251
|
Delgado-Román I, Muñoz-Centeno MC. Coupling Between Cell Cycle Progression and the Nuclear RNA Polymerases System. Front Mol Biosci 2021; 8:691636. [PMID: 34409067 PMCID: PMC8365833 DOI: 10.3389/fmolb.2021.691636] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/28/2021] [Indexed: 11/13/2022] Open
Abstract
Eukaryotic life is possible due to the multitude of complex and precise phenomena that take place in the cell. Essential processes like gene transcription, mRNA translation, cell growth, and proliferation, or membrane traffic, among many others, are strictly regulated to ensure functional success. Such systems or vital processes do not work and adjusts independently of each other. It is required to ensure coordination among them which requires communication, or crosstalk, between their different elements through the establishment of complex regulatory networks. Distortion of this coordination affects, not only the specific processes involved, but also the whole cell fate. However, the connection between some systems and cell fate, is not yet very well understood and opens lots of interesting questions. In this review, we focus on the coordination between the function of the three nuclear RNA polymerases and cell cycle progression. Although we mainly focus on the model organism Saccharomyces cerevisiae, different aspects and similarities in higher eukaryotes are also addressed. We will first focus on how the different phases of the cell cycle affect the RNA polymerases activity and then how RNA polymerases status impacts on cell cycle. A good example of how RNA polymerases functions impact on cell cycle is the ribosome biogenesis process, which needs the coordinated and balanced production of mRNAs and rRNAs synthesized by the three eukaryotic RNA polymerases. Distortions of this balance generates ribosome biogenesis alterations that can impact cell cycle progression. We also pay attention to those cases where specific cell cycle defects generate in response to repressed synthesis of ribosomal proteins or RNA polymerases assembly defects.
Collapse
Affiliation(s)
- Irene Delgado-Román
- Instituto de Biomedicina de Sevilla, Universidad de Sevilla-CSIC-Hospital Universitario V. Del Rocío, Seville, Spain.,Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Mari Cruz Muñoz-Centeno
- Instituto de Biomedicina de Sevilla, Universidad de Sevilla-CSIC-Hospital Universitario V. Del Rocío, Seville, Spain.,Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| |
Collapse
|
252
|
Jeong CB, Kang HM, Byeon E, Kim MS, Ha SY, Kim M, Jung JH, Lee JS. Phenotypic and transcriptomic responses of the rotifer Brachionus koreanus by single and combined exposures to nano-sized microplastics and water-accommodated fractions of crude oil. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125703. [PMID: 33836325 DOI: 10.1016/j.jhazmat.2021.125703] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/17/2021] [Accepted: 03/17/2021] [Indexed: 06/12/2023]
Abstract
Sorption of organic pollutants on microplastics can be an alternative uptake route for organic pollutants in aquatic organisms. To assess the combined effects of microplastics and organic pollutants, we employed phenotypic and transcriptomic analyses to the responses of the marine rotifer Brachionus koreanus to environmentally relevant concentrations of nano-sized microplastic (0.05 µm), water-accommodated fractions of crude oil, and binary mixtures thereof. Our multigenerational in vivo experiments revealed more than additive effects on population growth of B. koreanus in response to combined exposure, while a single exposure to nano-sized microplastic did not induce observable adverse effects. Synergistic transcriptome deregulation was consistently associated with dramatically higher numbers of differentially expressed genes, and increased gene expression was associated with combined exposure. The majority of synergistic transcriptional alteration was related to metabolism and transcription, with impaired reproduction resulting from energetic reallocation toward adaptation. As further supported by chemistry analysis for polycyclic aromatic hydrocarbons sorption on microplastic, our findings imply that nano-sized microplastics can synergistically mediate the effects of organic pollutants in aquatic organisms.
Collapse
Affiliation(s)
- Chang-Bum Jeong
- Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon 22012, South Korea.
| | - Hye-Min Kang
- Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology, Busan 49111, South Korea
| | - Eunjin Byeon
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Min-Sub Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Sung Yong Ha
- Risk Assessment Research Center, Korea Institute of Ocean Science and Technology, Geoje 53201, South Korea
| | - Moonkoo Kim
- Risk Assessment Research Center, Korea Institute of Ocean Science and Technology, Geoje 53201, South Korea; Department of Ocean Science, Korea University of Science and Technology, Daejeon 34113, South Korea
| | - Jee-Hyun Jung
- Risk Assessment Research Center, Korea Institute of Ocean Science and Technology, Geoje 53201, South Korea; Department of Ocean Science, Korea University of Science and Technology, Daejeon 34113, South Korea
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
253
|
Menezes RST, Cabral-de-Mello DC, Milani D, Bardella VB, Almeida EAB. The relevance of chromosome fissions for major ribosomal DNA dispersion in hymenopteran insects. J Evol Biol 2021; 34:1466-1476. [PMID: 34331340 DOI: 10.1111/jeb.13909] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 07/04/2021] [Accepted: 07/28/2021] [Indexed: 01/20/2023]
Abstract
Ribosomal DNA (rDNA) loci are essential for cellular metabolism due to their participation in ribosome biogenesis. Although these genes have been widely cytogenetically mapped, the evolutionary mechanisms behind their variability in number and chromosomal location remain elusive, even in well-known biological groups, such as ants, bees and wasps (Insecta: Hymenoptera). To address this question in Hymenoptera and therefore advance the understanding of rDNA evolution in insects in general, we integrated molecular cytogenetic data, a phylogenomic framework, model-based predictions and genome sequencing. Hence, we assessed the main evolutionary trends shaping the chromosomal distribution of rDNA loci in Hymenoptera. We noticed the conservation of one site of rDNA per haploid genome, suggesting that a single 45S rDNA locus is the putative ancestral pattern for aculeate Hymenoptera. Moreover, our results highlighted a nonrandom distribution of rDNA in Hymenoptera karyotypes, as well as a lineage-specific preferential location. The proximal location of rDNA is favoured in species with multiple loci and in the two families of Hymenoptera that show the highest range of chromosome numbers: Formicidae and Vespidae. We propose that chromosome fissions have played a crucial role in the distribution pattern of rDNA loci through the evolutionary diversification of Hymenoptera. Moreover, our genomic analysis of two species, one with a single locus of rDNA and one with multiple loci, supported that loci multiplication is followed by sequence divergence. Our results provide detailed information about the number and chromosomal position of rDNA in Hymenoptera and, therefore, broaden our knowledge regarding rDNA evolutionary dynamics in insects.
Collapse
Affiliation(s)
- Rodolpho S T Menezes
- Laboratório de Biologia Comparada e Abelhas, Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras (FFCLRP), Universidade de São Paulo (USP), Ribeirão Preto, Brazil
| | - Diogo C Cabral-de-Mello
- Departamento de Biologia Geral e Aplicada, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Rio Claro, Brazil
| | - Diogo Milani
- Departamento de Biologia Geral e Aplicada, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Rio Claro, Brazil
| | - Vanessa B Bardella
- Departamento de Biologia Geral e Aplicada, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Rio Claro, Brazil
| | - Eduardo A B Almeida
- Laboratório de Biologia Comparada e Abelhas, Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras (FFCLRP), Universidade de São Paulo (USP), Ribeirão Preto, Brazil
| |
Collapse
|
254
|
Vallabhaneni AR, Kabashi M, Haymowicz M, Bhatt K, Wayman V, Ahmed S, Conrad-Webb H. HSF1 induces RNA polymerase II synthesis of ribosomal RNA in S. cerevisiae during nitrogen deprivation. Curr Genet 2021; 67:937-951. [PMID: 34363098 PMCID: PMC8594204 DOI: 10.1007/s00294-021-01197-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 11/29/2022]
Abstract
The resource intensive process of accurate ribosome synthesis is essential for cell viability in all organisms. Ribosome synthesis regulation centers on RNA polymerase I (pol I) transcription of a 35S rRNA precursor that is processed into the mature 18S, 5.8S and 25S rRNAs. During nutrient deprivation or stress, pol I synthesis of rRNA is dramatically reduced. Conversely, chronic stress such as mitochondrial dysfunction induces RNA polymerase II (pol II) to transcribe functional rRNA using an evolutionarily conserved cryptic pol II rDNA promoter suggesting a universal phenomenon. However, this polymerase switches and its role in regulation of rRNA synthesis remain unclear. In this paper, we demonstrate that extended nitrogen deprivation induces the polymerase switch via components of the environmental stress response. We further show that the switch is repressed by Sch9 and activated by the stress kinase Rim15. Like stress-induced genes, the switch requires not only pol II transcription machinery, including the mediator, but also requires the HDAC, Rpd3 and stress transcription factor Hsf1. The current work shows that the constitutive allele, Hsf1PO4* displays elevated levels of induction in non-stress conditions while binding to a conserved site in the pol II rDNA promoter upstream of the pol I promoter. Whether the polymerase switch serves to provide rRNA when pol I transcription is inhibited or fine-tunes pol I initiation via RNA interactions is yet to be determined. Identifying the underlying mechanism for this evolutionary conserved phenomenon will help understand the mechanism of pol II rRNA synthesis and its role in stress adaptation.
Collapse
Affiliation(s)
- Arjuna Rao Vallabhaneni
- Department of Biology, Texas Woman's University, 304 Administration Dr., Denton, TX, 76204, USA
| | - Merita Kabashi
- Department of Biology, Texas Woman's University, 304 Administration Dr., Denton, TX, 76204, USA
| | - Matt Haymowicz
- Department of Biology, Texas Woman's University, 304 Administration Dr., Denton, TX, 76204, USA
| | - Kushal Bhatt
- Department of Biology, Texas Woman's University, 304 Administration Dr., Denton, TX, 76204, USA.,Department of Bioinformatics, University of Texas Southwestern, 5323 Harry Hines Blvd., Dallas, Texas, 75390, USA
| | - Violet Wayman
- Department of Biology, Texas Woman's University, 304 Administration Dr., Denton, TX, 76204, USA
| | - Shazia Ahmed
- Department of Biology, Texas Woman's University, 304 Administration Dr., Denton, TX, 76204, USA
| | - Heather Conrad-Webb
- Department of Biology, Texas Woman's University, 304 Administration Dr., Denton, TX, 76204, USA.
| |
Collapse
|
255
|
Daskalova AV, Tomova AA, Kujumdzieva AV, Velkova LG, Dolashka PA, Petrova VY. Menadione and hydrogen peroxide trigger specific alterations in RNA polymerases profiles in quiescent Saccharomyces cerevisiae cells. BIOTECHNOL BIOTEC EQ 2021. [DOI: 10.1080/13102818.2021.1941255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Affiliation(s)
- Asya Vladimirova Daskalova
- Department of Chemistry and Biophysics of Proteins and Enzymes, Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Anna Atanasova Tomova
- Department of General and Industrial Microbiology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, Sofia, Bulgaria
| | - Anna Vangelova Kujumdzieva
- Department of General and Industrial Microbiology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, Sofia, Bulgaria
| | - Lyudmila Georgieva Velkova
- Department of Chemistry and Biophysics of Proteins and Enzymes, Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Pavlina Aleksandrova Dolashka
- Department of Chemistry and Biophysics of Proteins and Enzymes, Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Ventsislava Yankova Petrova
- Department of General and Industrial Microbiology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, Sofia, Bulgaria
| |
Collapse
|
256
|
Tseng TL, Wang YT, Tsao CY, Ke YT, Lee YC, Hsu HJ, Poss KD, Chen CH. The RNA helicase Ddx52 functions as a growth switch in juvenile zebrafish. Development 2021; 148:271093. [PMID: 34323273 DOI: 10.1242/dev.199578] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/30/2021] [Indexed: 12/18/2022]
Abstract
Vertebrate animals usually display robust growth trajectories during juvenile stages, and reversible suspension of this growth momentum by a single genetic determinant has not been reported. Here, we report a single genetic factor that is essential for juvenile growth in zebrafish. Using a forward genetic screen, we recovered a temperature-sensitive allele, pan (after Peter Pan), that suspends whole-organism growth at juvenile stages. Remarkably, even after growth is halted for a full 8-week period, pan mutants are able to resume a robust growth trajectory after release from the restrictive temperature, eventually growing into fertile adults without apparent adverse phenotypes. Positional cloning and complementation assays revealed that pan encodes a probable ATP-dependent RNA helicase (DEAD-Box Helicase 52; ddx52) that maintains the level of 47S precursor ribosomal RNA. Furthermore, genetic silencing of ddx52 and pharmacological inhibition of bulk RNA transcription similarly suspend the growth of flies, zebrafish and mice. Our findings reveal evidence that safe, reversible pauses of juvenile growth can be mediated by targeting the activity of a single gene, and that its pausing mechanism has high evolutionary conservation.
Collapse
Affiliation(s)
- Tzu-Lun Tseng
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Ying-Ting Wang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Chang-Yu Tsao
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Yi-Teng Ke
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Yi-Ching Lee
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Hwei-Jan Hsu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Kenneth D Poss
- Department of Cell Biology, Regeneration Next, Duke University Medical Center, Durham, NC 27710, USA
| | - Chen-Hui Chen
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
257
|
Cao W, Zhao W, Yang B, Wang X, Shen Y, Wei T, Qin W, Li Z, Bao X. Proteomic analysis revealed the roles of YRR1 deletion in enhancing the vanillin resistance of Saccharomyces cerevisiae. Microb Cell Fact 2021; 20:142. [PMID: 34301255 PMCID: PMC8305865 DOI: 10.1186/s12934-021-01633-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 07/15/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Vanillin is one of the important phenolic inhibitors in Saccharomyces cerevisiae for bioconversion of lignocellulosic materials and has been reported to inhibit the translation process in cells. In our previous studies, it was confirmed that the deletion of the transcription factor gene YRR1 enhanced vanillin resistance by promoting some translation-related processes at the transcription level. In this work, we investigated the effects of proteomic changes upon induction of vanillin stress and deletion of YRR1 to provide unique perspectives from a transcriptome analysis for comprehending the mechanisms of YRR1 deletion in the protective response of yeast to vanillin. RESULTS In wild-type cells, vanillin reduced two dozens of ribosomal proteins contents while upregulated proteins involved in glycolysis, oxidative phosphorylation, and the pentose phosphate pathway in cells. The ratios of NADPH/NADP+ and NADH/NAD+ were increased when cells responded to vanillin stress. The differentially expressed proteins perturbed by YRR1 deletion were much more abundant than and showed no overlaps with transcriptome changes, indicating that Yrr1 affects the synthesis of certain proteins. Forty-eight of 112 upregulated proteins were involved in the stress response, translational and transcriptional regulation. YRR1 deletion increased the expression of HAA1-encoding transcriptional activator, TMA17-encoding proteasome assembly chaperone and MBF1-encoding coactivator at the protein level, as confirmed by ELISA. Cultivation data showed that the overexpression of HAA1 and TMA17 enhanced resistance to vanillin in S. cerevisiae. CONCLUSIONS Cells conserve energy by decreasing the content of ribosomal proteins, producing more energy and NAD(P)H for survival in response to vanillin stress. Yrr1 improved vanillin resistance by increasing the protein quantities of Haa1, Tma17 and Mbf1. These results showed the response of S. cerevisiae to vanillin and how YRR1 deletion increases vanillin resistance at the protein level. These findings may advance our knowledge of how YRR1 deletion protects yeast from vanillin stress and offer novel targets for genetic engineering of designing inhibitor-resistant ethanologenic yeast strains.
Collapse
Affiliation(s)
- Wenyan Cao
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Key Laboratory of Shandong Microbial Engineering, Qilu University of Technology (Shandong Academy of Sciences), 3501 Daxue Road, Jinan, 250353, China
| | - Weiquan Zhao
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Key Laboratory of Shandong Microbial Engineering, Qilu University of Technology (Shandong Academy of Sciences), 3501 Daxue Road, Jinan, 250353, China
| | - Bolun Yang
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Key Laboratory of Shandong Microbial Engineering, Qilu University of Technology (Shandong Academy of Sciences), 3501 Daxue Road, Jinan, 250353, China
| | - Xinning Wang
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Key Laboratory of Shandong Microbial Engineering, Qilu University of Technology (Shandong Academy of Sciences), 3501 Daxue Road, Jinan, 250353, China.
| | - Yu Shen
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Binhai Road 72, Qingdao, 266237, China
| | - Tiandi Wei
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Binhai Road 72, Qingdao, 266237, China
| | - Wensheng Qin
- Department of Biology, Lakehead University, 955 Oliver Rd, Thunder Bay, ON, P7B 5E1, Canada
| | - Zailu Li
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Key Laboratory of Shandong Microbial Engineering, Qilu University of Technology (Shandong Academy of Sciences), 3501 Daxue Road, Jinan, 250353, China
| | - Xiaoming Bao
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Key Laboratory of Shandong Microbial Engineering, Qilu University of Technology (Shandong Academy of Sciences), 3501 Daxue Road, Jinan, 250353, China
| |
Collapse
|
258
|
Londei P, Ferreira-Cerca S. Ribosome Biogenesis in Archaea. Front Microbiol 2021; 12:686977. [PMID: 34367089 PMCID: PMC8339473 DOI: 10.3389/fmicb.2021.686977] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 05/14/2021] [Indexed: 12/02/2022] Open
Abstract
Making ribosomes is a major cellular process essential for the maintenance of functional ribosome homeostasis and to ensure appropriate gene expression. Strikingly, although ribosomes are universally conserved ribonucleoprotein complexes decoding the genetic information contained in messenger RNAs into proteins, their biogenesis shows an intriguing degree of variability across the tree of life. In this review, we summarize our knowledge on the least understood ribosome biogenesis pathway: the archaeal one. Furthermore, we highlight some evolutionary conserved and divergent molecular features of making ribosomes across the tree of life.
Collapse
Affiliation(s)
- Paola Londei
- Department of Molecular Medicine, University of Rome Sapienza, Rome, Italy
| | - Sébastien Ferreira-Cerca
- Biochemistry III - Regensburg Center for Biochemistry, Institute for Biochemistry, Genetics and Microbiology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
259
|
Commuting to Work: Nucleolar Long Non-Coding RNA Control Ribosome Biogenesis from Near and Far. Noncoding RNA 2021; 7:ncrna7030042. [PMID: 34287370 PMCID: PMC8293466 DOI: 10.3390/ncrna7030042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/09/2021] [Accepted: 07/11/2021] [Indexed: 12/26/2022] Open
Abstract
Gene expression is an essential process for cellular growth, proliferation, and differentiation. The transcription of protein-coding genes and non-coding loci depends on RNA polymerases. Interestingly, numerous loci encode long non-coding (lnc)RNA transcripts that are transcribed by RNA polymerase II (RNAPII) and fine-tune the RNA metabolism. The nucleolus is a prime example of how different lncRNA species concomitantly regulate gene expression by facilitating the production and processing of ribosomal (r)RNA for ribosome biogenesis. Here, we summarise the current findings on how RNAPII influences nucleolar structure and function. We describe how RNAPII-dependent lncRNA can both promote nucleolar integrity and inhibit ribosomal (r)RNA synthesis by modulating the availability of rRNA synthesis factors in trans. Surprisingly, some lncRNA transcripts can directly originate from nucleolar loci and function in cis. The nucleolar intergenic spacer (IGS), for example, encodes nucleolar transcripts that counteract spurious rRNA synthesis in unperturbed cells. In response to DNA damage, RNAPII-dependent lncRNA originates directly at broken ribosomal (r)DNA loci and is processed into small ncRNA, possibly to modulate DNA repair. Thus, lncRNA-mediated regulation of nucleolar biology occurs by several modes of action and is more direct than anticipated, pointing to an intimate crosstalk of RNA metabolic events.
Collapse
|
260
|
Transcriptional control of ribosome biogenesis in yeast: links to growth and stress signals. Biochem Soc Trans 2021; 49:1589-1599. [PMID: 34240738 PMCID: PMC8421047 DOI: 10.1042/bst20201136] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/14/2021] [Accepted: 06/18/2021] [Indexed: 12/15/2022]
Abstract
Ribosome biogenesis requires prodigious transcriptional output in rapidly growing yeast cells and is highly regulated in response to both growth and stress signals. This minireview focuses on recent developments in our understanding of this regulatory process, with an emphasis on the 138 ribosomal protein genes (RPGs) themselves and a group of >200 ribosome biogenesis (RiBi) genes whose products contribute to assembly but are not part of the ribosome. Expression of most RPGs depends upon Rap1, a pioneer transcription factor (TF) required for the binding of a pair of RPG-specific TFs called Fhl1 and Ifh1. RPG expression is correlated with Ifh1 promoter binding, whereas Rap1 and Fhl1 remain promoter-associated upon stress-induced down regulation. A TF called Sfp1 has also been implicated in RPG regulation, though recent work reveals that its primary function is in activation of RiBi and other growth-related genes. Sfp1 plays an important regulatory role at a small number of RPGs where Rap1–Fhl1–Ifh1 action is subsidiary or non-existent. In addition, nearly half of all RPGs are bound by Hmo1, which either stabilizes or re-configures Fhl1–Ifh1 binding. Recent studies identified the proline rotamase Fpr1, known primarily for its role in rapamycin-mediated inhibition of the TORC1 kinase, as an additional TF at RPG promoters. Fpr1 also affects Fhl1–Ifh1 binding, either independently or in cooperation with Hmo1. Finally, a major recent development was the discovery of a protein homeostasis mechanism driven by unassembled ribosomal proteins, referred to as the Ribosome Assembly Stress Response (RASTR), that controls RPG transcription through the reversible condensation of Ifh1.
Collapse
|
261
|
Wang Y, Li Q, Tian P, Tan T. Charting the landscape of RNA polymerases to unleash their potential in strain improvement. Biotechnol Adv 2021; 54:107792. [PMID: 34216775 DOI: 10.1016/j.biotechadv.2021.107792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/28/2021] [Accepted: 06/26/2021] [Indexed: 11/19/2022]
Abstract
One major mission of microbial cell factory is overproduction of desired chemicals. To this end, it is necessary to orchestrate enzymes that affect metabolic fluxes. However, only modification of a small number of enzymes in most cases cannot maximize desired metabolites, and global regulation is required. Of myriad enzymes influencing global regulation, RNA polymerase (RNAP) may be the most versatile enzyme in biological realm because it not only serves as the workhorse of central dogma but also participates in a plethora of biochemical events. In fact, recent years have witnessed extensive exploitation of RNAPs for phenotypic engineering. While a few impressive reviews showcase the structures and functionalities of RNAPs, this review not only summarizes the state-of-the-art advance in the structures of RNAPs but also points out their enormous potentials in metabolic engineering and synthetic biology. This review aims to provide valuable insights for strain improvement.
Collapse
Affiliation(s)
- Ye Wang
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Qingyang Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, PR China
| | - Pingfang Tian
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China.
| | - Tianwei Tan
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| |
Collapse
|
262
|
González-Jiménez A, Campos A, Navarro F, Clemente-Blanco A, Calvo O. Regulation of Eukaryotic RNAPs Activities by Phosphorylation. Front Mol Biosci 2021; 8:681865. [PMID: 34250017 PMCID: PMC8268151 DOI: 10.3389/fmolb.2021.681865] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/07/2021] [Indexed: 01/11/2023] Open
Abstract
Evolutionarily conserved kinases and phosphatases regulate RNA polymerase II (RNAPII) transcript synthesis by modifying the phosphorylation status of the carboxyl-terminal domain (CTD) of Rpb1, the largest subunit of RNAPII. Proper levels of Rpb1-CTD phosphorylation are required for RNA co-transcriptional processing and to coordinate transcription with other nuclear processes, such as chromatin remodeling and histone modification. Whether other RNAPII subunits are phosphorylated and influences their role in gene expression is still an unanswered question. Much less is known about RNAPI and RNAPIII phosphorylation, whose subunits do not contain functional CTDs. However, diverse studies have reported that several RNAPI and RNAPIII subunits are susceptible to phosphorylation. Some of these phosphorylation sites are distributed within subunits common to all three RNAPs whereas others are only shared between RNAPI and RNAPIII. This suggests that the activities of all RNAPs might be finely modulated by phosphorylation events and raises the idea of a tight coordination between the three RNAPs. Supporting this view, the transcription by all RNAPs is regulated by signaling pathways that sense different environmental cues to adapt a global RNA transcriptional response. This review focuses on how the phosphorylation of RNAPs might regulate their function and we comment on the regulation by phosphorylation of some key transcription factors in the case of RNAPI and RNAPIII. Finally, we discuss the existence of possible common mechanisms that could coordinate their activities.
Collapse
Affiliation(s)
- Araceli González-Jiménez
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas, Universidad de Salamanca, Salamanca, Spain
| | - Adrián Campos
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas, Universidad de Salamanca, Salamanca, Spain
| | - Francisco Navarro
- Departamento de Biología Experimental-Genética, Universidad de Jaén, Jaén, Spain.,Centro de Estudios Avanzados en Aceite de Oliva y Olivar, Universidad de Jaén, Jaén, Spain
| | - Andrés Clemente-Blanco
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas, Universidad de Salamanca, Salamanca, Spain
| | - Olga Calvo
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas, Universidad de Salamanca, Salamanca, Spain
| |
Collapse
|
263
|
Li X, Zengel JM, Lindahl L. A Novel Model for the RNase MRP-Induced Switch between the Formation of Different Forms of 5.8S rRNA. Int J Mol Sci 2021; 22:6690. [PMID: 34206573 PMCID: PMC8268776 DOI: 10.3390/ijms22136690] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/14/2021] [Accepted: 06/17/2021] [Indexed: 01/12/2023] Open
Abstract
Processing of the RNA polymerase I pre-rRNA transcript into the mature 18S, 5.8S, and 25S rRNAs requires removing the "spacer" sequences. The canonical pathway for the removal of the ITS1 spacer involves cleavages at the 3' end of 18S rRNA and at two sites inside ITS1. The process can generate either a long or a short 5.8S rRNA that differs in the number of ITS1 nucleotides retained at the 5.8S 5' end. Here we document a novel pathway to the long 5.8S, which bypasses cleavage within ITS1. Instead, the entire ITS1 is degraded from its 5' end by exonuclease Xrn1. Mutations in RNase MRP increase the accumulation of long relative to short 5.8S rRNA. Traditionally this is attributed to a decreased rate of RNase MRP cleavage at its target in ITS1, called A3. However, results from this work show that the MRP-induced switch between long and short 5.8S rRNA formation occurs even when the A3 site is deleted. Based on this and our published data, we propose that the link between RNase MRP and 5.8S 5' end formation involves RNase MRP cleavage at unknown sites elsewhere in pre-rRNA or in RNA molecules other than pre-rRNA.
Collapse
MESH Headings
- DNA, Ribosomal Spacer
- Endoribonucleases
- Gene Expression Regulation, Fungal
- Nucleic Acid Conformation
- RNA Processing, Post-Transcriptional
- RNA, Fungal
- RNA, Ribosomal, 5.8S/chemistry
- RNA, Ribosomal, 5.8S/genetics
- RNA, Ribosomal, 5.8S/metabolism
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
- Saccharomyces cerevisiae Proteins/genetics
- Saccharomyces cerevisiae Proteins/metabolism
- Sequence Deletion
Collapse
Affiliation(s)
- Xiao Li
- Department of Biological Sciences, University of Maryland Baltimore County (UMBC), 1000 Hilltop Circle, Baltimore, MD 21250, USA; (X.L.); (J.M.Z.)
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | - Janice M. Zengel
- Department of Biological Sciences, University of Maryland Baltimore County (UMBC), 1000 Hilltop Circle, Baltimore, MD 21250, USA; (X.L.); (J.M.Z.)
| | - Lasse Lindahl
- Department of Biological Sciences, University of Maryland Baltimore County (UMBC), 1000 Hilltop Circle, Baltimore, MD 21250, USA; (X.L.); (J.M.Z.)
| |
Collapse
|
264
|
Abstract
Plants have an extraordinary diversity of transcription machineries, including five nuclear DNA-dependent RNA polymerases. Four of these enzymes are dedicated to the production of long noncoding RNAs (lncRNAs), which are ribonucleic acids with functions independent of their protein-coding potential. lncRNAs display a broad range of lengths and structures, but they are distinct from the small RNA guides of RNA interference (RNAi) pathways. lncRNAs frequently serve as structural, catalytic, or regulatory molecules for gene expression. They can affect all elements of genes, including promoters, untranslated regions, exons, introns, and terminators, controlling gene expression at various levels, including modifying chromatin accessibility, transcription, splicing, and translation. Certain lncRNAs protect genome integrity, while others respond to environmental cues like temperature, drought, nutrients, and pathogens. In this review, we explain the challenge of defining lncRNAs, introduce the machineries responsible for their production, and organize this knowledge by viewing the functions of lncRNAs throughout the structure of a typical plant gene.
Collapse
Affiliation(s)
- Andrzej T Wierzbicki
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, USA;
| | - Todd Blevins
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, F-67084 Strasbourg, France;
| | - Szymon Swiezewski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland;
| |
Collapse
|
265
|
Ishihara H, Moraes TA, Arrivault S, Stitt M. Assessing Protein Synthesis and Degradation Rates in Arabidopsis thaliana Using Amino Acid Analysis. Curr Protoc 2021; 1:e114. [PMID: 34000100 DOI: 10.1002/cpz1.114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Plants continually synthesize and degrade proteins, for example, to adjust protein content during development or during adaptation to new environments. In order to estimate global protein synthesis and degradation rates in plants, we developed a relatively simple and inexpensive method using a combination of 13 CO2 labeling and mass spectrometry-based analyses. Arabidopsis thaliana plants are subjected to a 24-hr 13 CO2 pulse followed by a 4-day 12 CO2 chase. Soluble alanine and serine from total protein and glucose from cell wall material are analyzed by gas chromatography time-of-flight mass spectrometry (GC-TOF-MS) and their 13 C enrichment (%) is estimated. The rate of protein synthesis during the 13 CO2 pulse experiment is defined as the rate of incorporation of labeled amino acids into proteins normalized by a correction factor for incomplete enrichment in free amino acid pools. The rate of protein degradation is estimated as the difference between the rate of protein synthesis and the relative growth rate calculated using the 13 C enrichment of glucose from cell wall material. Degradation rates are also estimated from the 12 CO2 pulse experiment. The following method description includes setting up and performing labeling experiments, preparation and measurement of samples, and calculation steps. In addition, an R script is provided for the calculations. 2021 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Setting up the 13 CO2 labeling system and stable isotope labeling of Arabidopsis thaliana rosette leaves Basic Protocol 2: Extraction of soluble amino acids for GC-TOF-MS analysis Basic Protocol 3: Preparation of amino acids from total protein for GC-TOF-MS analysis Basic Protocol 4: Preparation of sugars from cell wall material for GC-TOF-MS analysis Basis Protocol 5: GC-TOF-MS analysis of 13 C-labeled samples and estimation of 13 C enrichment (%) Basis Protocol 6: Estimation of protein synthesis and degradation rates.
Collapse
Affiliation(s)
- Hirofumi Ishihara
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Thiago A Moraes
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | | | - Mark Stitt
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| |
Collapse
|
266
|
Faulty ribosome biogenesis underlies the ribosomopathy alopecia, neurological defects, endocrinopathy (ANE) syndrome. Proc Natl Acad Sci U S A 2021; 118:2107030118. [PMID: 34035178 PMCID: PMC8214674 DOI: 10.1073/pnas.2107030118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
267
|
Almutairi ZM. Molecular characterization and expression analysis of ribosomal L18/L5e gene in Pennisetum glaucum (L.) R. Br. Saudi J Biol Sci 2021; 28:3585-3593. [PMID: 34121902 PMCID: PMC8176002 DOI: 10.1016/j.sjbs.2021.03.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 11/21/2022] Open
Abstract
Ribosomal L18/L5e (RL18/L5e) is a member of the ribosomal L18/L5e protein family, which has an essential function in translation of mRNA into protein in the large ribosomal subunit. In this study, RL18/L5e was isolated and sequenced from local Pennisetum glaucum (L.) R. Br. cultivar which is known to adapt to environmental stress. The obtained cDNA for PgRL18/L5e was 699 bp in length, with an open reading frame of 564 bp. The deduced protein sequence contained 187 amino acids and comprised an RL18/L5e domain, which shared high sequence identity with orthologous proteins from Viridiplantae. The obtained PgRL18/L5e cDNA contained two exons of 154 and 545 bp, respectively, and an intron of 1398 bp. Secondary and 3D structures of the deduced PgRL18/L5e protein were predicted using in silico tools. Phylogenetic analysis showed close relationships between the PgRL18/L5e protein and its orthologs from monocot species. Multiple sequence alignment showed high identity in the RL18/L5e domain sequence in all orthologous proteins in Viridiplantae. Moreover, all orthologous RL18/L5e proteins shared the same domain architecture and were nearly equal in length. Quantitative real-time PCR indicated a higher transcript abundance of PgRL18/L5e in shoots than in roots of 3-day-old seedlings. Moreover, the expression of PgRL18/L5e in seedlings under cold and drought stress was substantially lower than that in untreated seedlings, whereas the highest expression was shown under heat stress. This study provides insights into the structure and function of the RL18/L5e gene in tolerant crops, which could facilitate the understanding of the role of the various plant ribosomal proteins in adaptation to extreme environments.
Collapse
Affiliation(s)
- Zainab M. Almutairi
- Biology Department, College of Science and Humanities, Prince Sattam bin Abdulaziz University, P.O. Box: 83, Al-kharj 11942, Saudi Arabia
| |
Collapse
|
268
|
Cerezo EL, Houles T, Lié O, Sarthou MK, Audoynaud C, Lavoie G, Halladjian M, Cantaloube S, Froment C, Burlet-Schiltz O, Henry Y, Roux PP, Henras AK, Romeo Y. RIOK2 phosphorylation by RSK promotes synthesis of the human small ribosomal subunit. PLoS Genet 2021; 17:e1009583. [PMID: 34125833 PMCID: PMC8224940 DOI: 10.1371/journal.pgen.1009583] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/24/2021] [Accepted: 05/05/2021] [Indexed: 11/18/2022] Open
Abstract
Ribosome biogenesis lies at the nexus of various signaling pathways coordinating protein synthesis with cell growth and proliferation. This process is regulated by well-described transcriptional mechanisms, but a growing body of evidence indicates that other levels of regulation exist. Here we show that the Ras/mitogen-activated protein kinase (MAPK) pathway stimulates post-transcriptional stages of human ribosome synthesis. We identify RIOK2, a pre-40S particle assembly factor, as a new target of the MAPK-activated kinase RSK. RIOK2 phosphorylation by RSK stimulates cytoplasmic maturation of late pre-40S particles, which is required for optimal protein synthesis and cell proliferation. RIOK2 phosphorylation facilitates its release from pre-40S particles and its nuclear re-import, prior to completion of small ribosomal subunits. Our results bring a detailed mechanistic link between the Ras/MAPK pathway and the maturation of human pre-40S particles, which opens a hitherto poorly explored area of ribosome biogenesis.
Collapse
Affiliation(s)
- Emilie L. Cerezo
- Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Thibault Houles
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, Québec, Canada
| | - Oriane Lié
- Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Marie-Kerguelen Sarthou
- Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Charlotte Audoynaud
- Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Geneviève Lavoie
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, Québec, Canada
| | - Maral Halladjian
- Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Sylvain Cantaloube
- Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Carine Froment
- Institut de Pharmacologie et Biologie Structurale (IPBS), Université de Toulouse, UPS, CNRS, Toulouse, France
| | - Odile Burlet-Schiltz
- Institut de Pharmacologie et Biologie Structurale (IPBS), Université de Toulouse, UPS, CNRS, Toulouse, France
| | - Yves Henry
- Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Philippe P. Roux
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, Québec, Canada
- Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montreal, Québec, Canada
| | - Anthony K. Henras
- Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Yves Romeo
- Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| |
Collapse
|
269
|
Schedlbauer A, Iturrioz I, Ochoa-Lizarralde B, Diercks T, López-Alonso JP, Lavin JL, Kaminishi T, Çapuni R, Dhimole N, de Astigarraga E, Gil-Carton D, Fucini P, Connell SR. A conserved rRNA switch is central to decoding site maturation on the small ribosomal subunit. SCIENCE ADVANCES 2021; 7:7/23/eabf7547. [PMID: 34088665 PMCID: PMC8177701 DOI: 10.1126/sciadv.abf7547] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 04/20/2021] [Indexed: 05/03/2023]
Abstract
While a structural description of the molecular mechanisms guiding ribosome assembly in eukaryotic systems is emerging, bacteria use an unrelated core set of assembly factors for which high-resolution structural information is still missing. To address this, we used single-particle cryo-electron microscopy to visualize the effects of bacterial ribosome assembly factors RimP, RbfA, RsmA, and RsgA on the conformational landscape of the 30S ribosomal subunit and obtained eight snapshots representing late steps in the folding of the decoding center. Analysis of these structures identifies a conserved secondary structure switch in the 16S ribosomal RNA central to decoding site maturation and suggests both a sequential order of action and molecular mechanisms for the assembly factors in coordinating and controlling this switch. Structural and mechanistic parallels between bacterial and eukaryotic systems indicate common folding features inherent to all ribosomes.
Collapse
Affiliation(s)
- Andreas Schedlbauer
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain
| | - Idoia Iturrioz
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain
| | - Borja Ochoa-Lizarralde
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain
| | - Tammo Diercks
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain
| | - Jorge Pedro López-Alonso
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain
| | | | - Tatsuya Kaminishi
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain
- Department of Genetics, Graduate School of Medicine, Osaka University, Japan
| | - Retina Çapuni
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain
| | - Neha Dhimole
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain
| | - Elisa de Astigarraga
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain
| | - David Gil-Carton
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain
| | - Paola Fucini
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain.
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Sean R Connell
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain.
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|
270
|
Wu SG, Zhou P, Chen JX, Lei J, Hua L, Dong Y, Hu M, Lian CL, Yang LC, Zhou J. circ-PTK2 (hsa_circ_0008305) regulates the pathogenic processes of ovarian cancer via miR-639 and FOXC1 regulatory cascade. Cancer Cell Int 2021; 21:277. [PMID: 34034740 PMCID: PMC8146250 DOI: 10.1186/s12935-021-01985-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 05/13/2021] [Indexed: 12/20/2022] Open
Abstract
Background Precise quantification of microRNA is challenging since circulating mRNA and rRNA in the blood are usually degraded. Therefore, it is necessary to identify specific biomarkers for ovarian cancer. This study aimed to investigate candidate circular RNAs (circRNAs) involved in the pathogenic process of ovarian cancer after inhibition of chromodomain helicase DNA binding protein 1-like (CHD1L) and the corresponding mechanism. Methods CHD1L mRNA-targeted siRNA was designed and induced a decreased level of CHD1L function in SK-OV-3 and OVCAR-3 cells observed via transwell and wound healing assays and assessment of epithelial–mesenchymal transition (EMT)-related protein expression by immunofluorescence (IF) and western blotting (WB). After decreasing the level of CHD1L, RNA-seq was conducted, and the circRNA expression profiles were obtained. cirRNAs were then selected and validated by PCR together with Sanger sequencing, fluorescent in situ hybridization (FISH), and reverse transcriptase-quantitative PCR (RT-qPCR). Selected circRNA function in vitro was adjusted via interference and overexpression and assessed via transwell assay, tube formation, and EMT-related protein assay by IF and WB; tumor formation in vivo was followed via hematoxylin and eosin (HE) staining and immunohistochemistry of EMT-related proteins. Based on the competing endogenous RNA prediction of circRNA targets, candidate miRNAs were found, and their downstream mRNAs targeted by the selected miRNA were identified and validated by luciferase assay. The functions of these selected miRNA and mRNA were then further investigated through transwell and WB assay of EMT-related proteins. Results CHD1L was significantly upregulated in ovarian cancer tissues and patients with higher expression of CHD1L had a shorter relapse-free survival (P < 0.001) and overall survival (P < 0.001). Inhibiting the level of CHD1L significantly decreased cell migration and invasion (P < 0.05), increased the expression of epithelial markers, and decreased the expression of mesenchymal markers. Following inhibition of CHD1L expression, RNA-seq was conducted and 82 circRNAs had significantly upregulated expression, while 247 had significantly downregulated expression. The circRNAs were validated by PCR, and hsa_circ_0008305 (circ-PTK2) was selected and further validated by Sanger sequencing, FISH, and RT-qPCR. Circ-PTK2 expression was significantly higher in the ovarian cancer tissues compared with normal ovary tissues (P < 0.001). By regulating the level of circ-PTK2 with siRNA and an overexpression vector, expression of circ-PTK2 was found to be positively correlated to cell migration and invasion. Overexpression of circ-PTK2 enhanced tumor formation and was correlated to expression of EMT pathway markers. Prediction of the target of circ-PTK2 was validated with dual luciferase assay and identified miR-639 and FOXC1 as the valid target of circ-PTK2 and miR-639, respectively. The RNA level of miR-639 was negatively correlated to cell proliferation and migration, whereas the mRNA level of FOXC1 was positively correlated to those processes. miR-639 mimics reversed the function of circ-PTK2 overexpression; however, interference of FOXC1 mRNA also reversed the function of circ-PTK2. Conclusions circ-PTK2 is an important molecule in regulating the pathogenic processes of ovarian cancer via the miR-639 and FOXC1 regulatory cascade. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-01985-x.
Collapse
Affiliation(s)
- San-Gang Wu
- Department of Radiation Oncology, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, People's Republic of China
| | - Ping Zhou
- Department of Radiation Oncology, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, People's Republic of China
| | - Jian-Xian Chen
- Department of Medical Oncology, People's Hospital of Baise, Baise, 533000, People's Republic of China
| | - Jian Lei
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, People's Republic of China
| | - Li Hua
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, People's Republic of China
| | - Yong Dong
- Department of Oncology, Dongguan Third People's Hospital, Affiliated Dongguan Shilong People's Hospital of Southern Medical University, Dongguan, 523326, People's Republic of China
| | - Min Hu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, People's Republic of China
| | - Chen-Lu Lian
- Department of Radiation Oncology, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, People's Republic of China
| | - Li-Chao Yang
- Xiamen Key Laboratory of Chiral Drugs, School of Medicine, Xiamen University, Xiamen, 361005, People's Republic of China.
| | - Juan Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, People's Republic of China.
| |
Collapse
|
271
|
Young DJ, Meydan S, Guydosh NR. 40S ribosome profiling reveals distinct roles for Tma20/Tma22 (MCT-1/DENR) and Tma64 (eIF2D) in 40S subunit recycling. Nat Commun 2021; 12:2976. [PMID: 34016977 PMCID: PMC8137927 DOI: 10.1038/s41467-021-23223-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 04/14/2021] [Indexed: 12/21/2022] Open
Abstract
The recycling of ribosomes at stop codons for use in further rounds of translation is critical for efficient protein synthesis. Removal of the 60S subunit is catalyzed by the ATPase Rli1 (ABCE1) while removal of the 40S is thought to require Tma64 (eIF2D), Tma20 (MCT-1), and Tma22 (DENR). However, it remains unclear how these Tma proteins cause 40S removal and control reinitiation of downstream translation. Here we used a 40S ribosome footprinting strategy to directly observe intermediate steps of ribosome recycling in cells. Deletion of the genes encoding these Tma proteins resulted in broad accumulation of unrecycled 40S subunits at stop codons, directly establishing their role in 40S recycling. Furthermore, the Tma20/Tma22 heterodimer was responsible for a majority of 40S recycling events while Tma64 played a minor role. Introduction of an autism-associated mutation into TMA22 resulted in a loss of 40S recycling activity, linking ribosome recycling and neurological disease.
Collapse
Affiliation(s)
- David J Young
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sezen Meydan
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
- Postdoctoral Research Associate Training Program, National Institute of General Medical Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Nicholas R Guydosh
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
272
|
Aquino GRR, Krogh N, Hackert P, Martin R, Gallesio JD, van Nues RW, Schneider C, Watkins NJ, Nielsen H, Bohnsack KE, Bohnsack MT. RNA helicase-mediated regulation of snoRNP dynamics on pre-ribosomes and rRNA 2'-O-methylation. Nucleic Acids Res 2021; 49:4066-4084. [PMID: 33721027 PMCID: PMC8053091 DOI: 10.1093/nar/gkab159] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 02/23/2021] [Accepted: 02/26/2021] [Indexed: 12/18/2022] Open
Abstract
RNA helicases play important roles in diverse aspects of RNA metabolism through their functions in remodelling ribonucleoprotein complexes (RNPs), such as pre-ribosomes. Here, we show that the DEAD box helicase Dbp3 is required for efficient processing of the U18 and U24 intron-encoded snoRNAs and 2′-O-methylation of various sites within the 25S ribosomal RNA (rRNA) sequence. Furthermore, numerous box C/D snoRNPs accumulate on pre-ribosomes in the absence of Dbp3. Many snoRNAs guiding Dbp3-dependent rRNA modifications have overlapping pre-rRNA basepairing sites and therefore form mutually exclusive interactions with pre-ribosomes. Analysis of the distribution of these snoRNAs between pre-ribosome-associated and ‘free’ pools demonstrated that many are almost exclusively associated with pre-ribosomal complexes. Our data suggest that retention of such snoRNPs on pre-ribosomes when Dbp3 is lacking may impede rRNA 2′-O-methylation by reducing the recycling efficiency of snoRNPs and by inhibiting snoRNP access to proximal target sites. The observation of substoichiometric rRNA modification at adjacent sites suggests that the snoRNPs guiding such modifications likely interact stochastically rather than hierarchically with their pre-rRNA target sites. Together, our data provide new insights into the dynamics of snoRNPs on pre-ribosomal complexes and the remodelling events occurring during the early stages of ribosome assembly.
Collapse
Affiliation(s)
- Gerald Ryan R Aquino
- Department of Molecular Biology, University Medical Centre Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
| | - Nicolai Krogh
- Department of Cellular and Molecular Medicine, University of Copenhagen, 3B Blegdamsvej, 2200N Copenhagen, Denmark
| | - Philipp Hackert
- Department of Molecular Biology, University Medical Centre Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
| | - Roman Martin
- Department of Molecular Biology, University Medical Centre Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
| | - Jimena Davila Gallesio
- Department of Molecular Biology, University Medical Centre Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
| | - Robert W van Nues
- Biosciences Institute, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Claudia Schneider
- Biosciences Institute, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Nicholas J Watkins
- Biosciences Institute, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Henrik Nielsen
- Department of Cellular and Molecular Medicine, University of Copenhagen, 3B Blegdamsvej, 2200N Copenhagen, Denmark.,Genomics group, Faculty of Biosciences and Aquaculture, Nord University, 8049, Bodø, Norway
| | - Katherine E Bohnsack
- Department of Molecular Biology, University Medical Centre Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
| | - Markus T Bohnsack
- Department of Molecular Biology, University Medical Centre Göttingen, Humboldtallee 23, 37073 Göttingen, Germany.,Göttingen Center for Molecular Biosciences, Georg-August University Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| |
Collapse
|
273
|
Landwehr V, Milanov M, Angebauer L, Hong J, Jüngert G, Hiersemenzel A, Siebler A, Schmit F, Öztürk Y, Dannenmaier S, Drepper F, Warscheid B, Koch HG. The Universally Conserved ATPase YchF Regulates Translation of Leaderless mRNA in Response to Stress Conditions. Front Mol Biosci 2021; 8:643696. [PMID: 34026826 PMCID: PMC8138138 DOI: 10.3389/fmolb.2021.643696] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 04/13/2021] [Indexed: 12/14/2022] Open
Abstract
The universally conserved P-loop GTPases control diverse cellular processes, like signal transduction, ribosome assembly, cell motility, and intracellular transport and translation. YchF belongs to the Obg-family of P-loop GTPases and is one of the least characterized member of this family. It is unique because it preferentially hydrolyses ATP rather than GTP, but its physiological role is largely unknown. Studies in different organisms including humans suggest a possible role of YchF in regulating the cellular adaptation to stress conditions. In the current study, we explored the role of YchF in the model organism Escherichia coli. By western blot and promoter fusion experiments, we demonstrate that YchF levels decrease during stress conditions or when cells enter stationary phase. The decline in YchF levels trigger increased stress resistance and cells lacking YchF are resistant to multiple stress conditions, like oxidative stress, replication stress, or translational stress. By in vivo site directed cross-linking we demonstrate that YchF interacts with the translation initiation factor 3 (IF3) and with multiple ribosomal proteins at the surface of the small ribosomal subunit. The absence of YchF enhances the anti-association activity of IF3, stimulates the translation of leaderless mRNAs, and increases the resistance against the endoribonuclease MazF, which generates leaderless mRNAs during stress conditions. In summary, our data identify YchF as a stress-responsive regulator of leaderless mRNA translation.
Collapse
Affiliation(s)
- Victoria Landwehr
- Institute for Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Medizin, Faculty of Medicine, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Martin Milanov
- Institute for Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Medizin, Faculty of Medicine, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
- Faculty of Biology, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Larissa Angebauer
- Institute for Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Medizin, Faculty of Medicine, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
- Faculty of Biology, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Jiang Hong
- Institute for Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Medizin, Faculty of Medicine, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
- Faculty of Biology, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Gabriela Jüngert
- Institute for Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Medizin, Faculty of Medicine, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Anna Hiersemenzel
- Institute for Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Medizin, Faculty of Medicine, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Ariane Siebler
- Institute for Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Medizin, Faculty of Medicine, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Fränk Schmit
- Institute for Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Medizin, Faculty of Medicine, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Yavuz Öztürk
- Institute for Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Medizin, Faculty of Medicine, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Stefan Dannenmaier
- Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Friedel Drepper
- Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Bettina Warscheid
- Spemann Graduate School of Biology and Medicine, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
- Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
- Signalling Research Centers BIOSS and CIBSS, University Freiburg, Freiburg, Germany
| | - Hans-Georg Koch
- Institute for Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Medizin, Faculty of Medicine, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| |
Collapse
|
274
|
Biallelic splicing variants in the nucleolar 60S assembly factor RBM28 cause the ribosomopathy ANE syndrome. Proc Natl Acad Sci U S A 2021; 118:2017777118. [PMID: 33941690 PMCID: PMC8126767 DOI: 10.1073/pnas.2017777118] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Alopecia, neurologic defects, and endocrinopathy (ANE) syndrome is a rare ribosomopathy known to be caused by a p.(Leu351Pro) variant in the essential, conserved, nucleolar large ribosomal subunit (60S) assembly factor RBM28. We report the second family of ANE syndrome to date and a female pediatric ANE syndrome patient. The patient presented with alopecia, craniofacial malformations, hypoplastic pituitary, and hair and skin abnormalities. Unlike the previously reported patients with the p.(Leu351Pro) RBM28 variant, this ANE syndrome patient possesses biallelic precursor messenger RNA (pre-mRNA) splicing variants at the 5' splice sites of exon 5 (ΔE5) and exon 8 (ΔE8) of RBM28 (NM_018077.2:c.[541+1_541+2delinsA]; [946G > T]). In silico analyses and minigene splicing experiments in cells indicate that each splice variant specifically causes skipping of its respective mutant exon. Because the ΔE5 variant results in an in-frame 31 amino acid deletion (p.(Asp150_Lys180del)) in RBM28 while the ΔE8 variant leads to a premature stop codon in exon 9, we predicted that the ΔE5 variant would produce partially functional RBM28 but the ΔE8 variant would not produce functional protein. Using a yeast model, we demonstrate that the ΔE5 variant does indeed lead to reduced overall growth and large subunit ribosomal RNA (rRNA) production and pre-rRNA processing. In contrast, the ΔE8 variant is comparably null, implying that the partially functional ΔE5 RBM28 protein enables survival but precludes correct development. This discovery further defines the underlying molecular pathology of ANE syndrome to include genetic variants that cause aberrant splicing in RBM28 pre-mRNA and highlights the centrality of nucleolar processes in human genetic disease.
Collapse
|
275
|
Parveen S, Siddharth S, Cheung LS, Kumar A, Shen J, Murphy JR, Sharma D, Bishai WR. Therapeutic targeting with DABIL-4 depletes myeloid suppressor cells in 4T1 triple-negative breast cancer model. Mol Oncol 2021; 15:1330-1344. [PMID: 33682324 PMCID: PMC8096791 DOI: 10.1002/1878-0261.12938] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 02/10/2021] [Accepted: 03/05/2021] [Indexed: 12/19/2022] Open
Abstract
In many solid tumors including triple-negative breast cancer (TNBC), upregulation of the interleukin-4 receptor (IL-4R) has been shown to promote cancer cell proliferation, apoptotic resistance, metastatic potential, and a Th2 response in the tumor microenvironment (TME). Since immunosuppressive cells in the TME and spleen including myeloid-derived suppressor cells (MDSCs) and tumor-associated macrophages (TAMs) also express the IL-4R, we hypothesized that selective depletion of IL-4R-bearing cells in TNBC would result in the direct killing of tumor cells and the depletion of immunosuppressive cells and lead to an enhanced antitumor response. To selectively target IL-4R+ cells, we employed DABIL-4, a fusion protein toxin consisting of the catalytic and translocation domains of diphtheria toxin fused to murine IL-4. As anticipated, DABIL-4 has potent cytotoxic activity against TNBC cells both in vitro and in vivo. We demonstrate in the murine 4T1 TNBC model that DABIL-4 significantly reduces tumor growth, splenomegaly, and lung metastases. Importantly, we also show that the administration of DABIL-4 results in the selective depletion of MDSCs, TAMs, and regulatory T cells in treated mice, with a concomitant increase in IFN-γ+ CD8 effector T cells in the TME. Since the 4T1 antitumor activity of DABIL-4 was largely diminished in IL-4R knockout mice, we postulate that DABIL-4 functions primarily as an immunotherapeutic by the depletion of MDSCs, TAMs, and regulatory T cells. NanoString analysis of control and treated tumors confirmed and extended these observations by showing a marked decline of mRNA transcripts that are associated with tumorigenesis and metastasis. In conclusion, we demonstrate that DABIL-4 targeting of both tumor and immunosuppressive host cells likely represents a novel and effective treatment strategy for 4T1 TNBC and warrants further study.
Collapse
Affiliation(s)
- Sadiya Parveen
- Department of MedicineDivision of Infectious DiseasesJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Sumit Siddharth
- Department of OncologySidney Kimmel Comprehensive Cancer Center at Johns HopkinsJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Laurene S. Cheung
- Department of MedicineDivision of Infectious DiseasesJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Alok Kumar
- Department of MedicineDivision of Infectious DiseasesJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Jessica Shen
- Department of MedicineDivision of Infectious DiseasesJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - John R. Murphy
- Department of MedicineDivision of Infectious DiseasesJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Dipali Sharma
- Department of OncologySidney Kimmel Comprehensive Cancer Center at Johns HopkinsJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - William R. Bishai
- Department of MedicineDivision of Infectious DiseasesJohns Hopkins University School of MedicineBaltimoreMDUSA
| |
Collapse
|
276
|
Brownstein CA, Smith RS, Rodan LH, Gorman MP, Hojlo MA, Garvey EA, Li J, Cabral K, Bowen JJ, Rao AS, Genetti CA, Carroll D, Deaso EA, Agrawal PB, Rosenfeld JA, Bi W, Howe J, Stavropoulos DJ, Hansen AW, Hamoda HM, Pinard F, Caracansi A, Walsh CA, D'Angelo EJ, Beggs AH, Zarrei M, Gibbs RA, Scherer SW, Glahn DC, Gonzalez-Heydrich J. RCL1 copy number variants are associated with a range of neuropsychiatric phenotypes. Mol Psychiatry 2021; 26:1706-1718. [PMID: 33597717 PMCID: PMC8159744 DOI: 10.1038/s41380-021-01035-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 12/29/2020] [Accepted: 01/15/2021] [Indexed: 12/18/2022]
Abstract
Mendelian and early-onset severe psychiatric phenotypes often involve genetic variants having a large effect, offering opportunities for genetic discoveries and early therapeutic interventions. Here, the index case is an 18-year-old boy, who at 14 years of age had a decline in cognitive functioning over the course of a year and subsequently presented with catatonia, auditory and visual hallucinations, paranoia, aggression, mood dysregulation, and disorganized thoughts. Exome sequencing revealed a stop-gain mutation in RCL1 (NM_005772.4:c.370 C > T, p.Gln124Ter), encoding an RNA 3'-terminal phosphate cyclase-like protein that is highly conserved across eukaryotic species. Subsequent investigations across two academic medical centers identified eleven additional cases of RCL1 copy number variations (CNVs) with varying neurodevelopmental or psychiatric phenotypes. These findings suggest that dosage variation of RCL1 contributes to a range of neurological and clinical phenotypes.
Collapse
Affiliation(s)
- Catherine A Brownstein
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA.
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, USA.
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
- Tommy Fuss Center for Neuropsychiatric Disease Research, Boston Children's Hospital, Boston, MA, USA.
- EPICenter, Boston Children's Hospital, Boston, MA, USA.
| | - Richard S Smith
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Tommy Fuss Center for Neuropsychiatric Disease Research, Boston Children's Hospital, Boston, MA, USA
- EPICenter, Boston Children's Hospital, Boston, MA, USA
| | - Lance H Rodan
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | - Mark P Gorman
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | - Margaret A Hojlo
- Tommy Fuss Center for Neuropsychiatric Disease Research, Boston Children's Hospital, Boston, MA, USA
- EPICenter, Boston Children's Hospital, Boston, MA, USA
- Department of Psychiatry and Behavioral Sciences, Boston Children's Hospital, Boston, MA, USA
| | - Emily A Garvey
- Tommy Fuss Center for Neuropsychiatric Disease Research, Boston Children's Hospital, Boston, MA, USA
- EPICenter, Boston Children's Hospital, Boston, MA, USA
- Department of Psychiatry and Behavioral Sciences, Boston Children's Hospital, Boston, MA, USA
| | - Jianqiao Li
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, USA
| | - Kristin Cabral
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, USA
| | - Joshua J Bowen
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, USA
| | - Abhijit S Rao
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
- Tommy Fuss Center for Neuropsychiatric Disease Research, Boston Children's Hospital, Boston, MA, USA
- Department of Psychiatry and Behavioral Sciences, Boston Children's Hospital, Boston, MA, USA
| | - Casie A Genetti
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, USA
| | - Devon Carroll
- Tommy Fuss Center for Neuropsychiatric Disease Research, Boston Children's Hospital, Boston, MA, USA
- Department of Psychiatry and Behavioral Sciences, Boston Children's Hospital, Boston, MA, USA
| | - Emma A Deaso
- Tommy Fuss Center for Neuropsychiatric Disease Research, Boston Children's Hospital, Boston, MA, USA
- EPICenter, Boston Children's Hospital, Boston, MA, USA
- Department of Psychiatry and Behavioral Sciences, Boston Children's Hospital, Boston, MA, USA
| | - Pankaj B Agrawal
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Jill A Rosenfeld
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Baylor Genetics Laboratories, Houston, TX, USA
| | - Weimin Bi
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Baylor Genetics Laboratories, Houston, TX, USA
| | - Jennifer Howe
- The Centre for Applied Genomics and Programs in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Dimitri J Stavropoulos
- Genome Diagnostics, Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Adam W Hansen
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Hesham M Hamoda
- Department of Psychiatry and Behavioral Sciences, Boston Children's Hospital, Boston, MA, USA
| | - Ferne Pinard
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | - Annmarie Caracansi
- Department of Psychiatry and Behavioral Sciences, Boston Children's Hospital, Boston, MA, USA
| | - Christopher A Walsh
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Eugene J D'Angelo
- Tommy Fuss Center for Neuropsychiatric Disease Research, Boston Children's Hospital, Boston, MA, USA
- Department of Psychiatry and Behavioral Sciences, Boston Children's Hospital, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Alan H Beggs
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Mehdi Zarrei
- The Centre for Applied Genomics and Programs in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Richard A Gibbs
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Stephen W Scherer
- The Centre for Applied Genomics and Programs in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics and McLaughlin Centre, University of Toronto, Toronto, ON, Canada
| | - David C Glahn
- Tommy Fuss Center for Neuropsychiatric Disease Research, Boston Children's Hospital, Boston, MA, USA
- EPICenter, Boston Children's Hospital, Boston, MA, USA
- Department of Psychiatry and Behavioral Sciences, Boston Children's Hospital, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Olin Neuropsychiatry Research Center, Institute of Living, Hartford Hospital, Hartford, CT, USA
| | - Joseph Gonzalez-Heydrich
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, USA
- Tommy Fuss Center for Neuropsychiatric Disease Research, Boston Children's Hospital, Boston, MA, USA
- EPICenter, Boston Children's Hospital, Boston, MA, USA
- Department of Psychiatry and Behavioral Sciences, Boston Children's Hospital, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
277
|
Sundaramoorthy E, Ryan AP, Fulzele A, Leonard M, Daugherty MD, Bennett EJ. Ribosome quality control activity potentiates vaccinia virus protein synthesis during infection. J Cell Sci 2021; 134:259243. [PMID: 33912921 PMCID: PMC8106952 DOI: 10.1242/jcs.257188] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/12/2021] [Indexed: 12/21/2022] Open
Abstract
Viral infection both activates stress signaling pathways and redistributes ribosomes away from host mRNAs to translate viral mRNAs. The intricacies of this ribosome shuffle from host to viral mRNAs are poorly understood. Here, we uncover a role for the ribosome-associated quality control (RQC) factor ZNF598 during vaccinia virus mRNA translation. ZNF598 acts on collided ribosomes to ubiquitylate 40S subunit proteins uS10 (RPS20) and eS10 (RPS10), initiating RQC-dependent nascent chain degradation and ribosome recycling. We show that vaccinia infection enhances uS10 ubiquitylation, indicating an increased burden on RQC pathways during viral propagation. Consistent with an increased RQC demand, we demonstrate that vaccinia virus replication is impaired in cells that either lack ZNF598 or express a ubiquitylation-deficient version of uS10. Using SILAC-based proteomics and concurrent RNA-seq analysis, we determine that translation, but not transcription of vaccinia virus mRNAs is compromised in cells with deficient RQC activity. Additionally, vaccinia virus infection reduces cellular RQC activity, suggesting that co-option of ZNF598 by vaccinia virus plays a critical role in translational reprogramming that is needed for optimal viral propagation. Summary: The ribosome-associated quality control factor ZNF598, which senses ribosome collisions, is a host factor necessary for vaccinia viral protein synthesis.
Collapse
Affiliation(s)
- Elayanambi Sundaramoorthy
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Andrew P Ryan
- Section of Molecular Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Amit Fulzele
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Marilyn Leonard
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Matthew D Daugherty
- Section of Molecular Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Eric J Bennett
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
278
|
Sapio RT, Burns CJ, Pestov DG. Effects of Hydrogen Peroxide Stress on the Nucleolar Redox Environment and Pre-rRNA Maturation. Front Mol Biosci 2021; 8:678488. [PMID: 33981726 PMCID: PMC8107432 DOI: 10.3389/fmolb.2021.678488] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 04/06/2021] [Indexed: 12/16/2022] Open
Abstract
Identifying biologically relevant molecular targets of oxidative stress may provide new insights into disease mechanisms and accelerate development of novel biomarkers. Ribosome biogenesis is a fundamental prerequisite for cellular protein synthesis, but how oxidative stress affects ribosome biogenesis has not been clearly established. To monitor and control the redox environment of ribosome biogenesis, we targeted a redox-sensitive roGFP reporter and catalase, a highly efficient H2O2 scavenger, to the nucleolus, the primary site for transcription and processing of rRNA in eukaryotic cells. Imaging of mouse 3T3 cells exposed to non-cytotoxic H2O2 concentrations revealed increased oxidation of the nucleolar environment accompanied by a detectable increase in the oxidative damage marker 8-oxo-G in nucleolar RNA. Analysis of pre-rRNA processing showed a complex pattern of alterations in pre-rRNA maturation in the presence of H2O2, including inhibition of the transcription and processing of the primary 47S transcript, accumulation of 18S precursors, and inefficient 3'-end processing of 5.8S rRNA. This work introduces new tools for studies of the redox biology of the mammalian nucleolus and identifies pre-rRNA maturation steps sensitive to H2O2 stress.
Collapse
Affiliation(s)
- Russell T Sapio
- Graduate School of Biomedical Sciences, Rowan University School of Osteopathic Medicine, Stratford, NJ, United States.,Department of Cell Biology and Neuroscience, Rowan University School of Osteopathic Medicine, Stratford, NJ, United States
| | - Chelsea J Burns
- Graduate School of Biomedical Sciences, Rowan University School of Osteopathic Medicine, Stratford, NJ, United States
| | - Dimitri G Pestov
- Department of Cell Biology and Neuroscience, Rowan University School of Osteopathic Medicine, Stratford, NJ, United States
| |
Collapse
|
279
|
The Mammalian and Yeast A49 and A34 Heterodimers: Homologous but Not the Same. Genes (Basel) 2021; 12:genes12050620. [PMID: 33921963 PMCID: PMC8143541 DOI: 10.3390/genes12050620] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/16/2021] [Accepted: 04/20/2021] [Indexed: 11/25/2022] Open
Abstract
Ribosomal RNA synthesis is the rate-limiting step in ribosome biogenesis. In eukaryotes, RNA polymerase I (Pol I) is responsible for transcribing the ribosomal DNA genes that reside in the nucleolus. Aberrations in Pol I activity have been linked to the development of multiple cancers and other genetic diseases. Therefore, it is key that we understand the mechanisms of Pol I transcription. Recent studies have demonstrated that there are many differences between Pol I transcription in yeast and mammals. Our goal is to highlight the similarities and differences between the polymerase-associated factors (PAFs) in yeast and mammalian cells. We focus on the PAF heterodimer A49/34 in yeast and PAF53/49 in mammals. Recent studies have demonstrated that while the structures between the yeast and mammalian orthologs are very similar, they may function differently during Pol I transcription, and their patterns of regulation are different.
Collapse
|
280
|
Kritsiligkou P, Nowicki-Osuch K, Carter Z, Kershaw CJ, Creamer DR, Weids AJ, Grant CM. Tolerance to nascent protein misfolding stress requires fine-tuning of the cAMP/PKA pathway. J Biol Chem 2021; 296:100690. [PMID: 33894203 PMCID: PMC8164027 DOI: 10.1016/j.jbc.2021.100690] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 04/08/2021] [Accepted: 04/20/2021] [Indexed: 02/08/2023] Open
Abstract
Protein aggregation is the abnormal association of misfolded proteins into larger, often insoluble structures that can be toxic during aging and in protein aggregation-associated diseases. Previous research has established a role for the cytosolic Tsa1 peroxiredoxin in responding to protein misfolding stress. Tsa1 is also known to downregulate the cAMP/protein kinase A (PKA) pathway as part of the response to hydrogen peroxide stress. However, whether the cAMP/PKA pathway is involved in protein misfolding stress is not known. Using transcriptomics, we examined the response to protein misfolding stress and found upregulation of numerous stress gene functions and downregulation of many genes related to protein synthesis and other growth-related processes consistent with the well-characterized environmental stress response. The scope of the transcriptional response is largely similar in wild-type and tsa1 mutant strains, but the magnitude is dampened in the strain lacking Tsa1. We identified a direct protein interaction between Tsa1 and the Bcy1 regulatory subunit of PKA that is present under normal growth conditions and explains the observed differences in gene expression profiles. This interaction is increased in a redox-dependent manner in response to nascent protein misfolding, via Tsa1-mediated oxidation of Bcy1. Oxidation of Bcy1 causes a reduction in cAMP binding by Bcy1, which dampens PKA pathway activity, leading to a targeted reprogramming of gene expression. Redox regulation of the regulatory subunit of PKA provides a mechanism to mitigate the toxic consequences of protein misfolding stress that is distinct to stress caused by exogenous sources of reactive oxygen species.
Collapse
Affiliation(s)
| | - Karol Nowicki-Osuch
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Zorana Carter
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Chris J Kershaw
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Declan R Creamer
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Alan J Weids
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Chris M Grant
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.
| |
Collapse
|
281
|
Barba-Aliaga M, Alepuz P, Pérez-Ortín JE. Eukaryotic RNA Polymerases: The Many Ways to Transcribe a Gene. Front Mol Biosci 2021; 8:663209. [PMID: 33968992 PMCID: PMC8097091 DOI: 10.3389/fmolb.2021.663209] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/09/2021] [Indexed: 01/04/2023] Open
Abstract
In eukaryotic cells, three nuclear RNA polymerases (RNA pols) carry out the transcription from DNA to RNA, and they all seem to have evolved from a single enzyme present in the common ancestor with archaea. The multiplicity of eukaryotic RNA pols allows each one to remain specialized in the synthesis of a subset of transcripts, which are different in the function, length, cell abundance, diversity, and promoter organization of the corresponding genes. We hypothesize that this specialization of RNA pols has conditioned the evolution of the regulatory mechanisms used to transcribe each gene subset to cope with environmental changes. We herein present the example of the homeostatic regulation of transcript levels versus changes in cell volume. We propose that the diversity and instability of messenger RNAs, transcribed by RNA polymerase II, have conditioned the appearance of regulatory mechanisms based on different gene promoter strength and mRNA stability. However, for the regulation of ribosomal RNA levels, which are very stable and transcribed mainly by RNA polymerase I from only one promoter, different mechanisms act based on gene copy variation, and a much simpler regulation of the synthesis rate.
Collapse
Affiliation(s)
- Marina Barba-Aliaga
- Instituto de Biotecnología y Biomedicina (Biotecmed), Universitat de València, València, Spain.,Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universitat de València, València, Spain
| | - Paula Alepuz
- Instituto de Biotecnología y Biomedicina (Biotecmed), Universitat de València, València, Spain.,Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universitat de València, València, Spain
| | - José E Pérez-Ortín
- Instituto de Biotecnología y Biomedicina (Biotecmed), Universitat de València, València, Spain.,Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universitat de València, València, Spain
| |
Collapse
|
282
|
Pérez-Ortín JE, Mena A, Barba-Aliaga M, Singh A, Chávez S, García-Martínez J. Cell volume homeostatically controls the rDNA repeat copy number and rRNA synthesis rate in yeast. PLoS Genet 2021; 17:e1009520. [PMID: 33826644 PMCID: PMC8055003 DOI: 10.1371/journal.pgen.1009520] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 04/19/2021] [Accepted: 03/25/2021] [Indexed: 01/20/2023] Open
Abstract
The adjustment of transcription and translation rates to the changing needs of cells is of utmost importance for their fitness and survival. We have previously shown that the global transcription rate for RNA polymerase II in budding yeast Saccharomyces cerevisiae is regulated in relation to cell volume. Total mRNA concentration is constant with cell volume since global RNApol II-dependent nascent transcription rate (nTR) also keeps constant but mRNA stability increases with cell size. In this paper, we focus on the case of rRNA and RNA polymerase I. Contrarily to that found for RNA pol II, we detected that RNA polymerase I nTR increases proportionally to genome copies and cell size in polyploid cells. In haploid mutant cells with larger cell sizes, the rDNA repeat copy number rises. By combining mathematical modeling and experimental work with the large-size cln3 strain, we observed that the increasing repeat copy number is based on a feedback mechanism in which Sir2 histone deacetylase homeostatically controls the amplification of rDNA repeats in a volume-dependent manner. This amplification is paralleled with an increase in rRNA nTR, which indicates a control of the RNA pol I synthesis rate by cell volume. Synthesis rates of biological macromolecules should be strictly regulated and adjusted to the changing conditions of cells. The change in volume is one of the commonest variables along individual cell life and also when comparing different cell types. We previously found that cells with asymmetric division, such as budding yeasts, use a compensatory change in the global RNA polymerase II synthesis rate and mRNA decay rate to maintain mRNA homeostasis. In the present study, we address the same issue for the RNA polymerase that makes rRNAs, which are essential components of ribosomes and the most abundant RNAs in the cell. We found that the copy number of the gene encoding 35S rRNA, transcribed by RNA polymerase I, changes proportionally to the cell volume in budding yeast via a feedback mechanism based on the Sir2 histone deacetylase, which guarantees that yeast cells have the appropriate RNA polymerase I synthesis rate required for rRNA homeostasis.
Collapse
Affiliation(s)
- José E. Pérez-Ortín
- Instituto de Biotecnología y Biomedicina (Biotecmed), Universitat de València, Burjassot, Spain
- * E-mail: (JEP-O); (JG-M)
| | - Adriana Mena
- Instituto de Biotecnología y Biomedicina (Biotecmed), Universitat de València, Burjassot, Spain
| | - Marina Barba-Aliaga
- Instituto de Biotecnología y Biomedicina (Biotecmed), Universitat de València, Burjassot, Spain
| | - Abhyudai Singh
- Department of Electrical and Computer Engineering, University of Delaware, Newark, DE, United States of America
| | - Sebastián Chávez
- Instituto de Biomedicina de Sevilla. Campus Hospital Universitario Virgen del Rocío, Seville, Spain
| | - José García-Martínez
- Instituto de Biotecnología y Biomedicina (Biotecmed), Universitat de València, Burjassot, Spain
- * E-mail: (JEP-O); (JG-M)
| |
Collapse
|
283
|
Frazier MN, Pillon MC, Kocaman S, Gordon J, Stanley RE. Structural overview of macromolecular machines involved in ribosome biogenesis. Curr Opin Struct Biol 2021; 67:51-60. [PMID: 33099228 PMCID: PMC8058114 DOI: 10.1016/j.sbi.2020.09.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/04/2020] [Accepted: 09/08/2020] [Indexed: 12/17/2022]
Abstract
The production of ribosomes is essential for ensuring the translational capacity of cells. Because of its high energy demand ribosome production is subject to stringent cellular controls. Hundreds of ribosome assembly factors are required to facilitate assembly of nascent ribosome particles with high fidelity. Many ribosome assembly factors organize into macromolecular machines that drive complex steps of the production pathway. Recent advances in structural biology, in particular cryo-EM, have provided detailed information about the structure and function of these higher order enzymatic assemblies. Here, we summarize recent structures revealing molecular insight into these macromolecular machines with an emphasis on the interplay between discrete active sites.
Collapse
Affiliation(s)
- Meredith N Frazier
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Monica C Pillon
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Seda Kocaman
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Jacob Gordon
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Robin E Stanley
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
284
|
Tourigny JP, Schumacher K, Saleh MM, Devys D, Zentner GE. Architectural Mediator subunits are differentially essential for global transcription in Saccharomyces cerevisiae. Genetics 2021; 217:iyaa042. [PMID: 33789343 PMCID: PMC8045717 DOI: 10.1093/genetics/iyaa042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 12/16/2020] [Indexed: 12/18/2022] Open
Abstract
Mediator is a modular coactivator complex involved in the transcription of the majority of RNA polymerase II-regulated genes. However, the degrees to which individual core subunits of Mediator contribute to its activity have been unclear. Here, we investigate the contribution of two essential architectural subunits of Mediator to transcription in Saccharomyces cerevisiae. We show that acute depletion of the main complex scaffold Med14 or the head module nucleator Med17 is lethal and results in global transcriptional downregulation, though Med17 removal has a markedly greater negative effect. Consistent with this, Med17 depletion impairs preinitiation complex (PIC) assembly to a greater extent than Med14 removal. Co-depletion of Med14 and Med17 reduced transcription and TFIIB promoter occupancy similarly to Med17 ablation alone, indicating that the contributions of Med14 and Med17 to Mediator function are not additive. We propose that, while the structural integrity of complete Mediator and the head module are both important for PIC assembly and transcription, the head module plays a greater role in this process and is thus the key functional module of Mediator in this regard.
Collapse
Affiliation(s)
- Jason P Tourigny
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Kenny Schumacher
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France
- UMR7104, Centre National de la Recherche Scientifique, 67404 Illkirch, France
- U964, Institut National de la Santé et de la Recherche Médicale, 67404 Illkirch, France
- Université de Strasbourg, 67404 Illkirch, France
| | - Moustafa M Saleh
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Didier Devys
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France
- UMR7104, Centre National de la Recherche Scientifique, 67404 Illkirch, France
- U964, Institut National de la Santé et de la Recherche Médicale, 67404 Illkirch, France
- Université de Strasbourg, 67404 Illkirch, France
| | - Gabriel E Zentner
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
- Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, IN 46202, USA
| |
Collapse
|
285
|
Guimarães AR, Correia I, Sousa I, Oliveira C, Moura G, Bezerra AR, Santos MAS. tRNAs as a Driving Force of Genome Evolution in Yeast. Front Microbiol 2021; 12:634004. [PMID: 33776966 PMCID: PMC7990762 DOI: 10.3389/fmicb.2021.634004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 02/01/2021] [Indexed: 11/29/2022] Open
Abstract
Transfer RNAs (tRNAs) are widely known for their roles in the decoding of the linear mRNA information into amino acid sequences of proteins. They are also multifunctional platforms in the translation process and have other roles beyond translation, including sensing amino acid abundance, interacting with the general stress response machinery, and modulating cellular adaptation, survival, and death. In this mini-review, we focus on the emerging role of tRNA genes in the organization and modification of the genomic architecture of yeast and the role of tRNA misexpression and decoding infidelity in genome stability, evolution, and adaption. We discuss published work showing how quickly tRNA genes can mutate to meet novel translational demands, how tRNAs speed up genome evolution, and how tRNA genes can be sites of genomic instability. We highlight recent works showing that loss of tRNA decoding fidelity and small alterations in tRNA expression have unexpected and profound impacts on genome stability. By dissecting these recent evidence, we hope to lay the groundwork that prompts future investigations on the mechanistic interplay between tRNAs and genome modification that likely triggers genome evolution.
Collapse
Affiliation(s)
- Ana Rita Guimarães
- Department of Medical Sciences, Institute of Biomedicine - iBiMED, University of Aveiro, Aveiro, Portugal
| | - Inês Correia
- Department of Medical Sciences, Institute of Biomedicine - iBiMED, University of Aveiro, Aveiro, Portugal
| | - Inês Sousa
- Department of Medical Sciences, Institute of Biomedicine - iBiMED, University of Aveiro, Aveiro, Portugal
| | - Carla Oliveira
- Department of Medical Sciences, Institute of Biomedicine - iBiMED, University of Aveiro, Aveiro, Portugal
| | - Gabriela Moura
- Department of Medical Sciences, Institute of Biomedicine - iBiMED, University of Aveiro, Aveiro, Portugal
| | - Ana Rita Bezerra
- Department of Medical Sciences, Institute of Biomedicine - iBiMED, University of Aveiro, Aveiro, Portugal
| | - Manuel A S Santos
- Department of Medical Sciences, Institute of Biomedicine - iBiMED, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
286
|
Sandhu R, Sinha A, Montpetit B. The SR-protein Npl3 is an essential component of the meiotic splicing regulatory network in Saccharomyces cerevisiae. Nucleic Acids Res 2021; 49:2552-2568. [PMID: 33577675 PMCID: PMC7969001 DOI: 10.1093/nar/gkab071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 01/30/2023] Open
Abstract
The meiotic gene expression program in Saccharomyces cerevisiae involves regulated splicing of meiosis-specific genes via multiple splicing activators (e.g. Mer1, Nam8, Tgs1). Here, we show that the SR protein Npl3 is required for meiotic splicing regulation and is essential for proper execution of the meiotic cell cycle. The loss of Npl3, though not required for viability in mitosis, caused intron retention in meiosis-specific transcripts, inefficient meiotic double strand break processing and an arrest of the meiotic cell cycle. The targets of Npl3 overlapped in some cases with other splicing regulators, while also having unique target transcripts that were not shared. In the absence of Npl3, splicing defects for three transcripts (MER2, HOP2 and SAE3) were rescued by conversion of non-consensus splice sites to the consensus sequence. Methylation of Npl3 was further found to be required for splicing Mer1-dependent transcripts, indicating transcript-specific mechanisms by which Npl3 supports splicing. Together these data identify an essential function for the budding yeast SR protein Npl3 in meiosis as part of the meiotic splicing regulatory network.
Collapse
Affiliation(s)
- Rima Sandhu
- Department of Viticulture and Enology, University of California Davis, Davis, CA, USA
| | - Aniketa Sinha
- Department of Viticulture and Enology, University of California Davis, Davis, CA, USA
| | - Ben Montpetit
- Department of Viticulture and Enology, University of California Davis, Davis, CA, USA
| |
Collapse
|
287
|
Liu K, Santos DA, Hussmann JA, Wang Y, Sutter BM, Weissman JS, Tu BP. Regulation of translation by methylation multiplicity of 18S rRNA. Cell Rep 2021; 34:108825. [PMID: 33691096 PMCID: PMC8063911 DOI: 10.1016/j.celrep.2021.108825] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 01/04/2021] [Accepted: 02/12/2021] [Indexed: 02/01/2023] Open
Abstract
N6-methyladenosine (m6A) is a conserved ribonucleoside modification that regulates many facets of RNA metabolism. Using quantitative mass spectrometry, we find that the universally conserved tandem adenosines at the 3' end of 18S rRNA, thought to be constitutively di-methylated (m62A), are also mono-methylated (m6A). Although present at substoichiometric amounts, m6A at these positions increases significantly in response to sulfur starvation in yeast cells and mammalian cell lines. Combining yeast genetics and ribosome profiling, we provide evidence to suggest that m6A-bearing ribosomes carry out translation distinctly from m62A-bearing ribosomes, featuring a striking specificity for sulfur metabolism genes. Our work thus reveals methylation multiplicity as a mechanism to regulate translation.
Collapse
Affiliation(s)
- Kuanqing Liu
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Daniel A Santos
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | - Jeffrey A Hussmann
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA; Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
| | - Yun Wang
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Benjamin M Sutter
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jonathan S Weissman
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Benjamin P Tu
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
288
|
Dauloudet O, Neri I, Walter JC, Dorignac J, Geniet F, Parmeggiani A. Modelling the effect of ribosome mobility on the rate of protein synthesis. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2021; 44:19. [PMID: 33686567 PMCID: PMC7940305 DOI: 10.1140/epje/s10189-021-00019-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 01/15/2021] [Indexed: 06/12/2023]
Abstract
Translation is one of the main steps in the synthesis of proteins. It consists of ribosomes that translate sequences of nucleotides encoded on mRNA into polypeptide sequences of amino acids. Ribosomes bound to mRNA move unidirectionally, while unbound ribosomes diffuse in the cytoplasm. It has been hypothesized that finite diffusion of ribosomes plays an important role in ribosome recycling and that mRNA circularization enhances the efficiency of translation, see e.g. Lodish et al. (Molecular cell biology, 8th edn, W.H. Freeman and Company, San Francisco, 2016). In order to estimate the effect of cytoplasmic diffusion on the rate of translation, we consider a totally asymmetric simple exclusion process coupled to a finite diffusive reservoir, which we call the ribosome transport model with diffusion. In this model, we derive an analytical expression for the rate of protein synthesis as a function of the diffusion constant of ribosomes, which is corroborated with results from continuous-time Monte Carlo simulations. Using a wide range of biological relevant parameters, we conclude that diffusion is not a rate limiting factor in translation initiation because diffusion is fast enough in biological cells.
Collapse
Affiliation(s)
- Olivier Dauloudet
- Laboratoire Charles Coulomb (L2C), CNRS, Montpellier University, Montpellier, France
- Laboratory of Parasite Host Interactions (LPHI), CNRS, Montpellier University, Montpellier, France
| | - Izaak Neri
- Department of Mathematics, King’s College London, Strand, London, WC2R 2LS UK
| | - Jean-Charles Walter
- Laboratoire Charles Coulomb (L2C), CNRS, Montpellier University, Montpellier, France
| | - Jérôme Dorignac
- Laboratoire Charles Coulomb (L2C), CNRS, Montpellier University, Montpellier, France
| | - Frédéric Geniet
- Laboratoire Charles Coulomb (L2C), CNRS, Montpellier University, Montpellier, France
| | - Andrea Parmeggiani
- Laboratoire Charles Coulomb (L2C), CNRS, Montpellier University, Montpellier, France
- Laboratory of Parasite Host Interactions (LPHI), CNRS, Montpellier University, Montpellier, France
| |
Collapse
|
289
|
Liu S, Liu S, He B, Li L, Li L, Wang J, Cai T, Chen S, Jiang H. OXPHOS deficiency activates global adaptation pathways to maintain mitochondrial membrane potential. EMBO Rep 2021; 22:e51606. [PMID: 33655635 DOI: 10.15252/embr.202051606] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 01/18/2021] [Accepted: 01/27/2021] [Indexed: 12/19/2022] Open
Abstract
Reduction of mitochondrial membrane potential (Δψm ) is a hallmark of mitochondrial dysfunction. It activates adaptive responses in organisms from yeast to human to rewire metabolism, remove depolarized mitochondria, and degrade unimported precursor proteins. It remains unclear how cells maintain Δψm , which is critical for maintaining iron-sulfur cluster (ISC) synthesis, an indispensable function of mitochondria. Here, we show that yeast oxidative phosphorylation mutants deficient in complex III, IV, V, and mtDNA, respectively, exhibit activated stress responses and progressive reduction of Δψm . Extensive omics analyses of these mutants show that these mutants progressively activate adaptive responses, including transcriptional downregulation of ATP synthase inhibitor Inh1 and OXPHOS subunits, Puf3-mediated upregulation of import receptor Mia40 and global mitochondrial biogenesis, Snf1/AMPK-mediated upregulation of glycolysis and repression of ribosome biogenesis, and transcriptional upregulation of cytoplasmic chaperones. These adaptations disinhibit mitochondrial ATP hydrolysis, remodel mitochondrial proteome, and optimize ATP supply to mitochondria to convergently maintain Δψm , ISC biosynthesis, and cell proliferation.
Collapse
Affiliation(s)
- Siqi Liu
- Graduate School of Peking Union Medical College, Beijing, China.,National Institute of Biological Sciences, Beijing, China.,Beijing Key Laboratory of Cell Biology for Animal Aging, Beijing, China.,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Shanshan Liu
- Graduate School of Peking Union Medical College, Beijing, China.,National Institute of Biological Sciences, Beijing, China.,Beijing Key Laboratory of Cell Biology for Animal Aging, Beijing, China.,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Baiyu He
- National Institute of Biological Sciences, Beijing, China.,Beijing Key Laboratory of Cell Biology for Animal Aging, Beijing, China.,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China.,College of Biological Sciences, China Agriculture University, Beijing, China
| | - Lanlan Li
- National Institute of Biological Sciences, Beijing, China.,Beijing Key Laboratory of Cell Biology for Animal Aging, Beijing, China.,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China.,College of Life Sciences, Beijing Normal University, Beijing, China
| | - Lin Li
- National Institute of Biological Sciences, Beijing, China.,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Jiawen Wang
- National Institute of Biological Sciences, Beijing, China.,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Tao Cai
- National Institute of Biological Sciences, Beijing, China.,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - She Chen
- National Institute of Biological Sciences, Beijing, China.,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Hui Jiang
- Graduate School of Peking Union Medical College, Beijing, China.,National Institute of Biological Sciences, Beijing, China.,Beijing Key Laboratory of Cell Biology for Animal Aging, Beijing, China.,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| |
Collapse
|
290
|
Gopanenko AV, Kolobova AV, Meschaninova MI, Venyaminova AG, Tupikin AE, Kabilov MR, Malygin AA, Karpova GG. Knockdown of the mRNA encoding the ribosomal protein eL38 in mammalian cells causes a substantial reorganization of genomic transcription. Biochimie 2021; 184:132-142. [PMID: 33675855 DOI: 10.1016/j.biochi.2021.02.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 02/19/2021] [Accepted: 02/26/2021] [Indexed: 02/08/2023]
Abstract
The ribosomal protein eL38 is a component of the mammalian translation machine. The deletion of the Rpl38 locus in mice results in the Tail-short (Ts) mutant phenotype characterized by a shortened tail and other defects in the axial skeleton development. Here, using the next-generation sequencing of total RNA from HEK293 cells knocked down of eL38 mRNA by transfection with specific siRNAs, we examined the effect of reduced eL38 content on genomic transcription. An approximately 4-fold decrease in the level of eL38 was shown to cause changes in the expression of nearly 1500 genes. Among the down-regulated genes, there were those responsible for p53 activity, Ca2+ metabolism and several signaling processes, as well as genes involved in the organization and functioning of the cytoskeleton. The genes related to rRNA processing and translation, along with many others, including those whose dysregulation is associated with developmental disorders, turned out to be up-regulated. Thus, we demonstrated that the decreased RPL38 expression leads to a significant reorganization of genomic transcription. Our findings suggest a possible link between the balance of eL38 and genes implicated in osteogenesis, thereby contributing to the elucidation of the reasons for the appearance of the above Ts mutant phenotype in animals.
Collapse
Affiliation(s)
- Alexander V Gopanenko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Alena V Kolobova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Maria I Meschaninova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Alya G Venyaminova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Alexey E Tupikin
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Marsel R Kabilov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Alexey A Malygin
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Galina G Karpova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia.
| |
Collapse
|
291
|
Zhang M, Zhen Y, Mi T, Lin S. Integrated RNA-seq and Proteomic Studies Reveal Resource Reallocation towards Energy Metabolism and Defense in Skeletonema marinoi in Response to CO 2 Increase. Appl Environ Microbiol 2021; 87:AEM.02614-20. [PMID: 33355106 PMCID: PMC8090871 DOI: 10.1128/aem.02614-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/05/2020] [Indexed: 11/20/2022] Open
Abstract
Rising atmospheric CO2 concentrations are causing ocean acidification (OA) with significant consequences for marine organisms. Because CO2 is essential for photosynthesis, the effect of elevated CO2 on phytoplankton is more complex and the mechanism is poorly understood. Here we applied RNA-seq and iTRAQ proteomics to investigate the impacts of CO2 increase (from ∼400 to 1000 ppm) on the temperate coastal marine diatom Skeletonema marinoi We identified 32,389 differentially expressed genes (DEGs) and 1,826 differentially expressed proteins (DEPs) from elevated CO2 conditions, accounting for 48.5% of total genes and 25.9% of total proteins we detected, respectively. Elevated pCO2 significantly inhibited the growth of S marinoi, and the 'omic' data suggested that this might be due to compromised photosynthesis in the chloroplast and raised mitochondrial energy metabolism. Furthermore, many genes/proteins associated with nitrogen metabolism, transcriptional regulation, and translational regulation were markedly up-regulated, suggesting enhanced protein synthesis. In addition, S marinoi exhibited higher capacity of ROS production and resistance to oxidative stress. Overall, elevated pCO2 seems to repress photosynthesis and growth of S marinoi, and through massive gene expression reconfiguration induce cells to increase investment in protein synthesis, energy metabolism and antioxidative stress defense, likely to maintain pH homeostasis and population survival. This survival strategy may deprive this usually dominant diatom in temperate coastal waters of its competitive advantages in acidified environments.Importance Rising atmospheric CO2 concentrations are causing ocean acidification with significant consequences for marine organisms. Chain-forming centric diatoms of Skeletonema is one of the most successful groups of eukaryotic primary producers with widespread geographic distribution. Among the recognized 28 species, S. marinoi can be a useful model for investigating the ecological, genetic, physiological, and biochemical characteristics of diatoms in temperate coastal regions. In this study, we found that the elevated pCO2 seems to repress photosynthesis and growth of S. marinoi, and through massive gene expression reconfiguration induce cells to increase investment in protein synthesis, energy metabolism and antioxidative stress defense, likely to maintain pH homeostasis and population survival. This survival strategy may deprive this usually dominant diatom in temperate coastal waters of its competitive advantages in acidified environments.
Collapse
Affiliation(s)
- Mei Zhang
- Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China
- Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
- Department of marine science, University of Connecticut, Groton, CT 06340, USA
| | - Yu Zhen
- Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China
- Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Tiezhu Mi
- Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China
- Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Senjie Lin
- Department of marine science, University of Connecticut, Groton, CT 06340, USA
| |
Collapse
|
292
|
Greene J, Baird AM, Lim M, Flynn J, McNevin C, Brady L, Sheils O, Gray SG, McDermott R, Finn SP. Differential CircRNA Expression Signatures May Serve as Potential Novel Biomarkers in Prostate Cancer. Front Cell Dev Biol 2021; 9:605686. [PMID: 33718350 PMCID: PMC7946979 DOI: 10.3389/fcell.2021.605686] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 02/05/2021] [Indexed: 12/17/2022] Open
Abstract
Circular RNAs (circRNAs), a recently discovered non-coding RNA, have a number of functions including the regulation of miRNA expression. They have been detected in a number of malignancies including prostate cancer (PCa). The differential expression pattern of circRNAs associated with PCa and androgen receptor (AR) status was investigated in this study. circRNA profiling was performed using a high throughout microarray assay on a panel of prostate cell lines, which consisted of normal, benign, and malignant cells (n = 9). circRNAs were more commonly significantly up-regulated (p < 0.05) than downregulated in malignant cell lines (n = 3,409) vs. benign cell lines (n = 2,949). In a grouped analysis based on AR status, there were 2,127 down-regulated circRNAs in androgen independent cell lines compared to 2,236 in androgen dependent cell lines, thus identifying a potential circRNA signature reflective of androgen dependency. Through a bioinformatics approach, the parental genes associated with the top 10 differentially expressed circRNAs were identified such as hsa_circ_0064644, whose predicted parental gene target is RBMS3, and hsa_circ_0060539, whose predicted gene target is SDC4. Furthermore, we identified three circRNAs associated with the parental gene Caprin1 (hsa_circ_0021652, hsa_circ_0000288, and hsa_circ_0021647). Other studies have shown the importance of Caprin1 in PCa cell survival and drug resistance. Given the modified circRNA expression signatures identified here, these hypothesis generating results suggest that circRNAs may serve as potential putative diagnostic and predictive markers in PCa. However, further validation studies are required to assess the true potential of these markers in the clinical setting.
Collapse
Affiliation(s)
- John Greene
- Department of Histopathology and Morbid Anatomy, School of Medicine, Trinity College, Dublin, Ireland.,Department of Medical Oncology, Tallaght University Hospital, Dublin, Ireland
| | - Anne-Marie Baird
- School of Medicine, Trinity Translational Medicine Institute, Trinity College, Dublin, Ireland
| | - Marvin Lim
- Department of Histopathology and Morbid Anatomy, School of Medicine, Trinity College, Dublin, Ireland.,Department of Medical Oncology, Tallaght University Hospital, Dublin, Ireland
| | - Joshua Flynn
- School of Medicine, Trinity Translational Medicine Institute, Trinity College, Dublin, Ireland
| | - Ciara McNevin
- Department of Histopathology and Morbid Anatomy, School of Medicine, Trinity College, Dublin, Ireland.,Department of Medical Oncology, Tallaght University Hospital, Dublin, Ireland
| | - Lauren Brady
- Department of Histopathology and Morbid Anatomy, School of Medicine, Trinity College, Dublin, Ireland
| | - Orla Sheils
- Department of Histopathology and Morbid Anatomy, School of Medicine, Trinity College, Dublin, Ireland.,School of Medicine, Trinity Translational Medicine Institute, Trinity College, Dublin, Ireland
| | - Steven G Gray
- School of Medicine, Trinity Translational Medicine Institute, Trinity College, Dublin, Ireland.,Thoracic Oncology Research Group, Trinity Translational Medicine Institute, St. James's Hospital, Dublin, Ireland
| | - Raymond McDermott
- Department of Medical Oncology, Tallaght University Hospital, Dublin, Ireland.,Department of Medical Oncology, St. Vincent's University Hospital, Dublin, Ireland
| | - Stephen P Finn
- Department of Histopathology and Morbid Anatomy, School of Medicine, Trinity College, Dublin, Ireland.,Thoracic Oncology Research Group, Trinity Translational Medicine Institute, St. James's Hospital, Dublin, Ireland.,Department of Histopathology, St. James's Hospital, Dublin, Ireland
| |
Collapse
|
293
|
Jiang X, Prabhakar A, Van der Voorn SM, Ghatpande P, Celona B, Venkataramanan S, Calviello L, Lin C, Wang W, Black BL, Floor SN, Lagna G, Hata A. Control of ribosomal protein synthesis by the Microprocessor complex. Sci Signal 2021; 14:eabd2639. [PMID: 33622983 PMCID: PMC8012103 DOI: 10.1126/scisignal.abd2639] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Ribosome biogenesis in eukaryotes requires the coordinated production and assembly of 80 ribosomal proteins and four ribosomal RNAs (rRNAs), and its rate must be synchronized with cellular growth. Here, we showed that the Microprocessor complex, which mediates the first step of microRNA processing, potentiated the transcription of ribosomal protein genes by eliminating DNA/RNA hybrids known as R-loops. Nutrient deprivation triggered the nuclear export of Drosha, a key component of the Microprocessor complex, and its subsequent degradation by the E3 ubiquitin ligase Nedd4, thereby reducing ribosomal protein production and protein synthesis. In mouse erythroid progenitors, conditional deletion of Drosha led to the reduced production of ribosomal proteins, translational inhibition of the mRNA encoding the erythroid transcription factor Gata1, and impaired erythropoiesis. This phenotype mirrored the clinical presentation of human "ribosomopathies." Thus, the Microprocessor complex plays a pivotal role in synchronizing protein synthesis capacity with cellular growth rate and is a potential drug target for anemias caused by ribosomal insufficiency.
Collapse
Affiliation(s)
- Xuan Jiang
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Amit Prabhakar
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Stephanie M Van der Voorn
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Medical Physiology, University Medical Center Utrecht, Utrecht, 3584 CM, Netherlands
| | - Prajakta Ghatpande
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Barbara Celona
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Srivats Venkataramanan
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Lorenzo Calviello
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Chuwen Lin
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Wanpeng Wang
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Brian L Black
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143, USA
| | - Stephen N Floor
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Giorgio Lagna
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Akiko Hata
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA.
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
294
|
Li M, Yin B, Chen M, Peng J, Mu X, Deng Z, Xiao J, Li W, Fan J. Downregulation of the lncRNA ASB16-AS1 Decreases LARP1 Expression and Promotes Clear Cell Renal Cell Carcinoma Progression via miR-185-5p/miR-214-3p. Front Oncol 2021; 10:617105. [PMID: 33680937 PMCID: PMC7933513 DOI: 10.3389/fonc.2020.617105] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/29/2020] [Indexed: 12/14/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) comprises approximately 75% of renal cell carcinomas, which is one of the most common and lethal urologic cancers, with poor quality of life for patients and is a huge economic burden to health care systems. It is imperative we find novel prognostic and therapeutic targets for ccRCC clinical intervention. In this study, we found that the expression of the long noncoding RNA (lncRNA) ASB16-AS1 was downregulated in ccRCC tissues compared with non-diseased tissues and was also associated with advanced tumor stage and larger tumors. By constructing cell and mouse models, it was found that downregulated lncRNA ASB16-AS1 enhanced cell proliferation, migration, invasion, and promoted tumor growth and metastasis. Furthermore, by performing bioinformatics analysis, biotinylated RNA pull-downs, AGO2-RIP, and luciferase reporter assays, our findings showed that downregulated ASB16-AS1 decreased La-related protein 1 (LARP1) expression by inhibiting miR-185-5p and miR-214-3p. Furthermore, it was found that overexpression of LARP1 reversed the promotive effects of downregulated ASB16-AS1 on ccRCC cellular progression. Our results revealed that downregulated ASB16-AS1 promotes ccRCC progression via a miR-185-5p-miR-214-3p-LARP1 pathway. We suggest that this pathway could be used to monitor prognosis and presents therapeutic targets for ccRCC clinical management.
Collapse
Affiliation(s)
- Mingzi Li
- Department of Urology, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Bingde Yin
- Department of Urology, Minhang Hospital, Fudan University, Shanghai, China
| | - Mulin Chen
- Department of Urology, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Jingtao Peng
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinyu Mu
- Department of Urology, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Zhen Deng
- Department of Urology, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Jiantao Xiao
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Weiguo Li
- Department of Urology, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Jie Fan
- Department of Urology, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
295
|
Behrens A, Rodschinka G, Nedialkova DD. High-resolution quantitative profiling of tRNA abundance and modification status in eukaryotes by mim-tRNAseq. Mol Cell 2021; 81:1802-1815.e7. [PMID: 33581077 PMCID: PMC8062790 DOI: 10.1016/j.molcel.2021.01.028] [Citation(s) in RCA: 143] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/25/2020] [Accepted: 01/21/2021] [Indexed: 12/13/2022]
Abstract
Measurements of cellular tRNA abundance are hampered by pervasive blocks to cDNA synthesis at modified nucleosides and the extensive similarity among tRNA genes. We overcome these limitations with modification-induced misincorporation tRNA sequencing (mim-tRNAseq), which combines a workflow for full-length cDNA library construction from endogenously modified tRNA with a comprehensive and user-friendly computational analysis toolkit. Our method accurately captures tRNA abundance and modification status in yeast, fly, and human cells and is applicable to any organism with a known genome. We applied mim-tRNAseq to discover a dramatic heterogeneity of tRNA isodecoder pools among diverse human cell lines and a surprising interdependence of modifications at distinct sites within the same tRNA transcript. mim-tRNAseq overcomes experimental and computational hurdles to tRNA quantitation mim-tRNAseq includes a comprehensive computational toolkit for tRNA read analysis tRNA abundance, aminoacylation, and modification status quantified in one reaction mim-tRNAseq reveals an interdependence of modifications at distinct tRNA positions
Collapse
Affiliation(s)
- Andrew Behrens
- Mechanisms of Protein Biogenesis, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Geraldine Rodschinka
- Mechanisms of Protein Biogenesis, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Danny D Nedialkova
- Mechanisms of Protein Biogenesis, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany; Department of Chemistry, Technical University of Munich, 85748 Garching, Germany.
| |
Collapse
|
296
|
Hess J, Balasundaram SV, Bakkemo RI, Drula E, Henrissat B, Högberg N, Eastwood D, Skrede I. Niche differentiation and evolution of the wood decay machinery in the invasive fungus Serpula lacrymans. THE ISME JOURNAL 2021; 15:592-604. [PMID: 33077886 PMCID: PMC8027034 DOI: 10.1038/s41396-020-00799-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/26/2020] [Accepted: 09/25/2020] [Indexed: 11/21/2022]
Abstract
Ecological niche breadth and the mechanisms facilitating its evolution are fundamental to understanding adaptation to changing environments, persistence of generalist and specialist lineages and the formation of new species. Woody substrates are structurally complex resources utilized by organisms with specialized decay machinery. Wood-decaying fungi represent ideal model systems to study evolution of niche breadth, as they vary greatly in their host range and preferred decay stage of the substrate. In order to dissect the genetic basis for niche specialization in the invasive brown rot fungus Serpula lacrymans, we used phenotyping and integrative analysis of phylogenomic and transcriptomic data to compare this species to wild relatives in the Serpulaceae with a range of specialist to generalist decay strategies. Our results indicate specialist species have rewired regulatory networks active during wood decay towards decreased reliance on enzymatic machinery, and therefore nitrogen-intensive decay components. This shift was likely accompanied with adaptation to a narrow tree line habitat and switch to a pioneer decomposer strategy, both requiring rapid colonization of a nitrogen-limited substrate. Among substrate specialists with narrow niches, we also found evidence for pathways facilitating reversal to generalism, highlighting how evolution may move along different axes of niche space.
Collapse
Affiliation(s)
- Jaqueline Hess
- Department of Biosciences, University of Oslo, Oslo, Norway.
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria.
- Department of Soil Ecology, Helmholtz Centre for Environmental Research, UFZ, Halle (Saale), Germany.
| | | | | | - Elodie Drula
- Architecture et Fonction des Macromolécules Biologiques (AFMB), CNRS, Aix-Marseille University, Marseille, France
- INRA, USC1408 AFMB, Marseille, France
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques (AFMB), CNRS, Aix-Marseille University, Marseille, France
- INRA, USC1408 AFMB, Marseille, France
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nils Högberg
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Daniel Eastwood
- Department of Biosciences, University of Swansea, Swansea, UK
| | - Inger Skrede
- Department of Biosciences, University of Oslo, Oslo, Norway
| |
Collapse
|
297
|
Rai J, Parker MD, Huang H, Choy S, Ghalei H, Johnson MC, Karbstein K, Stroupe ME. An open interface in the pre-80S ribosome coordinated by ribosome assembly factors Tsr1 and Dim1 enables temporal regulation of Fap7. RNA (NEW YORK, N.Y.) 2021; 27:221-233. [PMID: 33219089 PMCID: PMC7812869 DOI: 10.1261/rna.077610.120] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/17/2020] [Indexed: 06/11/2023]
Abstract
During their maturation, nascent 40S subunits enter a translation-like quality control cycle, where they are joined by mature 60S subunits to form 80S-like ribosomes. While these assembly intermediates are essential for maturation and quality control, how they form, and how their structure promotes quality control, remains unknown. To address these questions, we determined the structure of an 80S-like ribosome assembly intermediate to an overall resolution of 3.4 Å. The structure, validated by biochemical data, resolves a large body of previously paradoxical data and illustrates how assembly and translation factors cooperate to promote the formation of an interface that lacks many mature subunit contacts but is stabilized by the universally conserved methyltransferase Dim1. We also show how Tsr1 enables this interface by blocking the canonical binding of eIF5B to 40S subunits, while maintaining its binding to 60S. The structure also shows how this interface leads to unfolding of the platform, which allows for temporal regulation of the ATPase Fap7, thus linking 40S maturation to quality control during ribosome assembly.
Collapse
MESH Headings
- Adenylate Kinase/chemistry
- Adenylate Kinase/genetics
- Adenylate Kinase/metabolism
- Binding Sites
- Gene Expression Regulation, Fungal
- Methyltransferases/chemistry
- Methyltransferases/genetics
- Methyltransferases/metabolism
- Models, Molecular
- Nuclear Proteins/chemistry
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Nucleoside-Triphosphatase/chemistry
- Nucleoside-Triphosphatase/genetics
- Nucleoside-Triphosphatase/metabolism
- Organelle Biogenesis
- Protein Binding
- Protein Biosynthesis
- Protein Conformation, alpha-Helical
- Protein Conformation, beta-Strand
- Protein Interaction Domains and Motifs
- Ribosomal Proteins/chemistry
- Ribosomal Proteins/genetics
- Ribosomal Proteins/metabolism
- Ribosome Subunits, Large, Eukaryotic/genetics
- Ribosome Subunits, Large, Eukaryotic/metabolism
- Ribosome Subunits, Large, Eukaryotic/ultrastructure
- Ribosome Subunits, Small, Eukaryotic/genetics
- Ribosome Subunits, Small, Eukaryotic/metabolism
- Ribosome Subunits, Small, Eukaryotic/ultrastructure
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
- Saccharomyces cerevisiae Proteins/chemistry
- Saccharomyces cerevisiae Proteins/genetics
- Saccharomyces cerevisiae Proteins/metabolism
Collapse
Affiliation(s)
- Jay Rai
- Department of Biological Science and the Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida 32306, USA
| | - Melissa D Parker
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, Florida 33458, USA
| | - Haina Huang
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, Florida 33458, USA
| | - Stefan Choy
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, Florida 33458, USA
| | - Homa Ghalei
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, Florida 33458, USA
| | - Matthew C Johnson
- Department of Biological Science and the Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida 32306, USA
| | - Katrin Karbstein
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, Florida 33458, USA
- HHMI Faculty Scholar, Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA
| | - M Elizabeth Stroupe
- Department of Biological Science and the Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida 32306, USA
| |
Collapse
|
298
|
Figueiredo VC, D'Souza RF, Van Pelt DW, Lawrence MM, Zeng N, Markworth JF, Poppitt SD, Miller BF, Mitchell CJ, McCarthy JJ, Dupont‐Versteegden EE, Cameron‐Smith D. Ribosome biogenesis and degradation regulate translational capacity during muscle disuse and reloading. J Cachexia Sarcopenia Muscle 2021; 12:130-143. [PMID: 33231914 PMCID: PMC7890271 DOI: 10.1002/jcsm.12636] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/02/2020] [Accepted: 09/16/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Translational capacity (i.e. ribosomal mass) is a key determinant of protein synthesis and has been associated with skeletal muscle hypertrophy. The role of translational capacity in muscle atrophy and regrowth from disuse is largely unknown. Therefore, we investigated the effect of muscle disuse and reloading on translational capacity in middle-aged men (Study 1) and in rats (Study 2). METHODS In Study 1, 28 male participants (age 50.03 ± 3.54 years) underwent 2 weeks of knee immobilization followed by 2 weeks of ambulatory recovery and a further 2 weeks of resistance training. Muscle biopsies were obtained for measurement of total RNA and pre-ribosomal (r)RNA expression, and vastus lateralis cross-sectional area (CSA) was determined via peripheral quantitative computed tomography. In Study 2, male rats underwent hindlimb suspension (HS) for either 24 h (HS 24 h, n = 4) or 7 days (HS 7d, n = 5), HS for 7 days followed by 7 days of reloading (Rel, n = 5) or remained as ambulatory weight bearing (WB, n = 5) controls. Rats received deuterium oxide throughout the study to determine RNA synthesis and degradation, and mTORC1 signalling pathway was assessed. RESULTS Two weeks of immobilization reduced total RNA concentration (20%) and CSA (4%) in men (both P ≤ 0.05). Ambulatory recovery restored total RNA concentration to baseline levels and partially restored muscle CSA. Total RNA concentration and 47S pre-rRNA expression increased above basal levels after resistance training (P ≤ 0.05). In rats, RNA synthesis was 30% lower while degradation was ~400% higher in HS 7d in soleus and plantaris muscles compared with WB (P ≤ 0.05). mTORC1 signalling was lower in HS compared with WB as was 47S pre-rRNA (P ≤ 0.05). With reloading, the aforementioned parameters were restored to WB levels while RNA degradation was suppressed (P ≤ 0.05). CONCLUSIONS Changes in RNA concentration following muscle disuse and reloading were associated with changes in ribosome biogenesis and degradation, indicating that both processes are important determinants of translational capacity. The pre-clinical data help explain the reduced translational capacity after muscle immobilization in humans and demonstrate that ribosome biogenesis and degradation might be valuable therapeutic targets to maintain muscle mass during disuse.
Collapse
Affiliation(s)
- Vandré C. Figueiredo
- Liggins InstituteThe University of AucklandAucklandNew Zealand
- Department of Physical Therapy, College of Health SciencesUniversity of KentuckyKYUSA
- Center of Muscle BiologyUniversity of KentuckyKYUSA
| | | | - Douglas W. Van Pelt
- Department of Physical Therapy, College of Health SciencesUniversity of KentuckyKYUSA
- Center of Muscle BiologyUniversity of KentuckyKYUSA
| | - Marcus M. Lawrence
- Aging and Metabolism Research ProgramOklahoma Medical Research Foundation (OMRF)Oklahoma CityOKUSA
| | - Nina Zeng
- Liggins InstituteThe University of AucklandAucklandNew Zealand
| | | | - Sally D. Poppitt
- School of Biological SciencesThe University of AucklandAucklandNew Zealand
| | - Benjamin F. Miller
- Aging and Metabolism Research ProgramOklahoma Medical Research Foundation (OMRF)Oklahoma CityOKUSA
| | - Cameron J. Mitchell
- Liggins InstituteThe University of AucklandAucklandNew Zealand
- School of KinesiologyUniversity of British ColumbiaVancouverCanada
| | - John J. McCarthy
- Center of Muscle BiologyUniversity of KentuckyKYUSA
- College of MedicineUniversity of KentuckyKYUSA
| | - Esther E. Dupont‐Versteegden
- Department of Physical Therapy, College of Health SciencesUniversity of KentuckyKYUSA
- Center of Muscle BiologyUniversity of KentuckyKYUSA
| | - David Cameron‐Smith
- Liggins InstituteThe University of AucklandAucklandNew Zealand
- Human Potential Translational Research Programme, Yong Loo Lin School of MedicineNational University of SingaporeSingapore
- Singapore Institute for Clinical SciencesAgency for Science, Technology and ResearchSingapore
| |
Collapse
|
299
|
Goffová I, Fajkus J. The rDNA Loci-Intersections of Replication, Transcription, and Repair Pathways. Int J Mol Sci 2021; 22:1302. [PMID: 33525595 PMCID: PMC7865372 DOI: 10.3390/ijms22031302] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/25/2021] [Accepted: 01/25/2021] [Indexed: 12/28/2022] Open
Abstract
Genes encoding ribosomal RNA (rDNA) are essential for cell survival and are particularly sensitive to factors leading to genomic instability. Their repetitive character makes them prone to inappropriate recombinational events arising from collision of transcriptional and replication machineries, resulting in unstable rDNA copy numbers. In this review, we summarize current knowledge on the structure and organization of rDNA, its role in sensing changes in the genome, and its linkage to aging. We also review recent findings on the main factors involved in chromatin assembly and DNA repair in the maintenance of rDNA stability in the model plants Arabidopsis thaliana and the moss Physcomitrella patens, providing a view across the plant evolutionary tree.
Collapse
Affiliation(s)
- Ivana Goffová
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, CZ-61137 Brno, Czech Republic;
- Chromatin Molecular Complexes, Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, CZ-62500 Brno, Czech Republic
| | - Jiří Fajkus
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, CZ-61137 Brno, Czech Republic;
- Chromatin Molecular Complexes, Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, CZ-62500 Brno, Czech Republic
- Department of Cell Biology and Radiobiology, Institute of Biophysics of the Czech Academy of Sciences, CZ-61265 Brno, Czech Republic
| |
Collapse
|
300
|
Zong T, Yang Y, Zhao H, Li L, Liu M, Fu X, Tang G, Zhou H, Aung LHH, Li P, Wang J, Wang Z, Yu T. tsRNAs: Novel small molecules from cell function and regulatory mechanism to therapeutic targets. Cell Prolif 2021; 54:e12977. [PMID: 33507586 PMCID: PMC7941233 DOI: 10.1111/cpr.12977] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/07/2020] [Accepted: 12/18/2020] [Indexed: 12/18/2022] Open
Abstract
tsRNAs are small fragments of RNAs with specific lengths that are generated by particular ribonucleases, such as dicer and angiogenin (ANG), clipping on the rings of transfer RNAs (tRNAs) in specific cells and tissues under specific conditions. Depending on where the splicing site is, tsRNAs can be segmented into two main types, tRNA‐derived stress‐induced RNAs (tiRNAs) and tRNA‐derived fragments (tRFs). Many studies have shown that tsRNAs are functional molecules, not the random degradative products of tRNAs. Notably, due to their regulatory mechanism in regulating mRNA stability, transcription, ribosomal RNA (rRNA) synthesis and RNA reverse transcription, tsRNAs are significantly involved in the cell function, such as cell proliferation, migration, cycle and apoptosis, as well as the occurrence and development of a variety of diseases. In addition, tsRNAs may represent a new generation of clinical biomarkers or therapeutic targets because of their stable structures, high conservation and widely distribution, particularly in the peripheral tissues, bodily fluids and exosomes. In this review, we describe the generation, function and mechanism of tsRNAs and illustrate the current research progress of tsRNAs in various diseases, highlight their potentials as biomarkers and therapeutic targets in clinical application. Although our understanding of tsRNAs is still in infancy, the application prospects shown in this field deserve further exploration.
Collapse
Affiliation(s)
- Tingyu Zong
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yanyan Yang
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Hui Zhao
- Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lin Li
- Department of Vascular surgery, Qingdao Hiser Medical Center, Qingdao, China
| | - Meixin Liu
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiuxiu Fu
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Guozhang Tang
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hong Zhou
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lynn Htet Htet Aung
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jianxun Wang
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Zhibin Wang
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Tao Yu
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, China.,Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|