM) in this regard, is the most malignant type of gliomas. There are multiple therapeutic strategies to cure GBM, for which chemotherapy is often the first-line treatment. Still, various cellular processes, such as uncontrolled proliferation, invasion and metastasis, may disturb the treatment efficacy. Drug resistance is another process in this way, which can also cause undesirable effects. Thereupon, identifying the mechanisms, involved in developing drug resistance and the relevant mechanisms can be very helpful in GBM management. The discovery of exosomal non-coding RNAs (ncRNAs), RNA molecules that can be transferred between the cells and different tissues using the exosomes, was a milestone in this regard. It has been revealed that the key exosomal ncRNAs, including circular RNAs, microRNAs, and long ncRNAs, are able to modulate GBM drug resistance through different signaling pathways or by affecting regulatory proteins and their corresponding genes. Nowadays, researchers are trying to overcome the limitations of chemotherapy by targeting these RNA molecules. Accordingly, this review aims to clarify the substantial roles of exosomal ncRNAs in GBM drug resistance and involved mechanisms.
Collapse
|
257
|
The emerging roles of absent in melanoma 2 (AIM2) inflammasome in central nervous system disorders. Neurochem Int 2021; 149:105122. [PMID: 34284076 DOI: 10.1016/j.neuint.2021.105122] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/22/2021] [Accepted: 06/30/2021] [Indexed: 02/08/2023]
Abstract
As a double-stranded DNA (dsDNA) sensor, the PYHIN family member absent in melanoma 2 (AIM2) is an essential component of the inflammasome families. Activation of AIM2 by dsDNA leads to the assembly of cytosolic multimolecular complexes termed the AIM2 inflammasome, resulting in activation of caspase-1, the maturation and secretion of pro-inflammatory cytokines interleukin (IL)-1β and IL-18, and pyroptosis. Multiple central nervous system (CNS) diseases are accompanied by immune responses and inflammatory cascade. As the resident macrophage cells, microglia cells act as the first and main form of active immune defense in the CNS. AIM2 is highly expressed in microglia as well as astrocytes and neurons and is essential in neurodevelopment. In this review, we highlight the recent progress on the role of AIM2 inflammasome in CNS disorders, including cerebral stroke, brain injury, neuropsychiatric disease, neurodegenerative diseases, and glioblastoma.
Collapse
|
258
|
Ma J, Li T, Chen H, Wang C, Wang H, Li Q. Lipidomic analysis and diagnosis of glioblastoma multiforme with rapid evaporative ionization mass spectrometry. Electrophoresis 2021; 42:1965-1973. [PMID: 34272893 DOI: 10.1002/elps.202100130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/04/2021] [Accepted: 07/13/2021] [Indexed: 01/17/2023]
Abstract
Glioblastoma multiforme (GBM) is the most common and aggressive brain tumor in the central nervous system. GBM patients have a very low 5-year survival rate and most of them died within 1 year. Conventional histopathological examination for GBM diagnosis is complicated and time-consuming, which always blocks the development of more precise and effective treatments in resection operation. Rapid evaporative ionization mass spectrometry (REIMS) is a MS technique in clinical medicine research, which combines the common diathermy device with MS to acquire the lipid profiles of tissue specimens for lipidomic analysis and real-time tumor diagnosis. In this study, the REIMS method employing bipolar forceps was optimized and validated for high-throughput lipidomics and diagnosis of GBM for the first time. Total 42 lipid metabolites were tentatively identified and 12 out of 13 lipid biomarkers showed higher intensities in GBM, which were consistent with previous studies. After this, a statistic model was built with the lipidomic data for the diagnosis of GBM tumor in real-time. The diagnostic accuracy (94.74%), sensitivity (95.38%), and specificity (93.33%) were evaluated with histopathology validated brain tissue specimens that were not used in the training set. The proposed REIMS method for the lipidomic-analysis and diagnosis of GBM tumor provides a new direction for MS-based lipidomics and precision medicine and might be used to guide surgeons to precisely resect the GBM tissue and keep the normal brain tissue in operation.
Collapse
Affiliation(s)
- Jianfeng Ma
- Zhejiang Provincial Key Laboratory of Anesthesiology, Department of Anesthesiology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, P. R. China
| | - Ting Li
- Zhejiang Provincial Key Laboratory of Anesthesiology, Department of Anesthesiology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, P. R. China.,Clinical Research Unit, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, P. R. China
| | - Huiyao Chen
- Department of Pathology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, P. R. China
| | - Chengde Wang
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, P. R. China
| | - Haixing Wang
- Zhejiang Provincial Key Laboratory of Anesthesiology, Department of Anesthesiology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, P. R. China
| | - Qun Li
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, P. R. China
| |
Collapse
|
259
|
Abstract
BACKGROUND To describe the various neuro-ophthalmic presentations, key exam features, and clinical findings associated with 5 common primary and secondary intracranial malignancies. EVIDENCE ACQUISITION Retrospective PubMed search and review of published case reports, case series, observational studies, book chapters, and review articles examining the neuro-ophthalmic features of intracranial malignancies including primary glial neoplasms (e.g., glioblastoma multiforme), primary and secondary lymphoma, intracranial metastases, carcinomatous/lymphomatous meningitis, and intracranial germ cell tumors. The search strategy used to perform the retrospective review included the aforementioned tumor type (e.g., glioblastoma multiforme) and the following terms and Boolean operators: AND ("visual loss" OR "papilledema" OR "diplopia" OR "ophthalmoplegia" or "neuro-ophthalmology" OR "proptosis"). RESULTS The rate of growth and the location of an intracranial tumor are essential factors in determining the neuro-ophthalmic presentation of certain intracranial malignancies. Primary malignant brain glial neoplasms commonly present with visual afferent complaints (e.g., unilateral or bilateral visual acuity or visual field defects, bitemporal or homonymous hemianopsia), pupil abnormalities (relative afferent pupillary defect), and optic atrophy or papilledema. Primary intraocular lymphoma (with or without central nervous system lymphoma) typically presents as a painless bilateral vitritis. Secondary intracranial malignancies have variable afferent and efferent visual pathway presentations. Carcinomatous/lymphomatous meningitis is associated with diplopia (e.g., multiple ocular motor cranial neuropathies with or without vision loss from papilledema or compressive/infiltrative optic neuropathy). Intracranial germ cell tumors can present with a chiasmal syndrome or dorsal midbrain syndrome. CONCLUSION Intracranial malignancies can present with neuro-ophthalmic symptoms or signs depending on topographical localization. Specific neuro-ophthalmic presentations are associated with different malignant intracranial tumors. Clinicians should be aware of the common malignant intracranial tumors and their associated clinical presentations in neuro-ophthalmology.
Collapse
|
260
|
Miranda-Gonçalves V, Gonçalves CS, Granja S, Vieira de Castro J, Reis RM, Costa BM, Baltazar F. MCT1 Is a New Prognostic Biomarker and Its Therapeutic Inhibition Boosts Response to Temozolomide in Human Glioblastoma. Cancers (Basel) 2021; 13:cancers13143468. [PMID: 34298681 PMCID: PMC8306807 DOI: 10.3390/cancers13143468] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Glioblastoma, the brain tumour with highest prevalence and lethality, exhibits a characteristic glycolytic phenotype with increased lactate production. Recently, we reported a MCT1 overexpression in GBMs tumours, being associated to tumour growth and aggressiveness. Thus, we aimed to disclose the role of MCT1 in GBM prognosis and in vivo therapy response. Importantly, MCT1 overexpression is associated with poor prognosis of GBM. Moreover, MCT1 inhibition retards GBM tumour growth and boosts response to temozolomide treatment. Abstract Background: Glioblastomas (GBMs) present remarkable metabolism reprograming, in which many cells display the “Warburg effect”, with the production of high levels of lactate that are extruded to the tumour microenvironment by monocarboxylate transporters (MCTs). We described previously that MCT1 is up-regulated in human GBM samples, and MCT1 inhibition decreases glioma cell viability and aggressiveness. In the present study, we aimed to unveil the role of MCT1 in GBM prognosis and to explore it as a target for GBM therapy in vivo. Methods: MCT1 activity and protein expression were inhibited by AR-C155858 and CHC compounds or stable knockdown with shRNA, respectively, to assess in vitro and in vivo the effects of MCT1 inhibition and on response of GBM to temozolomide. Survival analyses on GBM patient cohorts were performed using Cox regression and Log-rank tests. Results: High levels of MCT1 expression were revealed to be a predictor of poor prognosis in multiple cohorts of GBM patients. Functionally, in U251 GBM cells, MCT1 stable knockdown decreased glucose consumption and lactate efflux, compromising the response to the MCT1 inhibitors CHC and AR-C155858. MCT1 knockdown significantly increased the survival of orthotopic GBM intracranial mice models when compared to their control counterparts. Furthermore, MCT1 downregulation increased the sensitivity to temozolomide in vitro and in vivo, resulting in significantly longer mice survival. Conclusions: This work provides first evidence for MCT1 as a new prognostic biomarker of GBM survival and further supports MCT1 targeting, alone or in combination with classical chemotherapy, for the treatment of GBM.
Collapse
Affiliation(s)
- Vera Miranda-Gonçalves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (V.M.-G.); (C.S.G.); (S.G.); (J.V.d.C.); (R.M.R.); (B.M.C.)
- ICVS/3Bs-PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
| | - Céline S. Gonçalves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (V.M.-G.); (C.S.G.); (S.G.); (J.V.d.C.); (R.M.R.); (B.M.C.)
- ICVS/3Bs-PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
| | - Sara Granja
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (V.M.-G.); (C.S.G.); (S.G.); (J.V.d.C.); (R.M.R.); (B.M.C.)
- ICVS/3Bs-PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
- Research Centre in Health and Environment (CISA), School of Health (ESS), Polytechnic Institute of Porto (P.PORTO), 4200-072 Porto, Portugal
- Department of Pathological, Cytological and Thanatological Anatomy, School of Health (ESS), Polytechnic Institute of Porto (P.PORTO), 4200-072 Porto, Portugal
| | - Joana Vieira de Castro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (V.M.-G.); (C.S.G.); (S.G.); (J.V.d.C.); (R.M.R.); (B.M.C.)
- ICVS/3Bs-PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
| | - Rui M. Reis
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (V.M.-G.); (C.S.G.); (S.G.); (J.V.d.C.); (R.M.R.); (B.M.C.)
- ICVS/3Bs-PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos 14784-400, SP, Brazil
| | - Bruno M. Costa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (V.M.-G.); (C.S.G.); (S.G.); (J.V.d.C.); (R.M.R.); (B.M.C.)
- ICVS/3Bs-PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
| | - Fátima Baltazar
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (V.M.-G.); (C.S.G.); (S.G.); (J.V.d.C.); (R.M.R.); (B.M.C.)
- ICVS/3Bs-PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
- Correspondence: ; Tel.: +351-253-604828
| |
Collapse
|
261
|
Cardoso AM, Morais CM, Sousa M, Rebelo O, Tão H, Barbosa M, Pedroso de Lima MC, Jurado AS. MiR-200c-based metabolic modulation in glioblastoma cells as a strategy to overcome tumor chemoresistance. Hum Mol Genet 2021; 30:2315-2331. [PMID: 34245265 DOI: 10.1093/hmg/ddab193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 11/14/2022] Open
Abstract
Glioblastoma (GB) is the most aggressive and common form of primary brain tumor characterized by fast proliferation, high invasion, and resistance to current standard treatment. The average survival rate post-diagnosis is 14.6 months, despite the aggressive standard post-surgery radiotherapy concomitant with chemotherapy with temozolomide (TMZ). Currently, efforts are being endowed to develop new and more efficient therapeutic approaches capable to overcome chemoresistance, inhibit tumor progression and improve overall patient survival rate. Abnormal microRNA (miRNA) expression has been correlated with chemoresistance, proliferation and resistance to apoptosis, which result from their master regulatory role of gene expression. Altered cell metabolism, favoring glycolysis, was identified as an emerging cancer hallmark and has been described in GB, thus offering a new target for innovative GB therapies. In this work, we hypothesized that a gene therapy-based strategy consisting of the overexpression of a miRNA downregulated in GB and predicted to target crucial metabolic enzymes might promote a shift of GB cell metabolism, decreasing the glycolytic dependence of tumor cells and contributing to their sensitization to chemotherapy with TMZ. The increase of miR-200c levels in DBTRG cells resulted in downregulation of mRNA of enzymes involved in bioenergetics pathways and impaired cell metabolism and mobility. Additionally, miR-200c overexpression prior to DBTRG cell exposure to TMZ resulted in cell cycle arrest. Overall, our results show that miR-200c overexpression could offer a way to overcome chemoresistance developed by GB cells in response to current standard chemotherapy, providing an improvement to current GB standard treatment, with benefit for patient outcome.
Collapse
Affiliation(s)
- Ana M Cardoso
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, IIIUC - Institute for Interdisciplinary Research, Coimbra, Portugal
| | - Catarina M Morais
- Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal.,CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, IIIUC - Institute for Interdisciplinary Research, Coimbra, Portugal
| | - Madalena Sousa
- Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal.,CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, IIIUC - Institute for Interdisciplinary Research, Coimbra, Portugal
| | - Olinda Rebelo
- Neuropathology Laboratory, Neurology Service, University Hospital of Coimbra, 3004-561 Coimbra, Portugal
| | - Hermínio Tão
- Neurosurgery Service, University Hospital of Coimbra, 3004-561 Coimbra, Portugal
| | - Marcos Barbosa
- Neurosurgery Service, University Hospital of Coimbra, 3004-561 Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Maria C Pedroso de Lima
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, IIIUC - Institute for Interdisciplinary Research, Coimbra, Portugal
| | - Amália S Jurado
- Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal.,CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, IIIUC - Institute for Interdisciplinary Research, Coimbra, Portugal
| |
Collapse
|
262
|
Zhang L, Yang Z, Sang H, Jiang Y, Zhou M, Huang C, Huang C, Wu X, Zhang T, Zhang X, Wan S, Zhang J. Identification of imidazo[4,5-c]pyridin-2-one derivatives as novel Src family kinase inhibitors against glioblastoma. J Enzyme Inhib Med Chem 2021; 36:1541-1552. [PMID: 34238111 PMCID: PMC8274516 DOI: 10.1080/14756366.2021.1948542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most common and malignant primary brain tumour in the central nervous system (CNS). As the ideal targets for GBM treatment, Src family kinases (SFKs) have attracted much attention. Herein, a new series of imidazo[4,5-c]pyridin-2-one derivatives were designed and synthesised as SFK inhibitors. Compounds 1d, 1e, 1q, 1s exhibited potential Src and Fyn kinase inhibition in the submicromolar range, of which were next tested for their antiproliferative potency on four GBM cell lines. Compound 1s showed effective activity against U87, U251, T98G, and U87-EGFRvIII GBM cell lines, comparable to that of lead compound PP2. Molecular dynamics (MDs) simulation revealed the possible binding patterns of the most active compound 1s in ATP binding site of SFKs. ADME prediction suggested that 1s accord with the criteria of CNS drugs. These results led us to identify a novel SFK inhibitor as candidate for GBM treatment.
Collapse
Affiliation(s)
- Lishun Zhang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, PR China
| | - Zichao Yang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, PR China
| | - Huiting Sang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, PR China
| | - Ying Jiang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, PR China
| | - Mingfeng Zhou
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, PR China
| | - Chuan Huang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, PR China
| | - Chunhui Huang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, PR China
| | - Xiaoyun Wu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, PR China
| | - Tingting Zhang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, PR China.,Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangzhou, PR China
| | - Xingmei Zhang
- Department of Neurobiology, Guangdong Province Key Laboratory of Psychiatric Disorders, School of Basic Medical Sciences, Southern Medical University, Guangzhou, PR China
| | - Shanhe Wan
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, PR China
| | - Jiajie Zhang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, PR China
| |
Collapse
|
263
|
Temozolomide nano enabled medicine: promises made by the nanocarriers in glioblastoma therapy. J Control Release 2021; 336:549-571. [PMID: 34229001 DOI: 10.1016/j.jconrel.2021.07.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 12/12/2022]
Abstract
Glioblastoma multiforme (GBM) is abnormal cell proliferation of glial cells. GBM is the grade IV glioma brain cancer which is life-threatening to many individuals affected by this cancer. The DNA alkylating agent Temozolomide (TMZ) has the distinctiveness of being FDA approved anticancer drug for the first line treatment for GBM. However, treatment of GBM still remains a challenge. This is attributed to TMZ's toxic nature, severe side effects, and fast degradation in vivo. In addition, the lack of targeting ability increases the chances of systemic toxicities. A nano enabled targeted delivery system not only improves the efficiency of TMZ by making it cross the blood brain barrier, have specificity to target, but also reduces toxicity to healthy tissues. Over the last decade the significant advances in the area of nanotechnology applied to medicine have developed many multifunctional therapeutics. In this context, the present review article comprehends the significant progress in the field of TMZ loaded nanocarriers showing promise for futuristic nanomedicine therapies in treating GBM.
Collapse
|
264
|
Chae Y, Roh J, Kim W. The Roles Played by Long Non-Coding RNAs in Glioma Resistance. Int J Mol Sci 2021; 22:ijms22136834. [PMID: 34202078 PMCID: PMC8268860 DOI: 10.3390/ijms22136834] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/18/2021] [Accepted: 06/22/2021] [Indexed: 12/15/2022] Open
Abstract
Glioma originates in the central nervous system and is classified based on both histological features and molecular genetic characteristics. Long non-coding RNAs (lncRNAs) are longer than 200 nucleotides and are known to regulate tumorigenesis and tumor progression, and even confer therapeutic resistance to glioma cells. Since oncogenic lncRNAs have been frequently upregulated to promote cell proliferation, migration, and invasion in glioma cells, while tumor-suppressive lncRNAs responsible for the inhibition of apoptosis and decrease in therapeutic sensitivity in glioma cells have been generally downregulated, the dysregulation of lncRNAs affects many features of glioma patients, and the expression profiles associated with these lncRNAs are needed to diagnose the disease stage and to determine suitable therapeutic strategies. Accumulating studies show that the orchestrations of oncogenic lncRNAs and tumor-suppressive lncRNAs in glioma cells result in signaling pathways that influence the pathogenesis and progression of glioma. Furthermore, several lncRNAs are related to the regulation of therapeutic sensitivity in existing anticancer therapies, including radiotherapy, chemotherapy and immunotherapy. Consequently, we undertook this review to improve the understanding of signaling pathways influenced by lncRNAs in glioma and how lncRNAs affect therapeutic resistance.
Collapse
Affiliation(s)
- Yeonsoo Chae
- Department of Science Education, Korea National University of Education, Cheongju-si 28173, Chungbuk, Korea; (Y.C.); (J.R.)
| | - Jungwook Roh
- Department of Science Education, Korea National University of Education, Cheongju-si 28173, Chungbuk, Korea; (Y.C.); (J.R.)
| | - Wanyeon Kim
- Department of Science Education, Korea National University of Education, Cheongju-si 28173, Chungbuk, Korea; (Y.C.); (J.R.)
- Department of Biology Education, Korea National University of Education, Cheongju-si 28173, Chungbuk, Korea
- Correspondence: ; Tel.: +82-43-230-3750
| |
Collapse
|
265
|
Sunil V, Mozhi A, Zhan W, Teoh JH, Wang CH. Convection enhanced delivery of light responsive antigen capturing oxygen generators for chemo-phototherapy triggered adaptive immunity. Biomaterials 2021; 275:120974. [PMID: 34166911 DOI: 10.1016/j.biomaterials.2021.120974] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/20/2021] [Accepted: 06/11/2021] [Indexed: 12/13/2022]
Abstract
In recent years, combination therapy has emerged as the cornerstone of clinical practice in treating glioblastoma multiforme. However, their ability to trigger and leverage the body's adaptive immunity has rarely been studied. Tumour heterogeneity, the presence of the blood-brain barrier, and an immunosuppressive tumor microenvironment play a crucial role in the 90% local tumor recurrence post-treatment. Herein, we report an improved combination therapy approach capable of stimulating an immune response that utilizes Light responsive antigen-capturing oxygen generators (LAGs). The engineered LAGs loaded with a non-genotoxic molecule, Nutlin-3a, and a photosensitizer, Protoporphyrin IX, can release the payload on-demand when exposed to light of a specific wavelength. The in-situ oxygen generation capability of LAGs enables tumor oxygenation enhancement, thereby alleviating the tumor hypoxia and enhancing the efficacy of chemo-photodynamic therapy. Furthermore, by modulating the surface properties of LAGs, we demonstrated that the tumor-derived protein antigens released can be captured and retained in-situ, which improves antigen uptake and presentation by the antigen-presenting cells. Dual drug-loaded LAGs (DD-LAGs) upregulated the expression of cell surface CD83 maturation and CD86 costimulatory markers on monocyte-derived-dendritic cells, suggesting intrinsic immune adjuvancy. In the presence of 3D printed hypoxic U87 spheroids (h-U87), DD-LAGs induced cancer cell death, upregulated IL-1β, and downregulated IL-10 resulting in CD3+, helper CD4+, and cytotoxic CD8+ proliferation. Finally, we have investigated convection-enhanced delivery as a potential route of administration for DD-LAGs. Our work presents a novel strategy to induce tumor cell death both during and post-treatment, thereby reducing the possibility of recurrence.
Collapse
Affiliation(s)
- Vishnu Sunil
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Anbu Mozhi
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Wenbo Zhan
- School of Engineering, King's College, University of Aberdeen, Aberdeen, AB24 3UE, UK
| | - Jia Heng Teoh
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Chi-Hwa Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore.
| |
Collapse
|
266
|
Herrera-Oropeza GE, Angulo-Rojo C, Gástelum-López SA, Varela-Echavarría A, Hernández-Rosales M, Aviña-Padilla K. Glioblastoma multiforme: a multi-omics analysis of driver genes and tumour heterogeneity. Interface Focus 2021; 11:20200072. [PMID: 34123356 PMCID: PMC8193468 DOI: 10.1098/rsfs.2020.0072] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2021] [Indexed: 12/20/2022] Open
Abstract
Glioblastoma (GBM) is the most aggressive and common brain cancer in adults with the lowest life expectancy. The current neuro-oncology practice has incorporated genes involved in key molecular events that drive GBM tumorigenesis as biomarkers to guide diagnosis and design treatment. This study summarizes findings describing the significant heterogeneity of GBM at the transcriptional and genomic levels, emphasizing 18 driver genes with clinical relevance. A pattern was identified fitting the stem cell model for GBM ontogenesis, with an upregulation profile for MGMT and downregulation for ATRX, H3F3A, TP53 and EGFR in the mesenchymal subtype. We also detected overexpression of EGFR, NES, VIM and TP53 in the classical subtype and of MKi67 and OLIG2 genes in the proneural subtype. Furthermore, we found a combination of the four biomarkers EGFR, NES, OLIG2 and VIM with a remarkable differential expression pattern which confers them a strong potential to determine the GBM molecular subtype. A unique distribution of somatic mutations was found for the young and adult population, particularly for genes related to DNA repair and chromatin remodelling, highlighting ATRX, MGMT and IDH1. Our results also revealed that highly lesioned genes undergo differential regulation with particular biological pathways for young patients. This multi-omic analysis will help delineate future strategies related to the use of these molecular markers for clinical decision-making in the medical routine.
Collapse
Affiliation(s)
- Gabriel Emilio Herrera-Oropeza
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico.,Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
| | - Carla Angulo-Rojo
- Centro de Investigación Aplicada a la Salud, Facultad de Medicina, Universidad Autónoma de Sinaloa, Culiacán, Sinaloa, Mexico
| | - Santos Alberto Gástelum-López
- Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional, Instituto Politécnico Nacional, Guasave, Sinaloa, Mexico
| | | | | | - Katia Aviña-Padilla
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico.,Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Guanajuato, Mexico
| |
Collapse
|
267
|
An E3 Ubiquitin Ligase RNF139 Serves as a Tumor-Suppressor in Glioma. J Mol Neurosci 2021; 71:1664-1673. [PMID: 34106407 PMCID: PMC8349318 DOI: 10.1007/s12031-021-01860-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/14/2021] [Indexed: 12/13/2022]
Abstract
Glioma is highly lethal because of its high malignancy. Ubiquitination, a type of ubiquitin-dependent protein modification, has been reported to play an oncogenic or tumor-suppressive role in glioma development, depending on the targets. Ring finger protein 139 (RNF139) is a membrane-bound E3 ubiquitin ligase serving as a tumor suppressor by ubiquitylation-dependently suppressing cell growth. Herein, we firstly confirmed the abnormal downregulation of RNF139 in glioma tissues and cell lines. In glioma cells, ectopic RNF139 overexpression could inhibit, whereas RNF139 knockdown could aggravate the aggressive behaviors of glioma cells, including hyperproliferation, migration, and invasion. Moreover, in two glioma cell lines, RNF139 overexpression inhibited, whereas RNF139 knockdown enhanced the phosphorylation of phosphatidylinositol 3-kinase (PI3K) and AKT serine/threonine kinase 1 (AKT). In a word, we demonstrate the aberration in RNF139 expression in glioma tissue samples and cell lines. RNF139 serves as a tumor-suppressor in glioma by inhibiting glioma cell proliferation, migration, and invasion and promoting glioma cell apoptosis through regulating PI3K/AKT signaling.
Collapse
|
268
|
Wu X, Jiang T, Huang R, Xiao X. LncRNA GAS8-AS1 downregulates lncRNA NEAT1 to inhibit glioblastoma cell proliferation. Brain Behav 2021; 11:e02128. [PMID: 33942556 PMCID: PMC8213648 DOI: 10.1002/brb3.2128] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 03/03/2021] [Accepted: 03/14/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND LncRNA GAS8-AS1 has been reported to participate in several types of cancer, while its role in glioblastoma (GBM) is unknown. In the present study, we aimed to investigate the function of GAS8-AS1 in GBM and the underlying mechanisms. METHODS The expression levels of GAS8-AS1 and NEAT1 in GBM patients and the healthy controls were measured by performing RT-qPCR. Diagnostic values of plasma GAS8-AS1 and NEAT1 for GBM were analyzed by performing ROC curve analysis with GBM patients as true positive cases and the healthy controls as true negative cases. Linear regression analysis was performed to study the correlation between the expression levels of GAS8-AS1 and NEAT1. The expression levels of GAS8-AS1 and NEAT1 in GBM cells were also determined by RT-qPCR. CCK-8 and transwell invasion assays were performed to detect the proliferation and invasion of GBM cells. Western blot assay was performed to detect the expression levels of β-catenin, Axin2, c-myc, cyclin D1, and GAPDH in GBM cells. RESULTS GAS8-AS1 was downregulated, while lncRNA NEAT1 was upregulated in the plasma of GBM patients. Altered expression levels of GAS8-AS1 and NEAT1 distinguished GBM patients from the healthy controls. The expression of GAS8-AS1 and NEAT1 was inversely correlated only in GBM patients. Overexpression of GAS8-AS1 reduced the expression levels of NEAT1 in GBM cells, while knock-down of GAS8-AS1 increased the expression levels of NEAT1. However, overexpression of NEAT1 showed no significant effects on the expression of GAS8-AS1. Knock-down of GAS8-AS1 promoted GBM cell proliferation and invasion and enhanced the activation of the Wnt/β-catenin pathway. However, the effects of knock-down of GAS8-AS1 were alleviated by the knock-down of NEAT1. CONCLUSION Overexpression of GAS8-AS1 inhibits GBM cell proliferation and invasion by downregulating NEAT1.
Collapse
Affiliation(s)
- Xiaoming Wu
- Department of Neurosurgery, People's Hospital of Deyang City, Deyang, China
| | - Tingting Jiang
- Department of Respiratory and Critical Medicine, People's Hospital of Deyang City, Deyang, China
| | - Rui Huang
- Department of Hepatobiliary Pancreatic Surgery, People's Hospital of Deyang City, Deyang, China
| | - Xue Xiao
- Department of Neurology, People's Hospital of Deyang City, Deyang, China
| |
Collapse
|
269
|
Long non-coding RNA H19: Physiological functions and involvements in central nervous system disorders. Neurochem Int 2021; 148:105072. [PMID: 34058282 DOI: 10.1016/j.neuint.2021.105072] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/08/2021] [Accepted: 05/16/2021] [Indexed: 12/26/2022]
Abstract
Central nervous system (CNS) disorders are some of the most complex and challenging diseases because of the intricate structure and functions of the CNS. Long non-coding RNA (LncRNA) H19, which had been mistaken for "transcription noise" previously, has now been found to be closely related to the development and homeostasis of the CNS. Several recent studies indicate that it plays an important role in the pathogenesis, treatment, and even prognosis of CNS disorders. LncRNA H19 is correlated with susceptibility to various CNS disorders such as intracranial aneurysms, ischemic stroke, glioma, and neuroblastoma. Moreover, it participates in the pathogenesis of CNS disorders by regulating transcription, translation, and signaling pathways, suggesting that it is a promising biomarker and therapeutic target for these disorders. This article reviews the functions and mechanisms of lncRNA H19 in various CNS disorders, including cerebral ischemia, cerebral hemorrhage, glioma, pituitary adenoma, neuroblastoma, Parkinson's disease, Alzheimer's disease, traumatic spinal cord injury, neuropathic pain, and temporal lobe epilepsy, to provide a theoretical basis for further research on the role of lncRNA H19 in CNS disorders.
Collapse
|
270
|
LncRNA RP11-390F4.3 inhibits invasion and migration of glioblastoma cells by downregulating ROCK1. Neuroreport 2021; 32:888-893. [PMID: 34050115 DOI: 10.1097/wnr.0000000000001676] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND This study aimed to investigate the role of lncRNA RP11-390F4.3 in glioblastoma. METHODS The expression levels of RP11-390F4.3, miR-148a and ROCK1 in glioblastoma and nontumor tissues were measured by performing quantitative PCR (qPCR) and data were compared using paired t test. Linear regression analysis was performed to analyze the correlations between RP11-390F4.3 and miR-148a/ROCK1 in glioblastoma tissues. The effects of overexpression of RP11-390F4.3, miR-148a and ROCK1 on U-373 MG cell invasion and migration were analyzed by Transwell assay. RESULTS RP11-390F4.3 and ROCK1 were both upregulated in glioblastoma, while miR-148a was downregulated in glioblastoma. In glioblastoma, RP11-390F4.3 was positively correlated with ROCK1 but negatively correlated with miR-148a. In glioblastoma cells, overexpression of RP11-390F4.3 led to upregulated ROCK1 and downregulated miR-148a. Cell invasion and migration analysis showed that overexpression of RP11-390F4.3 and ROCK1 resulted in increased, and overexpression of miR-148a resulted in deceased invasion and migration rates of glioblastoma cells. CONCLUSION Therefore, RP11-390F4.3 may upregulate ROCK1 by downregulating miR-148a to promote glioblastoma cell invasion and migration.
Collapse
|
271
|
Cao Y, Chai W, Wang Y, Tang D, Shao D, Song H, Long J. lncRNA TUG1 inhibits the cancer stem cell‑like properties of temozolomide‑resistant glioma cells by interacting with EZH2. Mol Med Rep 2021; 24:533. [PMID: 34036375 PMCID: PMC8170197 DOI: 10.3892/mmr.2021.12172] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 04/09/2021] [Indexed: 12/13/2022] Open
Abstract
Temozolomide (TMZ) is currently one of the first-line drugs used for the treatment of high-grade gliomas. However, TMZ resistance results in unsatisfactory therapeutic effects in gliomas. Cancer stem cells (CSCs) have recently been determined to serve a pivotal regulatory role in tumor metastasis, recurrence and chemoresistance. In addition, numerous reports have shown that long non-coding RNAs (lncRNAs) exert an essential role in the occurrence and development of tumors, and can be used as biomarkers for tumor diagnosis and treatment. Among them, studies have revealed that taurine upregulated gene 1 (TUG1) exhibits an important regulatory effect on the malignant biological behavior of glioma cells. Moreover, it has been reported that enhancer of Zeste homolog 2 polycomb repressive complex subunit 2 (EZH2) promotes tumorigenesis, including in glioma. However, the underlying mechanism of the interaction of TUG1 and EZH2 with CSCs of glioma remains elusive, and thus requires further clarification. The present study aimed to explore the role of TUG1 and EZH2 in TMZ resistance in glioma. Cell Counting Kit-8, colony formation,sphere formation and Annexin V-FITC/PI assays were used to detect the proliferation, clone formation efficiency, stemness and apoptosis of TMZ-resistant glioma cells. Xenograft tumor assay was used to detect the effect of TUG1 on the tumorigenesis of TMZ-resistant glioma cells. The present findings demonstrated that TUG1 exhibited a low expression in glioma cells, while EZH2 expression was the opposite. Moreover, it was observed that A172/TMZ cells possessed higher CSCs-like properties compared with parent cells, and that TUG1 and EZH2 were abnormally expressed in A172/TMZ cells. Knockdown of TUG1 or overexpression of EZH2 promoted A172/TMZ cell proliferation and CSCs-like properties, as well as inhibited their apoptosis, thereby enhancing the TMZ resistance of A172/TMZ cells. Furthermore, it was found that TUG1 alleviated the TMZ resistance of A172/TMZ cells by inhibiting EZH2 expression. Of note, overexpression of TUG1 inhibited the tumorigenicity of A172/TMZ cells by downregulating EZH2 expression in vivo. Collectively, the present study demonstrated that TUG1 served an essential regulatory role in TMZ resistance of gliomas.
Collapse
Affiliation(s)
- Yiqiang Cao
- Department of Neurosurgery, First People's Hospital of Kunming, Kunming, Yunnan 650032, P.R. China
| | - Wenying Chai
- Department of Breast Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Yonggang Wang
- Department of Neurosurgery, First People's Hospital of Kunming, Kunming, Yunnan 650032, P.R. China
| | - Dang Tang
- Department of Neurosurgery, First People's Hospital of Kunming, Kunming, Yunnan 650032, P.R. China
| | - Dongchuan Shao
- Department of Neurosurgery, First People's Hospital of Kunming, Kunming, Yunnan 650032, P.R. China
| | - Hai Song
- Department of Neurosurgery, First People's Hospital of Kunming, Kunming, Yunnan 650032, P.R. China
| | - Jiang Long
- Department of Neurosurgery, First People's Hospital of Kunming, Kunming, Yunnan 650032, P.R. China
| |
Collapse
|
272
|
Li J, Wang W, Wang J, Cao Y, Wang S, Zhao J. Viral Gene Therapy for Glioblastoma Multiforme: A Promising Hope for the Current Dilemma. Front Oncol 2021; 11:678226. [PMID: 34055646 PMCID: PMC8155537 DOI: 10.3389/fonc.2021.678226] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 04/29/2021] [Indexed: 12/23/2022] Open
Abstract
Glioblastoma multiforme (GBM), as one of the most common malignant brain tumors, was limited in its treatment effectiveness with current options. Its invasive and infiltrative features led to tumor recurrence and poor prognosis. Effective treatment and survival improvement have always been a challenge. With the exploration of genetic mutations and molecular pathways in neuro-oncology, gene therapy is becoming a promising therapeutic approach. Therapeutic genes are delivered into target cells with viral vectors to act specific antitumor effects, which can be used in gene delivery, play an oncolysis effect, and induce host immune response. The application of engineering technology makes the virus vector used in genetics a more prospective future. Recent advances in viral gene therapy offer hope for treating brain tumors. In this review, we discuss the types and designs of viruses as well as their study progress and potential applications in the treatment of GBM. Although still under research, viral gene therapy is promising to be a new therapeutic approach for GBM treatment in the future.
Collapse
Affiliation(s)
- Junsheng Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China.,Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, Beijing, China
| | - Wen Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China.,Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, Beijing, China
| | - Jia Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China.,Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, Beijing, China
| | - Yong Cao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China.,Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, Beijing, China
| | - Shuo Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China.,Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, Beijing, China
| | - Jizong Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China.,Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, Beijing, China.,Savaid Medical School, University of the Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
273
|
Investigation of the anti-tumor effects of bevacizumab on glioblastoma cells. JOURNAL OF BASIC AND CLINICAL HEALTH SCIENCES 2021. [DOI: 10.30621/jbachs.934220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
274
|
Rana R, Joon S, Chauhan K, Rathi V, Ganguly NK, Kumari C, Yadav DK. Role of Extracellular Vesicles in Glioma Progression: Deciphering Cellular Biological Processes to Clinical Applications. Curr Top Med Chem 2021; 21:696-704. [PMID: 33292136 DOI: 10.2174/1568026620666201207100139] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/07/2020] [Accepted: 08/09/2020] [Indexed: 11/22/2022]
Abstract
Glioma predominantly targets glial cells in the brain and spinal cord. There are grade I, II, III, and IV gliomas with anaplastic astrocytoma and glioblastoma multiforme as the most severe forms of the disease. Current diagnostic methods are limited in their data acquisition and interpretation, markedly affecting treatment modalities, and patient outcomes. Circulating extracellular vesicles (EVs) or "magic bullets" contain bioactive signature molecules such as DNA, RNA, proteins, lipids, and metabolites. These secretory "smart probes" participate in myriad cellular activities, including glioma progression. EVs are released by all cell populations and may serve as novel diagnostic biomarkers and efficient nano-vehicles in the targeted delivery of encapsulated therapeutics. The present review describes the potential of EV-based biomarkers for glioma management.
Collapse
Affiliation(s)
- Rashmi Rana
- Department of Research, Sir Ganga Ram Hospital, New Delhi-110060, India
| | - Shikha Joon
- Department of Research, Sir Ganga Ram Hospital, New Delhi-110060, India
| | - Kirti Chauhan
- Department of Research, Sir Ganga Ram Hospital, New Delhi-110060, India
| | - Vaishnavi Rathi
- Department of Research, Sir Ganga Ram Hospital, New Delhi-110060, India
| | | | - Chandni Kumari
- Gachon Institute of Pharmaceutical Science and Department of Pharmacy, College of Pharmacy, Gachon University, Incheon, Korea
| | - Dharmendra Kumar Yadav
- Gachon Institute of Pharmaceutical Science and Department of Pharmacy, College of Pharmacy, Gachon University, Incheon, Korea
| |
Collapse
|
275
|
Tran K, Brice R, Yao L. Bioscaffold-based study of glioblastoma cell behavior and drug delivery for tumor therapy. Neurochem Int 2021; 147:105049. [PMID: 33945833 DOI: 10.1016/j.neuint.2021.105049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/04/2021] [Accepted: 04/15/2021] [Indexed: 01/04/2023]
Abstract
Glioblastoma multiforme (GBM) is a severe form of brain cancer with an average five-year survival rate of 6.7%. Current treatment strategies include surgical resection of the tumor area and lining the lesion site with therapeutics, which offer only a moderate impact on increasing survival rates. Drug-testing models based on the monolayer cell culture method may partially explain the lack of advancement in effective GBM treatment, because this model is limited in its ability to show heterogeneous cell-cell and cell-environment interactions as tumor cells in the in vivo state. The development of bioscaffold-based culture models is an important improvement in GBM research, preclinical trials, and targeted drug testing, through better mimicking of the heterogeneity of tumor environmental conditions. A major hurdle towards better GBM outcomes is in delivering medication across the blood-brain barrier (BBB), which normally prevents the crossing of materials into the treatment site. The delivery of therapeutics using bioscaffolds is a potential means of overcoming the BBB and could potentially facilitate long-lasting drug release. A number of natural and synthetic materials have been studied for their biodegradability, toxicity, distribution, and pharmaceutical stability, which are needed to determine the overall effectiveness and safety of glioblastoma treatment. This review summarizes advancements in the research of bioscaffold-based GBM cell growth systems and the potential of using bioscaffolds as a carrier for drug delivery.
Collapse
Affiliation(s)
- Kimmy Tran
- Department of Biological Sciences, Wichita State University, 1845 Fairmount, Wichita, KS, 67260, USA
| | - Ryan Brice
- Department of Biological Sciences, Wichita State University, 1845 Fairmount, Wichita, KS, 67260, USA
| | - Li Yao
- Department of Biological Sciences, Wichita State University, 1845 Fairmount, Wichita, KS, 67260, USA.
| |
Collapse
|
276
|
Chemoprevention and therapeutic role of essential oils and phenolic compounds: Modeling tumor microenvironment in glioblastoma. Pharmacol Res 2021; 169:105638. [PMID: 33933637 DOI: 10.1016/j.phrs.2021.105638] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/28/2021] [Accepted: 04/20/2021] [Indexed: 12/18/2022]
Abstract
Glioblastoma (GBM) is the most common primary tumor of the central nervous system. Current treatments available for GBM entails surgical resection followed by temozolomide chemotherapy and/or radiotherapy, which are associated with multidrug resistance and severe side effects. While this treatment could yield good results, in almost all cases, patients suffer from relapse, which leads to reduced survival rates. Thus, therapeutic approaches with improved efficiency and reduced off-target risks are needed to overcome these problems. Regarding this, natural products appear as a safe and attractive strategy as chemotherapeutic agents or adjuvants in the treatment of GBM. Besides the increasing role of natural compounds for chemoprevention of GBM, it has been proposed to prevent carcinogenesis and metastasis of GBM. Numerous investigations showed that natural products are able to inhibit proliferation and angiogenesis, to induce apoptosis, and to target GBM stem cells, which are associated with tumor development and recurrence. This review gives a timely and comprehensive overview of the current literature regarding chemoprevention and therapy of GBM by natural products with a focus on essential oils and phenolic compounds and their molecular mechanisms.
Collapse
|
277
|
Yeh M, Wang YY, Yoo JY, Oh C, Otani Y, Kang JM, Park ES, Kim E, Chung S, Jeon YJ, Calin GA, Kaur B, Zhao Z, Lee TJ. MicroRNA-138 suppresses glioblastoma proliferation through downregulation of CD44. Sci Rep 2021; 11:9219. [PMID: 33911148 PMCID: PMC8080729 DOI: 10.1038/s41598-021-88615-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 04/07/2021] [Indexed: 02/06/2023] Open
Abstract
Tumor suppressive microRNAs (miRNAs) are increasingly implicated in the development of anti-tumor therapy by reprogramming gene network that are aberrantly regulated in cancer cells. This study aimed to determine the therapeutic potential of putative tumor suppressive miRNA, miR-138, against glioblastoma (GBM). Whole transcriptome and miRNA expression profiling analyses on human GBM patient tissues identified miR-138 as one of the significantly downregulated miRNAs with an inverse correlation with CD44 expression. Transient overexpression of miR-138 in GBM cells inhibited cell proliferation, cell cycle, migration, and wound healing capability. We unveiled that miR-138 negatively regulates the expression of CD44 by directly binding to the 3' UTR of CD44. CD44 inhibition by miR-138 resulted in an inhibition of glioblastoma cell proliferation in vitro through cell cycle arrest as evidenced by a significant induction of p27 and its translocation into nucleus. Ectopic expression of miR-138 also increased survival rates in mice that had an intracranial xenograft tumor derived from human patient-derived primary GBM cells. In conclusion, we demonstrated a therapeutic potential of tumor suppressive miR-138 through direct downregulation of CD44 for the treatment of primary GBM.
Collapse
Affiliation(s)
- Margaret Yeh
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin St., MSE R117B, Houston, TX, 77030, USA
| | - Yin-Ying Wang
- Center for Precision Health, School of Biomedical Informatics, University of Texas Health Science Center at Houston, 7000 Fannin St. Suite 600, Houston, TX, 77030, USA
| | - Ji Young Yoo
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin St., MSE R117B, Houston, TX, 77030, USA
| | - Christina Oh
- Department of Biosciences, Rice University, Houston, TX, USA
| | - Yoshihiro Otani
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin St., MSE R117B, Houston, TX, 77030, USA
| | - Jin Muk Kang
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin St., MSE R117B, Houston, TX, 77030, USA
| | - Eun S Park
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin St., MSE R117B, Houston, TX, 77030, USA
| | - Eunhee Kim
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin St., MSE R117B, Houston, TX, 77030, USA
| | - Sangwoon Chung
- Pulmonary, Allergy, Critical Care and Sleep Medicine, The Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, OH, USA
| | - Young-Jun Jeon
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, South Korea
| | - George A Calin
- Department of Translational Molecular Pathology, Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Balveen Kaur
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin St., MSE R117B, Houston, TX, 77030, USA
| | - Zhongming Zhao
- Center for Precision Health, School of Biomedical Informatics, University of Texas Health Science Center at Houston, 7000 Fannin St. Suite 600, Houston, TX, 77030, USA.
| | - Tae Jin Lee
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin St., MSE R117B, Houston, TX, 77030, USA.
| |
Collapse
|
278
|
Le Joncour V, Guichet PO, Dembélé KP, Mutel A, Campisi D, Perzo N, Desrues L, Modzelewski R, Couraud PO, Honnorat J, Ferracci FX, Marguet F, Laquerrière A, Vera P, Bohn P, Langlois O, Morin F, Gandolfo P, Castel H. Targeting the Urotensin II/UT G Protein-Coupled Receptor to Counteract Angiogenesis and Mesenchymal Hypoxia/Necrosis in Glioblastoma. Front Cell Dev Biol 2021; 9:652544. [PMID: 33937253 PMCID: PMC8079989 DOI: 10.3389/fcell.2021.652544] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/11/2021] [Indexed: 12/15/2022] Open
Abstract
Glioblastomas (GBMs) are the most common primary brain tumors characterized by strong invasiveness and angiogenesis. GBM cells and microenvironment secrete angiogenic factors and also express chemoattractant G protein-coupled receptors (GPCRs) to their advantage. We investigated the role of the vasoactive peptide urotensin II (UII) and its receptor UT on GBM angiogenesis and tested potential ligand/therapeutic options based on this system. On glioma patient samples, the expression of UII and UT increased with the grade with marked expression in the vascular and peri-necrotic mesenchymal hypoxic areas being correlated with vascular density. In vitro human UII stimulated human endothelial HUV-EC-C and hCMEC/D3 cell motility and tubulogenesis. In mouse-transplanted Matrigel sponges, mouse (mUII) and human UII markedly stimulated invasion by macrophages, endothelial, and smooth muscle cells. In U87 GBM xenografts expressing UII and UT in the glial and vascular compartments, UII accelerated tumor development, favored hypoxia and necrosis associated with increased proliferation (Ki67), and induced metalloproteinase (MMP)-2 and -9 expression in Nude mice. UII also promoted a “tortuous” vascular collagen-IV expressing network and integrin expression mainly in the vascular compartment. GBM angiogenesis and integrin αvβ3 were confirmed by in vivo99mTc-RGD tracer imaging and tumoral capture in the non-necrotic area of U87 xenografts in Nude mice. Peptide analogs of UII and UT antagonist were also tested as potential tumor repressor. Urotensin II-related peptide URP inhibited angiogenesis in vitro and failed to attract vascular and inflammatory components in Matrigel in vivo. Interestingly, the UT antagonist/biased ligand urantide and the non-peptide UT antagonist palosuran prevented UII-induced tubulogenesis in vitro and significantly delayed tumor growth in vivo. Urantide drastically prevented endogenous and UII-induced GBM angiogenesis, MMP, and integrin activations, associated with GBM tumoral growth. These findings show that UII induces GBM aggressiveness with necrosis and angiogenesis through integrin activation, a mesenchymal behavior that can be targeted by UT biased ligands/antagonists.
Collapse
Affiliation(s)
- Vadim Le Joncour
- UNIROUEN, INSERM U1239, DC2N, Institute for Research and Innovation in Biomedicine (IRIB), Normandie Rouen Université, Rouen, France
| | - Pierre-Olivier Guichet
- UNIROUEN, INSERM U1239, DC2N, Institute for Research and Innovation in Biomedicine (IRIB), Normandie Rouen Université, Rouen, France
| | - Kleouforo-Paul Dembélé
- UNIROUEN, INSERM U1239, DC2N, Institute for Research and Innovation in Biomedicine (IRIB), Normandie Rouen Université, Rouen, France
| | - Alexandre Mutel
- UNIROUEN, INSERM U1239, DC2N, Institute for Research and Innovation in Biomedicine (IRIB), Normandie Rouen Université, Rouen, France
| | - Daniele Campisi
- UNIROUEN, INSERM U1239, DC2N, Institute for Research and Innovation in Biomedicine (IRIB), Normandie Rouen Université, Rouen, France
| | - Nicolas Perzo
- UNIROUEN, INSERM U1239, DC2N, Institute for Research and Innovation in Biomedicine (IRIB), Normandie Rouen Université, Rouen, France
| | - Laurence Desrues
- UNIROUEN, INSERM U1239, DC2N, Institute for Research and Innovation in Biomedicine (IRIB), Normandie Rouen Université, Rouen, France
| | - Romain Modzelewski
- EA 4108, Laboratoire d'Informatique, de Traitement de l'Information et des Systèmes (LITIS), University of Rouen, Mont-Saint-Aignan, France
| | | | - Jérôme Honnorat
- Neuro-Oncology Department, Hospices Civils de Lyon, Hôpital Neurologique, Bron, France.,Institute NeuroMyoGéne, INSERM U1217/CNRS UMR 5310, Lyon, France.,University Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | - François-Xavier Ferracci
- UNIROUEN, INSERM U1239, DC2N, Institute for Research and Innovation in Biomedicine (IRIB), Normandie Rouen Université, Rouen, France.,Neurosurgery Service, Rouen CHU Hospital, Rouen, France
| | - Florent Marguet
- Anathomocytopathology Service, Rouen CHU Hospital, Rouen, France
| | | | - Pierre Vera
- EA 4108, Laboratoire d'Informatique, de Traitement de l'Information et des Systèmes (LITIS), University of Rouen, Mont-Saint-Aignan, France
| | - Pierre Bohn
- EA 4108, Laboratoire d'Informatique, de Traitement de l'Information et des Systèmes (LITIS), University of Rouen, Mont-Saint-Aignan, France
| | - Olivier Langlois
- UNIROUEN, INSERM U1239, DC2N, Institute for Research and Innovation in Biomedicine (IRIB), Normandie Rouen Université, Rouen, France.,Neurosurgery Service, Rouen CHU Hospital, Rouen, France
| | - Fabrice Morin
- UNIROUEN, INSERM U1239, DC2N, Institute for Research and Innovation in Biomedicine (IRIB), Normandie Rouen Université, Rouen, France
| | - Pierrick Gandolfo
- UNIROUEN, INSERM U1239, DC2N, Institute for Research and Innovation in Biomedicine (IRIB), Normandie Rouen Université, Rouen, France
| | - Hélène Castel
- UNIROUEN, INSERM U1239, DC2N, Institute for Research and Innovation in Biomedicine (IRIB), Normandie Rouen Université, Rouen, France
| |
Collapse
|
279
|
Chinigò G, Castel H, Chever O, Gkika D. TRP Channels in Brain Tumors. Front Cell Dev Biol 2021; 9:617801. [PMID: 33928077 PMCID: PMC8076903 DOI: 10.3389/fcell.2021.617801] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 03/17/2021] [Indexed: 12/21/2022] Open
Abstract
Malignant glioma including glioblastoma (GBM) is the most common group of primary brain tumors. Despite standard optimized treatment consisting of extensive resection followed by radiotherapy/concomitant and adjuvant therapy, GBM remains one of the most aggressive human cancers. GBM is a typical example of intra-heterogeneity modeled by different micro-environmental situations, one of the main causes of resistance to conventional treatments. The resistance to treatment is associated with angiogenesis, hypoxic and necrotic tumor areas while heterogeneity would accumulate during glioma cell invasion, supporting recurrence. These complex mechanisms require a focus on potential new molecular actors to consider new treatment options for gliomas. Among emerging and underexplored targets, transient receptor potential (TRP) channels belonging to a superfamily of non-selective cation channels which play critical roles in the responses to a number of external stimuli from the external environment were found to be related to cancer development, including glioma. Here, we discuss the potential as biological markers of diagnosis and prognosis of TRPC6, TRPM8, TRPV4, or TRPV1/V2 being associated with glioma patient overall survival. TRPs-inducing common or distinct mechanisms associated with their Ca2+-channel permeability and/or kinase function were detailed as involving miRNA or secondary effector signaling cascades in turn controlling proliferation, cell cycle, apoptotic pathways, DNA repair, resistance to treatment as well as migration/invasion. These recent observations of the key role played by TRPs such as TRPC6 in GBM growth and invasiveness, TRPV2 in proliferation and glioma-stem cell differentiation and TRPM2 as channel carriers of cytotoxic chemotherapy within glioma cells, should offer new directions for innovation in treatment strategies of high-grade glioma as GBM to overcome high resistance and recurrence.
Collapse
Affiliation(s)
- Giorgia Chinigò
- Laboratory of Cell Physiology, Department of Life Sciences, Univ. Lille, Inserm, U1003 - PHYCEL, University of Lille, Lille, France.,Laboratory of Cellular and Molecular Angiogenesis, Department of Life Sciences and Systems Biology, University of Torino, Turin, Italy
| | - Hélène Castel
- UNIROUEN, Inserm U1239, DC2N, Normandie Université, Rouen, France.,Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Oana Chever
- UNIROUEN, Inserm U1239, DC2N, Normandie Université, Rouen, France.,Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Dimitra Gkika
- CNRS, Inserm, CHU Lille, Centre Oscar Lambret, UMR 9020-UMR 1277-Canther-Cancer Heterogeneity, Plasticity and Resistance to Therapies, University of Lille, Lille, France.,Institut Universitaire de France, Paris, France
| |
Collapse
|
280
|
Lanza M, Casili G, Campolo M, Paterniti I, Colarossi C, Mare M, Giuffrida R, Caffo M, Esposito E, Cuzzocrea S. Immunomodulatory Effect of Microglia-Released Cytokines in Gliomas. Brain Sci 2021; 11:brainsci11040466. [PMID: 33917013 PMCID: PMC8067679 DOI: 10.3390/brainsci11040466] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/16/2021] [Accepted: 04/02/2021] [Indexed: 12/11/2022] Open
Abstract
Microglia, a type of differentiated tissue macrophage, are considered to be the most plastic cell population of the central nervous system (CNS). Microglia substantially contribute to the growth and invasion of tumor mass in brain tumors including glioblastoma (GB). In response to pathological conditions, resting microglia undergo a stereotypic activation process and become capable of phagocytosis, antigen presentation, and lymphocyte activation. Considering their immune effector function, it is not surprising to see microglia accumulation in almost every CNS disease process, including malignant brain tumors. Large numbers of glioma associated microglia and macrophages (GAMs) can accumulate within the tumor where they appear to have an important role in prognosis. GAMs constitute the largest portion of tumor infiltrating cells, contributing up to 30% of the entire glioma mass and upon interaction with neoplastic cells. GAMs acquire a unique phenotype of activation, including both M1 and M2 specific markers. It has been demonstrated that microglia possess a dual role: on one hand, microglia may represent a CNS anti-tumor response, which is inactivated by local secretion of immunosuppressive factors by glioma cells. On the other hand, taking into account that microglia are capable of secreting a variety of immunomodulatory cytokines, it is possible that they are attracted by gliomas to promote tumor growth. A better understanding of microglia-glioma interaction will be helpful in designing novel immune-based therapies against these fatal tumors. Concluding, as microglia significantly may contribute to glioma biology, favoring tumor growth and invasiveness, these cells represent a valuable alternative/additional target for the development of more effective treatments for gliomas.
Collapse
Affiliation(s)
- Marika Lanza
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 98166 Messina, Italy; (M.L.); (G.C.); (M.C.); (I.P.); (S.C.)
| | - Giovanna Casili
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 98166 Messina, Italy; (M.L.); (G.C.); (M.C.); (I.P.); (S.C.)
| | - Michela Campolo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 98166 Messina, Italy; (M.L.); (G.C.); (M.C.); (I.P.); (S.C.)
| | - Irene Paterniti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 98166 Messina, Italy; (M.L.); (G.C.); (M.C.); (I.P.); (S.C.)
| | - Cristina Colarossi
- Mediterranean Institute of Oncology, Via Penninazzo 7, 95029 Viagrande, Italy; (C.C.); (M.M.)
| | - Marzia Mare
- Mediterranean Institute of Oncology, Via Penninazzo 7, 95029 Viagrande, Italy; (C.C.); (M.M.)
| | | | - Maria Caffo
- Department of Biomedical and Dental Sciences and Morpho-Functional Imaging, Unit of Neurosurgery, University of Messina, 98122 Messina, Italy;
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 98166 Messina, Italy; (M.L.); (G.C.); (M.C.); (I.P.); (S.C.)
- Correspondence:
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 98166 Messina, Italy; (M.L.); (G.C.); (M.C.); (I.P.); (S.C.)
| |
Collapse
|
281
|
Targeting FGL2, a molecular drug target for glioblastoma, with natural compounds through virtual screening method. Future Med Chem 2021; 13:805-816. [PMID: 33821685 DOI: 10.4155/fmc-2020-0331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background: Fibroleukin-2 protein (FGL2) causes redevelopment of brain tumors. Inhibition of these proteins has shown to improve glioblastoma prognosis and treatment efficacy. Aim: The current study gathered recently exploited natural compounds that suppress glioblastoma proliferation in vitro, tested against FGL2 protein. Method: Twenty-five compounds were explored through a virtual screening platform. Results: Three natural compounds (betanine, hesperetin and ovatodiolide) hit the active site of FGL2. Furthermore, the influence of these compounds was also assessed using in silico gene expression, and ADMET tools showed downregulation of some genes, which caused rapid tumor development while possessing a moderate acute toxicity and pharmacokinetic profile. Conclusion: Our study presents three compounds that are good candidates for evaluation in FGL2 mutated glioblastoma animal models.
Collapse
|
282
|
Janjua TI, Rewatkar P, Ahmed-Cox A, Saeed I, Mansfeld FM, Kulshreshtha R, Kumeria T, Ziegler DS, Kavallaris M, Mazzieri R, Popat A. Frontiers in the treatment of glioblastoma: Past, present and emerging. Adv Drug Deliv Rev 2021; 171:108-138. [PMID: 33486006 DOI: 10.1016/j.addr.2021.01.012] [Citation(s) in RCA: 142] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/13/2020] [Accepted: 01/09/2021] [Indexed: 12/13/2022]
Abstract
Glioblastoma (GBM) is one of the most aggressive cancers of the brain. Despite extensive research over the last several decades, the survival rates for GBM have not improved and prognosis remains poor. To date, only a few therapies are approved for the treatment of GBM with the main reasons being: 1) significant tumour heterogeneity which promotes the selection of resistant subpopulations 2) GBM induced immunosuppression and 3) fortified location of the tumour in the brain which hinders the delivery of therapeutics. Existing therapies for GBM such as radiotherapy, surgery and chemotherapy have been unable to reach the clinical efficacy necessary to prolong patient survival more than a few months. This comprehensive review evaluates the current and emerging therapies including those in clinical trials that may potentially improve both targeted delivery of therapeutics directly to the tumour site and the development of agents that may specifically target GBM. Particular focus has also been given to emerging delivery technologies such as focused ultrasound, cellular delivery systems nanomedicines and immunotherapy. Finally, we discuss the importance of developing novel materials for improved delivery efficacy of nanoparticles and therapeutics to reduce the suffering of GBM patients.
Collapse
|
283
|
The Triad Hsp60-miRNAs-Extracellular Vesicles in Brain Tumors: Assessing Its Components for Understanding Tumorigenesis and Monitoring Patients. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11062867] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Brain tumors have a poor prognosis and progress must be made for developing efficacious treatments, but for this to occur their biology and interaction with the host must be elucidated beyond current knowledge. What has been learned from other tumors may be applied to study brain tumors, for example, the role of Hsp60, miRNAs, and extracellular vesicles (EVs) in the mechanisms of cell proliferation and dissemination, and resistance to immune attack and anticancer drugs. It has been established that Hsp60 increases in cancer cells, in which it occurs not only in the mitochondria but also in the cytosol and plasma-cell membrane and it is released in EVs into the extracellular space and in circulation. There is evidence suggesting that these EVs interact with cells near and far from their original cell and that this interaction has an impact on the functions of the target cell. It is assumed that this crosstalk between cancer and host cells favors carcinogenesis in various ways. We, therefore, propose to study the triad Hsp60-related miRNAs-EVs in brain tumors and have standardized methods for the purpose. These revealed that EVs with Hsp60 and related miRNAs increase in patients’ blood in a manner that reflects disease status. The means are now available to monitor brain tumor patients by measuring the triad and to dissect its effects on target cells in vitro, and in experimental models in vivo.
Collapse
|
284
|
Xu X, Wang L, Zang Q, Li S, Li L, Wang Z, He J, Qiang B, Han W, Zhang R, Peng X, Abliz Z. Rewiring of purine metabolism in response to acidosis stress in glioma stem cells. Cell Death Dis 2021; 12:277. [PMID: 33723244 PMCID: PMC7961141 DOI: 10.1038/s41419-021-03543-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 02/13/2021] [Accepted: 02/19/2021] [Indexed: 01/04/2023]
Abstract
Glioma stem cells (GSCs) contribute to therapy resistance and poor outcomes for glioma patients. A significant feature of GSCs is their ability to grow in an acidic microenvironment. However, the mechanism underlying the rewiring of their metabolism in low pH remains elusive. Here, using metabolomics and metabolic flux approaches, we cultured GSCs at pH 6.8 and pH 7.4 and found that cells cultured in low pH exhibited increased de novo purine nucleotide biosynthesis activity. The overexpression of glucose-6-phosphate dehydrogenase, encoded by G6PD or H6PD, supports the metabolic dependency of GSCs on nucleotides when cultured under acidic conditions, by enhancing the pentose phosphate pathway (PPP). The high level of reduced glutathione (GSH) under acidic conditions also causes demand for the PPP to provide NADPH. Taken together, upregulation of G6PD/H6PD in the PPP plays an important role in acidic-driven purine metabolic reprogramming and confers a predilection toward glioma progression. Our findings indicate that targeting G6PD/H6PD, which are closely related to glioma patient survival, may serve as a promising therapeutic target for improved glioblastoma therapeutics. An integrated metabolomics and metabolic flux analysis, as well as considering microenvironment and cancer stem cells, provide a precise insight into understanding cancer metabolic reprogramming.
Collapse
Affiliation(s)
- Xiaoyu Xu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Liping Wang
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Biomedical Primate Research Center, Neuroscience Center Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Qingce Zang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shanshan Li
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Biomedical Primate Research Center, Neuroscience Center Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Limei Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhixing Wang
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Biomedical Primate Research Center, Neuroscience Center Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Jiuming He
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Boqin Qiang
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Biomedical Primate Research Center, Neuroscience Center Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Wei Han
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Biomedical Primate Research Center, Neuroscience Center Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Ruiping Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaozhong Peng
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Biomedical Primate Research Center, Neuroscience Center Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China. .,Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China.
| | - Zeper Abliz
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China. .,Centre for Bioimaging and Systems Biology, Minzu University of China, Beijing, China.
| |
Collapse
|
285
|
Zhang D, Ma S, Zhang C, Li P, Mao B, Guan X, Zhou W, Peng J, Wang X, Li S, Jia W. MicroRNA-935 Directly Targets FZD6 to Inhibit the Proliferation of Human Glioblastoma and Correlate to Glioma Malignancy and Prognosis. Front Oncol 2021; 11:566492. [PMID: 33791198 PMCID: PMC8006443 DOI: 10.3389/fonc.2021.566492] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 02/08/2021] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs) are involved in human glioblastoma (GB). MiR-935 has been reported to have both tumor-inhibiting and tumorigenesis effects, but its role in GB remains unclear. Because of the high mortality and morbidity associated with the malignancy of GB, a deeper understanding of the molecular crosstalk that occurs in GB is needed to identify new potential targets for treatment. At present, the mechanism of GB at the molecular level is not fully understood. With the aid of bioinformatic analysis, miR-935 was significantly downregulated in GB, and it presented a poorer outcome. In the glioma cell line and in the nude mice model, the miR-935 inhibited cell proliferation by modulating cell circles in vitro and in vivo. Then, the target genes of miR-935 were analyzed by using the online database, and the direct binding was tested with a luciferase analysis. FZD6 was found to be the direct target of miR-935. The effect of miR-935 was recovered by the overexpression of FZD6 in vitro. In addition, the negative correlation of miR-935 and the expression of FZD6 were confirmed in our clinical samples, and the expression of FZD6 has a strong correlation with tumor malignancy and prognosis. This study showed that miR-935 directly inhibited the expression of FZD6 and inhibited the cell proliferation, thereby suppressing the development of GB, suggesting that miR-935 is a cancer suppressor miRNA and may become a prognostic biomarker or a promising potential therapeutic target for human GBs.
Collapse
Affiliation(s)
- Dainan Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Shunchang Ma
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Chuanbao Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Chinese Glioma Genome Atlas Network (CGGA), Beijing, China
| | - Peiliang Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Neurosurgery, Ditan Hospital, Capital Medical University, Beijing, China
| | - Beibei Mao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Neurosurgery, Shijitan Hospital, Capital Medical University, Beijing, China
| | - Xiudong Guan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Wenjianlong Zhou
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jiayi Peng
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xi Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Shaomin Li
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Wang Jia
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| |
Collapse
|
286
|
Involvement of the Catecholamine Pathway in Glioblastoma Development. Cells 2021; 10:cells10030549. [PMID: 33806345 PMCID: PMC7998903 DOI: 10.3390/cells10030549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 12/18/2022] Open
Abstract
Glioblastoma (GBM) is the most aggressive tumor of the central nervous system (CNS). The standard of care improves the overall survival of patients only by a few months. Explorations of new therapeutic targets related to molecular properties of the tumor are under way. Even though neurotransmitters and their receptors normally function as mediators of interneuronal communication, growing data suggest that these molecules are also involved in modulating the development and growth of GBM by acting on neuronal and glioblastoma stem cells. In our previous DNA CpG methylation studies, gene ontology analyses revealed the involvement of the monoamine pathway in sequential GBM. In this follow-up study, we quantitated the expression levels of four selected catecholamine pathway markers (alpha 1D adrenergic receptor-ADRA1D; adrenergic beta receptor kinase 1 or G protein-coupled receptor kinase 2-ADRBK1/GRK2; dopamine receptor D2-DRD2; and synaptic vesicle monoamine transporter-SLC18A2) by immunohistochemistry, and compared the histological scores with the methylation levels within the promoters + genes of these markers in 21 pairs of sequential GBM and in controls. Subsequently, we also determined the promoter and gene methylation levels of the same markers in an independent database cohort of sequential GBM pairs. These analyses revealed partial inverse correlations between the catecholamine protein expression and promoter + gene methylation levels, when the tumor and control samples were compared. However, we found no differences in the promoter + gene methylation levels of these markers in either our own or in the database primary-recurrent GBM pairs, despite the higher protein expression of all markers in the primary samples. This observation suggests that regulation of catecholamine expression is only partially related to CpG methylation within the promoter + gene regions, and additional mechanisms may also influence the expression of these markers in progressive GBM. These analyses underscore the involvement of certain catecholamine pathway markers in GBM development and suggest that these molecules mediating or modulating tumor growth merit further exploration.
Collapse
|
287
|
Abdalla Y, Luo M, Mäkilä E, Day BW, Voelcker NH, Tong WY. Effectiveness of porous silicon nanoparticle treatment at inhibiting the migration of a heterogeneous glioma cell population. J Nanobiotechnology 2021; 19:60. [PMID: 33637089 PMCID: PMC7908697 DOI: 10.1186/s12951-021-00798-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 02/08/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Approximately 80% of brain tumours are gliomas. Despite treatment, patient mortality remains high due to local metastasis and relapse. It has been shown that transferrin-functionalised porous silicon nanoparticles (Tf@pSiNPs) can inhibit the migration of U87 glioma cells. However, the underlying mechanisms and the effect of glioma cell heterogeneity, which is a hallmark of the disease, on the efficacy of Tf@pSiNPs remains to be addressed. RESULTS Here, we observed that Tf@pSiNPs inhibited heterogeneous patient-derived glioma cells' (WK1) migration across small perforations (3 μm) by approximately 30%. A phenotypical characterisation of the migrated subpopulations revealed that the majority of them were nestin and fibroblast growth factor receptor 1 positive, an indication of their cancer stem cell origin. The treatment did not inhibit cell migration across large perforations (8 μm), nor cytoskeleton formation. This is in agreement with our previous observations that cellular-volume regulation is a mediator of Tf@pSiNPs' cell migration inhibition. Since aquaporin 9 (AQP9) is closely linked to cellular-volume regulation, and is highly expressed in glioma, the effect of AQP9 expression on WK1 migration was investigated. We showed that WK1 migration is correlated to the differential expression patterns of AQP9. However, AQP9-silencing did not affect WK1 cell migration across perforations, nor the efficacy of cell migration inhibition mediated by Tf@pSiNPs, suggesting that AQP9 is not a mediator of the inhibition. CONCLUSION This in vitro investigation highlights the unique therapeutic potentials of Tf@pSiNPs against glioma cell migration and indicates further optimisations that are required to maximise its therapeutic efficacies.
Collapse
Affiliation(s)
- Youssef Abdalla
- School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK.,Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutics Science, Monash University, Parkville Campus, 381 Royal Parade, Parkville, VIC, 3052, Australia
| | - Meihua Luo
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutics Science, Monash University, Parkville Campus, 381 Royal Parade, Parkville, VIC, 3052, Australia.,Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Ermei Mäkilä
- Industrial Physics Laboratory, Department of Physics and Astronomy, University of Turku, Turku, Finland
| | - Bryan W Day
- Sid Faithfull Brain Cancer Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Nicolas H Voelcker
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutics Science, Monash University, Parkville Campus, 381 Royal Parade, Parkville, VIC, 3052, Australia. .,Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong. .,Commonwealth Scientific and Industrial Research Organization (CSIRO), Clayton, VIC, Australia. .,Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, VIC, Australia. .,Department of Materials Science and Engineering, Monash University, Clayton, VIC, Australia. .,Leibniz Institut für Neue Materialien (INM), Campus D2 2, 66123, Saarbrücken, Germany.
| | - Wing Yin Tong
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutics Science, Monash University, Parkville Campus, 381 Royal Parade, Parkville, VIC, 3052, Australia. .,Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, VIC, Australia.
| |
Collapse
|
288
|
Song H, Wang Y, Shi C, Lu J, Yuan T, Wang X. SH3KBP1 Promotes Glioblastoma Tumorigenesis by Activating EGFR Signaling. Front Oncol 2021; 10:583984. [PMID: 33643898 PMCID: PMC7905166 DOI: 10.3389/fonc.2020.583984] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 12/07/2020] [Indexed: 12/24/2022] Open
Abstract
Glioblastoma (GBM) is the most common and aggressive brain tumor in adults. Overexpression or activation of epidermal growth factor receptor (EGFR) occurs commonly in multiple human cancers and promotes tumorigenesis. However, the underlying molecular mechanism of EGFR aberrant activation and the downstream signaling pathways remains largely unknown. In this study, we report that both SH3-domain kinase binding protein 1 (SH3KBP1) mRNA and protein levels are highly expressed in GBM and its high expression is associated with worse survival of glioma patients. In addition, we provide evidence that SH3KBP1 is prominently expressed in GBM stem cells (GSCs) and have potential to serve as a novel GSCs marker. Moreover, silencing SH3KBP1 dramatically impairs GBM cell proliferation, migration and GSCs self-renewal ability in vitro and xenograft tumors growth in vivo. Most importantly, we found that SH3KBP1 directly interacts with EGFR and may act as an adaptor protein to transduce EGFR signaling. Together, our work uncovers SH3KBP1 as a novel regulator of oncogenic EGFR signaling and also as a potential therapeutic target for GBM patients with EGFR activation.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiangpeng Wang
- Department of Neurosurgery, First Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
289
|
Long Y, Li H, Jin Z, Zhang X. LncRNA SLC16A1-AS1 is Upregulated in Glioblastoma and Promotes Cancer Cell Proliferation by Regulating miR-149 Methylation. Cancer Manag Res 2021; 13:1215-1223. [PMID: 33603467 PMCID: PMC7882451 DOI: 10.2147/cmar.s264613] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 09/18/2020] [Indexed: 12/13/2022] Open
Abstract
Introduction LncRNA SLC16A1-AS1 has been characterized as a critical player in lung cancer, while its role in glioblastoma (GBM) is unknown. By analyzing the TCGA dataset, we observed the upregulation of SLC16A1-AS1 expression in GBM. Therefore, we aimed to investigate the role of SLC16A1-AS1 in this cancer. Methods GBM tissues and paired non-tumor tissues were collected from 62 GBM patients through biopsy. RT-qPCR was performed to determine the expression of SLC16A1-AS1 and miR-149. Linear regression was used to analyze their correlations. The relationship between SLC16A1-AS1 and miR-149 was assessed by gain and loss of function experiments. Methylation-specific PCR (MSP) and bisulfite sequencing PCR (BSP) were performed to analyze the methylation status of miR-149. Cell proliferation was evaluated by CCK-8 assay and colony formation experiments in GBM cells. Results We found that SLC16A1-AS1 expression was upregulated in GBM tissues, and the upregulated expression of SLC16A1-AS1 predicted poor survival of GBM patients. MiR-149 was downregulated in GBM tissues and inversely correlated with the expression of SLC16A1-AS1. In GBM cells, overexpression of SLC16A1-AS1 downregulated the expression of miR-149 and increased the methylation of miR-149 gene. In cell proliferation and colony formation assay, overexpression of SLC16A1-AS1 reduced the inhibitory effects of miR-149 on GBM cell proliferation. Conclusion SLC16A1-AS1 may promote GBM cell proliferation by regulating miR-149 methylation. SLC16A1-AS1 can be considered as a potential diagnostic marker in GBM.
Collapse
Affiliation(s)
- Yinbo Long
- Department of Neurosurgery, Cangzhou Central Hospital, Cangzhou City, Hebei Province, 061000, People's Republic of China
| | - Heyang Li
- Department of Neurosurgery, Cangzhou Central Hospital, Cangzhou City, Hebei Province, 061000, People's Republic of China
| | - Zhibin Jin
- Department of Neurosurgery, Cangzhou Central Hospital, Cangzhou City, Hebei Province, 061000, People's Republic of China
| | - Xiang Zhang
- Department of Neurosurgery, Cangzhou Central Hospital, Cangzhou City, Hebei Province, 061000, People's Republic of China
| |
Collapse
|
290
|
Hua D, Tang L, Wang W, Tang S, Yu L, Zhou X, Wang Q, Sun C, Shi C, Luo W, Jiang Z, Li H, Yu S. Improved Antiglioblastoma Activity and BBB Permeability by Conjugation of Paclitaxel to a Cell-Penetrative MMP-2-Cleavable Peptide. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2001960. [PMID: 33552853 PMCID: PMC7856885 DOI: 10.1002/advs.202001960] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/12/2020] [Indexed: 05/25/2023]
Abstract
In order to solve the problems of receptor promiscuity and poor blood-brain barrier (BBB) penetration in the treatment of glioblastomas (GBM), a novel dual-functional nanocomplex drug delivery system is developed based on the strategy of peptide-drug conjugates. In this study, SynB3-PVGLIG-PTX is designed and screened out by matrix metalloproteinase-2 (MMP-2), to which it exhibits the best affinity. The MMP-2-sensitive peptide (PVGLIG) and a cell-penetration peptide (SynB3) are combined to form a dual-functional peptide. Moreover, as a drug-peptide nanocomplex, SynB3-PVGLIG-PTX exhibited a high potential to form an aggregation with good solubility that can release paclitaxel (PTX) through the cleavage of MMP-2. From a functional perspective, it is found that SynB3-PVGLIG-PTX can specifically inhibit the proliferation, migration, and invasion of GBM cells in vitro in the presence of MMP-2, in contrast to that observed in MMP-2 siRNA transfected cells. Further investigation in vivo shows that SynB3-PVGLIG-PTX easily enters the brain of U87MG xenograft nude mice and can generate a better suppressive effect on GBM through a controlled release of PTX from SynB3-PVGLIG-PTX compared with PTX and temozolomide. Thus, it is proposed that SynB3-PVGLIG-PTX can be used as a novel drug-loading delivery system to treat GBM due to its specificity and BBB permeability.
Collapse
Affiliation(s)
- Dan Hua
- Department of NeuropathologyTianjin Neurological InstituteTianjin Medical University General HospitalTianjin300052China
- Tianjin Key Laboratory of InjuriesVariations and Regeneration of the Nervous SystemTianjin300052China
- Key Laboratory of Post‐trauma Neuro‐repair and Regeneration in Central Nervous SystemMinistry of EducationTianjin300052China
| | - Lida Tang
- Tianjin Institute of Pharmaceutical ResearchTianjin300301China
| | - Weiting Wang
- Tianjin Institute of Pharmaceutical ResearchTianjin300301China
| | - Shengan Tang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics)School of PharmacyTianjin Medical UniversityTianjin300070China
| | - Lin Yu
- Department of Biochemistry and Molecular BiologySchool of Basic Medical Sciences of Tianjin Medical UniversityTianjin300070China
| | - Xuexia Zhou
- Department of NeuropathologyTianjin Neurological InstituteTianjin Medical University General HospitalTianjin300052China
- Tianjin Key Laboratory of InjuriesVariations and Regeneration of the Nervous SystemTianjin300052China
- Key Laboratory of Post‐trauma Neuro‐repair and Regeneration in Central Nervous SystemMinistry of EducationTianjin300052China
| | - Qian Wang
- Department of NeuropathologyTianjin Neurological InstituteTianjin Medical University General HospitalTianjin300052China
- Tianjin Key Laboratory of InjuriesVariations and Regeneration of the Nervous SystemTianjin300052China
- Key Laboratory of Post‐trauma Neuro‐repair and Regeneration in Central Nervous SystemMinistry of EducationTianjin300052China
| | - Cuiyun Sun
- Department of NeuropathologyTianjin Neurological InstituteTianjin Medical University General HospitalTianjin300052China
- Tianjin Key Laboratory of InjuriesVariations and Regeneration of the Nervous SystemTianjin300052China
- Key Laboratory of Post‐trauma Neuro‐repair and Regeneration in Central Nervous SystemMinistry of EducationTianjin300052China
| | - Cuijuan Shi
- Department of NeuropathologyTianjin Neurological InstituteTianjin Medical University General HospitalTianjin300052China
- Tianjin Key Laboratory of InjuriesVariations and Regeneration of the Nervous SystemTianjin300052China
- Key Laboratory of Post‐trauma Neuro‐repair and Regeneration in Central Nervous SystemMinistry of EducationTianjin300052China
| | - Wenjun Luo
- Department of NeuropathologyTianjin Neurological InstituteTianjin Medical University General HospitalTianjin300052China
- Tianjin Key Laboratory of InjuriesVariations and Regeneration of the Nervous SystemTianjin300052China
- Key Laboratory of Post‐trauma Neuro‐repair and Regeneration in Central Nervous SystemMinistry of EducationTianjin300052China
| | - Zhendong Jiang
- Department of NeuropathologyTianjin Neurological InstituteTianjin Medical University General HospitalTianjin300052China
- Tianjin Key Laboratory of InjuriesVariations and Regeneration of the Nervous SystemTianjin300052China
- Key Laboratory of Post‐trauma Neuro‐repair and Regeneration in Central Nervous SystemMinistry of EducationTianjin300052China
| | - Huining Li
- Department of NeuropathologyTianjin Neurological InstituteTianjin Medical University General HospitalTianjin300052China
- Tianjin Key Laboratory of InjuriesVariations and Regeneration of the Nervous SystemTianjin300052China
- Key Laboratory of Post‐trauma Neuro‐repair and Regeneration in Central Nervous SystemMinistry of EducationTianjin300052China
| | - Shizhu Yu
- Department of NeuropathologyTianjin Neurological InstituteTianjin Medical University General HospitalTianjin300052China
- Tianjin Key Laboratory of InjuriesVariations and Regeneration of the Nervous SystemTianjin300052China
- Key Laboratory of Post‐trauma Neuro‐repair and Regeneration in Central Nervous SystemMinistry of EducationTianjin300052China
| |
Collapse
|
291
|
Bou-Gharios J, Assi S, Bahmad HF, Kharroubi H, Araji T, Chalhoub RM, Ballout F, Harati H, Fares Y, Abou-Kheir W. The potential use of tideglusib as an adjuvant radio-therapeutic treatment for glioblastoma multiforme cancer stem-like cells. Pharmacol Rep 2021; 73:227-239. [PMID: 33140310 DOI: 10.1007/s43440-020-00180-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 10/17/2020] [Accepted: 10/20/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Glioblastoma multiforme (GBM), a stage IV astrocytoma, is the most common brain malignancy among adults. Conventional treatments of surgical resection followed by radio and/or chemotherapy fail to completely eradicate the tumor. Resistance to the currently available therapies is mainly attributed to a subpopulation of cancer stem cells (CSCs) present within the tumor bulk that self-renew leading to tumor relapse with time. Therefore, identification of characteristic markers specific to these cells is crucial for the development of targeted therapies. Glycogen synthase kinase 3 (GSK-3), a serine-threonine kinase, is deregulated in a wide range of diseases, including cancer. In GBM, GSK-3β is overexpressed and its suppression in vitro has been shown to induce apoptosis of cancer cells. METHODS In our study, we assessed the effect of GSK-3β inhibition with Tideglusib (TDG), an irreversible non-ATP competitive inhibitor, using two human GBM cell lines, U-251 MG and U-118 MG. In addition, we combined TDG with radiotherapy to assess whether this inhibition enhances the effect of standard treatment. RESULTS Our results showed that TDG significantly reduced cell proliferation, cell viability, and migration of both GBM cell lines in a dose- and time-dependent manner in vitro. Treatment with TDG alone and in combination with radiation significantly decreased the colony formation of U-251 MG cells and the sphere formation of both cell lines, by targeting and reducing their glioblastoma cancer stem-like cells (GSCs) population. Finally, cells treated with TDG showed an increased level of unrepaired radio-induced DNA damage and, thus, became sensitized toward radiation. CONCLUSIONS In conclusion, TDG has proven its effectiveness in targeting the cancerous properties of GBM in vitro and may, hence, serve as a potential adjuvant radio-therapeutic agent to better target this deadly tumor.
Collapse
Affiliation(s)
- Jolie Bou-Gharios
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Bliss Street, DTS Bldg, Room 116-B, Riad el Solh, PO Box 110236/41, Beirut, 1107-2020, Lebanon
- Chair of Neurosurgery Department, Faculty of Medicine, Neuroscience Research Center, Lebanese University, Beirut, Lebanon
| | - Sahar Assi
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Bliss Street, DTS Bldg, Room 116-B, Riad el Solh, PO Box 110236/41, Beirut, 1107-2020, Lebanon
| | - Hisham F Bahmad
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Bliss Street, DTS Bldg, Room 116-B, Riad el Solh, PO Box 110236/41, Beirut, 1107-2020, Lebanon
- Arkadi M. Rywlin M.D. Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, FL, USA
| | - Hussein Kharroubi
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Bliss Street, DTS Bldg, Room 116-B, Riad el Solh, PO Box 110236/41, Beirut, 1107-2020, Lebanon
| | - Tarek Araji
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Bliss Street, DTS Bldg, Room 116-B, Riad el Solh, PO Box 110236/41, Beirut, 1107-2020, Lebanon
| | - Reda M Chalhoub
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Bliss Street, DTS Bldg, Room 116-B, Riad el Solh, PO Box 110236/41, Beirut, 1107-2020, Lebanon
- Medical Scientist Training Program, College of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Farah Ballout
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Bliss Street, DTS Bldg, Room 116-B, Riad el Solh, PO Box 110236/41, Beirut, 1107-2020, Lebanon
| | - Hayat Harati
- Chair of Neurosurgery Department, Faculty of Medicine, Neuroscience Research Center, Lebanese University, Beirut, Lebanon
| | - Youssef Fares
- Chair of Neurosurgery Department, Faculty of Medicine, Neuroscience Research Center, Lebanese University, Beirut, Lebanon.
| | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Bliss Street, DTS Bldg, Room 116-B, Riad el Solh, PO Box 110236/41, Beirut, 1107-2020, Lebanon.
| |
Collapse
|
292
|
Hasbum A, Quintanilla J, Jr JA, Ding MH, Levy A, Chew SA. Strategies to better treat glioblastoma: antiangiogenic agents and endothelial cell targeting agents. Future Med Chem 2021; 13:393-418. [PMID: 33399488 PMCID: PMC7888526 DOI: 10.4155/fmc-2020-0289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/26/2020] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most prevalent and aggressive form of glioma, with poor prognosis and high mortality rates. As GBM is a highly vascularized cancer, antiangiogenic therapies to halt or minimize the rate of tumor growth are critical to improving treatment. In this review, antiangiogenic therapies, including small-molecule drugs, nucleic acids and proteins and peptides, are discussed. The authors further explore biomaterials that have been utilized to increase the bioavailability and bioactivity of antiangiogenic factors for better antitumor responses in GBM. Finally, the authors summarize the current status of biomaterial-based targeting moieties that target endothelial cells in GBM to more efficiently deliver therapeutics to these cells and avoid off-target cell or organ side effects.
Collapse
Affiliation(s)
- Asbiel Hasbum
- School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX 78541, USA
| | - Jaqueline Quintanilla
- Department of Health & Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX 78526, USA
| | - Juan A Amieva Jr
- Department of Health & Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX 78526, USA
| | - May-Hui Ding
- Department of Health & Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX 78526, USA
| | - Arkene Levy
- Dr Kiran C Patel College of Allopathic Medicine, Nova Southeastern University, FL 33314, USA
| | - Sue Anne Chew
- Department of Health & Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX 78526, USA
| |
Collapse
|
293
|
Glioblastoma Break-in; Try Something New. INTERNATIONAL JOURNAL OF CANCER MANAGEMENT 2021. [DOI: 10.5812/ijcm.109054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Context: Glioblastoma is the most invasive brain tumor with a poor prognosis and rapid progression. The standard therapy (surgical resection, adjuvant chemotherapy, and radiotherapy) ensures survival only up to 18 months. In this article, we focus on innovative types of radiotherapy, various combinations of temozolomide with novel substances, and methods of their administration and vector delivery to tumor cells. Evidence Acquisition: For a detailed study of the various options for chemotherapy and radiotherapy, Elsevier, NCBI MedLine, Scopus, Google Scholar, Embase, Web of Science, The Cochrane Library, EMBASE, Global Health, CyberLeninka, and RSCI databases were analyzed. Results: The most available method is oral or intravenous administration of temozolomide. More efficient is the combined chemotherapy of temozolomide with innovative drugs and substances such as lomustine, histone deacetylase inhibitors, and chloroquine, as well as olaparib. These combinations improve patient survival and are effective in the treatment of resistant tumors. Compared to standard fractionated radiotherapy (60 Gy, 30 fractions, 6 weeks), hypofractionated is more effective for elderly patients due to lack of toxicity; brachytherapy reduces the risk of glioblastoma recurrence, while radiosurgery with bevacizumab is more effective against recurrent or inoperable tumors. Currently, the most effective treatment is considered to be the intranasal administration of anti-Ephrin A3 (anti-EPHA3)-modified containing temozolomide butyl ester-loaded (TBE-loaded) poly lactide-co-glycolide nanoparticles (P-NPs) coated with N-trimethylated chitosan (TMC) to overcome nasociliary clearance. Conclusions: New radiotherapeutic methods significantly increase the survival rates of glioblastoma patients. With some improvement, it may lead to the elimination of all tumor cells leaving the healthy alive. New chemotherapeutic drugs show impressive results with adjuvant temozolomide. Anti-EPHA3-modified TBE-loaded P-NPs coated with TMC have high absorption specificity and kill glioblastoma cells effectively. A new “step forward” may become a medicine of the future, which reduces the specific accumulation of nanoparticles in the lungs, but simultaneously does not affect specific absorption by tumor cells.
Collapse
|
294
|
Kadiyala P, Gregory JV, Lowenstein PR, Lahann J, Castro MG. Targeting gliomas with STAT3-silencing nanoparticles. Mol Cell Oncol 2021; 8:1870647. [PMID: 33855166 PMCID: PMC8018361 DOI: 10.1080/23723556.2020.1870647] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Glioblastoma is an aggressive brain tumor with poor prognosis. The brain is protected by the blood-brain barrier, which precludes transport of chemotherapeutics. We developed nanoparticles that achieve delivery of small-interfering RNA against Stat3 after systemic administration. Nanoparticles combined with radiation inhibited tumor progression and elicited anti-glioblastoma immunity in mice.
Collapse
Affiliation(s)
- Padma Kadiyala
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, USA.,Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Jason V Gregory
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA.,Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Pedro R Lowenstein
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, USA.,Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA.,Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Joerg Lahann
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA.,Chemical Engineering, University of Michigan, Ann Arbor, MI, USA.,Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Maria G Castro
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, USA.,Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA.,Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
295
|
Pastvova N, Dolezel P, Mlejnek P. Heat Shock Protein Inhibitor 17-Allyamino-17-Demethoxygeldanamycin, a Potent Inductor of Apoptosis in Human Glioma Tumor Cell Lines, Is a Weak Substrate for ABCB1 and ABCG2 Transporters. Pharmaceuticals (Basel) 2021; 14:ph14020107. [PMID: 33573093 PMCID: PMC7912456 DOI: 10.3390/ph14020107] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 01/26/2021] [Accepted: 01/26/2021] [Indexed: 11/16/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common primary brain tumor in adults and has a poor prognosis. Complex genetic alterations and the protective effect of the blood–brain barrier (BBB) have so far hampered effective treatment. Here, we investigated the cytotoxic effects of heat shock protein 90 (HSP90) inhibitors, geldanamycin (GDN) and 17-allylamino-17-demethoxygeldanamycin (17-AAG, tanespimycin), in a panel of glioma tumor cell lines with various genetic alterations. We also assessed the ability of the main drug transporters, ABCB1 and ABCG2, to efflux GDN and 17-AAG. We found that GDN and 17-AAG induced extensive cell death with the morphological and biochemical hallmarks of apoptosis in all studied glioma cell lines at sub-micro-molar and nanomolar concentrations. Moderate efflux efficacy of GDN and 17-AAG mediated by ABCB1 was observed. There was an insignificant and low efflux efficacy of GDN and 17-AAG mediated by ABCG2. Conclusion: GDN and 17-AAG, in particular, exhibited strong proapoptotic effects in glioma tumor cell lines irrespective of genetic alterations. GDN and 17-AAG appeared to be weak substrates of ABCB1 and ABCG2. Therefore, the BBB would compromise their cytotoxic effects only partially. We hypothesize that GBM patients may benefit from 17-AAG either as a single agent or in combination with other drugs.
Collapse
|
296
|
He C, Zhang Z, Ding Y, Xue K, Wang X, Yang R, An Y, Liu D, Hu C, Tang Q. LRP1-mediated pH-sensitive polymersomes facilitate combination therapy of glioblastoma in vitro and in vivo. J Nanobiotechnology 2021; 19:29. [PMID: 33482822 PMCID: PMC7821499 DOI: 10.1186/s12951-020-00751-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/08/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Glioblastoma (GBM) is the most invasive primary intracranial tumor, and its effective treatment is one of the most daunting challenges in oncology. The blood-brain barrier (BBB) is the main obstacle that prevents the delivery of potentially active therapeutic compounds. In this study, a new type of pH-sensitive polymersomes has been designed for glioblastoma therapy to achieve a combination of radiotherapy and chemotherapy for U87-MG human glioblastoma xenografts in nude mice and significantly increased survival time. RESULTS The Au-DOX@PO-ANG has a good ability to cross the blood-brain barrier and target tumors. This delivery system has pH-sensitivity and the ability to respond to the tumor microenvironment. Gold nanoparticles and doxorubicin are designed as a complex drug. This type of complex drug improve the radiotherapy (RT) effect of glioblastoma. The mice treated with Au-DOX@PO-ANG NPs have a significant reduction in tumor volume. CONCLUSION In summary, a new pH-sensitive drug delivery system was fabricated for the treatment of glioblastoma. The new BBB-traversing drug delivery system potentially represents a novel approach to improve the effects of the treatment of intracranial tumors and provides hope for glioblastoma treatment.
Collapse
Affiliation(s)
- Chen He
- Medical School of Southeast University, 87 Dingjiaqiao Road, Nanjing, China
| | - Zhiyuan Zhang
- Department of Neurosurgery, Nanjing Jinling Hospital, Nanjing University, Nanjing, China
| | - Yinan Ding
- Medical School of Southeast University, 87 Dingjiaqiao Road, Nanjing, China
| | - Kangli Xue
- Medical School of Southeast University, 87 Dingjiaqiao Road, Nanjing, China
| | - Xihui Wang
- Medical School of Southeast University, 87 Dingjiaqiao Road, Nanjing, China
| | - Rui Yang
- Research Institute for Reproductive Health and Genetic Diseases, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, China
| | - Yanli An
- Medical School of Southeast University, 87 Dingjiaqiao Road, Nanjing, China
| | - Dongfang Liu
- Medical School of Southeast University, 87 Dingjiaqiao Road, Nanjing, China
| | - Chunmei Hu
- Department of Tuberculosis, the Second Affiliated Hospital of Southeast University, Nanjing, China.
| | - Qiusha Tang
- Medical School of Southeast University, 87 Dingjiaqiao Road, Nanjing, China.
| |
Collapse
|
297
|
Improved Safety and Anti-Glioblastoma Efficacy of CAT3-Encapsulated SMEDDS through Metabolism Modification. Molecules 2021; 26:molecules26020484. [PMID: 33477555 PMCID: PMC7831126 DOI: 10.3390/molecules26020484] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/06/2021] [Accepted: 01/12/2021] [Indexed: 12/19/2022] Open
Abstract
13a-(S)-3-pivaloyloxyl-6,7-dimethoxyphenanthro(9,10-b)-indolizidine (CAT3) is a novel oral anti-glioma pro-drug with a potent anti-tumor effect against temozolomide-resistant glioma. 13a(S)-3-hydroxyl-6,7-dimethoxyphenanthro(9,10-b)-indolizidine (PF403) is the active in vivo lipase degradation metabolite of CAT3. Both CAT3 and PF403 can penetrate the blood-brain barrier to cause an anti-glioma effect. However, PF403, which is produced in the gastrointestinal tract and plasma, causes significant gastrointestinal side effects, limiting the clinical application of CAT3. The objective of this paper was to propose a metabolism modification for CAT3 using a self-microemulsifying drug delivery system (SMEDDS), in order to reduce the generation of PF403 in the gastrointestinal tract and plasma, as well as increase the bioavailability of CAT3 in vivo and the amount of anti-tumor substances in the brain. Thus, a CAT3-loaded self-microemulsifying drug delivery system (CAT3-SMEDDS) was prepared, and its physicochemical characterization was systematically carried out. Next, the pharmacokinetic parameters of CAT3 and its metabolite in the rats' plasma and brain were measured. Furthermore, the in vivo anti-glioma effects and safety of CAT3-SMEDDS were evaluated. Finally, Caco-2 cell uptake, MDCK monolayer cellular transfer, and the intestinal lymphatic transport mechanisms of SMEDDS were investigated in vitro and in vivo. Results show that CAT3-SMEDDS was able to form nanoemulsion droplets in artificial gastrointestinal fluid within 1 min, displaying an ideal particle size (15-30 nm), positive charge (5-9 mV), and controlled release behavior. CAT3-SMEDDS increased the membrane permeability of CAT3 by 3.9-fold and promoted intestinal lymphatic transport. Hence, the bioavailability of CAT3 was increased 79% and the level of its metabolite, PF403, was decreased to 49%. Moreover, the concentrations of CAT3 and PF403 were increased 2-6-fold and 1.3-7.2-fold, respectively, in the brain. Therefore, the anti-glioma effect in the orthotopic models was improved with CAT3-SMEDDS compared with CAT3 in 21 days. Additionally, CAT3-SMEDDS reduced the gastrointestinal side effects of CAT3, such as severe diarrhea, necrosis, and edema, and observed less inflammatory cell infiltration in the gastrointestinal tract, compared with the bare CAT3. Our work reveals that, through the metabolism modification effect, SMEDDS can improve the bioavailability of CAT3 and reduce the generation of PF403 in the gastrointestinal tract and plasma. Therefore, it has the potential to increase the anti-glioma effect and reduce the gastrointestinal side effects of CAT3 simultaneously.
Collapse
|
298
|
Current Progress of Phytomedicine in Glioblastoma Therapy. Curr Med Sci 2021; 40:1067-1074. [PMID: 33428134 DOI: 10.1007/s11596-020-2288-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 10/20/2020] [Indexed: 01/13/2023]
Abstract
Glioblastoma multiforme, an intrusive brain cancer, has the lowest survival rate of all brain cancers. The chemotherapy utilized to prevent their proliferation and propagation is limited due to modulation of complex cancer signalling pathways. These complex pathways provide infiltrative and drug evading properties leading to the development of chemotherapy resistance. Therefore, the development and discovery of such interventions or therapies that can bypass all these resistive barriers to ameliorate glioma prognosis and survival is of profound importance. Medicinal plants are comprised of an exorbitant range of phytochemicals that have the broad-spectrum capability to target intrusive brain cancers, modulate anti-cancer pathways and immunological responses to facilitate their eradication, and induce apoptosis. These phytocompounds also interfere with several oncogenic proteins that promote cancer invasiveness and metastasis, chemotherapy resistance and angiogenesis. These plants are extremely vital for promising anti-glioma therapy to avert glioma proliferation and recurrence. In this review, we acquired recent literature on medicinal plants whose extracts/bioactive ingredients are newly exploited in glioma therapeutics, and also highlighted their mode of action and pharmacological profile.
Collapse
|
299
|
|
300
|
Adhikari M, Adhikari B, Adhikari A, Yan D, Soni V, Sherman J, Keidar M. Cold Atmospheric Plasma as a Novel Therapeutic Tool for the Treatment of Brain Cancer. Curr Pharm Des 2020; 26:2195-2206. [PMID: 32116185 DOI: 10.2174/1381612826666200302105715] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 02/04/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Studies from the past few years revealed the importance of Cold Atmospheric Plasma (CAP) on various kinds of diseases, including brain cancers or glioblastoma (GBM), and hence coined a new term 'Plasma Medicine' in the modern world for promising therapeutic approaches. Here, we focus on the efficacy of CAP and its liquid derivatives on direct interactions or with specific nanoparticles to show pivotal roles in brain cancer treatment. METHOD In the present review study, the authors studied several articles over the past decades published on the types of CAP and its effects on different brain cancers and therapy. RESULTS A growing body of evidence indicates that CAP and its derivatives like Plasma Activated Media/ Water (PAM/PAW) are introduced in different kinds of GBM. Recent studies proposed that CAP plays a remarkable role in GBM treatment. To increase the efficacy of CAP, various nanoparticles of different origins got specific attention in recent times. In this review, different strategies to treat brain cancers, including nanoparticles, are discussed as enhancers of CAP induced targeted nanotherapeutic approach. CONCLUSION CAP treatment and its synergistic effects with different nanoparticles hold great promise for clinical applications in early diagnosis and treatment of GBM treatment. However, results obtained from previous studies were still in the preliminary phase, and there must be a concern over the use of optimal methods for a dosage of CAP and nanoparticles for complete cure of GBM.
Collapse
Affiliation(s)
- Manish Adhikari
- Department of Mechanical and Aerospace Engineering, The George Washington University, Science & Engineering Hall, 800 22nd Street, NW, Washington, DC, 20052, United States
| | - Bhawana Adhikari
- Plasma Bioscience Research Center, Applied Plasma Medicine Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, Korea
| | - Anupriya Adhikari
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University, Lucknow, 226025, India
| | - Dayun Yan
- Department of Mechanical and Aerospace Engineering, The George Washington University, Science & Engineering Hall, 800 22nd Street, NW, Washington, DC, 20052, United States
| | - Vikas Soni
- Department of Mechanical and Aerospace Engineering, The George Washington University, Science & Engineering Hall, 800 22nd Street, NW, Washington, DC, 20052, United States
| | - Jonathan Sherman
- Neurological Surgery, The George Washington University, Foggy Bottom South Pavilion, 22nd Street, NW, 7th Floor, Washington, DC, 20037, United States
| | - Michael Keidar
- Department of Mechanical and Aerospace Engineering, The George Washington University, Science & Engineering Hall, 800 22nd Street, NW, Washington, DC, 20052, United States
| |
Collapse
|