251
|
The stringent response is essential for Pseudomonas aeruginosa virulence in the rat lung agar bead and Drosophila melanogaster feeding models of infection. Infect Immun 2011; 79:4094-104. [PMID: 21788391 DOI: 10.1128/iai.00193-11] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The stringent response is a regulatory system that allows bacteria to sense and adapt to nutrient-poor environments. The central mediator of the stringent response is the molecule guanosine 3',5'-bispyrophosphate (ppGpp), which is synthesized by the enzymes RelA and SpoT and which is also degraded by SpoT. Our laboratory previously demonstrated that a relA mutant of Pseudomonas aeruginosa, the principal cause of lung infections in cystic fibrosis patients, was attenuated in virulence in a Drosophila melanogaster feeding model of infection. In this study, we examined the role of spoT in P. aeruginosa virulence. We generated an insertion mutation in spoT within the previously constructed relA mutant, thereby producing a ppGpp-devoid strain. The relA spoT double mutant was unable to establish a chronic infection in D. melanogaster and was also avirulent in the rat lung agar bead model of infection, a model in which the relA mutant is fully virulent. Synthesis of the virulence determinants pyocyanin, elastase, protease, and siderophores was impaired in the relA spoT double mutant. This mutant was also defective in swarming and twitching, but not in swimming motility. The relA spoT mutant and, to a lesser extent, the relA mutant were less able to withstand stresses such as heat shock and oxidative stress than the wild-type strain PAO1, which may partially account for the inability of the relA spoT mutant to successfully colonize the rat lung. Our results indicate that the stringent response, and SpoT in particular, is a crucial regulator of virulence processes in P. aeruginosa.
Collapse
|
252
|
Repression of the antifungal activity of Pseudomonas sp. strain DF41 by the stringent response. Appl Environ Microbiol 2011; 77:5635-42. [PMID: 21705548 DOI: 10.1128/aem.02875-10] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The stringent response (SR) enables bacteria to adapt to nutrient limitation through production of the nucleotides guanosine tetraphosphate and guanosine pentaphosphate, collectively known as (p)ppGpp. Two enzymes are responsible for the intracellular pools of (p)ppGpp: RelA acts as a synthetase, while SpoT can function as either a synthetase or a hydrolase. We investigated how the SR affects the ability of the biological control agent Pseudomonas sp. strain DF41 to inhibit the fungal pathogen Sclerotinia sclerotiorum (Lib.) de Bary. Strain DF41 relA and relA spoT mutants were generated and found to exhibit increased antifungal activity. Strain DF41 produces a lipopeptide (LP) molecule that is essential for Sclerotinia biocontrol. LP production and protease activity were both elevated in the relA and relA spoT mutants. Addition of relA but not spoT in trans restored the mutant phenotype to that of the parent. Next, we investigated whether an association exists between the SR and known regulators of biocontrol, including the Gac system and RpoS. A gacS mutant of strain DF41 produced less (p)ppGpp and exhibited a 1.7-fold decrease in relA expression compared to the wild type, suggesting that relA forms part of the Gac regulon. We discovered that rpoS transcription was reduced significantly in the SR mutants. Furthermore, rpoS provided in trans restored protease activity to wild-type levels but did not attenuate antifungal activity. Finally, relA expression was decreased in the mutants, indicating that the SR is required for maximum expression of relA.
Collapse
|
253
|
Boutte CC, Crosson S. The complex logic of stringent response regulation in Caulobacter crescentus: starvation signalling in an oligotrophic environment. Mol Microbiol 2011; 80:695-714. [PMID: 21338423 PMCID: PMC3093662 DOI: 10.1111/j.1365-2958.2011.07602.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Bacteria rapidly adapt to nutritional changes via the stringent response, which entails starvation-induced synthesis of the small molecule, ppGpp, by RelA/SpoT homologue (Rsh) enzymes. Binding of ppGpp to RNA polymerase modulates the transcription of hundreds of genes and remodels the physiology of the cell. Studies of the stringent response have primarily focused on copiotrophic bacteria such as Escherichia coli; little is known about how stringent signalling is regulated in species that live in consistently nutrient-limited (i.e. oligotrophic) environments. Here we define the input logic and transcriptional output of the stringent response in the oligotroph, Caulobacter crescentus. The sole Rsh protein, SpoT(CC), binds to and is regulated by the ribosome, and exhibits AND-type control logic in which amino acid starvation is a necessary but insufficient signal for activation of ppGpp synthesis. While both glucose and ammonium starvation upregulate the synthesis of ppGpp, SpoT(CC) detects these starvation signals by two independent mechanisms. Although the logic of stringent response control in C. crescentus differs from E. coli, the global transcriptional effects of elevated ppGpp are similar, with the exception of 16S rRNA transcription, which is controlled independently of spoT(CC). This study highlights how the regulatory logic controlling the stringent response may be adapted to the nutritional niche of a bacterial species.
Collapse
Affiliation(s)
- Cara C. Boutte
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
| | - Sean Crosson
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
- The Committee on Microbiology, The University of Chicago, Chicago, IL, USA
| |
Collapse
|
254
|
|
255
|
Koskiniemi S, Pränting M, Gullberg E, Näsvall J, Andersson DI. Activation of cryptic aminoglycoside resistance in Salmonella enterica. Mol Microbiol 2011; 80:1464-78. [PMID: 21507083 DOI: 10.1111/j.1365-2958.2011.07657.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Aminoglycoside resistance in bacteria can be acquired by several mechanisms, including drug modification, target alteration, reduced uptake and increased efflux. Here we demonstrate that increased resistance to the aminoglycosides streptomycin and spectinomycin in Salmonella enterica can be conferred by increased expression of an aminoglycoside adenyl transferase encoded by the cryptic, chromosomally located aadA gene. During growth in rich medium the wild-type strain was susceptible but mutations that impaired electron transport and conferred a small colony variant (SCV) phenotype or growth in glucose/glycerol minimal media resulted in activation of the aadA gene and aminoglycoside resistance. Expression of the aadA gene was positively regulated by the stringent response regulator guanosine penta/tetraphosphate ((p)ppGpp). SCV mutants carrying stop codon mutations in the hemA and ubiA genes showed a streptomycin pseudo-dependent phenotype, where growth was stimulated by streptomycin. Our data suggest that this phenotype is due to streptomycin-induced readthrough of the stop codons, a resulting increase in HemA/UbiA levels and improved electron transport and growth. Our results demonstrate that environmental and mutational activation of a cryptic resistance gene can confer clinically significant resistance and that a streptomycin-pseudo-dependent phenotype can be generated via a novel mechanism that does not involve the classical rpsL mutations.
Collapse
Affiliation(s)
- Sanna Koskiniemi
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, SE-751 23 Uppsala, Sweden
| | | | | | | | | |
Collapse
|
256
|
Langklotz S, Narberhaus F. The Escherichia coli replication inhibitor CspD is subject to growth-regulated degradation by the Lon protease. Mol Microbiol 2011; 80:1313-25. [DOI: 10.1111/j.1365-2958.2011.07646.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
257
|
Wahl A, My L, Dumoulin R, Sturgis JN, Bouveret E. Antagonistic regulation of dgkA and plsB genes of phospholipid synthesis by multiple stress responses in Escherichia coli. Mol Microbiol 2011; 80:1260-75. [PMID: 21463370 DOI: 10.1111/j.1365-2958.2011.07641.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Phospholipid homeostasis of the bacterial membrane is maintained by biochemical regulation of the synthesis enzymes depending on the environment. However, genes encoding phospholipid synthesis enzymes might also be regulated during stress responses, in order for the bacteria to adapt their growth to changing environments. While few studies have addressed this question, global analyses show that specific genes are activated by alternative Sigma factors, and that phospholipid synthesis genes are co-ordinately regulated during stringent response. In Escherichia coli, the genes coding for glycerol-3-phosphate acyltransferase and diacylglycerol kinase (plsB and dgkA) are found next to each other in divergent orientations, suggesting a co-ordinated regulation. We investigated their regulation and found that these two genes are inversely regulated by a diversity of stress responses. plsB activation by σE is concomitant with a reduced DgkA amount. A second proximal promoter for plsB expression is responsible for basal plsB expression and is inhibited during stringent response. Finally, dgkA is activated by the two-component regulator BasR, linking dgkA function of phospholipid recycling to LPS modifications. In E. coli, PlsB and DgkA are key enzymes in the phospholipid synthesis pathway. Our results show that their expression is a crucial point of integration for different stress signals.
Collapse
Affiliation(s)
- Astrid Wahl
- LISM, CNRS, Aix-Marseille University, 31 chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| | | | | | | | | |
Collapse
|
258
|
Ning D, Qian Y, Miao X, Wen C. Role of the all1549 (ana-rsh) gene, a relA/spoT homolog, of the Cyanobacterium Anabaena sp. PCC7120. Curr Microbiol 2011; 62:1767-73. [PMID: 21461674 DOI: 10.1007/s00284-011-9926-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Accepted: 03/17/2011] [Indexed: 01/30/2023]
Abstract
The role of a single relA/spoT homolog all1549 (designated hereafter as ana-rsh) of the cyanobacterium Anabaena sp. PCC7120 was investigated. The complementation test in Escherichia coli showed that the protein encoded by ana-rsh possesses guanosine tetraphosphate (p)ppGpp-synthase/hydrolase activity. Under laboratory growth conditions, a low level of ppGpp was detected in Anabaena sp. PCC7120 and the loss of ana-rsh was lethal. Amino acid starvation induced ppGpp accumulation to an appropriate level, and nitrogen deficiency did not alter the ppGpp concentration in Anabaena cells. These data suggest that ana-rsh is required for cell viability under normal growth conditions and involved in the (p)ppGpp-related stringent response to amino acid deprivation, but not related to heterocyst formation and nitrogen fixation of Anabaena sp. PCC7120.
Collapse
Affiliation(s)
- Degang Ning
- Department of Environment Sciences, College of Environment, Jiangsu University, 301# Xuefu Road, Zhenjiang 212013, China.
| | | | | | | |
Collapse
|
259
|
Del Peso-Santos T, Bernardo LMD, Skärfstad E, Holmfeldt L, Togneri P, Shingler V. A hyper-mutant of the unusual sigma70-Pr promoter bypasses synergistic ppGpp/DksA co-stimulation. Nucleic Acids Res 2011; 39:5853-65. [PMID: 21447563 PMCID: PMC3152329 DOI: 10.1093/nar/gkr167] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The activities of promoters can be temporally and conditionally regulated by mechanisms other than classical DNA-binding repressors and activators. One example is the inherently weak σ70-dependent Pr promoter that ultimately controls catabolism of phenolic compounds. The activity of Pr is up-regulated through the joint action of ppGpp and DksA that enhance the performance of RNA polymerase at this promoter. Here, we report a mutagenesis analysis that revealed substantial differences between Pr and other ppGpp/DksA co-stimulated promoters. In vitro transcription and RNA polymerase binding assays show that it is the T at the −11 position of the extremely suboptimal −10 element of Pr that underlies both poor binding of σ70-RNAP and a slow rate of open complex formation—the process that is accelerated by ppGpp and DksA. Our findings support the idea that collaborative action of ppGpp and DksA lowers the rate-limiting transition energy required for conversion between intermediates on the road to open complex formation.
Collapse
|
260
|
Leplae R, Geeraerts D, Hallez R, Guglielmini J, Drèze P, Van Melderen L. Diversity of bacterial type II toxin-antitoxin systems: a comprehensive search and functional analysis of novel families. Nucleic Acids Res 2011; 39:5513-25. [PMID: 21422074 PMCID: PMC3141249 DOI: 10.1093/nar/gkr131] [Citation(s) in RCA: 316] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Type II toxin–antitoxin (TA) systems are generally composed of two genes organized in an operon, encoding a labile antitoxin and a stable toxin. They were first discovered on plasmids where they contribute to plasmid stability by a phenomenon denoted as ‘addiction’, and subsequently in bacterial chromosomes. To discover novel families of antitoxins and toxins, we developed a bioinformatics approach based on the ‘guilt by association’ principle. Extensive experimental validation in Escherichia coli of predicted antitoxins and toxins increased significantly the number of validated systems and defined novel toxin and antitoxin families. Our data suggest that toxin families as well as antitoxin families originate from distinct ancestors that were assembled multiple times during evolution. Toxin and antitoxin families found on plasmids tend to be promiscuous and widespread, indicating that TA systems move through horizontal gene transfer. We propose that due to their addictive properties, TA systems are likely to be maintained in chromosomes even though they do not necessarily confer an advantage to their bacterial hosts. Therefore, addiction might play a major role in the evolutionary success of TA systems both on mobile genetic elements and in bacterial chromosomes.
Collapse
Affiliation(s)
- Raphaël Leplae
- Laboratoire de Bioinformatique des Génomes et des Réseaux (BiGRe), Faculté des Sciences, Université Libre de Bruxelles, Bld du Triomphe, 1050 Bruxelles, Belgium and Laboratoire de Génétique et Physiologie Bactérienne, Institut de Biologie et de Médecine Moléculaires, Faculté des Sciences, Université Libre de Bruxelles, 12 rue des Professeurs Jeener et Brachet, 6041 Gosselies, Belgium
| | - Damien Geeraerts
- Laboratoire de Bioinformatique des Génomes et des Réseaux (BiGRe), Faculté des Sciences, Université Libre de Bruxelles, Bld du Triomphe, 1050 Bruxelles, Belgium and Laboratoire de Génétique et Physiologie Bactérienne, Institut de Biologie et de Médecine Moléculaires, Faculté des Sciences, Université Libre de Bruxelles, 12 rue des Professeurs Jeener et Brachet, 6041 Gosselies, Belgium
| | - Régis Hallez
- Laboratoire de Bioinformatique des Génomes et des Réseaux (BiGRe), Faculté des Sciences, Université Libre de Bruxelles, Bld du Triomphe, 1050 Bruxelles, Belgium and Laboratoire de Génétique et Physiologie Bactérienne, Institut de Biologie et de Médecine Moléculaires, Faculté des Sciences, Université Libre de Bruxelles, 12 rue des Professeurs Jeener et Brachet, 6041 Gosselies, Belgium
| | - Julien Guglielmini
- Laboratoire de Bioinformatique des Génomes et des Réseaux (BiGRe), Faculté des Sciences, Université Libre de Bruxelles, Bld du Triomphe, 1050 Bruxelles, Belgium and Laboratoire de Génétique et Physiologie Bactérienne, Institut de Biologie et de Médecine Moléculaires, Faculté des Sciences, Université Libre de Bruxelles, 12 rue des Professeurs Jeener et Brachet, 6041 Gosselies, Belgium
| | - Pierre Drèze
- Laboratoire de Bioinformatique des Génomes et des Réseaux (BiGRe), Faculté des Sciences, Université Libre de Bruxelles, Bld du Triomphe, 1050 Bruxelles, Belgium and Laboratoire de Génétique et Physiologie Bactérienne, Institut de Biologie et de Médecine Moléculaires, Faculté des Sciences, Université Libre de Bruxelles, 12 rue des Professeurs Jeener et Brachet, 6041 Gosselies, Belgium
| | - Laurence Van Melderen
- Laboratoire de Bioinformatique des Génomes et des Réseaux (BiGRe), Faculté des Sciences, Université Libre de Bruxelles, Bld du Triomphe, 1050 Bruxelles, Belgium and Laboratoire de Génétique et Physiologie Bactérienne, Institut de Biologie et de Médecine Moléculaires, Faculté des Sciences, Université Libre de Bruxelles, 12 rue des Professeurs Jeener et Brachet, 6041 Gosselies, Belgium
- *To whom correspondence should be addressed. Tel: +32 2 650 97 78; Fax: +32 2 650 97 70;
| |
Collapse
|
261
|
Direct regulation of Escherichia coli ribosomal protein promoters by the transcription factors ppGpp and DksA. Proc Natl Acad Sci U S A 2011; 108:5712-7. [PMID: 21402902 DOI: 10.1073/pnas.1019383108] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We show here that the promoters for many of the Escherichia coli ribosomal protein operons are regulated directly by two transcription factors, the small RNA polymerase-binding protein DksA and the nutritional stress-induced nucleotide ppGpp. ppGpp and DksA work together to inhibit transcription initiation from ribosomal protein promoters in vitro and in vivo. The degree of promoter regulation by ppGpp/DksA varies among the r-protein promoters, but some are inhibited almost as much as rRNA promoters. Thus, many r-protein operons are regulated at the level of transcription in addition to their control by the classic translational feedback systems discovered ~30 y ago. We conclude that direct control of r-protein promoters and rRNA promoters by the same signal, ppGpp/DksA, makes a major contribution to the balanced and coordinated synthesis rates of all of the ribosomal components.
Collapse
|
262
|
Abstract
It is widely accepted that the DNA, RNA and protein content of Enterobacteriaceae is regulated as a function of exponential growth rates; macromolecular content increases with faster growth regardless of specific composition of the growth medium. This phenomenon, called growth rate control, primarily involves regulation of ribosomal RNA and ribosomal protein synthesis. However, it was uncertain whether the global regulator ppGpp is the major determinant for growth rate control. Therefore, here we re-evaluate the effect of ppGpp on macromolecular content for different balanced growth rates in defined media. We find that when ppGpp is absent, RNA/protein and RNA/DNA ratios are equivalent in fast and slow growing cells. Moreover, slow growing ppGpp-deficient cells with increased RNA content, display a normal ribosomal subunit composition although polysome content is reduced when compared with fast growing wild-type cells. From this we conclude that growth rate control does not occur in the absence of ppGpp. Also, artificial elevation of ppGpp or introduction of stringent RNA polymerase mutants in ppGpp-deficient cells restores this control. We believe these findings strongly argue in favour of ppGpp and against redundant regulation of growth rate control by other factors in Escherichia coli and other enteric bacteria.
Collapse
Affiliation(s)
- Katarzyna Potrykus
- Laboratory of Molecular Genetics, Program in Genomics of Development, Eunice Kennedy Shriver NICHD, NIH, Bethesda, MD 20892-2785, USA
| | | | | | - Michael Cashel
- Laboratory of Molecular Genetics, Program in Genomics of Development, Eunice Kennedy Shriver NICHD, NIH, Bethesda, MD 20892-2785, USA
| |
Collapse
|
263
|
Abstract
Optimization of the specific affinity of cardiac delivery vector could significantly improve the efficiency of gene/protein delivery, yet no cardiac vectors to date have sufficient target specificity for myocardial infarction (MI). In this study, we explored bacterial tropism for infarcted myocardium based on our previous observations that certain bacteria are capable of targeting the hypoxic regions in solid tumors. Out of several Escherichia coli or Salmonella typhimurium strains, the S. typhimurium defective in the synthesis of ppGpp (ΔppGpp S. typhimurium) revealed accumulation and selective proliferation in the infarcted myocardium without spillover to noncardiac tissue. The Salmonellae that were engineered to express a variant of Renilla luciferase gene (RLuc8), under the control of the E. coli arabinose operon promoter (P(BAD)), selectively targeted and delivered RLuc8 in the infarcted myocardium only upon injection of L-arabinose. An examination of the infarct size before and after infection, and estimations of C-reactive protein (CRP) and procalcitonin indicated that intravenous injection of ΔppGpp S. typhimurium did not induce serious local or systemic immune reactions. This current proof-of-principle study demonstrates for the first time the capacity of Salmonellae to target infarcted myocardium and to serve as a vehicle for the selective delivery of therapeutic agents in MI.
Collapse
|
264
|
Traxler MF, Zacharia VM, Marquardt S, Summers SM, Nguyen HT, Stark SE, Conway T. Discretely calibrated regulatory loops controlled by ppGpp partition gene induction across the 'feast to famine' gradient in Escherichia coli. Mol Microbiol 2011; 79:830-45. [PMID: 21299642 PMCID: PMC3073637 DOI: 10.1111/j.1365-2958.2010.07498.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Bacteria comprehensively reorganize their global gene expression when faced with starvation. The alarmone ppGpp facilitates this massive response by co-ordinating the downregulation of genes of the translation apparatus, and the induction of biosynthetic genes and the general stress response. Such a large reorientation requires the activities of multiple regulators, yet the regulatory network downstream of ppGpp remains poorly defined. Transcription profiling during isoleucine depletion, which leads to gradual starvation (over > 100 min), allowed us to identify genes that required ppGpp, Lrp and RpoS for their induction and to deduce the regulon response times. Although the Lrp and RpoS regulons required ppGpp for their activation, they were not induced simultaneously. The data suggest that metabolic genes, i.e. those of the Lrp regulon, require only a low level of ppGpp for their induction. In contrast, the RpoS regulon was induced only when high levels of ppGpp accumulated. We tested several predictions of a model that explains how bacteria allocate transcriptional resources between metabolism and stress response by discretely tuning two regulatory circuits to different levels of ppGpp. The emergent regulatory structure insures that stress survival circuits are only triggered if homeostatic metabolic networks fail to compensate for environmental deficiencies.
Collapse
Affiliation(s)
| | | | - Stafford Marquardt
- Advanced Center for Genome Technology, University of Oklahoma, Norman, OK 73019
| | - Sean M. Summers
- Advanced Center for Genome Technology, University of Oklahoma, Norman, OK 73019
| | - Huyen-Tran Nguyen
- Advanced Center for Genome Technology, University of Oklahoma, Norman, OK 73019
| | - S. Elizabeth Stark
- Advanced Center for Genome Technology, University of Oklahoma, Norman, OK 73019
| | - Tyrrell Conway
- Advanced Center for Genome Technology, University of Oklahoma, Norman, OK 73019
| |
Collapse
|
265
|
Kanjee U, Gutsche I, Alexopoulos E, Zhao B, El Bakkouri M, Thibault G, Liu K, Ramachandran S, Snider J, Pai EF, Houry WA. Linkage between the bacterial acid stress and stringent responses: the structure of the inducible lysine decarboxylase. EMBO J 2011; 30:931-44. [PMID: 21278708 DOI: 10.1038/emboj.2011.5] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Accepted: 12/21/2010] [Indexed: 11/09/2022] Open
Abstract
The Escherichia coli inducible lysine decarboxylase, LdcI/CadA, together with the inner-membrane lysine-cadaverine antiporter, CadB, provide cells with protection against mild acidic conditions (pH∼5). To gain a better understanding of the molecular processes underlying the acid stress response, the X-ray crystal structure of LdcI was determined. The structure revealed that the protein is an oligomer of five dimers that associate to form a decamer. Surprisingly, LdcI was found to co-crystallize with the stringent response effector molecule ppGpp, also known as the alarmone, with 10 ppGpp molecules in the decamer. ppGpp is known to mediate the stringent response, which occurs in response to nutrient deprivation. The alarmone strongly inhibited LdcI enzymatic activity. This inhibition is important for modulating the consumption of lysine in cells during acid stress under nutrient limiting conditions. Hence, our data provide direct evidence for a link between the bacterial acid stress and stringent responses.
Collapse
Affiliation(s)
- Usheer Kanjee
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
266
|
Wilson WA, Roach PJ, Montero M, Baroja-Fernández E, Muñoz FJ, Eydallin G, Viale AM, Pozueta-Romero J. Regulation of glycogen metabolism in yeast and bacteria. FEMS Microbiol Rev 2011; 34:952-85. [PMID: 20412306 DOI: 10.1111/j.1574-6976.2010.00220.x] [Citation(s) in RCA: 279] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Microorganisms have the capacity to utilize a variety of nutrients and adapt to continuously changing environmental conditions. Many microorganisms, including yeast and bacteria, accumulate carbon and energy reserves to cope with the starvation conditions temporarily present in the environment. Glycogen biosynthesis is a main strategy for such metabolic storage, and a variety of sensing and signaling mechanisms have evolved in evolutionarily distant species to ensure the production of this homopolysaccharide. At the most fundamental level, the processes of glycogen synthesis and degradation in yeast and bacteria share certain broad similarities. However, the regulation of these processes is sometimes quite distinct, indicating that they have evolved separately to respond optimally to the habitat conditions of each species. This review aims to highlight the mechanisms, both at the transcriptional and at the post-transcriptional level, that regulate glycogen metabolism in yeast and bacteria, focusing on selected areas where the greatest increase in knowledge has occurred during the last few years. In the yeast system, we focus particularly on the various signaling pathways that control the activity of the enzymes of glycogen storage. We also discuss our recent understanding of the important role played by the vacuole in glycogen metabolism. In the case of bacterial glycogen, special emphasis is placed on aspects related to the genetic regulation of glycogen metabolism and its connection with other biological processes.
Collapse
Affiliation(s)
- Wayne A Wilson
- Biochemistry and Nutrition Department, Des Moines University, Des Moines, IA, USA
| | | | | | | | | | | | | | | |
Collapse
|
267
|
Abstract
Under conditions of nutrient deprivation or stress, or as cells enter stationary phase, Escherichia coli and related bacteria increase the accumulation of RpoS, a specialized sigma factor. RpoS-dependent gene expression leads to general stress resistance of cells. During rapid growth, RpoS translation is inhibited and any RpoS protein that is synthesized is rapidly degraded. The complex transition from exponential growth to stationary phase has been partially dissected by analyzing the induction of RpoS after specific stress treatments. Different stress conditions lead to induction of specific sRNAs that stimulate RpoS translation or to induction of small-protein antiadaptors that stabilize the protein. Recent progress has led to a better, but still far from complete, understanding of how stresses lead to RpoS induction and what RpoS-dependent genes help the cell deal with the stress.
Collapse
Affiliation(s)
- Aurelia Battesti
- Laboratory of Molecular Biology, National Cancer Institute, Bethesda, Maryland 20892, USA.
| | | | | |
Collapse
|
268
|
RNA polymerase mutants found through adaptive evolution reprogram Escherichia coli for optimal growth in minimal media. Proc Natl Acad Sci U S A 2010; 107:20500-5. [PMID: 21057108 DOI: 10.1073/pnas.0911253107] [Citation(s) in RCA: 177] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Specific small deletions within the rpoC gene encoding the β'-subunit of RNA polymerase (RNAP) are found repeatedly after adaptation of Escherichia coli K-12 MG1655 to growth in minimal media. Here we present a multiscale analysis of these mutations. At the physiological level, the mutants grow 60% faster than the parent strain and convert the carbon source 15-35% more efficiently to biomass, but grow about 30% slower than the parent strain in rich medium. At the molecular level, the kinetic parameters of the mutated RNAP were found to be altered, resulting in a 4- to 30-fold decrease in open complex longevity at an rRNA promoter and a ∼10-fold decrease in transcriptional pausing, with consequent increase in transcript elongation rate. At a genome-scale, systems biology level, gene expression changes between the parent strain and adapted RNAP mutants reveal large-scale systematic transcriptional changes that influence specific cellular processes, including strong down-regulation of motility, acid resistance, fimbria, and curlin genes. RNAP genome-binding maps reveal redistribution of RNAP that may facilitate relief of a metabolic bottleneck to growth. These findings suggest that reprogramming the kinetic parameters of RNAP through specific mutations allows regulatory adaptation for optimal growth in new environments.
Collapse
|
269
|
Spira B, Aguena M, de Castro Oliveira JV, Yagil E. Alternative promoters in the pst operon of Escherichia coli. Mol Genet Genomics 2010; 284:489-98. [PMID: 20963440 DOI: 10.1007/s00438-010-0584-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Accepted: 10/04/2010] [Indexed: 10/18/2022]
Abstract
The pst operon of Escherichia coli is composed of five genes pstS, pstC, pstA, pstB and phoU, that encode a high-affinity phosphate transport system and a negative regulator of the PHO regulon. Transcription of pst is induced under phosphate shortage and is initiated at the promoter located upstream of the first gene of the operon, pstS. Here, we show by four different technical approaches the existence of additional internal promoters upstream of pstC, pstB and phoU. These promoters are not induced by Pi-limitation and do not possess PHO-box sequences. Plasmids carrying the pst internal genes partially complement chromosomal mutations in their corresponding genes, indicating that they are translated into functional proteins.
Collapse
Affiliation(s)
- Beny Spira
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av. Prof. Lineu Prestes, 1374, São Paulo, SP 05508-900, Brazil.
| | | | | | | |
Collapse
|
270
|
SpdR, a response regulator required for stationary-phase induction of Caulobacter crescentus cspD. J Bacteriol 2010; 192:5991-6000. [PMID: 20833806 DOI: 10.1128/jb.00440-10] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cold shock protein (CSP) family includes small polypeptides that are induced upon temperature downshift and stationary phase. The genome of the alphaproteobacterium Caulobacter crescentus encodes four CSPs, with two being induced by cold shock and two at the onset of stationary phase. In order to identify the environmental signals and cell factors that are involved in cspD expression at stationary phase, we have analyzed cspD transcription during growth under several nutrient conditions. The results showed that expression of cspD was affected by the medium composition and was inversely proportional to the growth rate. The maximum levels of expression were decreased in a spoT mutant, indicating that ppGpp may be involved in the signalization for carbon starvation induction of cspD. A Tn5 mutant library was screened for mutants with reduced cspD expression, and 10 clones that showed at least a 50% reduction in expression were identified. Among these, a strain with a transposon insertion into a response regulator of a two-component system showed no induction of cspD at stationary phase. This protein (SpdR) was able to acquire a phosphate group from its cognate histidine kinase, and gel mobility shift assay and DNase I footprinting experiments showed that it binds to an inverted repeat sequence of the cspD regulatory region. A mutated SpdR with a substitution of the conserved aspartyl residue that is the probable phosphorylation site is unable to bind to the cspD regulatory region and to complement the spdR mutant phenotype.
Collapse
|
271
|
Cavanagh AT, Chandrangsu P, Wassarman KM. 6S RNA regulation of relA alters ppGpp levels in early stationary phase. MICROBIOLOGY-SGM 2010; 156:3791-3800. [PMID: 20829285 PMCID: PMC3068707 DOI: 10.1099/mic.0.043992-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
6S RNA is a small, non-coding RNA that interacts directly with σ70-RNA polymerase and regulates transcription at many σ70-dependent promoters. Here, we demonstrate that 6S RNA regulates transcription of relA, which encodes a ppGpp synthase. The 6S RNA-dependent regulation of relA expression results in increased ppGpp levels during early stationary phase in cells lacking 6S RNA. These changes in ppGpp levels, although modest, are sufficient to result in altered regulation of transcription from σ70-dependent promoters sensitive to ppGpp, including those promoting expression of genes involved in amino acid biosynthesis and rRNA. These data place 6S RNA as another player in maintaining appropriate gene expression as cells transition into stationary phase. Independent of this ppGpp-mediated 6S RNA-dependent regulation, we also demonstrate that in later stationary phase, 6S RNA continues to downregulate transcription in general, and specifically at a subset of the amino acid promoters, but through a mechanism that is independent of ppGpp and which we hypothesize is through direct regulation. In addition, 6S RNA-dependent regulation of σS activity is not mediated through observed changes in ppGpp levels. We suggest a role for 6S RNA in modulating transcription of several global regulators directly, including relA, to downregulate expression of key pathways in response to changing environmental conditions.
Collapse
Affiliation(s)
- Amy T Cavanagh
- Department of Bacteriology, University of Wisconsin-Madison, 1550 Linden Dr., Madison, WI 53706, USA
| | - Pete Chandrangsu
- Department of Bacteriology, University of Wisconsin-Madison, 1550 Linden Dr., Madison, WI 53706, USA
| | - Karen M Wassarman
- Department of Bacteriology, University of Wisconsin-Madison, 1550 Linden Dr., Madison, WI 53706, USA
| |
Collapse
|
272
|
Nejman B, Nadratowska-Wesołowska B, Szalewska-Pałasz A, Węgrzyn A, Węgrzyn G. Replication of plasmids derived from Shiga toxin-converting bacteriophages in starved Escherichia coli. MICROBIOLOGY-SGM 2010; 157:220-233. [PMID: 20829283 DOI: 10.1099/mic.0.042820-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The pathogenicity of Shiga toxin-producing Escherichia coli (STEC) depends on the expression of stx genes that are located on lambdoid prophages. Effective toxin production occurs only after prophage induction, and one may presume that replication of the phage genome is important for an increase in the dosage of stx genes, positively influencing their expression. We investigated the replication of plasmids derived from Shiga toxin (Stx)-converting bacteriophages in starved E. coli cells, as starvation conditions may be common in the intestine of infected humans. We found that, unlike plasmids derived from bacteriophage λ, the Shiga toxin phage-derived replicons did not replicate in amino acid-starved relA(+) and relA(-) cells (showing the stringent and relaxed responses to starvation, respectively). The presence of the stable fraction of the replication initiator O protein was detected in all tested replicons. However, while ppGpp, the stringent response effector, inhibited the activities of the λ P(R) promoter and its homologues from Shiga toxin-converting bacteriophages, these promoters, except for λ P(R), were only weakly stimulated by the DksA protein. We suggest that this less efficient (relative to λ) positive regulation of transcription responsible for transcriptional activation of the origin contributes to the inhibition of DNA replication initiation of Shiga toxin-converting bacteriophages in starved host cells, even in the absence of ppGpp (as in starved relA(-) hosts). Possible clinical implications of these results are discussed.
Collapse
Affiliation(s)
- Bożena Nejman
- Department of Molecular Biology, University of Gdańsk, Kładki 24, 80-822 Gdańsk, Poland
| | | | | | - Alicja Węgrzyn
- Laboratory of Molecular Biology (affiliated with the University of Gdańsk), Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Kładki 24, 80-822 Gdańsk, Poland
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, University of Gdańsk, Kładki 24, 80-822 Gdańsk, Poland
| |
Collapse
|
273
|
Sun D, Lee G, Lee JH, Kim HY, Rhee HW, Park SY, Kim KJ, Kim Y, Kim BY, Hong JI, Park C, Choy HE, Kim JH, Jeon YH, Chung J. A metazoan ortholog of SpoT hydrolyzes ppGpp and functions in starvation responses. Nat Struct Mol Biol 2010; 17:1188-94. [PMID: 20818390 DOI: 10.1038/nsmb.1906] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Accepted: 07/13/2010] [Indexed: 12/26/2022]
Abstract
In nutrient-starved bacteria, RelA and SpoT proteins have key roles in reducing cell growth and overcoming stresses. Here we identify functional SpoT orthologs in metazoa (named Mesh1, encoded by HDDC3 in human and Q9VAM9 in Drosophila melanogaster) and reveal their structures and functions. Like the bacterial enzyme, Mesh1 proteins contain an active site for ppGpp hydrolysis and a conserved His-Asp-box motif for Mn(2+) binding. Consistent with these structural data, Mesh1 efficiently catalyzes hydrolysis of guanosine 3',5'-diphosphate (ppGpp) both in vitro and in vivo. Mesh1 also suppresses SpoT-deficient lethality and RelA-induced delayed cell growth in bacteria. Notably, deletion of Mesh1 (Q9VAM9) in Drosophila induces retarded body growth and impaired starvation resistance. Microarray analyses reveal that the amino acid-starved Mesh1 null mutant has highly downregulated DNA and protein synthesis-related genes and upregulated stress-responsible genes. These data suggest that metazoan SpoT orthologs have an evolutionarily conserved function in starvation responses.
Collapse
Affiliation(s)
- Dawei Sun
- Division of Magnetic Resonance, Korea Basic Science Institute, Chungbuk, South Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
274
|
Kwon YK, Higgins MB, Rabinowitz JD. Antifolate-induced depletion of intracellular glycine and purines inhibits thymineless death in E. coli. ACS Chem Biol 2010; 5:787-95. [PMID: 20553049 PMCID: PMC2945287 DOI: 10.1021/cb100096f] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Despite the therapeutic importance of antifolates, the links between their direct antimetabolite activity and downstream consequences remain incompletely understood. Here we employ metabolomics to examine the complete metabolic effects of the antibiotic trimethoprim in E. coli. In rich media, trimethoprim treatment causes thymineless death. In minimal media, in contrast, trimethoprim addition results in rapid stoppage of cell growth and stable cell stasis. We show that initial impairment of cell growth is due to rapid depletion of glycine and associated activation of the stringent response. Long-term stasis is due to purine insufficiency. Thus, E. coli has dual systems for surviving folate depletion and avoiding thymineless death: a short-term response based on sensing of amino acids and a long-term response based on sensing of nucleotides.
Collapse
Affiliation(s)
- Yun Kyung Kwon
- Department of Chemistry and Lewis-Sigler Institute for Integrative Genomics, Carl Icahn Laboratory, Washington Road, Princeton University, Princeton, New Jersey 08544
| | - Meytal B. Higgins
- Department of Chemistry and Lewis-Sigler Institute for Integrative Genomics, Carl Icahn Laboratory, Washington Road, Princeton University, Princeton, New Jersey 08544
| | - Joshua D. Rabinowitz
- Department of Chemistry and Lewis-Sigler Institute for Integrative Genomics, Carl Icahn Laboratory, Washington Road, Princeton University, Princeton, New Jersey 08544
| |
Collapse
|
275
|
Nadratowska-Wesołowska B, Słomińska-Wojewódzka M, Łyzeń R, Wegrzyn A, Szalewska-Pałasz A, Wegrzyn G. Transcription regulation of the Escherichia coli pcnB gene coding for poly(A) polymerase I: roles of ppGpp, DksA and sigma factors. Mol Genet Genomics 2010; 284:289-305. [PMID: 20700605 PMCID: PMC2939334 DOI: 10.1007/s00438-010-0567-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2009] [Accepted: 07/24/2010] [Indexed: 12/27/2022]
Abstract
Poly(A) polymerase I (PAP I), encoded by the pcnB gene, is a major enzyme responsible for RNA polyadenylation in Escherichia coli, a process involved in the global control of gene expression in this bacterium through influencing the rate of transcript degradation. Recent studies have suggested a complicated regulation of pcnB expression, including a complex promoter region, a control at the level of translation initiation and dependence on bacterial growth rate. In this report, studies on transcription regulation of the pcnB gene are described. Results of in vivo and in vitro experiments indicated that (a) there are three σ70-dependent (p1, pB, and p2) and two σS-dependent (pS1 and pS2) promoters of the pcnB gene, (b) guanosine tetraphosphate (ppGpp) and DksA directly inhibit transcription from pB, pS1 and pS2, and (c) pB activity is drastically impaired at the stationary phase of growth. These results indicate that regulation of the pcnB gene transcription is a complex process, which involves several factors acting to ensure precise control of PAP I production. Moreover, inhibition of activities of pS1 and pS2 by ppGpp and DksA suggests that regulation of transcription from promoters requiring alternative σ factors by these effectors of the stringent response might occur according to both passive and active models.
Collapse
|
276
|
(p)ppGpp inhibits polynucleotide phosphorylase from streptomyces but not from Escherichia coli and increases the stability of bulk mRNA in Streptomyces coelicolor. J Bacteriol 2010; 192:4275-80. [PMID: 20581211 DOI: 10.1128/jb.00367-10] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ppGpp regulates gene expression in a variety of bacteria and in plants. We proposed previously that ppGpp or its precursor, pppGpp [referred to collectively as (p)ppGpp], or both might regulate the activity of the enzyme polynucleotide phosphorylase in Streptomyces species. We have examined the effects of (p)ppGpp on the polymerization and phosphorolysis activities of PNPase from Streptomyces coelicolor, Streptomyces antibioticus, and Escherichia coli. We have shown that (p)ppGpp inhibits the activities of both Streptomyces PNPases but not the E. coli enzyme. The inhibition kinetics for polymerization using the Streptomyces enzymes are of the mixed noncompetitive type, suggesting that (p)ppGpp binds to a region other than the active site of the enzyme. ppGpp also inhibited the phosphorolysis of a model RNA substrate derived from the rpsO-pnp operon of S. coelicolor. We have shown further that the chemical stability of mRNA increases during the stationary phase in S. coelicolor and that induction of a plasmid-borne copy of relA in a relA-null mutant increases the chemical stability of bulk mRNA as well. We speculate that the observed inhibition in vitro may reflect a role of ppGpp in the regulation of antibiotic production in vivo.
Collapse
|
277
|
Virulence gene regulation by CvfA, a putative RNase: the CvfA-enolase complex in Streptococcus pyogenes links nutritional stress, growth-phase control, and virulence gene expression. Infect Immun 2010; 78:2754-67. [PMID: 20385762 DOI: 10.1128/iai.01370-09] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus pyogenes, a multiple-auxotrophic human pathogen, regulates virulence gene expression according to nutritional availability during various stages in the infection process or in different infection sites. We discovered that CvfA influenced the expression of virulence genes according to growth phase and nutritional status. The influence of CvfA in C medium, rich in peptides and poor in carbohydrates, was most pronounced at the stationary phase. Under these conditions, up to 30% of the transcriptome exhibited altered expression; the levels of expression of multiple virulence genes were altered, including the genes encoding streptokinase, CAMP factor, streptolysin O, M protein (more abundant in the CvfA(-) mutant), SpeB, mitogenic factor, and streptolysin S (less abundant). The increase of carbohydrates or peptides in media restored the levels of expression of the virulence genes in the CvfA(-) mutant to wild-type levels (emm, ska, and cfa by carbohydrates; speB by peptides). Even though the regulation of gene expression dependent on nutritional stress is commonly linked to the stringent response, the levels of ppGpp were not altered by deletion of cvfA. Instead, CvfA interacted with enolase, implying that CvfA, a putative RNase, controls the transcript decay rates of virulence factors or their regulators according to nutritional status. The virulence of CvfA(-) mutants was highly attenuated in murine models, indicating that CvfA-mediated gene regulation is necessary for the pathogenesis of S. pyogenes. Taken together, the CvfA-enolase complex in S. pyogenes is involved in the regulation of virulence gene expression by controlling RNA degradation according to nutritional stress.
Collapse
|
278
|
Hallez R, Geeraerts D, Sterckx Y, Mine N, Loris R, Van Melderen L. New toxins homologous to ParE belonging to three-component toxin-antitoxin systems in Escherichia coli O157:H7. Mol Microbiol 2010; 76:719-32. [PMID: 20345661 DOI: 10.1111/j.1365-2958.2010.07129.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Type II toxin-antitoxin (TA) systems are considered as protein pairs in which a specific toxin is associated with a specific antitoxin. We have identified a novel antitoxin family (paaA) that is associated with parE toxins. The paaA-parE gene pairs form an operon with a third component (paaR) encoding a transcriptional regulator. Two paralogous paaR-paaA-parE systems are found in E. coli O157:H7. Deletions of the paaA-parE pairs in O157:H7 allowed us to show that these systems are expressed in their natural host and that PaaA antitoxins specifically counteract toxicity of their associated ParE toxin. For the paaR2-paaA2-parE2 system, PaaR2 and Paa2-ParE2 complex are able to regulate the operon expression and both are necessary to ensure complete repression. The paaR2-paaA2-parE2 system mediates ClpXP-dependent post-segregational killing. The PaaR2 regulator appears to be essential for this function, most likely by maintaining an appropriate antitoxin : toxin ratio in steady-state conditions. Ectopic overexpression of ParE2 is bactericidal and is not resuscitated by PaaA2 expression. ParE2 colocalizes with the nucleoid, while it is diffusely distributed in the cytoplasm when PaaA2 is coexpressed. This indicates that ParE2 interacts with DNA-gyrase cycling on DNA and that coexpression of PaaA2 antitoxin sequesters ParE2 away from its target by protein-protein complex formation.
Collapse
Affiliation(s)
- Régis Hallez
- Laboratoire de Génétique et Physiologie Bactérienne, Institut de Biologie et de Médecine Moléculaires (IBMM), Faculté des Sciences, Université Libre de Bruxelles, 12, rue des Professeurs Jeener et Brachet, B-6041 Gosselies, Belgium
| | | | | | | | | | | |
Collapse
|
279
|
Role of the (p)ppGpp synthase RSH, a RelA/SpoT homolog, in stringent response and virulence of Staphylococcus aureus. Infect Immun 2010; 78:1873-83. [PMID: 20212088 DOI: 10.1128/iai.01439-09] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In most bacteria, nutrient limitations provoke the stringent control through the rapid synthesis of the alarmones pppGpp and ppGpp. Little is known about the stringent control in the human pathogen Staphylococcus aureus, partly due to the essentiality of the major (p)ppGpp synthase/hydrolase enzyme RSH (RelA/SpoT homolog). Here, we show that mutants defective only in the synthase domain of RSH (rsh(syn)) are not impaired in growth under nutrient-rich conditions. However, these mutants were more sensitive toward mupirocin and were impaired in survival when essential amino acids were depleted from the medium. RSH is the major enzyme responsible for (p)ppGpp synthesis in response to amino acid deprivation (lack of Leu/Val) or mupirocin treatment. Transcriptional analysis showed that the RSH-dependent stringent control in S. aureus is characterized by repression of genes whose products are predicted to be involved in the translation machinery and by upregulation of genes coding for enzymes involved in amino acid metabolism and transport which are controlled by the repressor CodY. Amino acid starvation also provoked stabilization of the RNAs coding for major virulence regulators, such as SaeRS and SarA, independently of RSH. In an animal model, the rsh(syn) mutant was shown to be less virulent than the wild type. Virulence could be restored by the introduction of a codY mutation into the rsh(syn) mutant. These results indicate that stringent conditions are present during infection and that RSH-dependent derepression of CodY-regulated genes is essential for virulence in S. aureus.
Collapse
|
280
|
Navarro Llorens JM, Tormo A, Martínez-García E. Stationary phase in gram-negative bacteria. FEMS Microbiol Rev 2010; 34:476-95. [PMID: 20236330 DOI: 10.1111/j.1574-6976.2010.00213.x] [Citation(s) in RCA: 329] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Conditions that sustain constant bacterial growth are seldom found in nature. Oligotrophic environments and competition among microorganisms force bacteria to be able to adapt quickly to rough and changing situations. A particular lifestyle composed of continuous cycles of growth and starvation is commonly referred to as feast and famine. Bacteria have developed many different mechanisms to survive in nutrient-depleted and harsh environments, varying from producing a more resistant vegetative cell to complex developmental programmes. As a consequence of prolonged starvation, certain bacterial species enter a dynamic nonproliferative state in which continuous cycles of growth and death occur until 'better times' come (restoration of favourable growth conditions). In the laboratory, microbiologists approach famine situations using batch culture conditions. The entrance to the stationary phase is a very regulated process governed by the alternative sigma factor RpoS. Induction of RpoS changes the gene expression pattern, aiming to produce a more resistant cell. The study of stationary phase revealed very interesting phenomena such as the growth advantage in stationary phase phenotype. This review focuses on some of the interesting responses of gram-negative bacteria when they enter the fascinating world of stationary phase.
Collapse
|
281
|
Eydallin G, Montero M, Almagro G, Sesma MT, Viale AM, Muñoz FJ, Rahimpour M, Baroja-Fernández E, Pozueta-Romero J. Genome-wide screening of genes whose enhanced expression affects glycogen accumulation in Escherichia coli. DNA Res 2010; 17:61-71. [PMID: 20118147 PMCID: PMC2853380 DOI: 10.1093/dnares/dsp028] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Using a systematic and comprehensive gene expression library (the ASKA library), we have carried out a genome-wide screening of the genes whose increased plasmid-directed expression affected glycogen metabolism in Escherichia coli. Of the 4123 clones of the collection, 28 displayed a glycogen-excess phenotype, whereas 58 displayed a glycogen-deficient phenotype. The genes whose enhanced expression affected glycogen accumulation were classified into various functional categories including carbon sensing, transport and metabolism, general stress and stringent responses, factors determining intercellular communication, aggregative and social behaviour, nitrogen metabolism and energy status. Noteworthy, one-third of them were genes about which little or nothing is known. We propose an integrated metabolic model wherein E. coli glycogen metabolism is highly interconnected with a wide variety of cellular processes and is tightly adjusted to the nutritional and energetic status of the cell. Furthermore, we provide clues about possible biological roles of genes of still unknown functions.
Collapse
Affiliation(s)
- Gustavo Eydallin
- Instituto de Agrobiotecnología, Universidad Pública de Navarra/Gobierno de Navarra/Consejo Superior de Investigaciones Científicas, Mutiloako etorbidea zenbaki gabe, Mutiloabeiti, Nafarroa, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
282
|
Delineation of a bacterial starvation stress response network which can mediate antibiotic tolerance development. Antimicrob Agents Chemother 2010; 54:1082-93. [PMID: 20086164 DOI: 10.1128/aac.01218-09] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This study aimed at elucidating the physiological basis of bacterial antibiotic tolerance. By use of a combined phenotypic and gene knockout approach, exogenous nutrient composition was identified as a crucial environmental factor which could mediate progressive development of tolerance with markedly varied drug specificity and sustainability. Deprivation of amino acids was a prerequisite for tolerance formation, conferring condition-specific phenotypes against inhibitors of cell wall synthesis and DNA replication (ampicillin and ofloxacin, respectively), according to the relative abundances of ammonium salts, phosphate, and nucleobases. Upon further depletion of glucose, this variable phase consistently evolved into a sustainable mode, along with enhanced capacity to withstand the effect of the protein synthesis inhibitor gentamicin. Nevertheless, all phenotypes produced during spontaneous nutrient depletion lacked the sustainable, multidrug-tolerant features exhibited by the stationary-phase population and were attributed to complex interaction between starvation-mediated metabolic and stress protection responses on the basis of the following reasons: (i) the nutrition-dependent tolerance characteristics observed suggested that adaptive biosynthetic mechanisms could suppress but not fully avert tolerance under transient starvation conditions; (ii) formation of specific phenotypes could be inhibited by suppressing protein synthesis prior to nutrient depletion; (iii) bacteriostatic drugs produced only weak tolerance in the absence of starvation signals; and (iv) the attenuation of the stringent and SOS responses, as well as the functionality of other putative tolerance determinants, including rpoS, hipA, glpD, and phoU, could alter the induction requirement and drug specificity of the resultant phenotypes. These data reveal the common physiological grounds characteristic of starvation responses and the onset of antibiotic tolerance in bacteria.
Collapse
|
283
|
Bollenbach T, Quan S, Chait R, Kishony R. Nonoptimal microbial response to antibiotics underlies suppressive drug interactions. Cell 2009; 139:707-18. [PMID: 19914165 DOI: 10.1016/j.cell.2009.10.025] [Citation(s) in RCA: 171] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Revised: 06/15/2009] [Accepted: 10/14/2009] [Indexed: 11/30/2022]
Abstract
Suppressive drug interactions, in which one antibiotic can actually help bacterial cells to grow faster in the presence of another, occur between protein and DNA synthesis inhibitors. Here, we show that this suppression results from nonoptimal regulation of ribosomal genes in the presence of DNA stress. Using GFP-tagged transcription reporters in Escherichia coli, we find that ribosomal genes are not directly regulated by DNA stress, leading to an imbalance between cellular DNA and protein content. To test whether ribosomal gene expression under DNA stress is nonoptimal for growth rate, we sequentially deleted up to six of the seven ribosomal RNA operons. These synthetic manipulations of ribosomal gene expression correct the protein-DNA imbalance, lead to improved survival and growth, and completely remove the suppressive drug interaction. A simple mathematical model explains the nonoptimal regulation in different nutrient environments. These results reveal the genetic mechanism underlying an important class of suppressive drug interactions.
Collapse
Affiliation(s)
- Tobias Bollenbach
- Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
284
|
Growth phase and (p)ppGpp control of IraD, a regulator of RpoS stability, in Escherichia coli. J Bacteriol 2009; 191:7436-46. [PMID: 19820090 DOI: 10.1128/jb.00412-09] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The antiadaptor protein IraD inhibits the proteolysis of the alternative sigma factor, RpoS, which promotes the synthesis of >100 genes during the general stress response and during stationary phase. Our previous results showed that IraD determines RpoS steady-state levels during exponential growth and mediates its stabilization after DNA damage. In this study, we show by promoter fusions that iraD was upregulated during the transition from exponential growth to stationary phase. The levels of RpoS likewise rose during this transition in a partially IraD-dependent manner. The expression of iraD was under the control of ppGpp. The expression of iraD required RelA and SpoT (p)ppGpp synthetase activities and was dramatically induced by a "stringent" allele of RNA polymerase, culminating in elevated levels of RpoS. Surprisingly, DksA, normally required for transcriptional effects of the stringent response, repressed iraD expression, suggesting that DksA can exert regulatory effects independent of and opposing those of (p)ppGpp. Northern blot analysis and 5' rapid amplification of cDNA ends revealed two transcripts for iraD in wild-type strains; the smaller was regulated positively by RelA during growth; the larger transcript was induced specifically upon transition to stationary phase and was RelA SpoT dependent. A reporter fusion to the distal promoter indicated that it accounts for growth-phase regulation and DNA damage inducibility. DNA damage inducibility occurred in strains unable to synthesize (p)ppGpp, indicating an additional mode of regulation. Our results suggest that the induction of RpoS during transition to stationary phase and by (p)ppGpp occurs at least partially through IraD.
Collapse
|
285
|
Promoter strength properties of the complete sigma E regulon of Escherichia coli and Salmonella enterica. J Bacteriol 2009; 191:7279-87. [PMID: 19783623 DOI: 10.1128/jb.01047-09] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The sigma(E)-directed envelope stress response maintains outer membrane homeostasis and is an important virulence determinant upon host infection in Escherichia coli and related bacteria. sigma(E) is activated by at least two distinct mechanisms: accumulation of outer membrane porin precursors and an increase in the alarmone ppGpp upon transition to stationary phase. Expression of the sigma(E) regulon is driven from a suite of approximately 60 sigma(E)-dependent promoters. Using green fluorescent protein fusions to each of these promoters, we dissected promoter contributions to the output of the regulon under a variety of in vivo conditions. We found that the sigma(E) promoters exhibit a large dynamic range, with a few strong and many weak promoters. Interestingly, the strongest promoters control either transcriptional regulators or functions related to porin homeostasis, the very functions conserved among E. coli and its close relatives. We found that (i) the strength of most promoters is significantly affected by the presence of the upstream (-35 to -65) region of the promoter, which encompasses the UP element, a binding site for the C-terminal domain of the alpha-subunit of RNA polymerase; (ii) ppGpp generally activates sigma(E) promoters, and (iii) sigma(E) promoters are responsive to changing sigma(E) holoenzyme levels under physiological conditions, reinforcing the idea that the sigma(E) regulon is extremely dynamic, enabling cellular adaptation to a constantly changing environment.
Collapse
|
286
|
Dean RE, Ireland PM, Jordan JE, Titball RW, Oyston PCF. RelA regulates virulence and intracellular survival of Francisella novicida. MICROBIOLOGY-SGM 2009; 155:4104-4113. [PMID: 19762448 DOI: 10.1099/mic.0.031021-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Analysis of the genome of Francisella tularensis has revealed few regulatory systems, and how the organism adapts to conditions in different niches is poorly understood. The stringent response is a global stress response mediated by (p)ppGpp. The enzyme RelA has been shown to be involved in generation of this signal molecule in a range of bacterial species. We investigated the effect of inactivation of the relA gene in Francisella by generating a mutant in Francisella novicida. Under amino acid starvation conditions, the relA mutant was defective for (p)ppGpp production. Characterization showed the mutant to grow similarly to the wild-type, except that it entered stationary phase later than wild-type cultures, resulting in higher cell yields. The relA mutant showed increased biofilm formation, which may be linked to the delay in entering stationary phase, which in turn would result in higher cell numbers present in the biofilm and reduced resistance to in vitro stress. The mutant was attenuated in the J774A macrophage cell line and was shown to be attenuated in the mouse model of tularaemia, but was able to induce a protective immune response. Therefore, (p)ppGpp appears to be an important intracellular signal, integral to the pathogenesis of F. novicida.
Collapse
Affiliation(s)
- R E Dean
- Biomedical Sciences, Dstl Porton Down, Salisbury, Wiltshire SP4 0JQ, UK
| | - P M Ireland
- Biomedical Sciences, Dstl Porton Down, Salisbury, Wiltshire SP4 0JQ, UK
| | - J E Jordan
- Biomedical Sciences, Dstl Porton Down, Salisbury, Wiltshire SP4 0JQ, UK
| | - R W Titball
- School of Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| | - P C F Oyston
- Biomedical Sciences, Dstl Porton Down, Salisbury, Wiltshire SP4 0JQ, UK
| |
Collapse
|
287
|
The role of relA and spoT in Yersinia pestis KIM5 pathogenicity. PLoS One 2009; 4:e6720. [PMID: 19701461 PMCID: PMC2726946 DOI: 10.1371/journal.pone.0006720] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Accepted: 07/20/2009] [Indexed: 01/17/2023] Open
Abstract
The ppGpp molecule is part of a highly conserved regulatory system for mediating the growth response to various environmental conditions. This mechanism may represent a common strategy whereby pathogens such as Yersinia pestis, the causative agent of plague, regulate the virulence gene programs required for invasion, survival and persistence within host cells to match the capacity for growth. The products of the relA and spoT genes carry out ppGpp synthesis. To investigate the role of ppGpp on growth, protein synthesis, gene expression and virulence, we constructed a ΔrelA ΔspoT Y. pestis mutant. The mutant was no longer able to synthesize ppGpp in response to amino acid or carbon starvation, as expected. We also found that it exhibited several novel phenotypes, including a reduced growth rate and autoaggregation at 26°C. In addition, there was a reduction in the level of secretion of key virulence proteins and the mutant was>1,000-fold less virulent than its wild-type parent strain. Mice vaccinated subcutaneously (s.c.) with 2.5×104 CFU of the ΔrelA ΔspoT mutant developed high anti-Y. pestis serum IgG titers, were completely protected against s.c. challenge with 1.5×105 CFU of virulent Y. pestis and partially protected (60% survival) against pulmonary challenge with 2.0×104 CFU of virulent Y. pestis. Our results indicate that ppGpp represents an important virulence determinant in Y. pestis and the ΔrelA ΔspoT mutant strain is a promising vaccine candidate to provide protection against plague.
Collapse
|
288
|
Increased RNA polymerase availability directs resources towards growth at the expense of maintenance. EMBO J 2009; 28:2209-19. [PMID: 19574956 DOI: 10.1038/emboj.2009.181] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Accepted: 06/05/2009] [Indexed: 11/08/2022] Open
Abstract
Nutritionally induced changes in RNA polymerase availability have been hypothesized to be an evolutionary primeval mechanism for regulation of gene expression and several contrasting models have been proposed to explain how such 'passive' regulation might occur. We demonstrate here that ectopically elevating Escherichia coli RNA polymerase (Esigma(70)) levels causes an increased expression and promoter occupancy of ribosomal genes at the expense of stress-defense genes and amino acid biosynthetic operons. Phenotypically, cells overproducing Esigma(70) favours growth and reproduction at the expense of motility and damage protection; a response reminiscent of cells with no or diminished levels of the alarmone guanosine tetraphosphate (ppGpp). Consistently, we show that cells lacking ppGpp displayed markedly elevated levels of free Esigma(70) compared with wild-type cells and that the repression of ribosomal RNA expression and reduced growth rate of mutants with constitutively elevated levels of ppGpp can be suppressed by overproducing Esigma(70). We conclude that ppGpp modulates the levels of free Esigma(70) and that this is an integral part of the alarmone's means of regulating a trade-off between growth and maintenance.
Collapse
|
289
|
Persky NS, Ferullo DJ, Cooper DL, Moore HR, Lovett ST. The ObgE/CgtA GTPase influences the stringent response to amino acid starvation in Escherichia coli. Mol Microbiol 2009; 73:253-66. [PMID: 19555460 PMCID: PMC2771346 DOI: 10.1111/j.1365-2958.2009.06767.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The stringent response is important for bacterial survival under stressful conditions, such as amino acid starvation, and is characterized by the accumulation of ppGpp and pppGpp. ObgE (CgtA, YhbZ) is an essential conserved GTPase in Escherichia coli and several observations have implicated the protein in the control of the stringent response. However, consequences of the protein on specific responses to amino acid starvation have not been noted. We show that ObgE binds to ppGpp with biologically relevant affinity in vitro, implicating ppGpp as an in vivo ligand of ObgE. ObgE mutants increase the ratio of pppGpp to ppGpp within the cell during the stringent response. These changes are correlated with a delayed inhibition of DNA replication by the stringent response, delayed resumption of DNA replication after release, as well as a decreased survival after amino acid deprivation. With these data, we place ObgE as an active effector of the response to amino acid starvation in vivo. Our data correlate the pppGpp/ppGpp ratio with DNA replication control under bacterial starvation conditions, suggesting a possible role for the relative balance of these two nucleotides.
Collapse
Affiliation(s)
- Nicole S. Persky
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA
| | - Daniel J. Ferullo
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA
| | - Deani L. Cooper
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA
| | - Hayley R. Moore
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA
| | - Susan T. Lovett
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA
| |
Collapse
|
290
|
Boehm A, Steiner S, Zaehringer F, Casanova A, Hamburger F, Ritz D, Keck W, Ackermann M, Schirmer T, Jenal U. Second messenger signalling governs Escherichia coli biofilm induction upon ribosomal stress. Mol Microbiol 2009; 72:1500-16. [PMID: 19460094 DOI: 10.1111/j.1365-2958.2009.06739.x] [Citation(s) in RCA: 160] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Biofilms are communities of surface-attached, matrix-embedded microbial cells that can resist antimicrobial chemotherapy and contribute to persistent infections. Using an Escherichia coli biofilm model we found that exposure of bacteria to subinhibitory concentrations of ribosome-targeting antibiotics leads to strong biofilm induction. We present evidence that this effect is elicited by the ribosome in response to translational stress. Biofilm induction involves upregulation of the polysaccharide adhesin poly-beta-1,6-N-acetyl-glucosamine (poly-GlcNAc) and two components of the poly-GlcNAc biosynthesis machinery, PgaA and PgaD. Poly-GlcNAc control depends on the bacterial signalling molecules guanosine-bis 3', 5'(diphosphate) (ppGpp) and bis-(3'-5')-cyclic di-GMP (c-di-GMP). Treatment with translation inhibitors causes a ppGpp hydrolase (SpoT)-mediated reduction of ppGpp levels, resulting in specific derepression of PgaA. Maximal induction of PgaD and poly-GlcNAc synthesis requires the production of c-di-GMP by the dedicated diguanylate cyclase YdeH. Our results identify a novel regulatory mechanism that relies on ppGpp signalling to relay information about ribosomal performance to the Pga machinery, thereby inducing adhesin production and biofilm formation. Based on the important synergistic roles of ppGpp and c-di-GMP in this process, we suggest that interference with bacterial second messenger signalling might represent an effective means for biofilm control during chronic infections.
Collapse
Affiliation(s)
- Alex Boehm
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
291
|
Saccharomyces cerevisiae Rbg1 protein and its binding partner Gir2 interact on Polyribosomes with Gcn1. EUKARYOTIC CELL 2009; 8:1061-71. [PMID: 19448108 DOI: 10.1128/ec.00356-08] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Rbg1 is a previously uncharacterized protein of Saccharomyces cerevisiae belonging to the Obg/CgtA subfamily of GTP-binding proteins whose members are involved in ribosome function in both prokaryotes and eukaryotes. We show here that Rbg1 specifically associates with translating ribosomes. In addition, in this study proteins were identified that interact with Rbg1 by yeast two-hybrid screening and include Tma46, Ygr250c, Yap1, and Gir2. Gir2 contains a GI (Gcn2 and Impact) domain similar to that of Gcn2, an essential factor of the general amino acid control pathway required for overcoming amino acid shortage. Interestingly, we found that Gir2, like Gcn2, interacts with Gcn1 through its GI domain, and overexpression of Gir2, under conditions mimicking amino acid starvation, resulted in inhibition of growth that could be reversed by Gcn2 co-overexpression. Moreover, we found that Gir2 also cofractionated with polyribosomes, and this fractionation pattern was partially dependent on the presence of Gcn1. Based on these findings, we conclude that Rbg1 and its interacting partner Gir2 associate with ribosomes, and their possible biological roles are discussed.
Collapse
|
292
|
Transcription activity of individual rrn operons in Bacillus subtilis mutants deficient in (p)ppGpp synthetase genes, relA, yjbM, and ywaC. J Bacteriol 2009; 191:4555-61. [PMID: 19447912 DOI: 10.1128/jb.00263-09] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In Bacillus subtilis a null mutation of the relA gene, whose gene product is involved in the synthesis and/or hydrolysis of (p)ppGpp, causes a growth defect that can be suppressed by mutation(s) of yjbM and/or ywaC coding for small (p)ppGpp synthetases. All 35 suppressor mutations newly isolated were classified into two groups, either yjbM or ywaC, by mapping and sequencing their mutations, suggesting that there are no (p)ppGpp synthetases other than RelA, YjbM, and YwaC in B. subtilis. In order to understand better the relation between RelA and rRNA synthesis, we studied in the relA mutant the transcriptional regulation of seven rRNA operons (rrnO, -A, -J, -I, -E, -D, or -B) individually after integration of a promoter- and terminatorless cat gene. We identified the transcriptional start sites of each rrn operon (a G) and found that transcription of all rrn operons from their P1 promoters was drastically reduced in the relA mutant while this was almost completely restored in the relA yjbM ywaC triple mutant. Taken together with previous results showing that the intracellular GTP concentration was reduced in the relA mutant while it was restored in the triple mutant, it seems likely that continuous (p)ppGpp synthesis by YjbM and/or YwaC at a basal level causes a decrease in the amounts of intracellular GTP.
Collapse
|
293
|
Super DksAs: substitutions in DksA enhancing its effects on transcription initiation. EMBO J 2009; 28:1720-31. [PMID: 19424178 DOI: 10.1038/emboj.2009.126] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Accepted: 04/07/2009] [Indexed: 11/08/2022] Open
Abstract
At specific times during bacterial growth, the transcription factor DksA and the unusual nucleotide regulator ppGpp work synergistically to inhibit some Escherichia coli promoters (e.g. rRNA promoters) and to stimulate others (e.g. promoters for amino-acid synthesis and transport). However, the mechanism of DksA action remains uncertain, in part because DksA does not function like conventional transcription factors. To gain insights into DksA function, we identified mutations in dksA that bypassed the requirement for ppGpp by selecting for growth of cells lacking ppGpp on minimal medium without amino acids. We show here that two substitutions in DksA, L15F and N88I, result in higher DksA activity both in vivo and in vitro, primarily by increasing the apparent affinity of DksA for RNA polymerase (RNAP). The mutant DksA proteins suggest potential roles for ppGpp in DksA function, identify potential surfaces on DksA crucial for RNAP binding, and provide tools for future studies to elucidate the mechanism of DksA action.
Collapse
|
294
|
Winther KS, Gerdes K. Ectopic production of VapCs fromEnterobacteriainhibits translation andtrans-activates YoeB mRNA interferase. Mol Microbiol 2009; 72:918-30. [DOI: 10.1111/j.1365-2958.2009.06694.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
295
|
Ooga T, Ohashi Y, Kuramitsu S, Koyama Y, Tomita M, Soga T, Masui R. Degradation of ppGpp by nudix pyrophosphatase modulates the transition of growth phase in the bacterium Thermus thermophilus. J Biol Chem 2009; 284:15549-56. [PMID: 19346251 DOI: 10.1074/jbc.m900582200] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A major bacterial alarmone, guanosine 3',5'-bispyrophosphate (ppGpp), controls cellular growth under conditions of nutritional starvation. For most bacteria, intracellular ppGpp levels are tightly controlled by the synthesis/degradation cycle of RelA and SpoT activities. This study shows a novel ppGpp regulatory protein governing the cellular growth of Thermus thermophilus, Ndx8, a member of the Nudix pyrophosphatase family that degrades ppGpp to yield guanosine 3',5'-bisphosphate. The ndx8-null mutant strain exhibited early stage growth arrest accompanied by the stationary phase-specific morphologies and global transcriptional modulation under nutritionally defined conditions. Several possible substrate compounds of Ndx8, which specifically accumulated in the ndx8 mutant cells, were identified by employing a capillary electrophoresis time-of-flight mass spectrometry-based metabolomics approach. Among them, the hydrolytic activity of Ndx8 for ppGpp was significant not only in vitro but also in vivo. Finally, the elimination of ppGpp synthetic activity suppressed the observed phenotype of the ndx8 mutation, suggesting that the function of Ndx8 as a growth regulator is involved in ppGpp accumulation, which is thought to act as a trigger of the growth phase transition. These results suggest a novel mechanism of ppGpp-mediated growth control by the functional relay between Ndx8 and SpoT activity as ppGpp scavengers.
Collapse
Affiliation(s)
- Takushi Ooga
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | | | | | | | | | | | | |
Collapse
|
296
|
Gan HM, Buckley L, Szegedi E, Hudson AO, Savka MA. Identification of an rsh gene from a Novosphingobium sp. necessary for quorum-sensing signal accumulation. J Bacteriol 2009; 191:2551-60. [PMID: 19201802 PMCID: PMC2668395 DOI: 10.1128/jb.01692-08] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Accepted: 01/29/2009] [Indexed: 11/20/2022] Open
Abstract
The stringent response is a mechanism by which bacteria adapt to environmental stresses and nutritional deficiencies through the synthesis and hydrolysis of (p)ppGpp by RelA/SpoT enzymes. Alphaproteobacteria and plants contain a single Rsh enzyme (named for RelA/SpoT homolog) that is bifunctional. Here we report the identification of a new species of bacteria belonging to the genus Novosphingobium and characterization of an rsh mutation in this plant tumor-associated isolate. Isolate Rr 2-17, from a grapevine crown gall tumor, is a member of the Novosphingobium genus that produces the N-acyl-homoserine lactone (AHL) quorum-sensing (QS) signals. A Tn5 mutant, Hx 699, deficient in AHL production was found to have an insertion in an rsh gene. The Rsh protein showed significant percent sequence identity to Rsh proteins of alphaproteobacteria. The Novosphingobium sp. rsh gene (rsh(Nsp)) complemented the multiple amino acid requirements of the Escherichia coli relA spoT double mutant by restoring the growth on selection media. Besides QS signal production, the rsh mutation also affects soluble polysaccharide production and cell aggregation. Genetic complementation of the Hx 699 mutant with the rsh(Nsp) gene restored these phenotypes. This is the first discovery of a functional rsh gene in a member of the Novosphingobium genus.
Collapse
MESH Headings
- Acyl-Butyrolactones/metabolism
- Amino Acid Sequence
- Bacterial Adhesion
- Bacterial Proteins/genetics
- Bacterial Proteins/metabolism
- DNA Transposable Elements
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Ribosomal/chemistry
- DNA, Ribosomal/genetics
- Escherichia coli/genetics
- Genes, rRNA
- Genetic Complementation Test
- Molecular Sequence Data
- Mutagenesis, Insertional
- Phylogeny
- Polysaccharides, Bacterial/metabolism
- Quorum Sensing
- RNA, Bacterial/genetics
- RNA, Ribosomal, 16S/genetics
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Sequence Homology, Nucleic Acid
- Sphingomonadaceae/classification
- Sphingomonadaceae/genetics
- Sphingomonadaceae/isolation & purification
- Sphingomonadaceae/physiology
- Vitis/microbiology
Collapse
Affiliation(s)
- Han Ming Gan
- Department of Biological Sciences, Rochester Institute of Technology, 85 Lomb Memorial Dr., A350 Gosnell Bldg., Rochester, NY 14534, USA.
| | | | | | | | | |
Collapse
|
297
|
Das B, Pal RR, Bag S, Bhadra RK. Stringent response in Vibrio cholerae: genetic analysis of spoT gene function and identification of a novel (p)ppGpp synthetase gene. Mol Microbiol 2009; 72:380-98. [PMID: 19298370 DOI: 10.1111/j.1365-2958.2009.06653.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
RelA and SpoT of Gram-negative organisms critically regulate cellular levels of (p)ppGpp. Here, we have dissected the spoT gene function of the cholera pathogen Vibrio cholerae by extensive genetic analysis. Unlike Escherichia coli, V. choleraeDeltarelADeltaspoT cells accumulated (p)ppGpp upon fatty acid or glucose starvation. The result strongly suggests RelA-SpoT-independent (p)ppGpp synthesis in V. cholerae. By repeated subculturing of a V. choleraeDeltarelADeltaspoT mutant, a suppressor strain with (p)ppGpp(0) phenotype was isolated. Bioinformatics analysis of V. cholerae whole genome sequence allowed identification of a hypothetical gene (VC1224), which codes for a small protein (approximately 29 kDa) with a (p)ppGpp synthetase domain and the gene is highly conserved in vibrios; hence it has been named relV. Using E. coliDeltarelA or DeltarelADeltaspoT mutant we showed that relV indeed codes for a novel (p)ppGpp synthetase. Further analysis indicated that relV gene of the suppressor strain carries a point mutation at nucleotide position 676 of its coding region (DeltarelADeltaspoT relV676), which seems to be responsible for the (p)ppGpp(0) phenotype. Analysis of a V. choleraeDeltarelADeltaspoTDeltarelV triple mutant confirmed that apart from canonical relA and spoT genes, relV is a novel gene in V. cholerae responsible for (p)ppGpp synthesis.
Collapse
Affiliation(s)
- Bhabatosh Das
- Infectious Diseases and Immunology Division, Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, Kolkata, India
| | | | | | | |
Collapse
|
298
|
Similar and divergent effects of ppGpp and DksA deficiencies on transcription in Escherichia coli. J Bacteriol 2009; 191:3226-36. [PMID: 19251846 DOI: 10.1128/jb.01410-08] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The concerted action of ppGpp and DksA in transcription has been widely documented. In disparity with this model, phenotypic studies showed that ppGpp and DksA might also have independent and opposing roles in gene expression in Escherichia coli. In this study we used a transcriptomic approach to compare the global transcriptional patterns of gene expression in strains deficient in ppGpp (ppGpp(0)) and/or DksA (DeltadksA). Approximately 6 and 7% of all genes were significantly affected by more than twofold in ppGpp- and DksA-deficient strains, respectively, increasing to 13% of all genes in the ppGpp(0) DeltadksA strain. Although the data indicate that most of the affected genes were copositively or conegatively regulated by ppGpp and DksA, some genes that were independently and/or differentially regulated by the two factors were found. The large functional group of chemotaxis and flagellum synthesis genes were notably differentially affected, with all genes being upregulated in the DksA-deficient strain but 60% of them being downregulated in the ppGpp-deficient strain. Revealingly, mutations in the antipausing Gre factors suppress the upregulation observed in the DksA-deficient strain, emphasizing the importance of the secondary channel of the RNA polymerase for regulation and fine-tuning of gene expression in E. coli.
Collapse
|
299
|
Dalebroux ZD, Edwards RL, Swanson MS. SpoT governsLegionella pneumophiladifferentiation in host macrophages. Mol Microbiol 2009; 71:640-58. [DOI: 10.1111/j.1365-2958.2008.06555.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
300
|
Blankschien MD, Potrykus K, Grace E, Choudhary A, Vinella D, Cashel M, Herman C. TraR, a homolog of a RNAP secondary channel interactor, modulates transcription. PLoS Genet 2009; 5:e1000345. [PMID: 19148274 PMCID: PMC2613031 DOI: 10.1371/journal.pgen.1000345] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2008] [Accepted: 12/17/2008] [Indexed: 12/03/2022] Open
Abstract
Recent structural and biochemical studies have identified a novel control mechanism of gene expression mediated through the secondary channel of RNA Polymerase (RNAP) during transcription initiation. Specifically, the small nucleotide ppGpp, along with DksA, a RNAP secondary channel interacting factor, modifies the kinetics of transcription initiation, resulting in, among other events, down-regulation of ribosomal RNA synthesis and up-regulation of several amino acid biosynthetic and transport genes during nutritional stress. Until now, this mode of regulation of RNAP was primarily associated with ppGpp. Here, we identify TraR, a DksA homolog that mimics ppGpp/DksA effects on RNAP. First, expression of TraR compensates for dksA transcriptional repression and activation activities in vivo. Second, mutagenesis of a conserved amino acid of TraR known to be critical for DksA function abolishes its activity, implying both structural and functional similarity to DksA. Third, unlike DksA, TraR does not require ppGpp for repression of the rrnB P1 promoter in vivo and in vitro or activation of amino acid biosynthesis/transport genes in vivo. Implications for DksA/ppGpp mechanism and roles of TraR in horizontal gene transfer and virulence are discussed. Control of gene expression is central for cell operation. Transcription regulation is a first step to control gene expression and is largely mediated by DNA-binding factors. These recruit or prevent RNA polymerase binding to promoters of specific genes. Recently, a novel way to control transcription has emerged from studying nutritional stress in bacteria. In this case, a small nucleotide effector, ppGpp, with the help of a protein DksA, interacts with the secondary channel of RNAP, affecting RNA polymerase kinetics at promoters without binding to specific DNA sequences. This interaction results in up-regulation and down-regulation of genes involved in responding to nutritional stress. This work describes TraR, a factor found on conjugative plasmids that can regulate gene expression similarly to DksA, but in the absence of any nucleotide effector, like ppGpp. Thus, regulation of transcription similarly to DksA/ppGpp may be a more general mechanism. The presence of TraR on conjugative plasmids suggests a role for TraR in pathogenicity, virulence, and antibiotic resistance. These observations should provide a basis for new studies designed to combat antibiotic resistance and virulence in emerging pathogens.
Collapse
Affiliation(s)
- Matthew D. Blankschien
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Katarzyna Potrykus
- Laboratory of Molecular Genetics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Elicia Grace
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Abha Choudhary
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Daniel Vinella
- Laboratory of Molecular Genetics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Michael Cashel
- Laboratory of Molecular Genetics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Christophe Herman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|