251
|
Rosati F, Sturli N, Cungi MC, Morello M, Villanelli F, Bartolucci G, Finocchi C, Peri A, Serio M, Danza G. Gonadotropin-releasing hormone modulates cholesterol synthesis and steroidogenesis in SH-SY5Y cells. J Steroid Biochem Mol Biol 2011; 124:77-83. [PMID: 21296663 DOI: 10.1016/j.jsbmb.2011.01.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Revised: 01/26/2011] [Accepted: 01/27/2011] [Indexed: 11/28/2022]
Abstract
Neurosteroids are involved in Central Nervous System development, brain functionality and neuroprotection but little is known about regulators of their biosynthesis. Recently gonadotropins, Gonadotropin-releasing Hormone (GnRH) and their receptors have been localized in different brain regions, such as hippocampus and cortex. Using human neuronal-like cells we found that GnRH up-regulates the expression of key genes of cholesterol and steroid synthesis when used in a narrow range around 1.0 nM. The expression of Hydroxysterol D24-reductase (seladin-1/DHCR24), that catalyzes the last step of cholesterol biosynthesis, is increased by 50% after 90 min of incubation with GnRH. StAR protein and P450 side chain cleavage (P450scc) are up-regulated by 3.3 times after 90 min and by 3.5 times after 3 h, respectively. GnRH action is mediated by LH and 1.0 nM GnRH enhances the expression of LHβ as well. A two fold increase of cell cholesterol is induced after 90 min of GnRH incubation and 17β-estradiol (E2) production is increased after 24, 48 and 72 h. These data indicate for the first time that GnRH regulates both cholesterol and steroid biosynthesis in human neuronal-like cells and suggest a new physiological role for GnRH in the brain.
Collapse
Affiliation(s)
- Fabiana Rosati
- Endocrine Unit, Department of Clinical Physiopathology, University of Florence, Viale G. Pieraccini 6, 50139 Firenze, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
252
|
Barron AM, Hojo Y, Mukai H, Higo S, Ooishi Y, Hatanaka Y, Ogiue-Ikeda M, Murakami G, Kimoto T, Kawato S. Regulation of synaptic plasticity by hippocampus synthesized estradiol. Horm Mol Biol Clin Investig 2011; 7:361-75. [PMID: 25961274 DOI: 10.1515/hmbci.2011.118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Accepted: 07/21/2011] [Indexed: 01/29/2023]
Abstract
Estradiol is synthesized from cholesterol in hippocampal neurons of adult rats by cytochrome P450 and hydroxysteroid dehydrogenase enzymes. These enzymes are expressed in the glutamatergic neurons of the hippocampus. Surprisingly, the concentration of estradiol and androgen in the hippocampus is significantly higher than that in circulation. Locally synthesized estradiol rapidly and potently modulates synaptic plasticity within the hippocampus. E2 rapidly potentiates long-term depression and induces spinogenesis through synaptic estrogen receptors and kinases. The rapid effects of estradiol are followed by slow genomic effects mediated by both estrogen receptors located at the synapse and nucleus, modulating long-term potentiation and promoting the formation of new functional synaptic contacts. Age-related changes in hippocampally derived estradiol synthesis and distribution of estrogen receptors may alter synaptic plasticity, and could potentially contribute to age-related cognitive decline. Understanding factors which regulate hippocampal estradiol synthesis could lead to the identification of alternatives to conventional hormone therapy to protect against age-related cognitive decline.
Collapse
|
253
|
Takase M, Haraguchi S, Hasunuma I, Kikuyama S, Tsutsui K. Expression of cytochrome P450 side-chain cleavage enzyme mRNA and production of pregnenolone in the brain of the red-bellied newt Cynops pyrrhogaster. Gen Comp Endocrinol 2011; 170:468-74. [PMID: 21050853 DOI: 10.1016/j.ygcen.2010.10.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 10/19/2010] [Accepted: 10/26/2010] [Indexed: 10/18/2022]
Abstract
It is becoming clear that the vertebrate brain has the capability of forming steroids de novo, the so-called "neurosteroids". To understand neurosteroidogenesis in the brain, it is essential to demonstrate the formation of pregnenolone, a main precursor of neurosteroids. In amphibians, the pregnenolone formation from cholesterol is still unclear, although the brain accumulates pregnenolone, pregnenolone sulfate and 7α-hydroxypregnenolone. This study was addressed to obtain basic information about pregnenolone formation in the newt brain. Firstly, we demonstrated that the newt brain produces pregnenolone from cholesterol. Subsequently, cDNA encoding cytochrome P450 side-chain cleavage enzyme (P450scc), a key steroidogenic enzyme catalyzing pregnenolone formation, was isolated from the newt. The sequence analysis showed that the isolated P450scc cDNA contained a putative coding region consisting of 1569 bp, which encoded 523 amino acids. The steroid- and heme-binding domains of P450scc were highly shared in amino acids among vertebrates. RT-PCR analysis amplified the authentic fragment corresponding to newt P450scc showed its transcription in the brain. However, the transcription level in the brain was lower than those of the gonad and the kidney including adrenals. The restricted cells in the four major regions of the newt brain, such as the telencephalon, diencephalon, mesencephalon, and rhombencephalon, were demonstrated to express P450scc transcripts by RT-PCR and in situ hybridization. Taken together, these results indicate that the newt brain expresses P450scc mRNA and produces pregnenolone from cholesterol.
Collapse
Affiliation(s)
- Minoru Takase
- Institute for Amphibian Biology, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Japan
| | | | | | | | | |
Collapse
|
254
|
Flinn MV, Nepomnaschy PA, Muehlenbein MP, Ponzi D. Evolutionary functions of early social modulation of hypothalamic-pituitary-adrenal axis development in humans. Neurosci Biobehav Rev 2011; 35:1611-29. [PMID: 21251923 DOI: 10.1016/j.neubiorev.2011.01.005] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Revised: 12/17/2010] [Accepted: 01/05/2011] [Indexed: 02/07/2023]
Abstract
The hypothalamic-pituitary-adrenal axis (HPAA) is highly responsive to social challenges. Because stress hormones can have negative developmental and health consequences, this presents an evolutionary paradox: Why would natural selection have favored mechanisms that elevate stress hormone levels in response to psychosocial stimuli? Here we review the hypothesis that large brains, an extended childhood and intensive family care in humans are adaptations resulting from selective forces exerted by the increasingly complex and dynamic social and cultural environment that co-evolved with these traits. Variations in the modulation of stress responses mediated by specific HPAA characteristics (e.g., baseline cortisol levels, and changes in cortisol levels in response to challenges) are viewed as phenotypically plastic, ontogenetic responses to specific environmental signals. From this perspective, we discuss relations between physiological stress responses and life history trajectories, particularly the development of social competencies. We present brief summaries of data on hormones, indicators of morbidity and social environments from our long-term, naturalistic studies in both Guatemala and Dominica. Results indicate that difficult family environments and traumatic social events are associated with temporal elevations of cortisol, suppressed reproductive functioning and elevated morbidity. The long-term effects of traumatic early experiences on cortisol profiles are complex and indicate domain-specific effects, with normal recovery from physical stressors, but some heightened response to negative-affect social challenges. We consider these results to be consistent with the hypothesis that developmental programming of the HPAA and other neuroendocrine systems associated with stress responses may facilitate cognitive targeting of salient social challenges in specific environments.
Collapse
Affiliation(s)
- Mark V Flinn
- Department of Anthropology, University of Missouri, 107 Swallow Hall, Columbia, MO 65211, USA.
| | | | | | | |
Collapse
|
255
|
Vizziano-Cantonnet D, Anglade I, Pellegrini E, Gueguen MM, Fostier A, Guiguen Y, Kah O. Sexual dimorphism in the brain aromatase expression and activity, and in the central expression of other steroidogenic enzymes during the period of sex differentiation in monosex rainbow trout populations. Gen Comp Endocrinol 2011; 170:346-55. [PMID: 20955710 DOI: 10.1016/j.ygcen.2010.10.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 10/08/2010] [Accepted: 10/12/2010] [Indexed: 01/04/2023]
Abstract
Using genetic monosex male and female rainbow trout populations, the potential sex differences in the central expression of estrogen receptors (esr1, esr2a, esr2b), brain aromatase (cyp19a1b) and some other steroidogenic enzymes was studied over the period of sex differentiation (from 35 to 63 dpf: days post-fertilization) using quantitative polymerase chain reaction (q-PCR). In addition, aromatase activity was evaluated during this period. The results indicated that brain aromatase (cyp19a1b) expression and activity showed a clear and significant sexually dimorphic pattern with higher levels in male brain between 35 and 53 dpf before the time of gonad morphological differentiation. At that time the expression of a key enzyme involved in the conversion of cholesterol into steroids, the cyp11a1 (p450scc), as well as the estrogen receptors were also sexually dimorphic. The dimorphism was lost from 56 dpf onwards. Transcription factors such as nr5a1b (sf1) and nr0b1 (dax1), but not foxl2a were also higher in males than in females. These results demonstrate that, before or during the early period of morphological gonad differentiation, the brain exhibits a clear sexual dimorphism with respect to the expression and activity of aromatase as well as of certain enzymes and factors involved in steroid synthesis as p450scc and sf1. The results suggest a higher potentiality to produce estrogens by male brains during sex differentiation time.
Collapse
Affiliation(s)
- Denise Vizziano-Cantonnet
- Facultad de Ciencias, Laboratorio de Fisiología de la Reproducción y Ecología de Peces, Iguá 4225, Montevideo 11400, Uruguay.
| | | | | | | | | | | | | |
Collapse
|
256
|
Bourque M, Dluzen DE, Di Paolo T. Male/Female differences in neuroprotection and neuromodulation of brain dopamine. Front Endocrinol (Lausanne) 2011; 2:35. [PMID: 22654803 PMCID: PMC3356083 DOI: 10.3389/fendo.2011.00035] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Accepted: 09/02/2011] [Indexed: 12/26/2022] Open
Abstract
The existence of a sex difference in Parkinson's disease (PD) is observed as related to several variables, including susceptibility of the disease, age at onset, and symptoms. These differences between men and women represent a significant characteristic of PD, which suggest that estrogens may exert beneficial effects against the development and the progression of the disease. This paper reviews the neuroprotective and neuromodulator effects of 17β-estradiol and progesterone as compared to androgens in the nigrostriatal dopaminergic (NSDA) system of both female and male rodents. The 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mice model of PD and methamphetamine toxicity faithfully reproduce the sex differences of PD in that endogenous estrogen levels appear to influence the vulnerability to toxins targeting the NSDA system. Exogenous 17β-estradiol and/or progesterone treatments show neuroprotective properties against NSDA toxins while androgens fail to induce any beneficial effect. Sex steroid treatments show male and female differences in their neuroprotective action against methamphetamine toxicity. NSDA structure and function, as well as the distribution of estrogen receptors, show sex differences and may influence the susceptibility to the toxins and the response to sex steroids. Genomic and non-genomic actions of 17β-estradiol converge to promote survival factors and the presence of both estrogen receptors α and β are critical to 17β-estradiol neuroprotective action against MPTP toxicity.
Collapse
Affiliation(s)
- Mélanie Bourque
- Molecular Endocrinology and Genomic Research Center, Centre de recherche du CHUQ (CHUL)Quebec City, QC, Canada
- Faculty of Pharmacy, Laval University, Quebec CityQC, Canada
| | - Dean E. Dluzen
- Department of Anatomy and Neurobiology, Northeastern Ohio Universities College of Medicine and PharmacyRootstown, OH, USA
| | - Thérèse Di Paolo
- Molecular Endocrinology and Genomic Research Center, Centre de recherche du CHUQ (CHUL)Quebec City, QC, Canada
- Faculty of Pharmacy, Laval University, Quebec CityQC, Canada
- *Correspondence: Thérèse Di Paolo, Molecular Endocrinology and Genomic Research Center, Centre de recherche du CHUQ (CHUL), 2705 Laurier Boulevard, Quebec City, QC, Canada G1V 4G2. e-mail:
| |
Collapse
|
257
|
Reddy DS. Role of anticonvulsant and antiepileptogenic neurosteroids in the pathophysiology and treatment of epilepsy. Front Endocrinol (Lausanne) 2011; 2:38. [PMID: 22654805 PMCID: PMC3356070 DOI: 10.3389/fendo.2011.00038] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 09/06/2011] [Indexed: 02/05/2023] Open
Abstract
This review highlights the role of major endogenous neurosteroids in seizure disorders and the promise of neurosteroid replacement therapy in epilepsy. Neurosteroids are endogenous modulators of seizure susceptibility. Neurosteroids such as allopregnanolone (3α-hydroxy-5α-pregnane-20-one) and allotetrahydrodeoxycorticosterone (3α,21-dihydroxy-5α-pregnan-20-one) are positive modulators of GABA-A receptors. Aside from peripheral tissues, neurosteroids are synthesized within the brain, mostly in principal neurons. Neurosteroids potentiate synaptic GABA-A receptor function and also activate δ-subunit-containing extrasynaptic GABA-A receptors that mediate tonic currents and thus may play an important role in neuronal network excitability and seizure susceptibility. Our studies over the past decade have shown that neurosteroids are broad-spectrum anticonvulsants and confer seizure protection in various animal models. They protect against seizures induced by GABA-A receptor antagonists, 6-Hz model, pilocarpine-induced limbic seizures, and seizures in kindled animals. Unlike benzodiazepines, tolerance does not occur to their actions during chronic administration. Our recent studies provide compelling evidence that neurosteroids may have antiepileptogenic properties. There is emerging evidence that endogenous neurosteroids may play a key role in the pathophysiology of catamenial epilepsy, stress-sensitive seizure conditions, temporal lobe epilepsy, and alcohol-withdrawal seizures. It is suggested that neurosteroid replacement with natural or synthetic neurosteroids may be useful in the treatment of epilepsy. Synthetic analogs of neurosteroids that are devoid of hormonal side effects show promise in the treatment of diverse seizure disorders. Agents that stimulate endogenous production of neurosteroids may also be useful for treatment of epilepsy.
Collapse
Affiliation(s)
- Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M Health Science CenterCollege Station, TX, USA
- *Correspondence: Doodipala Samba Reddy, Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center, 228 Reynolds Medical Building, College Station, TX 77843, USA. e-mail:
| |
Collapse
|
258
|
Haraguchi S, Matsunaga M, Vaudry H, Tsutsui K. Mode of action and functional significance of 7α-hydroxypregnenolone stimulating locomotor activity. Front Endocrinol (Lausanne) 2011; 2:23. [PMID: 22645507 PMCID: PMC3355833 DOI: 10.3389/fendo.2011.00023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2011] [Accepted: 08/04/2011] [Indexed: 11/13/2022] Open
Abstract
Previous studies over the past two decades have demonstrated that the brain and other nervous systems possess key steroidogenic enzymes and produces pregnenolone and other various neurosteroids in vertebrates in general. Recently, 7α-hydroxypregnenolone, a novel bioactive neurosteroid, was identified in the brain of newts and quail. Importantly, this novel neurosteroid is produced from pregnenolone through the enzymatic activity of cytochrome P450(7α) and acts on brain tissue as a neuronal modulator to stimulate locomotor activity in these vertebrates. Subsequently, the mode of action of 7α-hydroxypregnenolone was demonstrated. 7α-Hydroxypregnenolone stimulates locomotor activity through activation of the dopaminergic system. To understand the functional significance of 7α-hydroxypregnenolone in the regulation of locomotor activity, diurnal, and seasonal changes in 7α-hydroxypregnenolone synthesis were further characterized. Melatonin derived from the pineal gland and eyes regulates 7α-hydroxypregnenolone synthesis in the brain, thus inducing diurnal locomotor changes. Prolactin, an adenohypophyseal hormone, regulates 7α-hydroxypregnenolone synthesis in the brain, and also induces seasonal locomotor changes. In addition, 7α-hydroxypregnenolone mediates corticosterone action to modulate locomotor activity under stress. This review summarizes the current knowledge regarding the mode of action and functional significance of 7α-hydroxypregnenolone, a newly identified bioactive neurosteroid stimulating locomotor activity.
Collapse
Affiliation(s)
- Shogo Haraguchi
- Laboratory of Integrative Brain Sciences, Department of Biology, Waseda University, and Center for Medical Life Science of Waseda UniversityTokyo, Japan
| | - Masahiro Matsunaga
- Laboratory of Integrative Brain Sciences, Department of Biology, Waseda University, and Center for Medical Life Science of Waseda UniversityTokyo, Japan
| | - Hubert Vaudry
- Laboratory of Neuronal and Neuroendocrine Differentiation and Communication (INSERM U982), European Institute for Peptide Research, University of RouenMont-Saint-Aignan, France
| | - Kazuyoshi Tsutsui
- Laboratory of Integrative Brain Sciences, Department of Biology, Waseda University, and Center for Medical Life Science of Waseda UniversityTokyo, Japan
- *Correspondence: Kazuyoshi Tsutsui, Laboratory of Integrative Brain Sciences, Department of Biology, Waseda University, and Center for Medical Life Science of Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan. e-mail:
| |
Collapse
|
259
|
Taves MD, Ma C, Heimovics SA, Saldanha CJ, Soma KK. Measurement of steroid concentrations in brain tissue: methodological considerations. Front Endocrinol (Lausanne) 2011; 2:39. [PMID: 22654806 PMCID: PMC3356067 DOI: 10.3389/fendo.2011.00039] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2011] [Accepted: 09/06/2011] [Indexed: 12/17/2022] Open
Abstract
It is well recognized that steroids are synthesized de novo in the brain (neurosteroids). In addition, steroids circulating in the blood enter the brain. Steroids play numerous roles in the brain, such as influencing neural development, adult neuroplasticity, behavior, neuroinflammation, and neurodegenerative diseases such as Alzheimer's disease. In order to understand the regulation and functions of steroids in the brain, it is important to directly measure steroid concentrations in brain tissue. In this brief review, we discuss methods for the detection and quantification of steroids in the brain. We concisely present the major advantages and disadvantages of different technical approaches at various experimental stages: euthanasia, tissue collection, steroid extraction, steroid separation, and steroid measurement. We discuss, among other topics, the potential effects of anesthesia and saline perfusion prior to tissue collection; microdissection via Palkovits punch; solid phase extraction; chromatographic separation of steroids; and immunoassays and mass spectrometry for steroid quantification, particularly the use of mass spectrometry for "steroid profiling." Finally, we discuss the interpretation of local steroid concentrations, such as comparing steroid levels in brain tissue with those in the circulation (plasma vs. whole blood samples; total vs. free steroid levels). We also present reference values for a variety of steroids in different brain regions of adult rats. This brief review highlights some of the major methodological considerations at multiple experimental stages and provides a broad framework for designing studies that examine local steroid levels in the brain as well as other steroidogenic tissues, such as thymus, breast, and prostate.
Collapse
Affiliation(s)
- Matthew D. Taves
- Department of Psychology, University of British ColumbiaVancouver, BC, Canada
- Department of Zoology, University of British ColumbiaVancouver, BC, Canada
- *Correspondence: Matthew D. Taves, Department of Psychology, University of British Columbia, 2136 West Mall, Vancouver, BC, Canada V6T 1Z4. e-mail:
| | - Chunqi Ma
- Department of Psychology, University of British ColumbiaVancouver, BC, Canada
| | - Sarah A. Heimovics
- Department of Psychology, University of British ColumbiaVancouver, BC, Canada
| | - Colin J. Saldanha
- Department of Biological Sciences, Lehigh UniversityBethlehem, PA, USA
- Program in Cognitive Science, Lehigh UniversityBethlehem, PA, USA
| | - Kiran K. Soma
- Department of Psychology, University of British ColumbiaVancouver, BC, Canada
- Department of Zoology, University of British ColumbiaVancouver, BC, Canada
- Graduate Program in Neuroscience, University of British ColumbiaVancouver, BC, Canada
| |
Collapse
|
260
|
Vaudry H, Do Rego JL, Burel D, Luu-The V, Pelletier G, Vaudry D, Tsutsui K. Neurosteroid biosynthesis in the brain of amphibians. Front Endocrinol (Lausanne) 2011; 2:79. [PMID: 22649387 PMCID: PMC3355965 DOI: 10.3389/fendo.2011.00079] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 11/08/2011] [Indexed: 01/29/2023] Open
Abstract
Amphibians have been widely used to investigate the synthesis of biologically active steroids in the brain and the regulation of neurosteroid production by neurotransmitters and neuropeptides. The aim of the present review is to summarize the current knowledge regarding the neuroanatomical distribution and biochemical activity of steroidogenic enzymes in the brain of anurans and urodeles. The data accumulated over the past two decades demonstrate that discrete populations of neurons and/or glial cells in the frog and newt brains express the major steroidogenic enzymes and are able to synthesize de novo a number of neurosteroids from cholesterol/pregnenolone. Since neurosteroidogenesis has been conserved during evolution from amphibians to mammals, it appears that neurosteroids must play important physiological functions in the central nervous system of vertebrates.
Collapse
Affiliation(s)
- Hubert Vaudry
- Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, INSERM U982, European Institute for Peptide Research, IFRMP23, Regional Platform for Cell Imaging, PRIMACEN, University of RouenMont-Saint-Aignan, France
- *Correspondence: Hubert Vaudry, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication (INSERM U982), European Institute for Peptide Research (IFRMP23), International Associated Laboratory Samuel de Champlain, Regional Platform for Cell Imaging (PRIMACEN), University of Rouen, 76821 Mont-Saint-Aignan, France. e-mail:
| | - Jean-Luc Do Rego
- Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, INSERM U982, European Institute for Peptide Research, IFRMP23, Regional Platform for Cell Imaging, PRIMACEN, University of RouenMont-Saint-Aignan, France
| | - Delphine Burel
- Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, INSERM U982, European Institute for Peptide Research, IFRMP23, Regional Platform for Cell Imaging, PRIMACEN, University of RouenMont-Saint-Aignan, France
| | - Van Luu-The
- Research Center in Molecular Endocrinology, Oncology and Genetics, Laval University Hospital CenterQuébec, QC, Canada
| | - Georges Pelletier
- Research Center in Molecular Endocrinology, Oncology and Genetics, Laval University Hospital CenterQuébec, QC, Canada
| | - David Vaudry
- Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, INSERM U982, European Institute for Peptide Research, IFRMP23, Regional Platform for Cell Imaging, PRIMACEN, University of RouenMont-Saint-Aignan, France
| | - Kazuyoshi Tsutsui
- Laboratory of Integrative Brain Science, Department of Biology, Center for Medical Life Science of Waseda University, Waseda UniversityTokyo, Japan
| |
Collapse
|
261
|
Abstract
Neurosteroids represent a class of endogenous steroids that are synthesized in the brain, the adrenals, and the gonads and have potent and selective effects on the GABAA-receptor. 3α-hydroxy A-ring reduced metabolites of progesterone, deoxycorticosterone, and testosterone are positive modulators of GABA(A)-receptor in a non-genomic manner. Allopregnanolone (3α-OH-5α-pregnan-20-one), 5α-androstane-3α, 17α-diol (Adiol), and 3α5α-tetrahydrodeoxycorticosterone (3α5α-THDOC) enhance the GABA-mediated Cl(-) currents acting on a site (or sites) distinct from the GABA, benzodiazepine, barbiturate, and picrotoxin binding sites. 3α5α-P and 3α5α-THDOC potentiate synaptic GABA(A)-receptor function and activate δ-subunit containing extrasynaptic receptors that mediate tonic currents. On the contrary, 3β-OH pregnane steroids and pregnenolone sulfate (PS) are GABA(A)-receptor antagonists and induce activation-dependent inhibition of the receptor. The activities of neurosteroid are dependent on brain regions and types of neurons. In addition to the slow genomic action of the parent steroids, the non-genomic, and rapid actions of neurosteroids play a significant role in the GABA(A)-receptor function and shift in mood and memory function. This review describes molecular mechanisms underlying neurosteroid action on the GABA(A)-receptor, mood changes, and cognitive functions.
Collapse
Affiliation(s)
- Mingde Wang
- Section of Obstetrics and Gynecology, Department of Clinical Science, Umeå Neurosteroid Research Center, Umeå UniversityUmeå, Sweden
- *Correspondence: Mingde Wang, Section of Obstetrics and Gynecology, Department of Clinical Science, Umeå Neurosteroid Research Center, Umeå University, 901 85 Umeå, Sweden. e-mail:
| |
Collapse
|
262
|
King SR, Stocco DM. Steroidogenic acute regulatory protein expression in the central nervous system. Front Endocrinol (Lausanne) 2011; 2:72. [PMID: 22649383 PMCID: PMC3355896 DOI: 10.3389/fendo.2011.00072] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 10/24/2011] [Indexed: 11/13/2022] Open
Abstract
Locally produced neurosteroids are proposed to have many functions in the central nervous system. The identification of the steroidogenic acute regulatory protein in steroid-producing neural cells provides a new tool to understand the sites, regulation, and importance of their synthesis.
Collapse
Affiliation(s)
- Steven R. King
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences CenterLubbock, TX, USA
| | - Douglas M. Stocco
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences CenterLubbock, TX, USA
- *Correspondence: Douglas M. Stocco, Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX 79430, USA. e-mail:
| |
Collapse
|
263
|
Remage-Healey L, Saldanha CJ, Schlinger BA. Estradiol synthesis and action at the synapse: evidence for "synaptocrine" signaling. Front Endocrinol (Lausanne) 2011; 2:28. [PMID: 22654800 PMCID: PMC3356004 DOI: 10.3389/fendo.2011.00028] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Accepted: 08/26/2011] [Indexed: 02/01/2023] Open
Abstract
Classically, the modulation of brain function and behavior by steroid hormones was linked exclusively to secretion by peripheral endocrine glands. Subsequently, steroid actions within the brain were shown dependent upon either synthesis and secretion by peripheral organs or by production within the CNS itself using peripheral sources of precursors. Discovery of the estrogen-synthetic enzyme aromatase in brain further bolstered the latter view and served as a catalyst for expanding concepts of neurosteroidogenesis. In parallel research, several steroids, including estradiol, were found to have rapid effects on neuronal excitability, partially explained by novel actions at neuronal membranes. Recent findings from multiple levels of analysis and labs necessitate an updated view on how steroids are delivered to neural circuits. There is now considerable evidence for expression of the aromatase enzyme within synaptic boutons in the vertebrate CNS. Furthermore, additional work now directly couples rapid regulation of neuroestrogen synthesis with neurophysiological and behavioral outcomes. In this review we summarize evidence for targeted and acute synaptic estrogen synthesis and perisynaptic estrogen actions in the CNS of songbirds. We evaluate these findings in the context of criteria associated with classic neuromodulatory signaling. We term this novel form of signaling "synaptocrine," and discuss its implications.
Collapse
Affiliation(s)
- Luke Remage-Healey
- Neuroscience and Behavior Program, Center for Neuroendocrine Studies, University of MassachusettsAmherst, MA, USA
| | | | - Barney A. Schlinger
- Department of Integrative Biology and Physiology, University of California at Los AngelesLos Angeles, CA, USA
- Ecology and Evolutionary Biology, University of California at Los AngelesLos Angeles, CA, USA
- Laboratory for Neuroendocrinology, University of California at Los AngelesLos Angeles, CA, USA
- *Correspondence: Barney A. Schlinger, Department of Integrative Biology and Physiology and Ecology and Evolutionary Biology, University of California at Los Angeles, 621 Charles E Young Drive South, Los Angeles, CA 90095, USA. e-mail:
| |
Collapse
|
264
|
Tsutsui K. Neurosteroid biosynthesis and function in the brain of domestic birds. Front Endocrinol (Lausanne) 2011; 2:37. [PMID: 22645509 PMCID: PMC3355851 DOI: 10.3389/fendo.2011.00037] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2011] [Accepted: 09/05/2011] [Indexed: 11/17/2022] Open
Abstract
It is now established that the brain and other nervous systems have the capability of forming steroids de novo, the so-called "neurosteroids." The pioneering discovery of Baulieu and his colleagues, using rodents, has opened the door to a new research field of "neurosteroids." In contrast to mammalian vertebrates, little has been known regarding de novo neurosteroidogenesis in the brain of birds. We therefore investigated neurosteroid formation and metabolism in the brain of quail, a domestic bird. Our studies over the past two decades demonstrated that the quail brain possesses cytochrome P450 side-chain cleavage enzyme (P450scc), 3β-hydroxysteroid dehydrogenase/Δ(5)-Δ(4)-isomerase (3β-HSD), 5β-reductase, cytochrome P450 17α-hydroxylase/c17,20-lyase (P450(17α,lyase)), 17β-HSD, etc., and produces pregnenolone, progesterone, 5β-dihydroprogesterone (5β-DHP), 3β, 5β-tetrahydroprogesterone (3β, 5β-THP), androstenedione, testosterone, and estradiol from cholesterol. Independently, Schlinger's laboratory demonstrated that the brain of zebra finch, a songbird, also produces various neurosteroids. Thus, the formation and metabolism of neurosteroids from cholesterol is now known to occur in the brain of birds. In addition, we recently found that the quail brain expresses cytochrome P450(7α) and produces 7α- and 7β-hydroxypregnenolone, previously undescribed avian neurosteroids, from pregnenolone. This paper summarizes the advances made in our understanding of neurosteroid formation and metabolism in the brain of domestic birds. This paper also describes what are currently known about physiological changes in neurosteroid formation and biological functions of neurosteroids in the brain of domestic and other birds.
Collapse
Affiliation(s)
- Kazuyoshi Tsutsui
- Laboratory of Integrative Brain Sciences, Department of Biology, Waseda University, and Center for Medical Life Science of Waseda UniversityShinjuku-ku, Tokyo, Japan
- *Correspondence: Kazuyoshi Tsutsui, Laboratory of Integrative Brain Sciences, Department of Biology, Waseda University, and Center for Medical Life Science of Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan. e-mail:
| |
Collapse
|
265
|
McArthur S, Gillies GE. Peripheral vs. Central Sex Steroid Hormones in Experimental Parkinson's Disease. Front Endocrinol (Lausanne) 2011; 2:82. [PMID: 22649388 PMCID: PMC3355917 DOI: 10.3389/fendo.2011.00082] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Accepted: 11/10/2011] [Indexed: 01/01/2023] Open
Abstract
The nigrostriatal dopaminergic (NSDA) pathway degenerates in Parkinson's disease (PD), which occurs with approximately twice the incidence in men than women. Studies of the influence of systemic estrogens in females suggest sex hormones contribute to these differences. In this review we analyze the evidence revealing great complexity in the response of the healthy and injured NSDA system to hormonal influences, and emphasize the importance of centrally generated estrogens. At physiological levels, circulating estrogen (in females) or estrogen precursors (testosterone in males, aromatized to estrogen centrally) have negligible effects on dopaminergic neuron survival in experimental PD, but can modify striatal dopamine levels via actions on the activity or adaptive responses of surviving cells. However, these effects are sexually dimorphic. In females, estradiol promotes adaptive responses in the partially injured NSDA pathway, preserving striatal dopamine, whereas in males gonadal steroids and exogenous estradiol have a negligible or even suppressive effect, effectively exacerbating dopamine loss. On balance, the different effects of gonadal factors in males and females contribute to sex differences in experimental PD. Fundamental sex differences in brain organization, including the sexually dimorphic networks regulating NSDA activity are likely to underpin these responses. In contrast, estrogen generated locally appears to preserve striatal dopamine in both sexes. The available data therefore highlight the need to understand the biological basis of sex-specific responses of the NSDA system to peripheral hormones, so as to realize the potential for sex-specific, hormone-based therapies in PD. Furthermore, they suggest that targeting central steroid generation could be equally effective in preserving striatal dopamine in both sexes. Clarification of the relative roles of peripheral and central sex steroid hormones is thus an important challenge for future studies.
Collapse
Affiliation(s)
- Simon McArthur
- Department of Medicine, Centre for Neuroscience, Imperial College LondonLondon, UK
- *Correspondence: Simon McArthur, Department of Medicine, Centre for Neuroscience, Imperial College London, London SW7 2AZ, UK. e-mail:
| | - Glenda E. Gillies
- Department of Medicine, Centre for Neuroscience, Imperial College LondonLondon, UK
| |
Collapse
|
266
|
Taves MD, Schmidt KL, Ruhr IM, Kapusta K, Prior NH, Soma KK. Steroid concentrations in plasma, whole blood and brain: effects of saline perfusion to remove blood contamination from brain. PLoS One 2010; 5:e15727. [PMID: 21206751 PMCID: PMC3012083 DOI: 10.1371/journal.pone.0015727] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2010] [Accepted: 11/21/2010] [Indexed: 12/19/2022] Open
Abstract
The brain and other organs locally synthesize steroids. Local synthesis is suggested when steroid levels are higher in tissue than in the circulation. However, measurement of both circulating and tissue steroid levels are subject to methodological considerations. For example, plasma samples are commonly used to estimate circulating steroid levels in whole blood, but steroid levels in plasma and whole blood could differ. In addition, tissue steroid measurements might be affected by blood contamination, which can be addressed experimentally by using saline perfusion to remove blood. In Study 1, we measured corticosterone and testosterone (T) levels in zebra finch (Taeniopygia guttata) plasma, whole blood, and red blood cells (RBC). We also compared corticosterone in plasma, whole blood, and RBC at baseline and after 60 min restraint stress. In Study 2, we quantified corticosterone, dehydroepiandrosterone (DHEA), T, and 17β-estradiol (E2) levels in the brains of sham-perfused or saline-perfused subjects. In Study 1, corticosterone and T concentrations were highest in plasma, significantly lower in whole blood, and lowest in RBC. In Study 2, saline perfusion unexpectedly increased corticosterone levels in the rostral telencephalon but not other regions. In contrast, saline perfusion decreased DHEA levels in caudal telencephalon and diencephalon. Saline perfusion also increased E2 levels in caudal telencephalon. In summary, when comparing local and systemic steroid levels, the inclusion of whole blood samples should prove useful. Moreover, blood contamination has little or no effect on measurement of brain steroid levels, suggesting that saline perfusion is not necessary prior to brain collection. Indeed, saline perfusion itself may elevate and lower steroid concentrations in a rapid, region-specific manner.
Collapse
Affiliation(s)
- Matthew D Taves
- Department of Psychology, University of British Columbia, Vancouver, Canada.
| | | | | | | | | | | |
Collapse
|
267
|
Davare MA, Saneyoshi T, Soderling TR. Calmodulin-kinases regulate basal and estrogen stimulated medulloblastoma migration via Rac1. J Neurooncol 2010; 104:65-82. [PMID: 21107644 DOI: 10.1007/s11060-010-0472-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Accepted: 11/12/2010] [Indexed: 01/05/2023]
Abstract
Medulloblastoma is a highly prevalent pediatric central nervous system malignancy originating in the cerebellum, with a strong propensity for metastatic migration to the leptomeninges, which greatly increases mortality. While numerous investigations are focused on the molecular mechanisms of medulloblastoma histogenesis, the signaling pathways regulating migration are still poorly understood. Medulloblastoma likely arises from aberrant proliferative signaling in cerebellar granule precursor cells during development, and estrogen is a morphogen that promotes medulloblastoma cell migration. It has been previously shown that the calcium/calmodulin activated kinase kinase (CaMKK) pathway promotes cerebellar granule precursor migration and differentiation during normal cerebellar development via CaMKIV. Here we investigate the regulatory role of the CaMKK pathway in migration of the human medulloblastoma DAOY and cerebellar granule cells. Using pharmacological inhibitors and dominant negative approaches, we demonstrate that the CaMKK/CaMKI cascade regulates basal medulloblastoma cell migration via Rac1, in part by activation of the RacGEF, βPIX. Additionally, pharmacological inhibition of CaMKK blocks both the estrogen induced Rac1 activation and medulloblastoma migration. The CaMKK signaling module described here is one of the first reported calcium regulated pathways that modulates medulloblastoma migration. Since tumor dissemination requires cell migration to ectopic sites, this CaMKK pathway may be a putative therapeutic target to limit medulloblastoma metastasis.
Collapse
Affiliation(s)
- Monika A Davare
- Vollum Institute and Knight Cancer Institute, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA.
| | | | | |
Collapse
|
268
|
Caruso D, Pesaresi M, Maschi O, Giatti S, Garcia-Segura LM, Melcangi RC. Effect of short-and long-term gonadectomy on neuroactive steroid levels in the central and peripheral nervous system of male and female rats. J Neuroendocrinol 2010; 22:1137-47. [PMID: 20819120 DOI: 10.1111/j.1365-2826.2010.02064.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Significant levels of neuroactive steroids are still detected in the nervous system of rodents after the removal of peripheral steroidogenic glands. However, the influence of the plasma levels of gonadal steroids on the levels of neuroactive steroids in the nervous system has not so far been clarified in detail. Accordingly, by liquid chromatography tandem mass spectrometry, we have analysed the levels of neuroactive steroids in the sciatic nerve, in three central nervous system (CNS) regions (i.e. cerebellum, cerebral cortex and spinal cord) and in the plasma of male and female animals. The levels present in gonadally intact animals were compared with those present in short- and long-term gonadectomised animals. We observed that: (i) changes in neuroactive steroid levels in the nervous system after gonadectomy do not necessarily reflect the changes in plasma levels; (ii) long-term gonadectomy induces changes in the levels of neuroactive steroids in the peripheral nervous system (PNS) and the CNS that, in some cases, are different to those induced by short-term gonadectomy; (iii) the effect of gonadectomy on neuroactive steroid levels is different between the PNS and the CNS and within different CNS regions; and (iv) the effects of gonadectomy on neuroactive steroid levels in the nervous system show sex differences. Altogether, these observations indicate that the nervous system adapts its local levels of neuroactive steroids in response to changes in gonadal hormones with sex and regional specificity and depending on the duration of the peripheral modifications.
Collapse
Affiliation(s)
- D Caruso
- Department of Pharmacological Sciences, Università degli Studi di Milano, Milano, Italy
| | | | | | | | | | | |
Collapse
|
269
|
Tsutsui K, Haraguchi S, Matsunaga M, Koyama T, Do Rego JL, Vaudry H. Identification of 7alpha-hydroxypregnenolone, a novel bioactive amphibian neurosteroid stimulating locomotor activity, and its physiological roles in the regulation of locomotion. Gen Comp Endocrinol 2010; 168:275-9. [PMID: 20138182 DOI: 10.1016/j.ygcen.2010.01.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Revised: 01/13/2010] [Accepted: 01/31/2010] [Indexed: 11/24/2022]
Abstract
We now know that steroids can be synthesized de novo by the brain and the peripheral nervous system. Such steroids are called neurosteroids and de novo neurosteroidogenesis from cholesterol is a conserved property of vertebrate brains. Our studies over the past decade have demonstrated that the brain expresses several kinds of steroidogenic enzymes and produces a variety of neurosteroids in sub-mammalian species. However, neurosteroid biosynthetic pathways in amphibians, as well as other vertebrates may still not be fully mapped. We first found that the newt brain actively produces 7alpha-hydroxypregnenolone, a previously undescribed amphibian neurosteroid. We then demonstrated that 7alpha-hydroxypregnenolone acts as a novel bioactive neurosteroid to stimulate locomotor activity of newt by means of the dopaminergic system. Subsequently, we analyzed the physiological roles of 7alpha-hydroxypregnenolone in the regulation of locomotor activity of newt. This paper summarizes the advances made in our understanding of 7alpha-hydroxypregnenolone, a newly discovered bioactive amphibian neurosteroid stimulating locomotor activity, and its physiological roles in the regulation of locomotion in newt.
Collapse
Affiliation(s)
- Kazuyoshi Tsutsui
- Laboratory of Integrative Brain Sciences, Department of Biology, Waseda University, and Center for Medical Life Science of Waseda University, Tokyo 162-8480, Japan.
| | | | | | | | | | | |
Collapse
|
270
|
Fang F, Christian WV, Gorman SG, Cui M, Huang J, Tieu K, Ballatori N. Neurosteroid transport by the organic solute transporter OSTα-OSTβ. J Neurochem 2010; 115:220-33. [PMID: 20649839 DOI: 10.1111/j.1471-4159.2010.06920.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A variety of steroids, including pregnenolone sulfate (PREGS) and dehydroepiandrosterone sulfate (DHEAS) are synthesized by specific brain cells, and are then delivered to their target sites, where they exert potent effects on neuronal excitability. The present results demonstrate that [(3)H]DHEAS and [(3)H]PREGS are relatively high affinity substrates for the organic solute transporter, OSTα-OSTβ, and that the two proteins that constitute this transporter are selectively localized to steroidogenic cells in the cerebellum and hippocampus, namely the Purkinje cells and cells in the cornu ammonis region in both mouse and human brain. Analysis of Ostα and Ostβ mRNA levels in mouse Purkinje and hippocampal cells isolated via laser capture microdissection supported these findings. In addition, Ostα-deficient mice exhibited changes in serum DHEA and DHEAS levels, and in tissue distribution of administered [(3)H]DHEAS. OSTα and OSTβ proteins were also localized to the zona reticularis of human adrenal gland, the major region for DHEAS production in the periphery. These results demonstrate that OSTα-OSTβ is localized to steroidogenic cells of the brain and adrenal gland, and that it modulates DHEA/DHEAS homeostasis, suggesting that it may contribute to neurosteroid action.
Collapse
Affiliation(s)
- Fang Fang
- Department of Environmental Medicine, University of Rochester School of Medicine, Rochester, New York 14642, USA
| | | | | | | | | | | | | |
Collapse
|
271
|
Cornil CA, Charlier TD. Rapid behavioural effects of oestrogens and fast regulation of their local synthesis by brain aromatase. J Neuroendocrinol 2010; 22:664-73. [PMID: 20456609 PMCID: PMC3518857 DOI: 10.1111/j.1365-2826.2010.02023.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Besides their genomic effects, oestrogens, 17beta-oestradiol in particular, also activate cellular effects that may be too rapid (seconds to minutes) to result from de novo protein synthesis. Although the existence of such nongenomic actions has been extensively demonstrated in vitro, the understanding of their behavioural significance is only emerging. Recent findings provide evidence that acute oestrogen treatments significantly affect a variety of behavioural processes, including sexual behaviour, social communication and cognition. One question arising from these results concerns the source of the oestrogens mediating nongenomic effects in vivo. In this review, data collected in vitro and in vivo are presented supporting the notion that fast modulations of local testosterone aromatisation can rapidly control the local oestrogen concentration in a time frame compatible with their rapid actions. Taken together, these data provide compelling evidence of how rapid changes in the local production and action of oestrogens can shape complex behaviours.
Collapse
Affiliation(s)
- C A Cornil
- Behavioral Neuroendocrinology Research Group, GIGA Neurosciences, University of Liège, Liège, Belgium.
| | | |
Collapse
|
272
|
Aste N, Watanabe Y, Harada N, Saito N. Distribution and sex differences in aromatase-producing neurons in the brain of Japanese quail embryos. J Chem Neuroanat 2010; 39:272-88. [DOI: 10.1016/j.jchemneu.2010.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Revised: 02/16/2010] [Accepted: 02/16/2010] [Indexed: 01/24/2023]
|
273
|
Cellular cholesterol delivery, intracellular processing and utilization for biosynthesis of steroid hormones. Nutr Metab (Lond) 2010; 7:47. [PMID: 20515451 PMCID: PMC2890697 DOI: 10.1186/1743-7075-7-47] [Citation(s) in RCA: 321] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Accepted: 06/01/2010] [Indexed: 11/28/2022] Open
Abstract
Steroid hormones regulate diverse physiological functions such as reproduction, blood salt balance, maintenance of secondary sexual characteristics, response to stress, neuronal function and various metabolic processes. They are synthesized from cholesterol mainly in the adrenal gland and gonads in response to tissue-specific tropic hormones. These steroidogenic tissues are unique in that they require cholesterol not only for membrane biogenesis, maintenance of membrane fluidity and cell signaling, but also as the starting material for the biosynthesis of steroid hormones. It is not surprising, then, that cells of steroidogenic tissues have evolved with multiple pathways to assure the constant supply of cholesterol needed to maintain optimum steroid synthesis. The cholesterol utilized for steroidogenesis is derived from a combination of sources: 1) de novo synthesis in the endoplasmic reticulum (ER); 2) the mobilization of cholesteryl esters (CEs) stored in lipid droplets through cholesteryl ester hydrolase; 3) plasma lipoprotein-derived CEs obtained by either LDL receptor-mediated endocytic and/or SR-BI-mediated selective uptake; and 4) in some cultured cell systems from plasma membrane-associated free cholesterol. Here, we focus on recent insights into the molecules and cellular processes that mediate the uptake of plasma lipoprotein-derived cholesterol, events connected with the intracellular cholesterol processing and the role of crucial proteins that mediate cholesterol transport to mitochondria for its utilization for steroid hormone production. In particular, we discuss the structure and function of SR-BI, the importance of the selective cholesterol transport pathway in providing cholesterol substrate for steroid biosynthesis and the role of two key proteins, StAR and PBR/TSO in facilitating cholesterol delivery to inner mitochondrial membrane sites, where P450scc (CYP11A) is localized and where the conversion of cholesterol to pregnenolone (the common steroid precursor) takes place.
Collapse
|
274
|
Haraguchi S, Koyama T, Hasunuma I, Vaudry H, Tsutsui K. Prolactin increases the synthesis of 7alpha-hydroxypregnenolone, a key factor for induction of locomotor activity, in breeding male Newts. Endocrinology 2010; 151:2211-22. [PMID: 20219980 DOI: 10.1210/en.2009-1229] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We recently found that the Japanese red-bellied newt, Cynops pyrrhogaster, actively produces 7alpha-hydroxypregnenolone, a previously undescribed amphibian neurosteroid. 7alpha-Hydroxypregnenolone stimulates locomotor activity of male newts. Locomotor activity of male newts increases during the breeding period as in other wild animals, but the molecular mechanism for such a change in locomotor activity is poorly understood. Here we show that the adenohypophyseal hormone prolactin (PRL) stimulates 7alpha-hydroxypregnenolone synthesis in the brain, thus increasing locomotor activity of breeding male newts. In this study, cytochrome P450(7alpha) (CYP7B), a steroidogenic enzyme catalyzing the formation of 7alpha-hydroxypregnenolone, was first identified to analyze seasonal changes in 7alpha-hydroxypregnenolone synthesis. Only males exhibited marked seasonal changes in 7alpha-hydroxypregnenolone synthesis and CYP7B expression in the brain, with a maximum level in the spring breeding period when locomotor activity of males increases. Subsequently we identified PRL as a key component of the mechanism regulating 7alpha-hydroxypregnenolone synthesis. Hypophysectomy decreased 7alpha-hydroxypregnenolone synthesis in the male brain, whereas administration of PRL but not gonadotropins to hypophysectomized males caused a dose-dependent increase in 7alpha-hydroxypregnenolone synthesis. To analyze the mode of PRL action, CYP7B and the receptor for PRL were localized in the male brain. PRL receptor was expressed in the neurons expressing CYP7B in the magnocellular preoptic nucleus. Thus, PRL appears to act directly on neurosteroidogenic magnocellular preoptic nucleus neurons to regulate 7alpha-hydroxypregnenolone synthesis, thus inducing seasonal locomotor changes in male newts. This is the first report describing the regulation of neurosteroidogenesis in the brain by an adenohypophyseal hormone in any vertebrate.
Collapse
Affiliation(s)
- Shogo Haraguchi
- Laboratory of Integrative Brain Sciences, Department of Biology, Waseda University, Center for Medical Life Science of Waseda University, Tokyo, Japan
| | | | | | | | | |
Collapse
|
275
|
Balthazart J. Behavioral implications of rapid changes in steroid production action in the brain [Commentary on Pradhan D.S., Newman A.E.M., Wacker D.W., Wingfield J.C., Schlinger B.A. and Soma K.K.: Aggressive interactions rapidly increase androgen synthesis in the brain during the non-breeding season. Hormones and Behavior, 2010]. Horm Behav 2010; 57:375-8. [PMID: 20156442 PMCID: PMC2849856 DOI: 10.1016/j.yhbeh.2010.02.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Revised: 02/02/2010] [Accepted: 02/07/2010] [Indexed: 12/19/2022]
Affiliation(s)
- Jacques Balthazart
- University of Liège, GIGA Neurosciences, Research group in Behavioral Neuroendocrinology, Avenue de l'Hopital, 1 (BAT. B36), B-4000 Liège 1, Belgium.
| |
Collapse
|
276
|
Diotel N, Le Page Y, Mouriec K, Tong SK, Pellegrini E, Vaillant C, Anglade I, Brion F, Pakdel F, Chung BC, Kah O. Aromatase in the brain of teleost fish: expression, regulation and putative functions. Front Neuroendocrinol 2010; 31:172-92. [PMID: 20116395 DOI: 10.1016/j.yfrne.2010.01.003] [Citation(s) in RCA: 234] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Revised: 01/20/2010] [Accepted: 01/24/2010] [Indexed: 12/25/2022]
Abstract
Unlike that of mammals, the brain of teleost fish exhibits an intense aromatase activity due to the strong expression of one of two aromatase genes (aromatase A or cyp19a1a and aromatase B or cyp19a1b) that arose from a gene duplication event. In situ hybridization, immunohistochemistry and expression of GFP (green fluorescent protein) in transgenic tg(cyp19a1b-GFP) fish demonstrate that aromatase B is only expressed in radial glial cells (RGC) of adult fish. These cells persist throughout life and act as progenitors in the brain of both developing and adult fish. Although aromatase B-positive radial glial cells are most abundant in the preoptic area and the hypothalamus, they are observed throughout the entire central nervous system and spinal cord. In agreement with the fact that brain aromatase activity is correlated to sex steroid levels, the high expression of cyp19a1b is due to an auto-regulatory loop through which estrogens and aromatizable androgens up-regulate aromatase expression. This mechanism involves estrogen receptor binding on an estrogen response element located on the cyp19a1b promoter. Cell specificity is achieved by a mandatory cooperation between estrogen receptors and unidentified glial factors. Given the emerging roles of estrogens in neurogenesis, the unique feature of the adult fish brain suggests that, in addition to classical functions on brain sexual differentiation and sexual behaviour, aromatase expression in radial glial cells could be part of the mechanisms authorizing the maintenance of a high proliferative activity in the brain of fish.
Collapse
Affiliation(s)
- Nicolas Diotel
- Neurogenesis And OEstrogens, UMR CNRS 6026, IFR 140, Université de Rennes 1, Rennes, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
277
|
Jäntti SE, Tammimäki A, Raattamaa H, Piepponen P, Kostiainen R, Ketola RA. Determination of Steroids and Their Intact Glucuronide Conjugates in Mouse Brain by Capillary Liquid Chromatography-Tandem Mass Spectrometry. Anal Chem 2010; 82:3168-75. [DOI: 10.1021/ac902321z] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Sirkku E. Jäntti
- Division of Pharmaceutical Chemistry, Division of Pharmacology and Toxicology, and Centre for Drug Research, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014, Finland
| | - Anne Tammimäki
- Division of Pharmaceutical Chemistry, Division of Pharmacology and Toxicology, and Centre for Drug Research, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014, Finland
| | - Helena Raattamaa
- Division of Pharmaceutical Chemistry, Division of Pharmacology and Toxicology, and Centre for Drug Research, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014, Finland
| | - Petteri Piepponen
- Division of Pharmaceutical Chemistry, Division of Pharmacology and Toxicology, and Centre for Drug Research, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014, Finland
| | - Risto Kostiainen
- Division of Pharmaceutical Chemistry, Division of Pharmacology and Toxicology, and Centre for Drug Research, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014, Finland
| | - Raimo A. Ketola
- Division of Pharmaceutical Chemistry, Division of Pharmacology and Toxicology, and Centre for Drug Research, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014, Finland
| |
Collapse
|
278
|
Ritsner MS. Pregnenolone, dehydroepiandrosterone, and schizophrenia: alterations and clinical trials. CNS Neurosci Ther 2010; 16:32-44. [PMID: 20070787 DOI: 10.1111/j.1755-5949.2009.00118.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Neurosteroids, such as pregnenolone (PREG), dehydroepiandrosterone (DHEA), and their sulfates (PREGS and DHEAS) are reported to have a modulatory effect on neuronal excitability and synaptic plasticity. They also have many other functions associated with neuroprotection, response to stress, mood regulation, and cognitive performance. Furthermore, these neurosteroids have been linked to, and their levels are altered in, neuropsychiatric disorders. This review highlights what is currently known about the metabolism and mode of action of PREG and DHEA, as well as about alterations of these neurosteroids in schizophrenia. This review also provides substantial information about clinical trials with DHEA and PREG augmentation with of antipsychotic agents in schizophrenia.
Collapse
Affiliation(s)
- Michael S Ritsner
- Psychiatry Department, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, and Sha'ar Menashe Mental Health Center, Israel.
| |
Collapse
|
279
|
Luchetti S, Bossers K, Frajese GV, Swaab DF. Neurosteroid biosynthetic pathway changes in substantia nigra and caudate nucleus in Parkinson's disease. Brain Pathol 2010; 20:945-51. [PMID: 20406233 DOI: 10.1111/j.1750-3639.2010.00396.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
There is emerging evidence from animal studies for a neuroprotective role of sex steroids in neurodegenerative diseases, but studies in human brain are lacking. We have carried out an extensive study of the neurosteroid biosynthetic pathways in substantia nigra (SN), caudate nucleus (CN) and putamen (PU) of 7 Parkinson's disease (PD) patients and 7 matched controls. The mRNA levels of 37 genes including neurosteroid biosynthetic enzymes, hormone receptors and the neurosteroid-modulated gamma-amino-butyric acid -A (GABA-A) receptor subunits were analyzed by quantitative PCR (qPCR). In the SN, we found downregulation of 5alpha-reductase type 1 (5alpha-R1), sulfotransferase 2B1 (SULT2B1) and some GABA-A receptor subunits (alpha4, beta1) while in the CN, upregulation of 3alpha-hydroxysteroid dehydrogenase type 3 (3alpha-HSD3) and alpha4 GABA-A receptor subunit (22-fold) was observed. No significant differences were found in the PU. These data imply an involvement of pregnane steroids and changes in GABAergic neurotransmission in the neurodegenerative process and suggest that neurosteroids may deserve further investigation as potential therapeutic agents in PD.
Collapse
Affiliation(s)
- Sabina Luchetti
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
280
|
Charlier TD, Cornil CA, Ball GF, Balthazart J. Diversity of mechanisms involved in aromatase regulation and estrogen action in the brain. Biochim Biophys Acta Gen Subj 2010; 1800:1094-105. [PMID: 20060879 DOI: 10.1016/j.bbagen.2009.12.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Revised: 12/10/2009] [Accepted: 12/31/2009] [Indexed: 12/19/2022]
Abstract
BACKGROUND The mechanisms through which estrogens modulate neuronal physiology, brain morphology, and behavior in recent years have proven to be far more complex than previously thought. For example, a second nuclear estrogen receptor has been identified, a new family of coregulatory proteins regulating steroid-dependent gene transcriptions was discovered and, finally, it has become clear that estrogens have surprisingly rapid effects based on their actions on cell membranes, which in turn result in the modulation of intracellular signaling cascades. SCOPE OF REVIEW This paper presents a selective review of new findings in this area related to work in our laboratories, focusing on the role of estrogens in the activation of male sexual behavior. Two separate topics are considered. We first discuss functions of the steroid receptor coactivator-1 (SRC-1) that has emerged as a key limiting factor for behavioral effects of estradiol. Knocking-down its expression by antisense oligonucleotides drastically inhibits male-typical sexual behaviors. Secondly, we describe rapid regulations of brain estradiol production by calcium-dependent phosphorylations of the aromatase enzyme, themselves under the control of neurotransmitter activity. MAJOR CONCLUSIONS These rapid changes in estrogen bioavailability have clear behavioral consequences. Increases or decreases in estradiol concentrations respectively obtained by an acute injection of estradiol itself or of an aromatase inhibitor lead within 15-30 min to parallel changes in sexual behavior frequencies. GENERAL SIGNIFICANCE These new controls of estrogen action offer a vast array of possibilities for discrete local controls of estrogen action. They also represent a formidable challenge for neuroendocrinologists trying to obtain an integrated view of brain function in relation to behavior.
Collapse
|
281
|
Pelletier G. Steroidogenic Enzymes in the Brain: Morphological Aspects. PROGRESS IN BRAIN RESEARCH 2010; 181:193-207. [DOI: 10.1016/s0079-6123(08)81011-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
282
|
Immunohistochemical localization and biological activity of 3β-hydroxysteroid dehydrogenase and 5α-reductase in the brain of the frog, Rana esculenta, during development. J Chem Neuroanat 2010; 39:35-50. [DOI: 10.1016/j.jchemneu.2009.08.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Revised: 08/03/2009] [Accepted: 08/04/2009] [Indexed: 11/24/2022]
|
283
|
Abstract
This chapter provides an overview of neurosteroids, especially their impact on the brain, sex differences and their therapeutic potentials. Neurosteroids are synthesized within the brain and rapidly modulate neuronal excitability. They are classified as pregnane neurosteroids, such as allopregnanolone and allotetrahydrodeoxycorticosterone, androstane neurosteroids, such as androstanediol and etiocholanolone, and sulfated neurosteroids such as pregnenolone sulfate. Neurosteroids such as allopregnanolone are positive allosteric modulators of GABA-A receptors with powerful anti-seizure activity in diverse animal models. Neurosteroids increase both synaptic and tonic inhibition. They are endogenous regulators of seizure susceptibility, anxiety, and stress. Sulfated neurosteroids such as pregnenolone sulfate, which are negative GABA-A receptor modulators, are memory-enhancing agents. Sex differences in susceptibility to brain disorders could be due to neurosteroids and sexual dimorphism in specific structures of the human brain. Synthetic neurosteroids that exhibit better bioavailability and efficacy and drugs that enhance neurosteroid synthesis have therapeutic potential in anxiety, epilepsy, and other brain disorders. Clinical trials with the synthetic neurosteroid analog ganaxolone in the treatment of epilepsy have been encouraging. Neurosteroidogenic agents that lack benzodiazepine-like side effects show promise in the treatment of anxiety and depression.
Collapse
Affiliation(s)
- Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center, College Station, TX, USA.
| |
Collapse
|
284
|
Tsutsui K, Haraguchi S, Matsunaga M, Inoue K, Vaudry H. 7α-hydroxypregnenolone, a new key regulator of locomotor activity of vertebrates: identification, mode of action, and functional significance. Front Endocrinol (Lausanne) 2010; 1:9. [PMID: 22654788 PMCID: PMC3356142 DOI: 10.3389/fendo.2010.00009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Accepted: 12/10/2010] [Indexed: 11/13/2022] Open
Abstract
Steroids synthesized de novo by the central and peripheral nervous systems are called neurosteroids. The formation of neurosteroids from cholesterol in the brain was originally demonstrated in mammals by Baulieu and colleagues. Our studies over the past two decades have also shown that, in birds and amphibians as in mammals, the brain expresses several kinds of steroidogenic enzymes and produces a variety of neurosteroids. Thus, de novo neurosteroidogenesis from cholesterol is a conserved property that occurs throughout vertebrates. However, the biosynthetic pathways of neurosteroids in the brain of vertebrates was considered to be still incompletely elucidated. Recently, 7α-hydroxypregnenolone was identified as a novel bioactive neurosteroid stimulating locomotor activity in the brain of newts and quail through activation of the dopaminergic system. Subsequently, diurnal and seasonal changes in synthesis of 7α-hydroxypregnenolone in the brain were demonstrated. Interestingly, melatonin derived from the pineal gland and eyes regulates 7α-hydroxypregnenolone synthesis in the brain, thus inducing diurnal locomotor changes. Prolactin, an adenohypophyseal hormone, regulates 7α-hydroxypregnenolone synthesis in the brain, and may also induce seasonal locomotor changes. This review highlights the identification, mode of action, and functional significance of 7α-hydroxypregnenolone, a new key regulator of locomotor activity of vertebrates, in terms of diurnal and seasonal changes in 7α-hydroxypregnenolone synthesis, and describes some of their regulatory mechanisms.
Collapse
Affiliation(s)
- Kazuyoshi Tsutsui
- Laboratory of Integrative Brain Sciences, Department of Biology, Waseda University and Center for Medical Life Science of Waseda UniversityTokyo, Japan
- *Correspondence: Kazuyoshi Tsutsui, Laboratory of Integrative Brain Sciences, Department of Biology, Waseda University and Center for Medical Life Science of Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan. e-mail:
| | - Shogo Haraguchi
- Laboratory of Integrative Brain Sciences, Department of Biology, Waseda University and Center for Medical Life Science of Waseda UniversityTokyo, Japan
| | - Masahiro Matsunaga
- Laboratory of Brain Science, Faculty of Integrated Arts and Sciences, Hiroshima UniversityHigashi-Hiroshima, Japan
| | - Kazuhiko Inoue
- Laboratory of Integrative Brain Sciences, Department of Biology, Waseda University and Center for Medical Life Science of Waseda UniversityTokyo, Japan
- Laboratory of Brain Science, Faculty of Integrated Arts and Sciences, Hiroshima UniversityHigashi-Hiroshima, Japan
| | - Hubert Vaudry
- Laboratory of Neuronal and Neuroendocrine Differentiation and Communication (INSERM U982), European Institute for Peptide Research, University of RouenMont-Saint-Aignan, France
| |
Collapse
|
285
|
Grover S, Kukreti R. Research Highlights. Pharmacogenomics 2009. [DOI: 10.2217/pgs.09.157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Sandeep Grover
- Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), India
| | - Ritushree Kukreti
- Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), India
| |
Collapse
|
286
|
Lisman JE, Coyle JT, Green RW, Javitt DC, Benes FM, Heckers S, Grace AA. Circuit-based framework for understanding neurotransmitter and risk gene interactions in schizophrenia. Trends Neurosci 2008; 16:e43-71. [PMID: 18395805 DOI: 10.1111/j.1755-5949.2010.00163.x] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Many risk genes interact synergistically to produce schizophrenia and many neurotransmitter interactions have been implicated. We have developed a circuit-based framework for understanding gene and neurotransmitter interactions. NMDAR hypofunction has been implicated in schizophrenia because NMDAR antagonists reproduce symptoms of the disease. One action of antagonists is to reduce the excitation of fast-spiking interneurons, resulting in disinhibition of pyramidal cells. Overactive pyramidal cells, notably those in the hippocampus, can drive a hyperdopaminergic state that produces psychosis. Additional aspects of interneuron function can be understood in this framework, as follows. (i) In animal models, NMDAR antagonists reduce parvalbumin and GAD67, as found in schizophrenia. These changes produce further disinhibition and can be viewed as the aberrant response of a homeostatic system having a faulty activity sensor (the NMDAR). (ii) Disinhibition decreases the power of gamma oscillation and might thereby produce negative and cognitive symptoms. (iii) Nicotine enhances the output of interneurons, and might thereby contribute to its therapeutic effect in schizophrenia.
Collapse
Affiliation(s)
- John E Lisman
- Department of Biology, Brandeis University, 415 South Street, Waltham, MA 02454, USA.
| | | | | | | | | | | | | |
Collapse
|