251
|
Pan J, Tristram-Nagle S, Nagle JF. Alamethicin aggregation in lipid membranes. J Membr Biol 2009; 231:11-27. [PMID: 19789905 DOI: 10.1007/s00232-009-9199-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Accepted: 09/02/2009] [Indexed: 10/20/2022]
Abstract
X-ray scattering features induced by aggregates of alamethicin (Alm) were obtained in oriented stacks of model membranes of DOPC(diC18:1PC) and diC22:1PC. The first feature obtained near full hydration was Bragg rod in-plane scattering near 0.11 A(-1) in DOPC and near 0.08 A(-1) in diC22:1PC at a 1:10 Alm:lipid ratio. This feature is interpreted as bundles consisting of n Alm monomers in a barrel-stave configuration surrounding a water pore. Fitting the scattering data to previously published molecular dynamics simulations indicates that the number of peptides per bundle is n = 6 in DOPC and n >or= 9 in diC22:1PC. The larger bundle size in diC22:1PC is explained by hydrophobic mismatch of Alm with the thicker bilayer. A second diffuse scattering peak located at q(r) approximately 0.7 A(-1) is obtained for both DOPC and diC22:1PC at several peptide concentrations. Theoretical calculations indicate that this peak cannot be caused by the Alm bundle structure. Instead, we interpret it as being due to two-dimensional hexagonally packed clusters in equilibrium with Alm bundles. As the relative humidity was reduced, interactions between Alm in neighboring bilayers produced more peaks with three-dimensional crystallographic character that do not index with the conventional hexagonal space groups.
Collapse
Affiliation(s)
- Jianjun Pan
- Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | | | | |
Collapse
|
252
|
Im W, Lee J, Kim T, Rui H. Novel free energy calculations to explore mechanisms and energetics of membrane protein structure and function. J Comput Chem 2009; 30:1622-33. [PMID: 19496166 DOI: 10.1002/jcc.21320] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Understanding the delicate balance of forces governing helix or beta-hairpin interactions in transmembrane (TM) proteins is central to understanding membrane structure and function. These membrane constituent interactions play an essential role in determining the structure and function of membrane proteins, and protein interactions in membranes, and thus form the basis for many vital processes, including TM signaling, transport of ions and small molecules, energy transduction, and cell-cell recognition. "Why does a single-pass TM helix or beta-hairpin have specific orientations in membranes?" "What are the roles of hydrogen bonds, close packing, and helix-lipid or beta-hairpin-lipid interactions in helix or beta-hairpin associations in membranes?" "How do these interactions change the membrane structures?" "How do TM domains transmit signals across membranes?" These are important membrane biophysical questions that can be addressed by understanding the delicate balance of forces governing helix or beta-hairpin interactions with/in membranes. In this work, we summarize a series of helix/beta-hairpin restraint potentials that we have developed, and illustrate their applications that begin to address the complicated energetics and molecular mechanisms of these interactions at the atomic level by calculating the potentials of mean force (PMFs) along reaction coordinates relevant to helix/beta-hairpin motions in membranes and dissecting the total PMF into the contributions arising from physically important microscopic forces.
Collapse
Affiliation(s)
- Wonpil Im
- Department of Molecular Biosciences and Center for Bioinformatics, The University of Kansas, 2030 Becker Drive, Lawrence, Kansas 66047, USA.
| | | | | | | |
Collapse
|
253
|
Locke D, Harris AL. Connexin channels and phospholipids: association and modulation. BMC Biol 2009; 7:52. [PMID: 19686581 PMCID: PMC2733891 DOI: 10.1186/1741-7007-7-52] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2009] [Accepted: 08/17/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND For membrane proteins, lipids provide a structural framework and means to modulate function. Paired connexin hemichannels form the intercellular channels that compose gap junction plaques while unpaired hemichannels have regulated functions in non-junctional plasma membrane. The importance of interactions between connexin channels and phospholipids is poorly understood. RESULTS Endogenous phospholipids most tightly associated with purified connexin26 or connexin32 hemichannels or with junctional plaques in cell membranes, those likely to have structural and/or modulatory effects, were identified by tandem electrospray ionization-mass spectrometry using class-specific interpretative methods. Phospholipids were characterized by headgroup class, charge, glycerol-alkyl chain linkage and by acyl chain length and saturation. The results indicate that specific endogenous phospholipids are uniquely associated with either connexin26 or connexin32 channels, and some phospholipids are associated with both. Functional effects of the major phospholipid classes on connexin channel activity were assessed by molecular permeability of hemichannels reconstituted into liposomes. Changes to phospholipid composition(s) of the liposome membrane altered the activity of connexin channels in a manner reflecting changes to the surface charge/potential of the membrane and, secondarily, to cholesterol content. Together, the data show that connexin26 and connexin32 channels have a preference for tight association with unique anionic phospholipids, and that these, independent of headgroup, have a positive effect on the activity of both connexin26 and connexin32 channels. Additionally, the data suggest that the likely in vivo phospholipid modulators of connexin channel structure-function that are connexin isoform-specific are found in the cytoplasmic leaflet. A modulatory role for phospholipids that promote negative curvature is also inferred. CONCLUSION This study is the first to identify (endogenous) phospholipids that tightly associate with connexin channels. The finding that specific phospholipids are associated with different connexin isoforms suggests connexin-specific regulatory and/or structural interactions with lipid membranes. The results are interpreted in light of connexin channel function and cell biology, as informed by current knowledge of lipid-protein interactions and membrane biophysics. The intimate involvement of distinct phospholipids with different connexins contributes to channel structure and/or function, as well as plaque integrity, and to modulation of connexin channels by lipophilic agents.
Collapse
Affiliation(s)
- Darren Locke
- Department of Pharmacology and Physiology, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, New Jersey 07103, USA
| | - Andrew L Harris
- Department of Pharmacology and Physiology, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, New Jersey 07103, USA
| |
Collapse
|
254
|
Viruses: incredible nanomachines. New advances with filamentous phages. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2009; 39:541-50. [PMID: 19680644 PMCID: PMC2841255 DOI: 10.1007/s00249-009-0523-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Revised: 07/06/2009] [Accepted: 07/09/2009] [Indexed: 12/11/2022]
Abstract
During recent decades, bacteriophages have been at the cutting edge of new developments in molecular biology, biophysics, and, more recently, bionanotechnology. In particular filamentous viruses, for example bacteriophage M13, have a virion architecture that enables precision building of ordered and defect-free two and three-dimensional structures on a nanometre scale. This could not have been possible without detailed knowledge of coat protein structure and dynamics during the virus reproduction cycle. The results of the spectroscopic studies conducted in our group compellingly demonstrate a critical role of membrane embedment of the protein both during infectious entry of the virus into the host cell and during assembly of the new virion in the host membrane. The protein is effectively embedded in the membrane by a strong C-terminal interfacial anchor, which together with a simple tilt mechanism and a subtle structural adjustment of the extreme end of its N terminus provides favourable thermodynamical association of the protein in the lipid bilayer. This basic physicochemical rule cannot be violated and any new bionanotechnology that will emerge from bacteriophage M13 should take this into account.
Collapse
|
255
|
Antharam VC, Elliott DW, Mills FD, Farver RS, Sternin E, Long JR. Penetration depth of surfactant peptide KL4 into membranes is determined by fatty acid saturation. Biophys J 2009; 96:4085-98. [PMID: 19450480 DOI: 10.1016/j.bpj.2008.12.3966] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Revised: 12/10/2008] [Accepted: 12/23/2008] [Indexed: 11/24/2022] Open
Abstract
KL(4) is a 21-residue functional peptide mimic of lung surfactant protein B, an essential protein for lowering surface tension in the alveoli. Its ability to modify lipid properties and restore lung compliance was investigated with circular dichroism, differential scanning calorimetry, and solid-state NMR spectroscopy. KL(4) binds fluid lamellar phase PC/PG lipid membranes and forms an amphipathic helix that alters lipid organization and acyl chain dynamics. The binding and helicity of KL(4) is dependent on the level of monounsaturation in the fatty acid chains. At physiologic temperatures, KL(4) is more peripheral and dynamic in fluid phase POPC/POPG MLVs but is deeply inserted into fluid phase DPPC/POPG vesicles, resulting in immobilization of the peptide. Substantial increases in the acyl chain order are observed in DPPC/POPG lipid vesicles with increasing levels of KL(4), and POPC/POPG lipid vesicles show small decreases in the acyl chain order parameters on addition of KL(4). Additionally, a clear effect of KL(4) on the orientation of the fluid phase PG headgroups is observed, with similar changes in both lipid environments. Near the phase transition temperature of the DPPC/POPG lipid mixtures, which is just below the physiologic temperature of lung surfactant, KL(4) causes phase separation with the DPPC remaining in a gel phase and the POPG partitioned between gel and fluid phases. The ability of KL(4) to differentially partition into lipid lamellae containing varying levels of monounsaturation and subsequent changes in curvature strain suggest a mechanism for peptide-mediated lipid organization and trafficking within the dynamic lung environment.
Collapse
Affiliation(s)
- Vijay C Antharam
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
| | | | | | | | | | | |
Collapse
|
256
|
Transmembrane vs. non-transmembrane hydrophobic helix topography in model and natural membranes. Curr Opin Struct Biol 2009; 19:464-72. [DOI: 10.1016/j.sbi.2009.07.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Accepted: 07/10/2009] [Indexed: 11/21/2022]
|
257
|
Lucero Caro A, Rodríguez Niño MR, Rodríguez Patino JM. Topography of dipalmitoyl-phosphatidyl-choline monolayers penetrated by β-casein. Colloids Surf A Physicochem Eng Asp 2009. [DOI: 10.1016/j.colsurfa.2009.06.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
258
|
Lee J, Ham S, Im W. Beta-hairpin restraint potentials for calculations of potentials of mean force as a function of beta-hairpin tilt, rotation, and distance. J Comput Chem 2009; 30:1334-43. [PMID: 19009593 DOI: 10.1002/jcc.21154] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
We have developed a set of restraint potentials for beta-hairpin tilt relative to the membrane normal, beta-hairpin rotation around the beta-hairpin axis, and hairpin-hairpin distance. Such restraint potentials enable us to characterize the molecular basis of specific beta-hairpin tilt and rotation in membranes and hairpin-hairpin interactions at the atomic level by sampling their conformational space along these degrees of freedom, i.e., reaction coordinates, during molecular dynamics simulations. We illustrate the efficacy of the beta-hairpin restraint potentials by calculating the potentials of mean force (PMFs) as a function of tilt and rotation angles of protegrin-1 (PG-1), a beta-hairpin antimicrobial peptide, in an implicit membrane model. The peptide association in the membrane is also examined by calculating the PMFs as a function of distance between two PG-1 peptides in various dimer interfaces. These novel restraint potentials are found to perform well in each of these cases and are expected to be a useful means to study the microscopic driving forces of insertion, tilting, and rotation of beta-hairpin peptides in membranes as well as their association in aqueous solvent or membrane environments particularly when combined with explicit solvent models.
Collapse
Affiliation(s)
- Jinhyuk Lee
- Department of Molecular Biosciences and Center for Bioinformatics, The University of Kansas, 2030 Becker Drive, Lawrence, Kansas 66047, USA
| | | | | |
Collapse
|
259
|
Schneggenburger PE, Beerlink A, Worbs B, Salditt T, Diederichsen U. A Novel Heavy-Atom Label for Side-Specific Peptide Iodination: Synthesis, Membrane Incorporation and X-ray Reflectivity. Chemphyschem 2009; 10:1567-76. [DOI: 10.1002/cphc.200900241] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
260
|
Houbiers MC, Hemminga MA. Protein-lipid interactions of bacteriophage M13 gene 9 minor coat protein (Review). Mol Membr Biol 2009; 21:351-9. [PMID: 15764365 DOI: 10.1080/09687860400012918] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Gene 9 protein is one of the minor coat proteins of bacteriophage M13. The protein plays a role in the assembly process by associating with the host membrane by protein-lipid interactions. The availability of chemically synthesized protein has enabled the biophysical characterization of the membrane-bound state of the protein by using model membrane systems. This paper summarizes, discusses and further interprets this work in the light of the current state of the literature, leading to new possible models of the coat protein in a membrane. The biological implications of these findings related to the membrane-bound phage assembly are indicated.
Collapse
Affiliation(s)
- M Chantal Houbiers
- Laboratory of Biophysics, Wageningen University, Dreijenlaan 3, NL-6703 HA Wageningen, The Netherlands
| | | |
Collapse
|
261
|
de Planque MRR, Killian JA. Protein–lipid interactions studied with designed transmembrane peptides: role of hydrophobic matching and interfacial anchoring (Review). Mol Membr Biol 2009; 20:271-84. [PMID: 14578043 DOI: 10.1080/09687680310001605352] [Citation(s) in RCA: 245] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Biological membranes are characterized by a heterogeneous composition, which is not only manifested in the wide variety of their components, but also in aspects like the lateral organization, topology, and conformation of proteins and lipids. In bringing about the correct membrane structure, protein-lipid interactions can be expected to play a prominent role. The extent of hydrophobic matching between transmembrane protein segments and lipids potentially constitutes a versatile director of membrane organization, because a tendency to avoid hydrophobic mismatch could result in compensating adaptations such as tilt of the transmembrane segment or segregation into distinct domains. Also, interfacial interactions between lipid headgroups and the aromatic and charged residues that typically flank transmembrane domains may act as an organizing element. In this review, we discuss the numerous model studies that have systematically explored the influence of hydrophobic matching and interfacial anchoring on membrane structure. Designed peptides consisting of a polyleucine or polyleucine/alanine hydrophobic stretch, which is flanked on both sides by tryptophan or lysine residues, reflect the general layout of transmembrane protein segments. It is shown for phosphatidylcholine bilayers and for other model membranes that these peptides adapt a transmembrane topology without extensive peptide or lipid adaptations under conditions of hydrophobic matching, but that significant rearrangements can result from hydrophobic mismatch. Moreover, these effects depend on the nature of the flanking residues, implying a modulation of the mismatch response by interfacial interactions of the flanking residues. The implications of these model studies for the organization of biomembranes are discussed in the context of recent experiments with more complex systems.
Collapse
Affiliation(s)
- Maurits R R de Planque
- Department of Biochemistry of Membranes, Center for Biomembranes and Lipid Enzymology, Institute of Biomembranes, Utrecht University, Utrecht, The Netherlands.
| | | |
Collapse
|
262
|
Inoue R, Jian Z, Kawarabayashi Y. Mechanosensitive TRP channels in cardiovascular pathophysiology. Pharmacol Ther 2009; 123:371-85. [PMID: 19501617 DOI: 10.1016/j.pharmthera.2009.05.009] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Accepted: 05/14/2009] [Indexed: 12/22/2022]
Abstract
Transient receptor potential (TRP) proteins constitute a large non-voltage-gated cation channel superfamily, activated polymodally by various physicochemical stimuli, and are implicated in a variety of cellular functions. Known activators for TRP include not only chemical stimuli such as receptor stimulation, increased acidity and pungent/cooling agents, but temperature change and various forms of mechanical stimuli such as osmotic stress, membrane stretch, and shear force. Recent investigations have revealed that at least ten mammalian TRPs exhibit mechanosensitivity (TRPC1, 5, 6; TRPV1, 2, 4; TRPM3, 7; TRPA1; TRPP2), but the mechanisms underlying it appear considerably divergent and complex. The proposed mechanisms are associated with lipid bilayer mechanics, specialized force-transducing structures, biochemical reactions, membrane trafficking and transcriptional regulation. Many of mechanosensitive (MS)-TRP channel likely undergo multiple regulations via these mechanisms. In the cardiovascular system in which hemodynamic forces constantly operate, the impact of mechanical stress may be particularly significant. Extensive morphological and functional studies have indicated that several MS-TRP channels are expressed in cardiac muscle, vascular smooth muscle, endothelium and vasosensory neurons, each differentially contributing to cardiovascular (CV) functions. To further complexity, the recent evidence suggests that mechanical stress may synergize with neurohormonal mechanisms thereby amplifying otherwise marginal responses. Furthermore, the currently available data suggest that MS-TRP channels may be involved in CV pathophysiology such as cardiac arrhythmia, cardiac hypertrophy/myopathy, hypertension and aneurysms. This review will overview currently known mechanisms for mechanical activation/modulation of TRPs and possible connections of MS-TRP channels to CV disorders.
Collapse
Affiliation(s)
- Ryuji Inoue
- Department of Physiology, Graduate School of Medical Sciences, Fukuoka University, Nanakuma 7-45-1, Jonan-ku, Fukuoka 814-0180, Japan.
| | | | | |
Collapse
|
263
|
Columbus L, Lipfert J, Jambunathan K, Fox DA, Sim AYL, Doniach S, Lesley SA. Mixing and matching detergents for membrane protein NMR structure determination. J Am Chem Soc 2009; 131:7320-6. [PMID: 19425578 PMCID: PMC2751809 DOI: 10.1021/ja808776j] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
One major obstacle to membrane protein structure determination is the selection of a detergent micelle that mimics the native lipid bilayer. Currently, detergents are selected by exhaustive screening because the effects of protein-detergent interactions on protein structure are poorly understood. In this study, the structure and dynamics of an integral membrane protein in different detergents is investigated by nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR) spectroscopy and small-angle X-ray scattering (SAXS). The results suggest that matching of the micelle dimensions to the protein's hydrophobic surface avoids exchange processes that reduce the completeness of the NMR observations. Based on these dimensions, several mixed micelles were designed that improved the completeness of NMR observations. These findings provide a basis for the rational design of mixed micelles that may advance membrane protein structure determination by NMR.
Collapse
Affiliation(s)
- Linda Columbus
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, USA.
| | | | | | | | | | | | | |
Collapse
|
264
|
Pan J, Tieleman DP, Nagle JF, Kucerka N, Tristram-Nagle S. Alamethicin in lipid bilayers: combined use of X-ray scattering and MD simulations. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1788:1387-97. [PMID: 19248763 PMCID: PMC2693350 DOI: 10.1016/j.bbamem.2009.02.013] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/31/2008] [Revised: 01/29/2009] [Accepted: 02/19/2009] [Indexed: 10/21/2022]
Abstract
We study fully hydrated bilayers of two di-monounsaturated phospholipids diC18:1PC (DOPC) and diC22:1PC with varying amounts of alamethicin (Alm). We combine the use of X-ray diffuse scattering and molecular dynamics simulations to determine the orientation of alamethicin in model lipids. Comparison of the experimental and simulated form factors shows that Alm helices are inserted transmembrane at high humidity and high concentrations, in agreement with earlier results. The X-ray scattering data and the MD simulations agree that membrane thickness changes very little up to 1/10 Alm/DOPC. In contrast, the X-ray data indicate that the thicker diC22:1PC membrane thins with added Alm, a total decrease in thickness of 4 A at 1/10 Alm/diC22:1PC. The different effect of Alm on the thickness changes of the two bilayers is consistent with Alm having a hydrophobic thickness close to the hydrophobic thickness of 27 A for DOPC; Alm is then mismatched with the 7 A thicker diC22:1PC bilayer. The X-ray data indicate that Alm decreases the bending modulus (K(C)) by a factor of approximately 2 in DOPC and a factor of approximately 10 in diC22:1PC membranes (P/L approximately 1/10). The van der Waals and fluctuational interactions between bilayers are also evaluated through determination of the anisotropic B compressibility modulus.
Collapse
Affiliation(s)
- Jianjun Pan
- Biological Physics Group, Physics Department, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA
| | | | | | | | | |
Collapse
|
265
|
Martinez-Seara H, Róg T, Karttunen M, Vattulainen I, Reigada R. Why is the sn-2 Chain of Monounsaturated Glycerophospholipids Usually Unsaturated whereas the sn-1 Chain Is Saturated? Studies of 1-Stearoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine (SOPC) and 1-Oleoyl-2-stearoyl-sn-glycero-3-phosphatidylcholine (OSPC) Membranes with and without Cholesterol. J Phys Chem B 2009; 113:8347-56. [DOI: 10.1021/jp902131b] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Hector Martinez-Seara
- Department of Physical Chemistry, Barcelona University, c/ Marti i Franques 1, Pta 4, 08028 Barcelona, Spain, Department of Physics, Tampere University of Technology, Tampere, Finland, Department of Applied Mathematics, The University of Western Ontario, London (ON), Canada, Department of Applied Physics and Helsinki Institute of Physics, Helsinki University of Technology, Helsinki, Finland, and MEMPHYS-Center for Biomembrane Physics, University of Southern Denmark, DK-5230 Odense, Denmark
| | - Tomasz Róg
- Department of Physical Chemistry, Barcelona University, c/ Marti i Franques 1, Pta 4, 08028 Barcelona, Spain, Department of Physics, Tampere University of Technology, Tampere, Finland, Department of Applied Mathematics, The University of Western Ontario, London (ON), Canada, Department of Applied Physics and Helsinki Institute of Physics, Helsinki University of Technology, Helsinki, Finland, and MEMPHYS-Center for Biomembrane Physics, University of Southern Denmark, DK-5230 Odense, Denmark
| | - Mikko Karttunen
- Department of Physical Chemistry, Barcelona University, c/ Marti i Franques 1, Pta 4, 08028 Barcelona, Spain, Department of Physics, Tampere University of Technology, Tampere, Finland, Department of Applied Mathematics, The University of Western Ontario, London (ON), Canada, Department of Applied Physics and Helsinki Institute of Physics, Helsinki University of Technology, Helsinki, Finland, and MEMPHYS-Center for Biomembrane Physics, University of Southern Denmark, DK-5230 Odense, Denmark
| | - Ilpo Vattulainen
- Department of Physical Chemistry, Barcelona University, c/ Marti i Franques 1, Pta 4, 08028 Barcelona, Spain, Department of Physics, Tampere University of Technology, Tampere, Finland, Department of Applied Mathematics, The University of Western Ontario, London (ON), Canada, Department of Applied Physics and Helsinki Institute of Physics, Helsinki University of Technology, Helsinki, Finland, and MEMPHYS-Center for Biomembrane Physics, University of Southern Denmark, DK-5230 Odense, Denmark
| | - Ramon Reigada
- Department of Physical Chemistry, Barcelona University, c/ Marti i Franques 1, Pta 4, 08028 Barcelona, Spain, Department of Physics, Tampere University of Technology, Tampere, Finland, Department of Applied Mathematics, The University of Western Ontario, London (ON), Canada, Department of Applied Physics and Helsinki Institute of Physics, Helsinki University of Technology, Helsinki, Finland, and MEMPHYS-Center for Biomembrane Physics, University of Southern Denmark, DK-5230 Odense, Denmark
| |
Collapse
|
266
|
Abstract
Studies of membrane proteins have revealed a direct link between the lipid environment and the structure and function of some of these proteins. Although some of these effects involve specific chemical interactions between lipids and protein residues, many can be understood in terms of protein-induced perturbations to the membrane shape. The free-energy cost of such perturbations can be estimated quantitatively, and measurements of channel gating in model systems of membrane proteins with their lipid partners are now confirming predictions of simple models.
Collapse
Affiliation(s)
- Rob Phillips
- Department of Applied Physics, California Institute of Technology, Pasadena, California 91125, USA.
| | | | | | | |
Collapse
|
267
|
Membrane-mediated repulsion between gramicidin pores. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:1782-9. [PMID: 19464257 DOI: 10.1016/j.bbamem.2009.05.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Revised: 05/06/2009] [Accepted: 05/12/2009] [Indexed: 11/22/2022]
Abstract
We investigated the X-ray scattering signal of highly aligned multilayers of the zwitterionic lipid 1,2-dilauroyl-sn-glycero-3-phosphatidylcholine containing pores formed by the antimicrobial peptide gramicidin as a function of the peptide/lipid ratio. We are able to obtain information on the structure factor of the pore fluid, which then yields the interaction potential between pores in the plane of the bilayers. Aside from a hard core with a radius close to the geometric radius of the pore, we find a repulsive exponential lipid-mediated interaction with a decay length of 2.5 A and an amplitude that decreases with the pore concentration, in agreement with the hydrophobic matching hypothesis. In dilute systems, the contact value of this interaction is about 30 k(B)T. Similar results are obtained for gramicidin pores inserted within bilayers formed by the nonionic surfactant pentaethylene glycol monododecyl ether.
Collapse
|
268
|
Schmid F. Toy amphiphiles on the computer: What can we learn from generic models? Macromol Rapid Commun 2009; 30:741-51. [DOI: 10.1002/marc.200800750] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Accepted: 01/20/2009] [Indexed: 11/08/2022]
|
269
|
Klingelhoefer JW, Carpenter T, Sansom MS. Peptide nanopores and lipid bilayers: interactions by coarse-grained molecular-dynamics simulations. Biophys J 2009; 96:3519-28. [PMID: 19413958 PMCID: PMC2711413 DOI: 10.1016/j.bpj.2009.01.046] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Revised: 01/13/2009] [Accepted: 01/13/2009] [Indexed: 11/20/2022] Open
Abstract
A set of 49 protein nanopore-lipid bilayer systems was explored by means of coarse-grained molecular-dynamics simulations to study the interactions between nanopores and the lipid bilayers in which they are embedded. The seven nanopore species investigated represent the two main structural classes of membrane proteins (alpha-helical and beta-barrel), and the seven different bilayer systems range in thickness from approximately 28 to approximately 43 A. The study focuses on the local effects of hydrophobic mismatch between the nanopore and the lipid bilayer. The effects of nanopore insertion on lipid bilayer thickness, the dependence between hydrophobic thickness and the observed nanopore tilt angle, and the local distribution of lipid types around a nanopore in mixed-lipid bilayers are all analyzed. Different behavior for nanopores of similar hydrophobic length but different geometry is observed. The local lipid bilayer perturbation caused by the inserted nanopores suggests possible mechanisms for both lipid bilayer-induced protein sorting and protein-induced lipid sorting. A correlation between smaller lipid bilayer thickness (larger hydrophobic mismatch) and larger nanopore tilt angle is observed and, in the case of larger hydrophobic mismatches, the simulated tilt angle distribution seems to broaden. Furthermore, both nanopore size and key residue types (e.g., tryptophan) seem to influence the level of protein tilt, emphasizing the reciprocal nature of nanopore-lipid bilayer interactions.
Collapse
Affiliation(s)
| | | | - Mark S.P. Sansom
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
270
|
Kamilya T, Pal P, Mahato M, Talapatra G. Immobilization and the conformational study of phospholipid and phospholipid-protein vesicles. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2009. [DOI: 10.1016/j.msec.2008.12.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
271
|
Vos WL, Nazarov PV, Koehorst RBM, Spruijt RB, Hemminga MA. From 'I' to 'L' and back again: the odyssey of membrane-bound M13 protein. Trends Biochem Sci 2009; 34:249-55. [PMID: 19362002 DOI: 10.1016/j.tibs.2009.01.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2008] [Revised: 01/14/2009] [Accepted: 01/14/2009] [Indexed: 10/20/2022]
Abstract
The major coat protein of the filamentous bacteriophage M13 is a surprising protein because it exists both as a membrane protein and as part of the M13 phage coat during its life cycle. Early studies showed that the phage-bound structure of the coat protein was a continuous I-shaped alpha-helix. However, throughout the years various structural models, both I-shaped and L-shaped, have been proposed for the membrane-bound state of the coat protein. Recently, site-directed labelling approaches have enabled the study of the coat protein under conditions that more closely mimic the in vivo membrane-bound state. Interestingly, the structure that has emerged from this work is I-shaped and similar to the structure in the phage-bound state.
Collapse
Affiliation(s)
- Werner L Vos
- Department of Biology, National University of Ireland Maynooth, County Kildare, Ireland
| | | | | | | | | |
Collapse
|
272
|
How does the Bax-α1 targeting sequence interact with mitochondrial membranes? The role of cardiolipin. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:623-31. [DOI: 10.1016/j.bbamem.2008.12.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Revised: 11/19/2008] [Accepted: 12/18/2008] [Indexed: 01/21/2023]
|
273
|
Siu SWI, Böckmann RA. Low Free Energy Barrier for Ion Permeation Through Double-Helical Gramicidin. J Phys Chem B 2009; 113:3195-202. [DOI: 10.1021/jp810302k] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Shirley W. I. Siu
- Theoretical and Computational Membrane Biology, Center for Bioinformatics, Saarland University, P.O. Box 15 11 50, 66041 Saarbrücken, Germany
| | - Rainer A Böckmann
- Theoretical and Computational Membrane Biology, Center for Bioinformatics, Saarland University, P.O. Box 15 11 50, 66041 Saarbrücken, Germany
| |
Collapse
|
274
|
Søgaard R, Ebert B, Klaerke D, Werge T. Triton X-100 inhibits agonist-induced currents and suppresses benzodiazepine modulation of GABA(A) receptors in Xenopus oocytes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:1073-80. [PMID: 19366585 DOI: 10.1016/j.bbamem.2009.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2008] [Revised: 01/16/2009] [Accepted: 02/03/2009] [Indexed: 11/29/2022]
Abstract
Changes in lipid bilayer elastic properties have been proposed to underlie the modulation of voltage-gated Na(+) and L-type Ca(2+) channels and GABA(A) receptors by amphiphiles. The amphiphile Triton X-100 increases the elasticity of lipid bilayers at micromolar concentrations, assessed from its effects on gramicidin channel A appearance rate and lifetime in artificial lipid bilayers. In the present study, the pharmacological action of Triton-X 100 on GABA(A) receptors expressed in Xenopus laevis oocytes was examined. Triton-X 100 inhibited GABA(A) alpha(1)beta(3)gamma(2S) receptor currents in a noncompetitive, time- and voltage-dependent manner and increased the apparent rate and extent of desensitization at 10 muM, which is 30 fold below the critical micelle concentration. In addition, Triton X-100 induced picrotoxin-sensitive GABA(A) receptor currents and suppressed allosteric modulation by flunitrazepam at alpha(1)beta(3)gamma(2S) receptors. All effects were independent of the presence of a gamma(2S) subunit in the GABA(A) receptor complex. The present study suggests that Triton X-100 may stabilize open and desensitized states of the GABA(A) receptor through changes in lipid bilayer elasticity.
Collapse
Affiliation(s)
- Rikke Søgaard
- Institute of Cellular and Molecular Medicine, Panum 12.6, University of Copenhagen, Blegdamsvej 3C, DK-2200, Copenhagen N, Denmark.
| | | | | | | |
Collapse
|
275
|
Salnikov ES, Zotti MD, Formaggio F, Li X, Toniolo C, OʼNeil JDJ, Raap J, Dzuba SA, Bechinger B. Alamethicin Topology in Phospholipid Membranes by Oriented Solid-state NMR and EPR Spectroscopies: a Comparison. J Phys Chem B 2009; 113:3034-42. [DOI: 10.1021/jp8101805] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Evgeniy S. Salnikov
- Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, 630090 Novosibirsk, Russian Federation, University of Strasbourg/CNRS, UMR7177, Institut de Chimie, 67070 Strasbourg, France, Institute of Biomolecular Chemistry, CNR, Padova Unit, Department of Chemistry, University of Padova, 35131 Padova, Italy, Department of Chemistry, University of Manitoba, Winnipeg, Canada R3T 2N2, and Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, 2300 RA Leiden, The Netherlands
| | - Marta De Zotti
- Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, 630090 Novosibirsk, Russian Federation, University of Strasbourg/CNRS, UMR7177, Institut de Chimie, 67070 Strasbourg, France, Institute of Biomolecular Chemistry, CNR, Padova Unit, Department of Chemistry, University of Padova, 35131 Padova, Italy, Department of Chemistry, University of Manitoba, Winnipeg, Canada R3T 2N2, and Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, 2300 RA Leiden, The Netherlands
| | - Fernando Formaggio
- Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, 630090 Novosibirsk, Russian Federation, University of Strasbourg/CNRS, UMR7177, Institut de Chimie, 67070 Strasbourg, France, Institute of Biomolecular Chemistry, CNR, Padova Unit, Department of Chemistry, University of Padova, 35131 Padova, Italy, Department of Chemistry, University of Manitoba, Winnipeg, Canada R3T 2N2, and Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, 2300 RA Leiden, The Netherlands
| | - Xing Li
- Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, 630090 Novosibirsk, Russian Federation, University of Strasbourg/CNRS, UMR7177, Institut de Chimie, 67070 Strasbourg, France, Institute of Biomolecular Chemistry, CNR, Padova Unit, Department of Chemistry, University of Padova, 35131 Padova, Italy, Department of Chemistry, University of Manitoba, Winnipeg, Canada R3T 2N2, and Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, 2300 RA Leiden, The Netherlands
| | - Claudio Toniolo
- Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, 630090 Novosibirsk, Russian Federation, University of Strasbourg/CNRS, UMR7177, Institut de Chimie, 67070 Strasbourg, France, Institute of Biomolecular Chemistry, CNR, Padova Unit, Department of Chemistry, University of Padova, 35131 Padova, Italy, Department of Chemistry, University of Manitoba, Winnipeg, Canada R3T 2N2, and Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, 2300 RA Leiden, The Netherlands
| | - Joe D. J. OʼNeil
- Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, 630090 Novosibirsk, Russian Federation, University of Strasbourg/CNRS, UMR7177, Institut de Chimie, 67070 Strasbourg, France, Institute of Biomolecular Chemistry, CNR, Padova Unit, Department of Chemistry, University of Padova, 35131 Padova, Italy, Department of Chemistry, University of Manitoba, Winnipeg, Canada R3T 2N2, and Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, 2300 RA Leiden, The Netherlands
| | - Jan Raap
- Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, 630090 Novosibirsk, Russian Federation, University of Strasbourg/CNRS, UMR7177, Institut de Chimie, 67070 Strasbourg, France, Institute of Biomolecular Chemistry, CNR, Padova Unit, Department of Chemistry, University of Padova, 35131 Padova, Italy, Department of Chemistry, University of Manitoba, Winnipeg, Canada R3T 2N2, and Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, 2300 RA Leiden, The Netherlands
| | - Sergei A. Dzuba
- Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, 630090 Novosibirsk, Russian Federation, University of Strasbourg/CNRS, UMR7177, Institut de Chimie, 67070 Strasbourg, France, Institute of Biomolecular Chemistry, CNR, Padova Unit, Department of Chemistry, University of Padova, 35131 Padova, Italy, Department of Chemistry, University of Manitoba, Winnipeg, Canada R3T 2N2, and Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, 2300 RA Leiden, The Netherlands
| | - Burkhard Bechinger
- Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, 630090 Novosibirsk, Russian Federation, University of Strasbourg/CNRS, UMR7177, Institut de Chimie, 67070 Strasbourg, France, Institute of Biomolecular Chemistry, CNR, Padova Unit, Department of Chemistry, University of Padova, 35131 Padova, Italy, Department of Chemistry, University of Manitoba, Winnipeg, Canada R3T 2N2, and Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, 2300 RA Leiden, The Netherlands
| |
Collapse
|
276
|
Swift JL, Burger MC, Cramb DT. A quantum dot-labeled ligand-receptor binding assay for G protein-coupled receptors contained in minimally purified membrane nanopatches. Methods Mol Biol 2009; 552:329-41. [PMID: 19513661 DOI: 10.1007/978-1-60327-317-6_24] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A robust method to directly measure ligand-receptor binding interactions using fluorescence cross-correlation spectroscopy (FCCS) is described. The example receptor systems demonstrated here are the human micro-opioid receptor, a representative G protein-coupled receptor (GPCR), and Streptavidin, but these general protocols can be extended for the analysis of many membrane receptors. We present methods for the preparation of GPCR-containing membrane nanopatches that appear to have the shapes of nanovesicles, labeling of proteins in membrane vesicles, in addition to the coupling of quantum dots (QDs) to peptide ligands. Further, we demonstrate that reliable binding information can be obtained from these partially purified receptors.
Collapse
Affiliation(s)
- Jody L Swift
- Department of Chemistry, McGill University, Montreal, QC, Canada
| | | | | |
Collapse
|
277
|
Ordering effects of cholesterol and its analogues. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:97-121. [DOI: 10.1016/j.bbamem.2008.08.022] [Citation(s) in RCA: 467] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2008] [Revised: 08/27/2008] [Accepted: 08/31/2008] [Indexed: 12/12/2022]
|
278
|
West B, Brown FLH, Schmid F. Membrane-protein interactions in a generic coarse-grained model for lipid bilayers. Biophys J 2009; 96:101-15. [PMID: 18835907 PMCID: PMC2710048 DOI: 10.1529/biophysj.108.138677] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Accepted: 09/04/2008] [Indexed: 11/18/2022] Open
Abstract
We study membrane-protein interactions and membrane-mediated protein-protein interactions by Monte Carlo simulations of a generic coarse-grained model for lipid bilayers with cylindrical hydrophobic inclusions. The strength of the hydrophobic force and the hydrophobic thickness of the proteins are systematically varied. The results are compared with analytical predictions of two popular analytical theories: The Landau-de Gennes theory and the elastic theory. The elastic theory provides an excellent description of the fluctuation spectra of pure membranes and successfully reproduces the deformation profiles of membranes around single proteins. However, its prediction for the potential of mean force between proteins is not compatible with the simulation data for large distances. The simulations show that the lipid-mediated interactions are governed by five competing factors: direct interactions; lipid-induced depletion interactions; lipid bridging; lipid packing; and a smooth long-range contribution. The mechanisms leading to hydrophobic mismatch interactions are critically analyzed.
Collapse
Affiliation(s)
- Beate West
- Fakultät für Physik, Universität Bielefeld, Bielefeld, Germany.
| | | | | |
Collapse
|
279
|
Baker SA, Haeri M, Yoo P, Gospe SM, Skiba NP, Knox BE, Arshavsky VY. The outer segment serves as a default destination for the trafficking of membrane proteins in photoreceptors. ACTA ACUST UNITED AC 2008; 183:485-98. [PMID: 18981232 PMCID: PMC2575789 DOI: 10.1083/jcb.200806009] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Photoreceptors are compartmentalized neurons in which all proteins responsible for evoking visual signals are confined to the outer segment. Yet, the mechanisms responsible for establishing and maintaining photoreceptor compartmentalization are poorly understood. Here we investigated the targeting of two related membrane proteins, R9AP and syntaxin 3, one residing within and the other excluded from the outer segment. Surprisingly, we have found that only syntaxin 3 has targeting information encoded in its sequence and its removal redirects this protein to the outer segment. Furthermore, proteins residing in the endoplasmic reticulum and mitochondria were similarly redirected to the outer segment after removing their targeting signals. This reveals a pattern where membrane proteins lacking specific targeting information are delivered to the outer segment, which is likely to reflect the enormous appetite of this organelle for new material necessitated by its constant renewal. This also implies that every protein residing outside the outer segment must have a means to avoid this "default" trafficking flow.
Collapse
Affiliation(s)
- Sheila A Baker
- Albert Eye Research Institute, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | | | |
Collapse
|
280
|
Destainville N, Dumas F, Salomé L. What do diffusion measurements tell us about membrane compartmentalisation? Emergence of the role of interprotein interactions. J Chem Biol 2008; 1:37-48. [PMID: 19568797 PMCID: PMC2698319 DOI: 10.1007/s12154-008-0005-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Accepted: 03/11/2008] [Indexed: 01/28/2023] Open
Abstract
The techniques of diffusion analysis based on optical microscopy approaches have revealed a great diversity of the dynamic organisation of cell membranes. For a long period, two frameworks have dominated the way of representing the membrane structure: the membrane skeleton fences and the lipid raft models. Progresses in the methods of data analysis have shed light on the features and consequently the possible origin of membrane domains: Inter-protein interactions play a role in confinement. Innovative developments pushing forward the spatiotemporal resolution limits are currently emerging, which are likely to provide in the future a detailed understanding of the intimate functional dynamic organisation of the cell membrane.
Collapse
Affiliation(s)
- Nicolas Destainville
- Institut de Pharmacologie et Biologie Structurale, UMR 5089 CNRS, Université Paul Sabatier, 205 Route de Narbonne, 31062 Toulouse, France
- Laboratoire de Physique Théorique, IRSAMC, UMR 5152 CNRS, Université Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse, France
| | - Fabrice Dumas
- Institut de Pharmacologie et Biologie Structurale, UMR 5089 CNRS, Université Paul Sabatier, 205 Route de Narbonne, 31062 Toulouse, France
- Cell Biophysics Laboratory, London Research Institute Lincoln’s Inn Fields Laboratories, 44 Lincoln’s Inn Fields, London, WC2 3PX UK
| | - Laurence Salomé
- Institut de Pharmacologie et Biologie Structurale, UMR 5089 CNRS, Université Paul Sabatier, 205 Route de Narbonne, 31062 Toulouse, France
| |
Collapse
|
281
|
Lind J, Nordin J, Mäler L. Lipid dynamics in fast-tumbling bicelles with varying bilayer thickness: Effect of model transmembrane peptides. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:2526-34. [DOI: 10.1016/j.bbamem.2008.07.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2008] [Revised: 07/15/2008] [Accepted: 07/15/2008] [Indexed: 10/21/2022]
|
282
|
Martinez-Seara H, Róg T, Karttunen M, Reigada R, Vattulainen I. Influence ofcisdouble-bond parametrization on lipid membrane properties: How seemingly insignificant details in force-field change even qualitative trends. J Chem Phys 2008; 129:105103. [DOI: 10.1063/1.2976443] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
283
|
Sun H, Greathouse DV, Andersen OS, Koeppe RE. The preference of tryptophan for membrane interfaces: insights from N-methylation of tryptophans in gramicidin channels. J Biol Chem 2008; 283:22233-43. [PMID: 18550546 PMCID: PMC2494914 DOI: 10.1074/jbc.m802074200] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2008] [Revised: 06/03/2008] [Indexed: 11/06/2022] Open
Abstract
To better understand the structural and functional roles of tryptophan at the membrane/water interface in membrane proteins, we examined the structural and functional consequences of Trp --> 1-methyl-tryptophan substitutions in membrane-spanning gramicidin A channels. Gramicidin A channels are miniproteins that are anchored to the interface by four Trps near the C terminus of each subunit in a membrane-spanning dimer. We masked the hydrogen bonding ability of individual or multiple Trps by 1-methylation of the indole ring and examined the structural and functional changes using circular dichroism spectroscopy, size exclusion chromatography, solid state (2)H NMR spectroscopy, and single channel analysis. N-Methylation causes distinct changes in the subunit conformational preference, channel-forming propensity, single channel conductance and lifetime, and average indole ring orientations within the membrane-spanning channels. The extent of the local ring dynamic wobble does not increase, and may decrease slightly, when the indole NH is replaced by the non-hydrogen-bonding and more bulky and hydrophobic N-CH(3) group. The changes in conformational preference, which are associated with a shift in the distribution of the aromatic residues across the bilayer, are similar to those observed previously with Trp --> Phe substitutions. We conclude that indole N-H hydrogen bonding is of major importance for the folding of gramicidin channels. The changes in ion permeability, however, are quite different for Trp --> Phe and Trp --> 1-methyl-tryptophan substitutions, indicating that the indole dipole moment and perhaps also ring size and are important for ion permeation through these channels.
Collapse
Affiliation(s)
- Haiyan Sun
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, USA
| | | | | | | |
Collapse
|
284
|
Peptide aggregation and pore formation in a lipid bilayer: a combined coarse-grained and all atom molecular dynamics study. Biophys J 2008; 95:4337-47. [PMID: 18676652 DOI: 10.1529/biophysj.108.133330] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We present a simulation study where different resolutions, namely coarse-grained (CG) and all-atom (AA) molecular dynamics simulations, are used sequentially to combine the long timescale reachable by CG simulations with the high resolution of AA simulations, to describe the complete processes of peptide aggregation and pore formation by alamethicin peptides in a hydrated lipid bilayer. In the 1-micros CG simulations the peptides spontaneously aggregate in the lipid bilayer and exhibit occasional transitions between the membrane-spanning and the surface-bound configurations. One of the CG systems at t = 1 micros is reverted to an AA representation and subjected to AA simulation for 50 ns, during which water molecules penetrate the lipid bilayer through interactions with the peptide aggregates, and the membrane starts leaking water. During the AA simulation significant deviations from the alpha-helical structure of the peptides are observed, however, the size and arrangement of the clusters are not affected within the studied time frame. Solid-state NMR experiments designed to match closely the setup used in the molecular dynamics simulations provide strong support for our finding that alamethicin peptides adopt a diverse set of configurations in a lipid bilayer, which is in sharp contrast to the prevailing view of alamethicin oligomers formed by perfectly aligned helical alamethicin peptides in a lipid bilayer.
Collapse
|
285
|
Abstract
Nitroxide spin labels were incorporated into selected sites within the beta-barrel of the bacterial outer-membrane transport protein BtuB by site-directed mutagenesis, followed by chemical modification with a methanethiosufonate spin label. The electron paramagnetic resonance lineshapes of the spin-labeled side chain (R1) from these sites are highly variable, and have spectral parameters that reflect secondary structure and local steric constraints. In addition, these lineshape parameters correlate with crystallographic structure factors for Calpha carbons, suggesting that the motion of the spin label is modulated by both the local modes of motion of the spin label and the local dynamics of the protein backbone. Experiments performed as a function of lipid composition and sample temperature indicate that nitroxide spin labels on the exterior surface of BtuB, which face the membrane hydrocarbon, are not strongly influenced by the phase state of the bulk lipids. However, these spectra are modulated by membrane hydrocarbon thickness. Specifically, the values of the scaled mobility parameter for the R1 lineshapes are inversely proportional to the hydrocarbon thickness. These data suggest that protein dynamics and structure in BtuB are directly coupled to membrane hydrophobic thickness.
Collapse
|
286
|
Mahalakshmi R, Marassi FM. Orientation of the Escherichia coli outer membrane protein OmpX in phospholipid bilayer membranes determined by solid-State NMR. Biochemistry 2008; 47:6531-8. [PMID: 18512961 PMCID: PMC2899889 DOI: 10.1021/bi800362b] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The solid-state NMR orientation-dependent frequencies measured for membrane proteins in macroscopically oriented lipid bilayers provide precise orientation restraints for structure determination in membranes. Here we show that this information can also be used to supplement crystallographic structural data to establish the orientation of a membrane protein in the membrane. This is achieved by incorporating a few orientation restraints, measured for the Escherichia coli outer membrane protein OmpX in magnetically oriented lipid bilayers (bicelles), in a simulated annealing calculation with the coordinates of the OmpX crystal structure. The (1)H-(15)N dipolar couplings measured for the seven Phe residues of OmpX in oriented bilayers can be assigned by back-calculation of the NMR spectrum from the crystal structure and are sufficient to establish the three-dimensional orientation of the protein in the membrane, while the (15)N chemical shifts provide a measure of cross-validation for the analysis. In C14 lipid bilayers, OmpX adopts a transmembrane orientation with a 7 degrees tilt of its beta-barrel axis relative to the membrane normal, matching the hydrophobic thickness of the barrel with that of the membrane.
Collapse
Affiliation(s)
| | - Francesca M. Marassi
- Burnham Institute for Medical Research, 10901 North Torrey Pines Road, La Jolla, California 92037
| |
Collapse
|
287
|
Shahidullah K, London E. Effect of lipid composition on the topography of membrane-associated hydrophobic helices: stabilization of transmembrane topography by anionic lipids. J Mol Biol 2008; 379:704-18. [PMID: 18479706 PMCID: PMC2553358 DOI: 10.1016/j.jmb.2008.04.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Revised: 04/08/2008] [Accepted: 04/09/2008] [Indexed: 10/22/2022]
Abstract
To investigate the effect of lipid structure upon the membrane topography of hydrophobic helices, the behavior of hydrophobic peptides was studied in model membrane vesicles. To define topography, fluorescence and fluorescence quenching methods were used to determine the location of a Trp at the center of the hydrophobic sequence. For peptides with cationic residues flanking the hydrophobic sequence, the stability of the transmembrane (TM) configuration (relative to a membrane-bound non-TM state) increased as a function of lipid composition on the order: 1:1 (mol:mol) 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC):1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine approximately 6:4 POPC:cholesterol
Collapse
Affiliation(s)
- Khurshida Shahidullah
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | | |
Collapse
|
288
|
Patterson GH, Hirschberg K, Polishchuk RS, Gerlich D, Phair RD, Lippincott-Schwartz J. Transport through the Golgi apparatus by rapid partitioning within a two-phase membrane system. Cell 2008; 133:1055-67. [PMID: 18555781 PMCID: PMC2481404 DOI: 10.1016/j.cell.2008.04.044] [Citation(s) in RCA: 393] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2007] [Revised: 11/15/2007] [Accepted: 04/24/2008] [Indexed: 11/27/2022]
Abstract
The prevailing view of intra-Golgi transport is cisternal progression, which has a key prediction--that newly arrived cargo exhibits a lag or transit time before exiting the Golgi. Instead, we find that cargo molecules exit at an exponential rate proportional to their total Golgi abundance with no lag. Incoming cargo molecules rapidly mix with those already in the system and exit from partitioned domains with no cargo privileged for export based on its time of entry into the system. Given these results, we constructed a new model of intra-Golgi transport that involves rapid partitioning of enzymes and transmembrane cargo between two lipid phases combined with relatively rapid exchange among cisternae. Simulation and experimental testing of this rapid partitioning model reproduced all the key characteristics of the Golgi apparatus, including polarized lipid and protein gradients, exponential cargo export kinetics, and cargo waves.
Collapse
Affiliation(s)
- George H. Patterson
- Cell Biology and Metabolism Branch, National Institutes of Health, Bldg 18T Rm 101, 18 Library Drive, Bethesda, MD 20892-5430
| | - Koret Hirschberg
- Cell Biology and Metabolism Branch, National Institutes of Health, Bldg 18T Rm 101, 18 Library Drive, Bethesda, MD 20892-5430
- Department of Pathology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Roman S. Polishchuk
- Department of Cell Biology and Oncology, Consorzio “Mario Negri Sud” Santa Maria Imbaro (CH), 66030, Italy
| | | | | | - Jennifer Lippincott-Schwartz
- Cell Biology and Metabolism Branch, National Institutes of Health, Bldg 18T Rm 101, 18 Library Drive, Bethesda, MD 20892-5430
| |
Collapse
|
289
|
Marsh D. Energetics of hydrophobic matching in lipid-protein interactions. Biophys J 2008; 94:3996-4013. [PMID: 18234817 PMCID: PMC2367201 DOI: 10.1529/biophysj.107.121475] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Accepted: 01/07/2008] [Indexed: 11/18/2022] Open
Abstract
Lipid chain length modulates the activity of transmembrane proteins by mismatch between the hydrophobic span of the protein and that of the lipid membrane. Relative binding affinities of lipids with different chain lengths are used to estimate the excess free energy of lipid-protein interaction that arises from hydrophobic mismatch. For a wide range of integral proteins and peptides, the energy cost is much less than the elastic penalty of fully stretching or compressing the lipid chains to achieve complete hydrophobic matching. The chain length dependences of the free energies of lipid association are described by a model that combines elastic chain extension with a free energy term that depends linearly on the extent of residual mismatch. The excess free energy densities involved lie in the region of 0.5-2.0 k(B)T x nm(-2). Values of this size could arise from exposure of hydrophobic groups to polar portions of the lipid or protein, but not directly to water, or alternatively from changes in tilt of the transmembrane helices that are energetically comparable to those activating mechanosensitive channels. The influence of hydrophobic mismatch on dimerization of transmembrane helices and their transfer between lipid vesicles, and on shifts in chain-melting transitions of lipid bilayers by incorporated proteins, is analyzed by using the same thermodynamic model. Segmental order parameters confirm that elastic lipid chain distortions are insufficient to compensate fully for the mismatch, but the dependence on chain length with tryptophan-anchored peptides requires that the free energy density of hydrophobic mismatch should increase with increasing extent of mismatch.
Collapse
Affiliation(s)
- Derek Marsh
- Max-Planck-Institut für biophysikalische Chemie, Abt. Spektroskopie, 37077 Göttingen, Germany.
| |
Collapse
|
290
|
Abstract
Although membrane proteins account for approximately one third of all proteins encoded in the human genome, the functions and structures of their transmembrane domains are much less understood than the water-soluble regions. A major hurdle in studying these transmembrane domains is the lack of appropriate exogenous agents that can be used as specific probes. Despite the daunting challenges, major strides have recently been made in targeting the transmembrane domains of a variety of membrane proteins. High affinity and selectivity have been achieved in model biophysical systems, membranes of bacteria, and mammalian cells.
Collapse
Affiliation(s)
- Hang Yin
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, 215 UCB, Boulder, CO 80309-0215, USA.
| |
Collapse
|
291
|
Róg T, Murzyn K, Karttunen M, Pasenkiewicz-Gierula M. Nonpolar interactions between trans-membrane helical EGF peptide and phosphatidylcholines, sphingomyelins and cholesterol. Molecular dynamics simulation studies. J Pept Sci 2008; 14:374-82. [DOI: 10.1002/psc.936] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
292
|
Yin H. Exogene Wirkstoffe zur Erkennung von Transmembrandomänen von Proteinen. Angew Chem Int Ed Engl 2008. [DOI: 10.1002/ange.200704780] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
293
|
Kóta Z, Páli T, Dixon N, Kee TP, Harrison MA, Findlay JBC, Finbow ME, Marsh D. Incorporation of Transmembrane Peptides from the Vacuolar H+-ATPase in Phospholipid Membranes: Spin-Label Electron Paramagnetic Resonance and Polarized Infrared Spectroscopy. Biochemistry 2008; 47:3937-49. [DOI: 10.1021/bi7025112] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zoltán Kóta
- Max-Planck-Institut für biophysikalische Chemie, Abt. Spektroskopie, 37070 Göttingen, Germany, Institute of Biophysics, Biological Research Centre, 6701 Szeged, Hungary, School of Chemistry and School of Biochemistry and Molecular Biology, University of Leeds, Leeds LS2 9JT, U.K., and Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow G4 0BA, U.K
| | - Tibor Páli
- Max-Planck-Institut für biophysikalische Chemie, Abt. Spektroskopie, 37070 Göttingen, Germany, Institute of Biophysics, Biological Research Centre, 6701 Szeged, Hungary, School of Chemistry and School of Biochemistry and Molecular Biology, University of Leeds, Leeds LS2 9JT, U.K., and Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow G4 0BA, U.K
| | - Neil Dixon
- Max-Planck-Institut für biophysikalische Chemie, Abt. Spektroskopie, 37070 Göttingen, Germany, Institute of Biophysics, Biological Research Centre, 6701 Szeged, Hungary, School of Chemistry and School of Biochemistry and Molecular Biology, University of Leeds, Leeds LS2 9JT, U.K., and Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow G4 0BA, U.K
| | - Terry P. Kee
- Max-Planck-Institut für biophysikalische Chemie, Abt. Spektroskopie, 37070 Göttingen, Germany, Institute of Biophysics, Biological Research Centre, 6701 Szeged, Hungary, School of Chemistry and School of Biochemistry and Molecular Biology, University of Leeds, Leeds LS2 9JT, U.K., and Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow G4 0BA, U.K
| | - Michael A. Harrison
- Max-Planck-Institut für biophysikalische Chemie, Abt. Spektroskopie, 37070 Göttingen, Germany, Institute of Biophysics, Biological Research Centre, 6701 Szeged, Hungary, School of Chemistry and School of Biochemistry and Molecular Biology, University of Leeds, Leeds LS2 9JT, U.K., and Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow G4 0BA, U.K
| | - John B. C. Findlay
- Max-Planck-Institut für biophysikalische Chemie, Abt. Spektroskopie, 37070 Göttingen, Germany, Institute of Biophysics, Biological Research Centre, 6701 Szeged, Hungary, School of Chemistry and School of Biochemistry and Molecular Biology, University of Leeds, Leeds LS2 9JT, U.K., and Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow G4 0BA, U.K
| | - Malcolm E. Finbow
- Max-Planck-Institut für biophysikalische Chemie, Abt. Spektroskopie, 37070 Göttingen, Germany, Institute of Biophysics, Biological Research Centre, 6701 Szeged, Hungary, School of Chemistry and School of Biochemistry and Molecular Biology, University of Leeds, Leeds LS2 9JT, U.K., and Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow G4 0BA, U.K
| | - Derek Marsh
- Max-Planck-Institut für biophysikalische Chemie, Abt. Spektroskopie, 37070 Göttingen, Germany, Institute of Biophysics, Biological Research Centre, 6701 Szeged, Hungary, School of Chemistry and School of Biochemistry and Molecular Biology, University of Leeds, Leeds LS2 9JT, U.K., and Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow G4 0BA, U.K
| |
Collapse
|
294
|
Poveda JA, Fernández AM, Encinar JA, González-Ros JM. Protein-promoted membrane domains. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:1583-90. [PMID: 18294450 DOI: 10.1016/j.bbamem.2008.01.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2007] [Revised: 01/21/2008] [Accepted: 01/24/2008] [Indexed: 12/31/2022]
Abstract
The current notion of biological membranes encompasses a very complex structure, made of dynamically changing compartments or domains where different membrane components partition. These domains have been related to important cellular functions such as membrane sorting, signal transduction, membrane fusion, neuronal maturation, and protein activation. Many reviews have dealt with membrane domains where lipid-lipid interactions direct their formation, especially in the case of raft domains, so in this review we considered domains induced by integral membrane proteins. The nature of the interactions involved and the different mechanisms through which membrane proteins segregate lipid domains are presented, in particular with regard to those induced by the nAChR. It may be concluded that coupling of favourable lipid-lipid and lipid-protein interactions is a general condition for this phenomenon to occur.
Collapse
Affiliation(s)
- J A Poveda
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Elche, Spain.
| | | | | | | |
Collapse
|
295
|
Lee J, Im W. Transmembrane helix tilting: insights from calculating the potential of mean force. PHYSICAL REVIEW LETTERS 2008; 100:018103. [PMID: 18232823 DOI: 10.1103/physrevlett.100.018103] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2007] [Indexed: 05/25/2023]
Abstract
To explore the microscopic forces governing the helix tilting in membranes, we have calculated the potential of mean force (PMF) as a function of tilt angle (tau) of WALP19, a transmembrane model peptide, in a dimyristoylphosphatidylcholine membrane. The PMF shows a wide range of thermally accessible tilt angles (5 degrees to 22 degrees ) with a minimum at tau=12.5 degrees . The free energy decomposition reveals that the helix tilting up to tau=12.5 degrees is mostly driven by the entropy contribution arising from the helix precession around the membrane normal, whereas the PMF increase after tau=12.5 degrees results from helical deformation due to the sequence-specific helix-lipid interactions.
Collapse
Affiliation(s)
- Jinhyuk Lee
- Department of Molecular Biosciences and Center for Bioinformatics, The University of Kansas, 2030 Becker Drive, Lawrence, KS 66047, USA
| | | |
Collapse
|
296
|
Mahalakshmi R, Franzin CM, Choi J, Marassi FM. NMR structural studies of the bacterial outer membrane protein OmpX in oriented lipid bilayer membranes. BIOCHIMICA ET BIOPHYSICA ACTA 2007; 1768:3216-24. [PMID: 17916325 PMCID: PMC2369366 DOI: 10.1016/j.bbamem.2007.08.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/06/2007] [Revised: 08/01/2007] [Accepted: 08/02/2007] [Indexed: 10/22/2022]
Abstract
The beta-barrels found in the outer membranes of prokaryotic and eukaryotic organisms constitute an important functional class of proteins. Here we present solid-state NMR spectra of the bacterial outer membrane protein OmpX in oriented lipid bilayer membranes. We show that OmpX is folded in both glass-supported oriented lipid bilayers and in lipid bicelles that can be magnetically oriented with the membrane plane parallel or perpendicular to the direction of the magnetic field. The presence of resolved peaks in these spectra demonstrates that OmpX undergoes rotational diffusion around an axis perpendicular to the membrane surface. A tightly hydrogen-bonded domain of OmpX resists exchange with D2O for days and is assigned to the transmembrane beta-barrel, while peaks at isotropic resonance frequencies that disappear rapidly in D2O are assigned to the extracellular and periplasmic loops. The two-dimensional 1H/15N separated local field spectra of OmpX have several resolved peaks, and agree well with the spectra calculated from the crystal structure of OmpX rotated with the barrel axis nearly parallel (5 degrees tilt) to the direction of the magnetic field. The data indicate that it will be possible to obtain site-specific resonance assignments and to determine the structure, tilt, and rotation of OmpX in membranes using the solid-state NMR methods that are currently being applied to alpha-helical membrane proteins.
Collapse
|
297
|
Krishnakumar SS, London E. Effect of sequence hydrophobicity and bilayer width upon the minimum length required for the formation of transmembrane helices in membranes. J Mol Biol 2007; 374:671-87. [PMID: 17950311 PMCID: PMC2121326 DOI: 10.1016/j.jmb.2007.09.037] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2007] [Revised: 09/11/2007] [Accepted: 09/12/2007] [Indexed: 10/22/2022]
Abstract
The minimum hydrophobic length necessary to form a transmembrane (TM) helix in membranes was investigated using model membrane-inserted hydrophobic helices. The fluorescence of a Trp at the center of the sequence and its sensitivity to quenching were used to ascertain helix position within the membrane. Peptides with hydrophobic cores composed of poly(Leu) were compared to sequences containing a poly 1:1 Leu:Ala core (which have a hydrophobicity typical of natural TM helices). Studies varying bilayer width revealed that the poly(Leu) core peptides predominately formed a TM state when the bilayer width exceeded hydrophobic sequence length by (i.e. when negative mismatch was) up to approximately 11-12 A (e.g. the case of a 11-12 residue hydrophobic sequence in bilayers with a biologically relevant width, i.e. dioleoylphosphatidylcholine (DOPC) bilayers), while poly(LeuAla) core peptides formed predominantly TM state with negative mismatch of up to 9 A (a 13 residue hydrophobic sequence in DOPC bilayers). This indicates that minimum length necessary to form a predominating amount of a TM state (minimum TM length) is only modestly hydrophobicity-dependent for the sequences studied here, and a formula that defines the minimum TM length as a function of hydrophobicity for moderately-to-highly hydrophobic sequences was derived. The minimum length able to form a stable TM helix for alternating LeuAla sequences, and that for sequences with a Leu block followed by an Ala block, was similar, suggesting that a hydrophobicity gradient along the sequence may not be an important factor in TM stability. TM stability was also similar for sequences flanked by different charged ionizable residues (Lys, His, Asp). However, ionizable flanking residues destabilized the TM configuration much more when charged than when uncharged. The ability of short hydrophobic sequences to form TM helices in membranes in the presence of substantial negative mismatch implies that lipid bilayers have a considerable ability to adjust to negative mismatch, and that short TM helices may be more common than generally believed. Factors that modulate the ability of bilayers to adjust to mismatch may strongly affect the configuration of short hydrophobic helices.
Collapse
Affiliation(s)
- Shyam S. Krishnakumar
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794–5215
| | - Erwin London
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794–5215
| |
Collapse
|
298
|
Özdirekcan S, Etchebest C, Killian JA, Fuchs PFJ. On the Orientation of a Designed Transmembrane Peptide: Toward the Right Tilt Angle? J Am Chem Soc 2007; 129:15174-81. [DOI: 10.1021/ja073784q] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Suat Özdirekcan
- Contribution from the Department of Chemical Biology and Organic Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands, and Equipe de Bioinformatique Génomique et Moléculaire INSERM UMR-S 726, Université Paris-Diderot-Paris 7, Case Courrier 7113, 2, place Jussieu, 75251 Paris Cedex 05, France
| | - Catherine Etchebest
- Contribution from the Department of Chemical Biology and Organic Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands, and Equipe de Bioinformatique Génomique et Moléculaire INSERM UMR-S 726, Université Paris-Diderot-Paris 7, Case Courrier 7113, 2, place Jussieu, 75251 Paris Cedex 05, France
| | - J. Antoinette Killian
- Contribution from the Department of Chemical Biology and Organic Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands, and Equipe de Bioinformatique Génomique et Moléculaire INSERM UMR-S 726, Université Paris-Diderot-Paris 7, Case Courrier 7113, 2, place Jussieu, 75251 Paris Cedex 05, France
| | - Patrick F. J. Fuchs
- Contribution from the Department of Chemical Biology and Organic Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands, and Equipe de Bioinformatique Génomique et Moléculaire INSERM UMR-S 726, Université Paris-Diderot-Paris 7, Case Courrier 7113, 2, place Jussieu, 75251 Paris Cedex 05, France
| |
Collapse
|
299
|
Affiliation(s)
- Kevin R Mackenzie
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77005, USA
| |
Collapse
|
300
|
Ozdirekcan S, Nyholm TKM, Raja M, Rijkers DTS, Liskamp RMJ, Killian JA. Influence of trifluoroethanol on membrane interfacial anchoring interactions of transmembrane alpha-helical peptides. Biophys J 2007; 94:1315-25. [PMID: 17905843 PMCID: PMC2212674 DOI: 10.1529/biophysj.106.101782] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Interfacial anchoring interactions between aromatic amino acid residues and the lipid-water interface are believed to be important determinants for membrane protein structure and function. Thus, it is possible that molecules that partition into the lipid-water interface can influence membrane protein activity simply by interfering with these anchoring interactions. Here we tested this hypothesis by investigating the effects of 2,2,2-trifluoroethanol (TFE) on the interaction of a Trp-flanked synthetic transmembrane peptide (acetyl-GW(2)(LA)(8)LW(2)A-NH(2)) with model membranes of dimyristoylphosphatidylcholine. Two striking observations were made. First, using (2)H nuclear magnetic resonance on acyl chain deuterated lipids, we found that addition of 4 or 8 vol % of TFE completely abolishes the ability of the peptide to order and stretch the lipid acyl chains in these relatively thin bilayers. Second, we observed that addition of 8 vol % TFE reduces the tilt angle of the peptide from 5.3 degrees to 2.5 degrees, as measured by (2)H NMR on Ala-d(4) labeled peptides. The "straightening" of the peptide was accompanied by an increased exposure of Trp to the aqueous phase, as shown by Trp-fluorescence quenching experiments using acrylamide. The observation of a reduced tilt angle was surprising because we also found that TFE partioning results in a significant thinning of the membrane, which would increase the extent of hydrophobic mismatch. In contrast to the Trp-flanked peptide, no effect of TFE was observed on the interaction of a Lys-flanked analog (acetyl-GK(2)(LA)(8)LK(2)A-NH(2)) with the lipid bilayer. These results emphasize the importance of interfacial anchoring interactions for membrane organization and provide new insights into how molecules such as TFE that can act as anesthetics may affect the behavior of membrane proteins that are enriched in aromatic amino acids at the lipid-water interface.
Collapse
Affiliation(s)
- Suat Ozdirekcan
- Chemical Biology and Organic Chemistry, Bijvoet Center for Biomolecular Research, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|