251
|
Maddi ER, Raghavan SC, Natesh R. Hypomorphic mutations in human DNA ligase IV lead to compromised DNA binding efficiency, hydrophobicity and thermal stability. Protein Eng Des Sel 2021; 34:6135054. [PMID: 33586762 DOI: 10.1093/protein/gzab001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 12/12/2020] [Accepted: 12/30/2020] [Indexed: 11/13/2022] Open
Abstract
Studies have shown that Lig4 syndrome mutations in DNA ligase IV (LigIV) are compromised in its function with residual level of double strand break ligation activity in vivo. It was speculated that Lig4 syndrome mutations adversely affect protein folding and stability. Though there are crystal structures of LigIV, there are no reports of crystal structures of Lig4 syndrome mutants and their biophysical characterization to date. Here, we have examined the conformational states, thermal stability, hydrophobicity and DNA binding efficiency of human DNA LigIV wild type and its hypomorphic mutants by far-UV circular dichroism, tyrosine and tryptophan fluorescence, and 1-anilino-8-naphthalene-sulfonate binding, dynamic light scattering, size exclusion chromatography, multi-angle light scattering and electrophoretic mobility shift assay. We show here that LigIV hypomorphic mutants have reduced DNA-binding efficiency, a shift in secondary structure content from the helical to random coil, marginal reduction in their thermal stability and increased hydrophobicity as compared to the wild-type LigIV.
Collapse
Affiliation(s)
- Eswar Reddy Maddi
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Kerala 695551, India
| | - Sathees C Raghavan
- Department of Biochemistry, Indian Institute of Science, Bangalore 560 012, India
| | - Ramanathan Natesh
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Kerala 695551, India
| |
Collapse
|
252
|
Li Y, Yuan J. Role of deubiquitinating enzymes in DNA double-strand break repair. J Zhejiang Univ Sci B 2021; 22:63-72. [PMID: 33448188 DOI: 10.1631/jzus.b2000309] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
DNA is the hereditary material in humans and almost all other organisms. It is essential for maintaining accurate transmission of genetic information. In the life cycle, DNA replication, cell division, or genome damage, including that caused by endogenous and exogenous agents, may cause DNA aberrations. Of all forms of DNA damage, DNA double-strand breaks (DSBs) are the most serious. If the repair function is defective, DNA damage may cause gene mutation, genome instability, and cell chromosome loss, which in turn can even lead to tumorigenesis. DNA damage can be repaired through multiple mechanisms. Homologous recombination (HR) and non-homologous end joining (NHEJ) are the two main repair mechanisms for DNA DSBs. Increasing amounts of evidence reveal that protein modifications play an essential role in DNA damage repair. Protein deubiquitination is a vital post-translational modification which removes ubiquitin molecules or polyubiquitinated chains from substrates in order to reverse the ubiquitination reaction. This review discusses the role of deubiquitinating enzymes (DUBs) in repairing DNA DSBs. Exploring the molecular mechanisms of DUB regulation in DSB repair will provide new insights to combat human diseases and develop novel therapeutic approaches.
Collapse
Affiliation(s)
- Yunhui Li
- The Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Jian Yuan
- The Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China. .,Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai 200092, China.
| |
Collapse
|
253
|
Han YJ, Zhang J, Lee JH, Mason JM, Karginova O, Yoshimatsu TF, Hao Q, Hurley I, Brunet LP, Prat A, Prasanth KV, Gack MU, Olopade OI. The BRCA1 Pseudogene Negatively Regulates Antitumor Responses through Inhibition of Innate Immune Defense Mechanisms. Cancer Res 2021; 81:1540-1551. [PMID: 33472891 DOI: 10.1158/0008-5472.can-20-1959] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 10/28/2020] [Accepted: 01/13/2021] [Indexed: 11/16/2022]
Abstract
Innate immune defense mechanisms play a pivotal role in antitumor responses. Recent evidence suggests that antiviral innate immunity is regulated not only by exogenous non-self-RNA but also by host-derived pseudogene RNAs. A growing body of evidence also indicates a biological role for pseudogenes as gene expression regulators or immune modulators. Here, we report an important role for BRCA1P1, the pseudogene of the BRCA1 tumor-suppressor gene, in regulating innate immune defense mechanisms in breast cancer cells. BRCA1P1 expresses a long-noncoding RNA (lncRNA) in breast cancer cells through divergent transcription. Expression of lncRNA-BRCA1P1 is increased in breast tumors compared with normal breast tissues. Depletion of BRCA1P1 induces an antiviral defense-like program, including the expression of antiviral genes in breast cancer cells. Furthermore, BRCA1P1-deficient cancer cells mimic virus-infected cells by stimulating cytokines and inducing cell apoptosis. Accordingly, depletion of BRCA1P1 increases host innate immune responses and restricts virus replication. In converse, overexpression of BRCA1P1 reduces cytokine expression in breast cancer cells. Mechanistically, lncRNA-BRCA1P1 is localized in the nucleus, binds to the NF-κB subunit RelA, and negatively regulates antiviral gene expression. Finally, in a xenograft mouse model of breast cancer, depletion of BRCA1P1 stimulates cytokine expression and local immunity, and suppresses tumor growth. Our results suggest an important role for BRCA1P1 in innate immune defense mechanisms and antitumor responses. This mechanism of antiviral immunity regulated by a host-derived pseudogene RNA may guide the development of novel therapies targeting immune responses in breast cancer. SIGNIFICANCE: This study identifies a novel mechanism of innate immunity driven by a host pseudogene RNA that inhibits innate immune defense mechanisms and antitumor responses through regulation of antiviral gene expression.
Collapse
Affiliation(s)
- Yoo Jane Han
- Department of Medicine, Center for Clinical Cancer Genetics and Global Health, University of Chicago, Chicago, Illinois.
| | - Jing Zhang
- Department of Medicine, Center for Clinical Cancer Genetics and Global Health, University of Chicago, Chicago, Illinois
| | - Jung-Hyun Lee
- Department of Microbiology, University of Chicago, Chicago, Illinois.,Florida Research and Innovation Center, Cleveland Clinic, Florida, Port Saint Lucie, Florida
| | - Jennifer M Mason
- Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina
| | - Olga Karginova
- Department of Medicine, Center for Clinical Cancer Genetics and Global Health, University of Chicago, Chicago, Illinois
| | - Toshio F Yoshimatsu
- Department of Medicine, Center for Clinical Cancer Genetics and Global Health, University of Chicago, Chicago, Illinois
| | - Qinyu Hao
- Department of Cell and Developmental Biology, Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Ian Hurley
- Department of Medicine, Center for Clinical Cancer Genetics and Global Health, University of Chicago, Chicago, Illinois
| | - Laia Paré Brunet
- Translational Genomics and Targeted Therapies in Solid Tumors, IDIBAPS, Barcelona, Spain.,Department of Medicine, University of Barcelona, Barcelona, Spain
| | - Aleix Prat
- Translational Genomics and Targeted Therapies in Solid Tumors, IDIBAPS, Barcelona, Spain.,Department of Medicine, University of Barcelona, Barcelona, Spain
| | - Kannanganattu V Prasanth
- Department of Cell and Developmental Biology, Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Michaela U Gack
- Department of Microbiology, University of Chicago, Chicago, Illinois.,Florida Research and Innovation Center, Cleveland Clinic, Florida, Port Saint Lucie, Florida
| | - Olufunmilayo I Olopade
- Department of Medicine, Center for Clinical Cancer Genetics and Global Health, University of Chicago, Chicago, Illinois.
| |
Collapse
|
254
|
de Camargo AC, de Souza Silva AP, Soares JC, de Alencar SM, Handa CL, Cordeiro KS, Figueira MS, Sampaio GR, Torres EAFS, Shahidi F, Schwember AR. Do Flavonoids from Durum Wheat Contribute to Its Bioactive Properties? A Prospective Study. Molecules 2021; 26:molecules26020463. [PMID: 33477281 PMCID: PMC7830396 DOI: 10.3390/molecules26020463] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/08/2021] [Accepted: 01/14/2021] [Indexed: 12/30/2022] Open
Abstract
A clear gap with respect to the potential biological properties of wheat flavonoids exists in the available literature. This information is crucial for breeding programs aiming to produce new varieties presenting improved health benefits. Accordingly, advanced breeding lines of whole durum wheat were evaluated in this contribution. The highest recovery of phenolics was achieved using aqueous acetone (50:50, v/v), as verified by multi-response optimization, thus showing that phenolics could be largely underestimated by employing an inappropriate extraction. The concentration of derivatives of apigenin, the main phenolics present, ranged from 63.5 to 80.7%, as evaluated by LC-ESI-QTOF-MS. Phenolics from the breeding line 98 exhibited the highest ability in scavenging peroxyl radicals, reducing power as well as in terms of inhibition of pancreatic lipase activity, a key enzyme regulating the absorption of triacylglycerols. In contrast, none of the samples exhibited a significant anti-diabetic potential. Despite their high concentration compared to that of phenolic acids, results of this work do not support a significant antioxidant and pancreatic lipase inhibitory effect of durum wheat flavonoids. Therefore, breeding programs and animal and/or human trials related to the effect of durum wheat flavonoids on oxidative stress and absorption of triacylglycerols are discouraged at this point.
Collapse
Affiliation(s)
- Adriano Costa de Camargo
- Laboratory of Antioxidants, Nutrition and Food Technology Institute, University of Chile, Santiago 7830490, Chile
- Departamento de Ciencias Vegetales, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago 7830490, Chile
- Correspondence: (A.C.d.C); (A.R.S)
| | - Anna Paula de Souza Silva
- Departament of Agri-Food Industry, Food & Nutrition, “Luiz de Queiroz” College of Agriculture, University of São Paulo, P.O. Box 9, Piracicaba, SP CEP 13418-900, Brazil; (A.P.d.S.S.); (J.C.S.); (S.M.d.A.)
| | - Jackeline Cintra Soares
- Departament of Agri-Food Industry, Food & Nutrition, “Luiz de Queiroz” College of Agriculture, University of São Paulo, P.O. Box 9, Piracicaba, SP CEP 13418-900, Brazil; (A.P.d.S.S.); (J.C.S.); (S.M.d.A.)
| | - Severino Matias de Alencar
- Departament of Agri-Food Industry, Food & Nutrition, “Luiz de Queiroz” College of Agriculture, University of São Paulo, P.O. Box 9, Piracicaba, SP CEP 13418-900, Brazil; (A.P.d.S.S.); (J.C.S.); (S.M.d.A.)
| | - Cíntia Ladeira Handa
- Minas Gerais State University, R. Ver. Geraldo Moisés da Silva 308-434, Ituiutaba, MG CEP 38302-182, Brazil;
| | - Karina Silva Cordeiro
- Department of Nutrition, School of Public Health, University of São Paulo, 715 Dr. Arnaldo Avenue, São Paulo, SP CEP 01246-904, Brazil; (K.S.C.); (M.S.F.); (G.R.S.); (E.A.F.S.T.)
| | - Marcela Souza Figueira
- Department of Nutrition, School of Public Health, University of São Paulo, 715 Dr. Arnaldo Avenue, São Paulo, SP CEP 01246-904, Brazil; (K.S.C.); (M.S.F.); (G.R.S.); (E.A.F.S.T.)
| | - Geni R. Sampaio
- Department of Nutrition, School of Public Health, University of São Paulo, 715 Dr. Arnaldo Avenue, São Paulo, SP CEP 01246-904, Brazil; (K.S.C.); (M.S.F.); (G.R.S.); (E.A.F.S.T.)
| | - Elizabeth A. F. S. Torres
- Department of Nutrition, School of Public Health, University of São Paulo, 715 Dr. Arnaldo Avenue, São Paulo, SP CEP 01246-904, Brazil; (K.S.C.); (M.S.F.); (G.R.S.); (E.A.F.S.T.)
| | - Fereidoon Shahidi
- Department of Biochemistry, Memorial University of Newfoundland, St. John’s, NL A1B 3X9, Canada;
| | - Andrés R. Schwember
- Departamento de Ciencias Vegetales, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago 7830490, Chile
- Correspondence: (A.C.d.C); (A.R.S)
| |
Collapse
|
255
|
Yu X, Wang Q, He G, Yu H. Association between XRCC3 Thr241Met polymorphism and risk of gynecological malignancies: A meta-analysis. Cancer Genet 2021; 254-255:11-17. [PMID: 33515810 DOI: 10.1016/j.cancergen.2021.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 10/19/2020] [Accepted: 01/09/2021] [Indexed: 11/27/2022]
Abstract
Studies have investigated the relationship between the X-ray cross- complementing group 3 (XRCC3) Thr241Met polymorphism and the risk of gynecological malignancies (GM) with the contradictory conclusions. Here, a meta-analysis was performed to provide clear picture of the association between Thr241Met and GM risk. The Pubmed and Chinese National Knowledge Infrastructure (CNKI) databases were searched for published eligible studies. The pooled odds ratios (OR) with their corresponding 95% confidence interval (CI) was used to assessed the strength of association. Totally, 15 publications with 5,740 cases and 9,931 controls were included. In the overall analysis, the results of meta-analysis showed no significant association between the Thr241Met and the risk of GM. However, in the Asians subgroup, significant increased risks were found in the comparisons of TT/CT+TT vs. CC(TT vs. CC: OR=3.25, 95% CI=1.47-7.18; CT+TT vs. CC: OR=1.51, 95%CI=1.10-2.09) in Asians; additionally, stratified analysis by cancer type in Asians, significantly increased risks was found in cervical carcinoma (CT vs. CC: OR=1.50, 95%CI=1.04-2.14; TT vs. CC: OR=3.14, 95%CI=1.38-7.14; CT+TT vs. CC: OR=1.64, 95% CI=1.17-2.31). It suggests that the risk of GM might be significantly increased by the XRCC3 Thr241Met polymorphism according to ethnicity and cancer types. Further studies with larger sample size in different ethnic populations and different sites of GM are needed to verify the findings.
Collapse
Affiliation(s)
- Xiangyuan Yu
- Department of Epidemiology, School of Public Health, Guilin Medical University, Guilin 541004, China
| | - Qianqian Wang
- Department of Oncology, Ezhou Central Hospital, Ezhou 436000, China
| | - Gaofeng He
- Department of Oncology, Ezhou Central Hospital, Ezhou 436000, China
| | - Hongping Yu
- Affiliated Tumor Hospital of Guangxi Medical University, Nanning 530021, China.
| |
Collapse
|
256
|
Grajeda Y, Arias N, Barrios A, Pervin S, Singh R. Aging-induced stem cell dysfunction: Molecular mechanisms and potential therapeutic avenues. STEM CELLS AND AGING 2021:203-222. [DOI: 10.1016/b978-0-12-820071-1.00005-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
257
|
Islam S, Dutta P, Sahay O, Santra MK. β-TrCP1 facilitates cell cycle checkpoint activation, DNA repair, and cell survival through ablation of β-TrCP2 in response to genotoxic stress. J Biol Chem 2021; 296:100511. [PMID: 33676897 PMCID: PMC8093472 DOI: 10.1016/j.jbc.2021.100511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 02/24/2021] [Accepted: 03/03/2021] [Indexed: 11/22/2022] Open
Abstract
F-box proteins β-TrCP1 and β-TrCP2 are paralogs present in the human genome. They control several cellular processes including cell cycle and DNA damage signaling. Moreover, it is reported that they facilitate DNA damage-induced accumulation of p53 by directing proteasomal degradation of MDM2, a protein that promotes p53 degradation. However, the individual roles of β-TrCP1 and β-TrCP2 in the genotoxic stress-induced activation of cell cycle checkpoints and DNA damage repair remain largely unknown. Here, using biochemical, molecular biology, flow cytometric, and immunofluorescence techniques, we show that β-TrCP1 and β-TrCP2 communicate during genotoxic stress. We found that expression levels of β-TrCP1 are significantly increased while levels of β-TrCP2 are markedly decreased upon induction of genotoxic stress. Further, our results revealed that DNA damage-induced activation of ATM kinase plays an important role in maintaining the reciprocal expression levels of β-TrCP1 and β-TrCP2 via the phosphorylation of β-TrCP1 at Ser158. Phosphorylated β-TrCP1 potently promotes the proteasomal degradation of β-TrCP2 and MDM2, resulting in the activation of p53. Additionally, β-TrCP1 impedes MDM2 accumulation via abrogation of its lysine 63-linked polyubiquitination by β-TrCP2. Thus, β-TrCP1 helps to arrest cells at the G2/M phase of the cell cycle and promotes DNA repair upon DNA damage through attenuation of β-TrCP2. Collectively, our findings elucidate an intriguing posttranslational regulatory mechanism of these two paralogs under genotoxic stress and revealed β-TrCP1 as a key player in maintaining the genome integrity through the attenuation of β-TrCP2 levels in response to genotoxic stress.
Collapse
Affiliation(s)
- Sehbanul Islam
- Molecular Oncology Laboratory, National Centre for Cell Science, Pune, Maharashtra, India; Department of Biotechnology, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Parul Dutta
- Molecular Oncology Laboratory, National Centre for Cell Science, Pune, Maharashtra, India; Department of Biotechnology, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Osheen Sahay
- Molecular Oncology Laboratory, National Centre for Cell Science, Pune, Maharashtra, India; Department of Biotechnology, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Manas Kumar Santra
- Molecular Oncology Laboratory, National Centre for Cell Science, Pune, Maharashtra, India.
| |
Collapse
|
258
|
Ganguly S, Naik D, Muskara A, Mian OY. The Nexus of Endocrine Signaling and Cancer: How Steroid Hormones Influence Genomic Stability. Endocrinology 2021; 162:bqaa177. [PMID: 33260197 PMCID: PMC7707372 DOI: 10.1210/endocr/bqaa177] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Indexed: 12/13/2022]
Abstract
Endocrine-driven malignancies, including breast and prostate cancer, are among the most common human cancers. The relationship between sex steroid hormones (eg, androgen, estrogen, and progesterone), their cognate receptors, and genomic stability lie at the center of endocrine-driven cancer development, progression, and therapeutic resistance. A variety of direct and indirect mechanisms have been described that link steroid hormone signaling to the loss of genomic integrity that drives early carcinogenesis. These effects are often enriched within endocrine receptor cistromes, accounting for the high proportion of mutations and rearrangements in the region of hormone response elements. In other cases, the effects are generalized and rely on a complex array of genetic, epigenetic, and metabolic interactions. Both androgen and estrogen receptors directly modulate the DNA damage response by trans-activating DNA damage response genes and redirecting the cellular repair machinery in the wake of genotoxic stress. Here we review the key mechanistic underpinnings of the relationship between sex steroid hormone receptors and genomic stability. In addition, we summarize emerging research in this area and discuss important implications for cancer prevention and treatment.
Collapse
Affiliation(s)
| | - Divya Naik
- Cleveland Clinic Lerner Research Institute, Cleveland, OH
| | - Andrew Muskara
- Cleveland Clinic Lerner Research Institute, Cleveland, OH
| | - Omar Y Mian
- Cleveland Clinic Lerner Research Institute, Cleveland, OH
- Cleveland Clinic Taussig Cancer Center, Cleveland, OH
| |
Collapse
|
259
|
Hande V, Teo K, Srikanth P, Wong JSM, Sethu S, Martinez-Lopez W, Hande MP. Investigations on the new mechanism of action for acetaldehyde-induced clastogenic effects in human lung fibroblasts. Mutat Res 2020; 861-862:503303. [PMID: 33551104 DOI: 10.1016/j.mrgentox.2020.503303] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 12/08/2020] [Accepted: 12/14/2020] [Indexed: 12/31/2022]
Abstract
Acetaldehyde (AA) has been classified as a probable human carcinogen by the International Agency for Research on Cancer (IARC, WHO) and by the US Environmental Protection Agency due to its ability to cause tumours following inhalation or alcohol consumption in animals. Humans are constantly exposed to AA through inhalation from the environment through cigarette smoke, vehicle fumes and industrial emissions as well as by persistent alcohol ingestion. Individuals with deficiencies in the enzymes that are involved in the metabolism of AA are more susceptible to its toxicity and constitute a vulnerable human population. Studies have shown that AA induces DNA damage and cytogenetic abnormalities. A study was undertaken to elucidate the clastogenic effects induced by AA and any preceding DNA damage that occurs in normal human lung fibroblasts as this will further validate the detrimental effects of inhalation exposure to AA. AA exposure induced DNA damage, involving DNA double strand breaks, which could possibly occur at the telomeric regions as well, resulting in a clastogenic effect and subsequent genomic instability, which contributed to the cell cycle arrest. The clastogenic effect induced by AA in human lung fibroblasts was evidenced by micronuclei induction and chromosomal aberrations, including those at the telomeric regions. Co-localisation between the DNA double strand breaks and telomeric regions was observed, suggesting possible induction of DNA double strand breaks due to AA exposure at the telomeric regions as a new mechanism beyond the clastogenic effect of AA. From the cell cycle profile following AA exposure, a G2/M phase arrest and a decrease in cell viability were also detected. Therefore, these effects due to AA exposure via inhalation may have implications in the development of carcinogenesis in humans.
Collapse
Affiliation(s)
- Varsha Hande
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Keith Teo
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; University of Auckland, New Zealand
| | - Prarthana Srikanth
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jane See Mei Wong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Swaminathan Sethu
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; GROW Research Laboratory, Narayana Nethralaya Foundation, Bangalore, India
| | - Wilner Martinez-Lopez
- Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay; Associate Unit on Genomic Stability, Faculty of Medicine, University of the Republic (UdelaR), Montevideo, Uruguay; Vellore Institute of Technology, Vellore, India
| | - Manoor Prakash Hande
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Vellore Institute of Technology, Vellore, India; Mangalore University, India; Tembusu College, National University of Singapore, Singapore.
| |
Collapse
|
260
|
Marin PA, Obonaga R, Pavani RS, da Silva MS, de Araujo CB, Lima AA, Avila CC, Cestari I, Machado CR, Elias MC. ATR Kinase Is a Crucial Player Mediating the DNA Damage Response in Trypanosoma brucei. Front Cell Dev Biol 2020; 8:602956. [PMID: 33415107 PMCID: PMC7783291 DOI: 10.3389/fcell.2020.602956] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 12/02/2020] [Indexed: 12/26/2022] Open
Abstract
DNA double-strand breaks (DSBs) are among the most deleterious lesions that threaten genome integrity. To address DSBs, eukaryotic cells of model organisms have evolved a complex network of cellular pathways that are able to detect DNA damage, activate a checkpoint response to delay cell cycle progression, recruit the proper repair machinery, and resume the cell cycle once the DNA damage is repaired. Cell cycle checkpoints are primarily regulated by the apical kinases ATR and ATM, which are conserved throughout the eukaryotic kingdom. Trypanosoma brucei is a divergent pathogenic protozoan parasite that causes human African trypanosomiasis (HAT), a neglected disease that can be fatal when left untreated. The proper signaling and accuracy of DNA repair is fundamental to T. brucei not only to ensure parasite survival after genotoxic stress but also because DSBs are involved in the process of generating antigenic variations used by this parasite to evade the host immune system. DSBs trigger a strong DNA damage response and efficient repair process in T. brucei, but it is unclear how these processes are coordinated. Here, by knocking down ATR in T. brucei using two different approaches (conditional RNAi and an ATR inhibitor), we show that ATR is required to mediate intra-S and partial G1/S checkpoint responses. ATR is also involved in replication fork stalling, is critical for H2A histone phosphorylation in a small group of cells and is necessary for the recruitment and upregulation of the HR-mediated DNA repair protein RAD51 after ionizing radiation (IR) induces DSBs. In summary, this work shows that apical ATR kinase plays a central role in signal transduction and is critical for orchestrating the DNA damage response in T. brucei.
Collapse
Affiliation(s)
- Paula Andrea Marin
- Laboratory of Cell Cycle (LCC), Center of Toxins, Immune Response and Cell Signaling (CETICs), Butantan Institute, São Paulo, Brazil
| | - Ricardo Obonaga
- Laboratory of Cell Cycle (LCC), Center of Toxins, Immune Response and Cell Signaling (CETICs), Butantan Institute, São Paulo, Brazil
| | - Raphael Souza Pavani
- Laboratory of Cell Cycle (LCC), Center of Toxins, Immune Response and Cell Signaling (CETICs), Butantan Institute, São Paulo, Brazil
| | - Marcelo Santos da Silva
- Laboratory of Cell Cycle (LCC), Center of Toxins, Immune Response and Cell Signaling (CETICs), Butantan Institute, São Paulo, Brazil
| | - Christiane Bezerra de Araujo
- Laboratory of Cell Cycle (LCC), Center of Toxins, Immune Response and Cell Signaling (CETICs), Butantan Institute, São Paulo, Brazil
| | - André Arruda Lima
- Laboratory of Cell Cycle (LCC), Center of Toxins, Immune Response and Cell Signaling (CETICs), Butantan Institute, São Paulo, Brazil
| | - Carla Cristi Avila
- Laboratory of Cell Cycle (LCC), Center of Toxins, Immune Response and Cell Signaling (CETICs), Butantan Institute, São Paulo, Brazil
| | - Igor Cestari
- Institute of Parasitology, McGill University, Montreal, QC, Canada
- Division of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Carlos Renato Machado
- Biochemical and Immunology Department, Institute of Biomedical Science, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Maria Carolina Elias
- Laboratory of Cell Cycle (LCC), Center of Toxins, Immune Response and Cell Signaling (CETICs), Butantan Institute, São Paulo, Brazil
| |
Collapse
|
261
|
Bürkel F, Jost T, Hecht M, Heinzerling L, Fietkau R, Distel L. Dual mTOR/DNA-PK Inhibitor CC-115 Induces Cell Death in Melanoma Cells and Has Radiosensitizing Potential. Int J Mol Sci 2020; 21:ijms21239321. [PMID: 33297429 PMCID: PMC7730287 DOI: 10.3390/ijms21239321] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/03/2020] [Accepted: 12/05/2020] [Indexed: 12/20/2022] Open
Abstract
CC-115 is a dual inhibitor of the mechanistic target of rapamycin (mTOR) kinase and the DNA-dependent protein kinase (DNA-PK) that is currently being studied in phase I/II clinical trials. DNA-PK is essential for the repair of DNA-double strand breaks (DSB). Radiotherapy is frequently used in the palliative treatment of metastatic melanoma patients and induces DSBs. Melanoma cell lines and healthy-donor skin fibroblast cell lines were treated with CC‑115 and ionizing irradiation (IR). Apoptosis, necrosis, and cell cycle distribution were analyzed. Colony forming assays were conducted to study radiosensitizing effects. Immunofluorescence microscopy was performed to determine the activity of homologous recombination (HR). In most of the malign cell lines, an increasing concentration of CC-115 resulted in increased cell death. Furthermore, strong cytotoxic effects were only observed in malignant cell lines. Regarding clonogenicity, all cell lines displayed decreased survival fractions during combined inhibitor and IR treatment and supra-additive effects of the combination were observable in 5 out of 9 melanoma cell lines. CC-115 showed radiosensitizing potential in 7 out of 9 melanoma cell lines, but not in healthy skin fibroblasts. Based on our data CC-115 treatment could be a promising approach for patients with metastatic melanoma, particularly in the combination with radiotherapy.
Collapse
Affiliation(s)
- Felix Bürkel
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsstr. 27, 91054 Erlangen, Germany; (F.B.); (T.J.); (M.H.); (R.F.)
| | - Tina Jost
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsstr. 27, 91054 Erlangen, Germany; (F.B.); (T.J.); (M.H.); (R.F.)
| | - Markus Hecht
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsstr. 27, 91054 Erlangen, Germany; (F.B.); (T.J.); (M.H.); (R.F.)
| | - Lucie Heinzerling
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Ulmenweg 18, 91054 Erlangen, Germany;
| | - Rainer Fietkau
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsstr. 27, 91054 Erlangen, Germany; (F.B.); (T.J.); (M.H.); (R.F.)
| | - Luitpold Distel
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsstr. 27, 91054 Erlangen, Germany; (F.B.); (T.J.); (M.H.); (R.F.)
- Correspondence: ; Tel.: +49-9131-85-32312
| |
Collapse
|
262
|
Colnaghi L, Rondelli D, Muzi-Falconi M, Sertic S. Tau and DNA Damage in Neurodegeneration. Brain Sci 2020; 10:E946. [PMID: 33297375 PMCID: PMC7762255 DOI: 10.3390/brainsci10120946] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/29/2020] [Accepted: 12/02/2020] [Indexed: 12/11/2022] Open
Abstract
Neurodegenerative disorders are a family of incurable conditions. Among them, Alzheimer's disease and tauopathies are the most common. Pathological features of these two disorders are synaptic loss, neuronal cell death and increased DNA damage. A key pathological protein for the onset and progression of the conditions is the protein tau, a microtubule-binding protein highly expressed in neurons and encoded by the MAPT (microtubule-associated protein tau) gene. Tau is predominantly a cytosolic protein that interacts with numerous other proteins and molecules. Recent findings, however, have highlighted new and unexpected roles for tau in the nucleus of neuronal cells. This review summarizes the functions of tau in the metabolism of DNA, describing them in the context of the disorders.
Collapse
Affiliation(s)
- Luca Colnaghi
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Negri 2, 20156 Milan, Italy
| | - Diego Rondelli
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy; (D.R.); (M.M.-F.)
| | - Marco Muzi-Falconi
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy; (D.R.); (M.M.-F.)
| | - Sarah Sertic
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy; (D.R.); (M.M.-F.)
| |
Collapse
|
263
|
Namvaran MR, Beyzaei Z, Mokhtari MJ, Geramizadeh B. Association between genetic polymorphism of XRCC6 T-991C and risk of varicocele. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2020. [DOI: 10.1186/s43042-020-00118-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
The DNA non-homologous end-joining repair gene XRCC6 (Ku70) plays an essential role in the DNA double-strand break (DSB) repairs. Defects in the DSB repair pathway results in genomic instability. Varicocele is characterized by high pressure and stasis in the veins of the testis. There is little knowledge about the molecular mechanisms underlying varicocele. One of the reasons for increased spermatozoa DNA damage is high concentrations of reactive oxygen species (ROS), which leads to DNA-DSBs. We assumed that a promoter T-991C (rs5751129) polymorphism in the XRCC6 gene was associated with susceptibility to varicocele in infertile men. Therefore, 63 infertile varicocele men and 150 healthy controls were recruited in our study. The healthy controls had no history of varicocele, and they were matched with patients by age.
Results
Our results showed that infertile varicocele patients and control groups had significant differences in the distribution of their genotypic and allelic frequency (p = 0.00) in the XRCC6 promoter T-991C polymorphism. Men who carried CC genotype had a 5.22-fold increased odds ratio of developing infertile varicocele compared to those who carried the wild-type TT genotype (95% CI 2.31–11.81, P < 0.001).
Conclusions
Our results suggested that the CC genotype and the C allele in the promoter region of XRCC6 gene might play an important role in developing infertility in the varicocele men. Further research is needed to provide the effect of this polymorphism.
Collapse
|
264
|
Aboul Enein AA, Khaled IAA, Khorshied MM, Abdel-Aziz AO, Zahran N, El Saeed AM, Shousha HI, Abdel Rahman HA. Genetic variations in DNA-repair genes (XRCC1, 3, and 7) and the susceptibility to hepatocellular carcinoma in a cohort of Egyptians. J Med Virol 2020; 92:3609-3616. [PMID: 32281666 DOI: 10.1002/jmv.25873] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 01/01/2023]
Abstract
Chronic hepatitis C (CHC) is a worldwide etiology of chronic hepatic insult particularly in Egypt. DNA-repair systems are responsible for maintaining genomic integrity by countering threats posed by DNA lesions. Deficiency in the repair capacity due to genetic alterations in DNA-repair genes can lead to genomic instability and increased risk of cancer development. The present work aimed at studying the possible association between XRCC1-G28152A (rs25487), XRCC3-C18067T (rs861539), and XRCC7-G6721T (rs7003908) single nucleotide polymorphisms (SNPs) and the susceptibility to hepatocellular carcinoma (HCC) in Egyptian population. The study was conducted on 100 newly diagnosed HCC patients and 100 age- and sex-matched healthy controls. Laboratory workup revealed that all HCC patients have chronic hepatitis C viral infection. Genotyping of the studied SNPs was performed by real-time PCR. The heteromutant genotype of XRCC1 (GA) conferred an almost two-fold increased risk of HCC (OR , 2.35; 95% CI, 1.33-4.04). Regarding XRCC7, the heteromutant (TG) genotype conferred a two-fold increased risk of HCC (OR , 2.17; 95% CI, 1.23-3.82). Coinheritance of the polymorphic genotypes of XRCC1 and 7 was significantly higher in HCC cases than controls and was associated with an 11-fold increased risk of HCC (OR , 11.66; 95% CI, 2.77-49.13). The frequency of XRCC3 polymorphic genotypes in HCC patients was close to that of the controls.
Collapse
Affiliation(s)
- Azza Ahmed Aboul Enein
- Department of Clinical and Chemical Pathology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Iman Abdel Aziz Khaled
- Department of Clinical and Chemical Pathology, Theoder Bilharz Research Institute, Cairo, Egypt
| | - Mervat Mamdooh Khorshied
- Department of Clinical and Chemical Pathology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | | | - Nariman Zahran
- Department of Clinical and Chemical Pathology, Theoder Bilharz Research Institute, Cairo, Egypt
| | - Asmaa Mohamed El Saeed
- Department of Clinical and Chemical Pathology, Theoder Bilharz Research Institute, Cairo, Egypt
| | - Hend Ibrahim Shousha
- Department of Tropical Medicine, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Hala Aly Abdel Rahman
- Department of Clinical and Chemical Pathology, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
265
|
Wang S, Ramamurthy D, Tan J, Liu J, Yip J, Chua A, Yu Z, Lim TK, Lin Q, Pines O, Lehming N. Post-translational Modifications of Fumarase Regulate its Enzyme Activity and Function in Respiration and the DNA Damage Response. J Mol Biol 2020; 432:6108-6126. [PMID: 33058874 DOI: 10.1016/j.jmb.2020.09.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 09/09/2020] [Accepted: 09/27/2020] [Indexed: 11/25/2022]
Abstract
The Krebs cycle enzyme fumarase is a dual-targeted protein that is located in the mitochondria and cytoplasm of eukaryotic cells. Besides being involved in the TCA cycle and primary metabolism, fumarase is a tumour suppressor that aids DNA repair in human cells. Using mass spectrometry, we identified modifications in peptides of cytosolic yeast fumarase, some of which were absent when the cells were exposed to DNA damage (using the homing endonuclease system or hydroxyurea). We show that DNA damage increased the enzymatic activity of fumarase, which we hypothesized to be affected by post-translational modifications. Succinylation and ubiquitination of fumarase at lysines 78 and 79, phosphorylation at threonine 122, serine 124 and threonine 126 as well as deamidation at arginine 239 were found to be functionally relevant. Upon homology analysis, these residues were also found to be evolutionally conserved. Serine 128, on the other hand, is not evolutionary conserved and the Fum1S128D phosphorylation mimic was able to aid DNA repair. Our molecular model is that the above modifications inhibit the enzymatic activity of cytosolic fumarase under conditions of no DNA damage induction and when there is less need for the enzyme. Upon genotoxic stress, some fumarase modifications are removed and some enzymes are degraded while unmodified proteins are synthesized. This report is the first to demonstrate how post-translational modifications influence the catalytic and DNA repair functions of fumarase in the cell.
Collapse
Affiliation(s)
- Suqing Wang
- Department of Microbiology and Immunology, Cancer Programme at NUSMED, CREATE-NUS-HUJ Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Dharanidharan Ramamurthy
- Department of Microbiology and Immunology, Cancer Programme at NUSMED, CREATE-NUS-HUJ Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jasper Tan
- Department of Microbiology and Immunology, Cancer Programme at NUSMED, CREATE-NUS-HUJ Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jingyan Liu
- Department of Microbiology and Immunology, Cancer Programme at NUSMED, CREATE-NUS-HUJ Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Joyce Yip
- Department of Microbiology and Immunology, Cancer Programme at NUSMED, CREATE-NUS-HUJ Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Andrea Chua
- Department of Microbiology and Immunology, Cancer Programme at NUSMED, CREATE-NUS-HUJ Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Zhang Yu
- Department of Microbiology and Immunology, Cancer Programme at NUSMED, CREATE-NUS-HUJ Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Teck Kwang Lim
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore
| | - Qingsong Lin
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore
| | - Ophry Pines
- Department of Microbiology and Molecular Genetics, IMRIC, Faculty of Medicine, Hebrew University of Jerusalem, Israel; CREATE-NUS-HUJ Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| | - Norbert Lehming
- Department of Microbiology and Immunology, Cancer Programme at NUSMED, CREATE-NUS-HUJ Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; CREATE-NUS-HUJ Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
266
|
Chien JCY, Tabet E, Pinkham K, da Hora CC, Chang JCY, Lin S, Badr CE, Lai CPK. A multiplexed bioluminescent reporter for sensitive and non-invasive tracking of DNA double strand break repair dynamics in vitro and in vivo. Nucleic Acids Res 2020; 48:e100. [PMID: 32797168 PMCID: PMC7515717 DOI: 10.1093/nar/gkaa669] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/29/2020] [Accepted: 07/31/2020] [Indexed: 12/31/2022] Open
Abstract
Tracking DNA double strand break (DSB) repair is paramount for the understanding and therapeutic development of various diseases including cancers. Herein, we describe a multiplexed bioluminescent repair reporter (BLRR) for non-invasive monitoring of DSB repair pathways in living cells and animals. The BLRR approach employs secreted Gaussia and Vargula luciferases to simultaneously detect homology-directed repair (HDR) and non-homologous end joining (NHEJ), respectively. BLRR data are consistent with next-generation sequencing results for reporting HDR (R2 = 0.9722) and NHEJ (R2 = 0.919) events. Moreover, BLRR analysis allows longitudinal tracking of HDR and NHEJ activities in cells, and enables detection of DSB repairs in xenografted tumours in vivo. Using the BLRR system, we observed a significant difference in the efficiency of CRISPR/Cas9-mediated editing with guide RNAs only 1-10 bp apart. Moreover, BLRR analysis detected altered dynamics for DSB repair induced by small-molecule modulators. Finally, we discovered HDR-suppressing functions of anticancer cardiac glycosides in human glioblastomas and glioma cancer stem-like cells via inhibition of DNA repair protein RAD51 homolog 1 (RAD51). The BLRR method provides a highly sensitive platform to simultaneously and longitudinally track HDR and NHEJ dynamics that is sufficiently versatile for elucidating the physiology and therapeutic development of DSB repair.
Collapse
Affiliation(s)
| | - Elie Tabet
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02129, USA.,Department of Biomedical Engineering, University of South Dakota, 4800 N. Career Ave, Suite 221, Sioux Falls, Vermillion, SD 57069, USA
| | - Kelsey Pinkham
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02129, USA
| | - Cintia Carla da Hora
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02129, USA.,Neuroscience Program, Harvard Medical School, Boston, MA 02115, USA
| | - Jason Cheng-Yu Chang
- Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan.,Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Steven Lin
- Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan.,Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Christian E Badr
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02129, USA.,Neuroscience Program, Harvard Medical School, Boston, MA 02115, USA
| | - Charles Pin-Kuang Lai
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan.,Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei 115, Taiwan.,Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
267
|
Huang T, Luo X, Wu B, Peng P, Dai Y, Hu G, Qiu H, Yuan X. Pyrotinib enhances the radiosensitivity of HER2‑overexpressing gastric and breast cancer cells. Oncol Rep 2020; 44:2634-2644. [PMID: 33125154 PMCID: PMC7640366 DOI: 10.3892/or.2020.7820] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 08/31/2020] [Indexed: 02/07/2023] Open
Abstract
The overexpression or amplification of HER2 has been observed in a significant proportion of both gastric cancer (GC) and breast cancer (BC) cases. Pyrotinib is an irreversible dual (EGFR/HER2) tyrosine kinase inhibitor (TKI), newly evaluated for the treatment of HER2-overexpressing cancer types. As radiotherapy (RT) serves a crucial role in controlling the local recurrence of GC and BC, the present study investigated the impact of pyrotinib on the irradiation response. The current results demonstrated that pyrotinib enhanced the radiosensitivity of HER2-overexpressing GC and BC cells in vitro and in vivo. In both NCI-N87 and SKBR3 cells, pyrotinib suppressed the irradiation-induced HER2 nuclear transport. Furthermore, pyrotinib increased DNA damage induced by irradiation in both cancer cell lines. Pyrotinib also enhanced the cytotoxicity of docetaxel, which may provide a novel strategy for potential drug combinations. Thus, pyrotinib is a promising irradiation sensitizer in patients with HER2-overexpressing GC and BC. The present results provide a theoretical foundation for further clinical evaluation of pyrotinib.
Collapse
Affiliation(s)
- Tingting Huang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Xiaoxiao Luo
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Bili Wu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Ping Peng
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Yuhong Dai
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Guangyuan Hu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Hong Qiu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Xianglin Yuan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
268
|
Pokataev I, Fedyanin M, Polyanskaya E, Popova A, Agafonova J, Menshikova S, Tryakin A, Rumyantsev A, Tjulandin S. Efficacy of platinum-based chemotherapy and prognosis of patients with pancreatic cancer with homologous recombination deficiency: comparative analysis of published clinical studies. ESMO Open 2020; 5:e000578. [PMID: 33551067 PMCID: PMC7003386 DOI: 10.1136/esmoopen-2019-000578] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 11/10/2019] [Accepted: 01/29/2020] [Indexed: 12/18/2022] Open
Abstract
The aim of our study was to determine the effect of homologous recombination deficiency (HRD) on prognosis and efficacy of platinum-based chemotherapy in patients with pancreatic cancer (PC). We performed PubMed and Embase database queries. We included 4 studies into the meta-analysis and 16 studies in the systematic review. Our systematic analysis showed that the average weighted median overall survival (OS) in patients with HRD with advanced PC was 19.8 and 15.6 months in patients without HRD. With platinum-based chemotherapy, the average weighted median OS in patients with HRD was 23.8 and 17.1 months in patients without HRD. Without platinum-based chemotherapy, the average weighted median OS in patients with HRD was 8.3 and 12.0 months in patients without HRD. For resected PC, our meta-analysis demonstrated that HRD status did not affect the prognosis (HR 1.03, 95% CI 0.46 to 2.33), but results were rather heterogeneous (I2=83%, p=0.003). Our systematic analysis showed that the average weighted median OS in patients with HRD was 34.6 and 27.0 months in patients without HRD. With platinum-based chemotherapy, the average weighted median OS in patients with HRD was 46.1 and 36.3 months in patients without HRD. Without platinum-based chemotherapy, the average weighted median OS in patients with HRD was 24.2 and 42.9 months in patients without HRD. Results of our meta-analysis and systematic review support the idea of platinum use in patients with HRD both in resected and metastatic PCs, although a randomised trial is warranted to make a more reliable conclusion. PROSPERO REGISTRATION NUMBER: CRD42019121914.
Collapse
Affiliation(s)
- Ilya Pokataev
- Department of Clinical Pharmacology and Chemotherapy, FBGU National Medical Research Center of Oncology named after N N Blokhin, Moskva, Russian Federation
| | - Mikhail Fedyanin
- Department of Clinical Pharmacology and Chemotherapy, FBGU National Medical Research Center of Oncology named after N N Blokhin, Moskva, Russian Federation.
| | - Elizaveta Polyanskaya
- Department of Clinical Pharmacology and Chemotherapy, FBGU National Medical Research Center of Oncology named after N N Blokhin, Moskva, Russian Federation
| | - Anna Popova
- Department of Clinical Pharmacology and Chemotherapy, FBGU National Medical Research Center of Oncology named after N N Blokhin, Moskva, Russian Federation
| | - Julia Agafonova
- Department of Clinical Pharmacology and Chemotherapy, FBGU National Medical Research Center of Oncology named after N N Blokhin, Moskva, Russian Federation
| | - Sophia Menshikova
- Department of Clinical Pharmacology and Chemotherapy, FBGU National Medical Research Center of Oncology named after N N Blokhin, Moskva, Russian Federation
| | - Alexey Tryakin
- Department of Clinical Pharmacology and Chemotherapy, FBGU National Medical Research Center of Oncology named after N N Blokhin, Moskva, Russian Federation
| | - Alexey Rumyantsev
- Department of Clinical Pharmacology and Chemotherapy, FBGU National Medical Research Center of Oncology named after N N Blokhin, Moskva, Russian Federation
| | - Sergei Tjulandin
- Department of Clinical Pharmacology and Chemotherapy, FBGU National Medical Research Center of Oncology named after N N Blokhin, Moskva, Russian Federation
| |
Collapse
|
269
|
The bromodomain and extra-terminal domain inhibitor JQ1 synergistically sensitizes human colorectal cancer cells to topoisomerase I inhibitors through repression of Mre11-mediated DNA repair pathway. Invest New Drugs 2020; 39:362-376. [PMID: 32981006 DOI: 10.1007/s10637-020-01014-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 09/21/2020] [Indexed: 02/05/2023]
Abstract
Camptothecin (CPT) and its derivatives, irinotecan and topotecan are specific topoisomerase I (Top1) inhibitors and potent anticancer drugs. Mechanistically, they induce DNA double-strand breaks (DSBs). Although CPT is an effective chemotherapeutic agent used in the management of advanced colorectal cancer, there exist associated side effects. Herein, we aimed to establish novel drug combinations that can effectively aid in managing the CPT-related side effects. Besides, bromodomain and extra-terminal domain (BET) inhibitors have proved as promising drugs that target epigenetic mechanisms in various cancers, they alter DNA repair processes, hence are a potential candidate for CPT synthetic lethality. A novel BET inhibitor JQ1 synergized with CPT, exerted antiproliferative effects. Through cell cycle analyses and apoptosis assays, we revealed that a combination of CPT and JQ1 induces subG1-phase arrest and enhances cell apoptosis. This combination increased the intensity of γ-H2AX staining, a specific marker of DSBs. Moreover, colorectal cancer cells highly expressing Top1 showed greater sensitivity to JQ1, which was lowered through the lentiviral shRNA-mediated knockdown of Top1. JQ1, combined with CPT, impeded the recruitment of the Mre11-mediated MRN complex. Finally, JQ1 enhanced the in vivo sensitivity of tumors to CPT without inducing toxicity. These results demonstrate that a combination of BET inhibitor with Top1 inhibitor is safe and exerts positive chemotherapeutic effects in colorectal cancer.
Collapse
|
270
|
Grundy MK, Buckanovich RJ, Bernstein KA. Regulation and pharmacological targeting of RAD51 in cancer. NAR Cancer 2020; 2:zcaa024. [PMID: 33015624 PMCID: PMC7520849 DOI: 10.1093/narcan/zcaa024] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/25/2020] [Accepted: 09/03/2020] [Indexed: 01/06/2023] Open
Abstract
Regulation of homologous recombination (HR) is central for cancer prevention. However, too little HR can increase cancer incidence, whereas too much HR can drive cancer resistance to therapy. Importantly, therapeutics targeting HR deficiency have demonstrated a profound efficacy in the clinic improving patient outcomes, particularly for breast and ovarian cancer. RAD51 is central to DNA damage repair in the HR pathway. As such, understanding the function and regulation of RAD51 is essential for cancer biology. This review will focus on the role of RAD51 in cancer and beyond and how modulation of its function can be exploited as a cancer therapeutic.
Collapse
Affiliation(s)
- McKenzie K Grundy
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Ronald J Buckanovich
- Division of Hematology Oncology, Department of Internal Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Kara A Bernstein
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
271
|
Qi Z, Guo Y, Zhang H, Yu Q, Zhang P. Betulin attenuates pneumolysin-induced cell injury and DNA damage. J Appl Microbiol 2020; 130:843-851. [PMID: 32621771 DOI: 10.1111/jam.14769] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/23/2020] [Accepted: 06/29/2020] [Indexed: 12/19/2022]
Abstract
AIMS Pneumolysin, a pore-forming toxin, is an important virulence factor of Streptococcus pneumoniae with multiple biological activity, such as cell lysis and DNA damage. Thus, targeting this toxin is alternative strategy for the treatment of S. pneumoniae infection. METHODS AND RESULTS Haemolysin assay was performed to identify the potential PLY inhibitor. The mechanism by which betulin, a natural compound from birch bark, against PLY was determined via MICs determination, western blot analysis and oligomerization analysis. Cytotoxicity and Immunofluorescence assays were further used to evaluate the protection of betulin against PLY-induced cell injury and DNA damage. Here, betulin, a natural compound from birch bark, was indentified as an effective inhibitor of PLY. Importantly, at the concentrations required for such inhibition, betulin has no influence on S. pneumoniae viability or PLY production. The interaction of betulin with PLY restrict the olgomerizaiton of this toxin and, thus, directly neutralizing the activity of PLY. Additionally, betulin treatment alleviate PLY induced cells injury and DNA damage in the co-culture system of PLY and A549 cells. CONCLUSIONS Betulin could be used as a promising leading compound against S. pneumoniae virulence by directly targeting PLY without antibacterial activity. SIGNIFICANCE AND IMPACT OF THE STUDY The results presented in this work provided a novel strategy and candidate for S. pneumoniae infection.
Collapse
Affiliation(s)
- Z Qi
- Department of Thoracic Surgery, the First Hospital of Jilin University, Changchun, Jilin, China.,Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Y Guo
- Department of Thoracic Surgery, the First Hospital of Jilin University, Changchun, Jilin, China.,Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - H Zhang
- Department of Thoracic Surgery, the First Hospital of Jilin University, Changchun, Jilin, China.,Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Q Yu
- Jilin Provincial Animal Disease Control Center, Changchun, China
| | - P Zhang
- Department of Thoracic Surgery, the First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
272
|
Rose M, Burgess JT, O’Byrne K, Richard DJ, Bolderson E. PARP Inhibitors: Clinical Relevance, Mechanisms of Action and Tumor Resistance. Front Cell Dev Biol 2020; 8:564601. [PMID: 33015058 PMCID: PMC7509090 DOI: 10.3389/fcell.2020.564601] [Citation(s) in RCA: 417] [Impact Index Per Article: 83.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 08/13/2020] [Indexed: 12/11/2022] Open
Abstract
The Poly (ADP-ribose) polymerase (PARP) family has many essential functions in cellular processes, including the regulation of transcription, apoptosis and the DNA damage response. PARP1 possesses Poly (ADP-ribose) activity and when activated by DNA damage, adds branched PAR chains to facilitate the recruitment of other repair proteins to promote the repair of DNA single-strand breaks. PARP inhibitors (PARPi) were the first approved cancer drugs that specifically targeted the DNA damage response in BRCA1/2 mutated breast and ovarian cancers. Since then, there has been significant advances in our understanding of the mechanisms behind sensitization of tumors to PARP inhibitors and expansion of the use of PARPi to treat several other cancer types. Here, we review the recent advances in the proposed mechanisms of action of PARPi, biomarkers of the tumor response to PARPi, clinical advances in PARPi therapy, including the potential of combination therapies and mechanisms of tumor resistance.
Collapse
Affiliation(s)
- Maddison Rose
- Cancer & Ageing Research Program, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
| | - Joshua T. Burgess
- Cancer & Ageing Research Program, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
| | - Kenneth O’Byrne
- Cancer & Ageing Research Program, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
- Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Derek J. Richard
- Cancer & Ageing Research Program, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
| | - Emma Bolderson
- Cancer & Ageing Research Program, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
273
|
Matejka N, Reindl J. Influence of α-Particle Radiation on Intercellular Communication Networks of Tunneling Nanotubes in U87 Glioblastoma Cells. Front Oncol 2020; 10:1691. [PMID: 33014842 PMCID: PMC7509401 DOI: 10.3389/fonc.2020.01691] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 07/29/2020] [Indexed: 01/23/2023] Open
Abstract
Cellular communication plays a crucial role in the coordination and organization of cancer cells. Especially processes such as uncontrolled cell growth, invasion, and therapy resistance (development), which are features of very malignant tumors like glioblastomas, are supported by an efficient cell-to-cell communication in the tumor environment. One powerful way for cells to communicate are tunneling nanotubes (TNTs). These tiny membrane tunnels interconnect cells over long distances and serve as highways for information exchange between distant cells. Here, we study the response of cellular communication via TNTs in U87 glioblastoma cells to homogeneous irradiation with α-particles as a stress factor. We describe the development of TNT networks in certain time steps after irradiation using confocal live-cell imaging and suggest an evaluation method to characterize these communication networks. Our results show that irradiated cells establish their network faster and have more cell-to-cell connections with high TNT content than sham-irradiated controls within the first 24 h. These findings suggest that there is an additional trigger upon radiation damage which results in fast and intensive network formation by TNTs as a radiation damage response mechanism.
Collapse
Affiliation(s)
- Nicole Matejka
- Institut für Angewandte Physik und Messtechnik, Fakultaet für Luft- und Raumfahrttechnik, Universitaet der Bundeswehr Muenchen, Neubiberg, Germany
| | - Judith Reindl
- Institut für Angewandte Physik und Messtechnik, Fakultaet für Luft- und Raumfahrttechnik, Universitaet der Bundeswehr Muenchen, Neubiberg, Germany
| |
Collapse
|
274
|
Modulation of DNA double-strand break repair as a strategy to improve precise genome editing. Oncogene 2020; 39:6393-6405. [PMID: 32884115 DOI: 10.1038/s41388-020-01445-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/07/2020] [Accepted: 08/21/2020] [Indexed: 12/11/2022]
Abstract
In the present day, it is possible to incorporate targeted mutations or replace a gene using genome editing techniques such as customisable CRISPR/Cas9 system. Although induction of DNA double-strand breaks (DSBs) by genome editing tools can be repaired by both non-homologous end joining (NHEJ) and homologous recombination (HR), the skewness of the former pathway in human and other mammals normally result in imprecise repair. Scientists working at the crossroads of DNA repair and genome editing have devised new strategies for using a specific pathway to their advantage. Refinement in the efficiency of precise gene editing was witnessed upon downregulation of NHEJ by knockdown or using small molecule inhibitors on one hand, and upregulation of HR proteins and addition of HR stimulators, other hand. The exploitation of cell cycle phase differences together with appropriate donor DNA length/sequence and small molecules has provided further improvement in precise genome editing. The present article reviews the mechanisms of improving the efficiency of precise genome editing in several model organisms and in clinics.
Collapse
|
275
|
Mismatch sensing by nucleofilament deciphers mechanism of RecA-mediated homologous recombination. Proc Natl Acad Sci U S A 2020; 117:20549-20554. [PMID: 32788357 DOI: 10.1073/pnas.1920265117] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recombinases polymerize along single-stranded DNA (ssDNA) at the end of a broken DNA to form a helical nucleofilament with a periodicity of ∼18 bases. The filament catalyzes the search and checking for homologous sequences and promotes strand exchange with a donor duplex during homologous recombination (HR), the mechanism of which has remained mysterious since its discovery. Here, by inserting mismatched segments into donor duplexes and using single-molecule techniques to catch transient intermediates in HR, we found that, even though 3 base pairs (bp) is still the basic unit, both the homology checking and the strand exchange may proceed in multiple steps at a time, resulting in ∼9-bp large steps on average. More interestingly, the strand exchange is blocked remotely by the mismatched segment, terminating at positions ∼9 bp before the match-mismatch joint. The homology checking and the strand exchange are thus separated in space, with the strand exchange lagging behind. Our data suggest that the strand exchange progresses like a traveling wave in which the donor DNA is incorporated successively into the ssDNA-RecA filament to check homology in ∼9-bp steps in the frontier, followed by a hypothetical transitional segment and then the post-strand-exchanged duplex.
Collapse
|
276
|
The Determinant of DNA Repair Pathway Choices in Ionising Radiation-Induced DNA Double-Strand Breaks. BIOMED RESEARCH INTERNATIONAL 2020; 2020:4834965. [PMID: 32908893 PMCID: PMC7468606 DOI: 10.1155/2020/4834965] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 07/13/2020] [Accepted: 07/30/2020] [Indexed: 02/07/2023]
Abstract
Ionising radiation- (IR-) induced DNA double-strand breaks (DSBs) are considered to be the deleterious DNA lesions that pose a serious threat to genomic stability. The major DNA repair pathways, including classical nonhomologous end joining, homologous recombination, single-strand annealing, and alternative end joining, play critical roles in countering and eliciting IR-induced DSBs to ensure genome integrity. If the IR-induced DNA DSBs are not repaired correctly, the residual or incorrectly repaired DSBs can result in genomic instability that is associated with certain human diseases. Although many efforts have been made in investigating the major mechanisms of IR-induced DNA DSB repair, it is still unclear what determines the choices of IR-induced DNA DSB repair pathways. In this review, we discuss how the mechanisms of IR-induced DSB repair pathway choices can operate in irradiated cells. We first briefly describe the main mechanisms of the major DNA DSB repair pathways and the related key repair proteins. Based on our understanding of the characteristics of IR-induced DNA DSBs and the regulatory mechanisms of DSB repair pathways in irradiated cells and recent advances in this field, We then highlight the main factors and associated challenges to determine the IR-induced DSB repair pathway choices. We conclude that the type and distribution of IR-induced DSBs, chromatin state, DNA-end structure, and DNA-end resection are the main determinants of the choice of the IR-induced DNA DSB repair pathway.
Collapse
|
277
|
Zhao L, Bao C, Shang Y, He X, Ma C, Lei X, Mi D, Sun Y. The Determinant of DNA Repair Pathway Choices in Ionising Radiation-Induced DNA Double-Strand Breaks. BIOMED RESEARCH INTERNATIONAL 2020. [DOI: doi.org/10.1155/2020/4834965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Ionising radiation- (IR-) induced DNA double-strand breaks (DSBs) are considered to be the deleterious DNA lesions that pose a serious threat to genomic stability. The major DNA repair pathways, including classical nonhomologous end joining, homologous recombination, single-strand annealing, and alternative end joining, play critical roles in countering and eliciting IR-induced DSBs to ensure genome integrity. If the IR-induced DNA DSBs are not repaired correctly, the residual or incorrectly repaired DSBs can result in genomic instability that is associated with certain human diseases. Although many efforts have been made in investigating the major mechanisms of IR-induced DNA DSB repair, it is still unclear what determines the choices of IR-induced DNA DSB repair pathways. In this review, we discuss how the mechanisms of IR-induced DSB repair pathway choices can operate in irradiated cells. We first briefly describe the main mechanisms of the major DNA DSB repair pathways and the related key repair proteins. Based on our understanding of the characteristics of IR-induced DNA DSBs and the regulatory mechanisms of DSB repair pathways in irradiated cells and recent advances in this field, We then highlight the main factors and associated challenges to determine the IR-induced DSB repair pathway choices. We conclude that the type and distribution of IR-induced DSBs, chromatin state, DNA-end structure, and DNA-end resection are the main determinants of the choice of the IR-induced DNA DSB repair pathway.
Collapse
Affiliation(s)
- Lei Zhao
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026 Liaoning, China
| | - Chengyu Bao
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026 Liaoning, China
| | - Yuxuan Shang
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026 Liaoning, China
| | - Xinye He
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026 Liaoning, China
| | - Chiyuan Ma
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xiaohua Lei
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Dong Mi
- College of Science, Dalian Maritime University, Dalian, Liaoning, China
| | - Yeqing Sun
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026 Liaoning, China
| |
Collapse
|
278
|
Starcher CL, Pay SL, Singh N, Yeh IJ, Bhandare SB, Su X, Huang X, Bey EA, Motea EA, Boothman DA. Targeting Base Excision Repair in Cancer: NQO1-Bioactivatable Drugs Improve Tumor Selectivity and Reduce Treatment Toxicity Through Radiosensitization of Human Cancer. Front Oncol 2020; 10:1575. [PMID: 32974194 PMCID: PMC7468503 DOI: 10.3389/fonc.2020.01575] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 07/21/2020] [Indexed: 01/23/2023] Open
Abstract
Ionizing radiation (IR) creates lethal DNA damage that can effectively kill tumor cells. However, the high dose required for a therapeutic outcome also damages healthy tissue. Thus, a therapeutic strategy with predictive biomarkers to enhance the beneficial effects of IR allowing a dose reduction without losing efficacy is highly desirable. NAD(P)H:quinone oxidoreductase 1 (NQO1) is overexpressed in the majority of recalcitrant solid tumors in comparison with normal tissue. Studies have shown that NQO1 can bioactivate certain quinone molecules (e.g., ortho-naphthoquinone and β-lapachone) to induce a futile redox cycle leading to the formation of oxidative DNA damage, hyperactivation of poly(ADP-ribose) polymerase 1 (PARP1), and catastrophic depletion of NAD+ and ATP, which culminates in cellular lethality via NAD+-Keresis. However, NQO1-bioactivatable drugs induce methemoglobinemia and hemolytic anemia at high doses. To circumvent this, NQO1-bioactivatable agents have been shown to synergize with PARP1 inhibitors, pyrimidine radiosensitizers, and IR. This therapeutic strategy allows for a reduction in the dose of the combined agents to decrease unwanted side effects by increasing tumor selectivity. In this review, we discuss the mechanisms of radiosensitization between NQO1-bioactivatable drugs and IR with a focus on the involvement of base excision repair (BER). This combination therapeutic strategy presents a unique tumor-selective and minimally toxic approach for targeting solid tumors that overexpress NQO1.
Collapse
Affiliation(s)
- Colton L Starcher
- Department of Biochemistry and Molecular Biology, IU Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
| | - S Louise Pay
- Department of Biochemistry and Molecular Biology, IU Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Naveen Singh
- Department of Biochemistry and Molecular Biology, IU Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
| | - I-Ju Yeh
- Department of Biochemistry and Molecular Biology, IU Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Snehal B Bhandare
- Department of Biochemistry and Molecular Biology, IU Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Xiaolin Su
- Department of Biochemistry and Molecular Biology, IU Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Xiumei Huang
- Department of Radiation Oncology, IU Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Erik A Bey
- Department of Biochemistry and Molecular Biology, IU Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Edward A Motea
- Department of Biochemistry and Molecular Biology, IU Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
| | - David A Boothman
- Department of Biochemistry and Molecular Biology, IU Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
279
|
Valles GJ, Bezsonova I, Woodgate R, Ashton NW. USP7 Is a Master Regulator of Genome Stability. Front Cell Dev Biol 2020; 8:717. [PMID: 32850836 PMCID: PMC7419626 DOI: 10.3389/fcell.2020.00717] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/13/2020] [Indexed: 12/25/2022] Open
Abstract
Genetic alterations, including DNA mutations and chromosomal abnormalities, are primary drivers of tumor formation and cancer progression. These alterations can endow cells with a selective growth advantage, enabling cancers to evade cell death, proliferation limits, and immune checkpoints, to metastasize throughout the body. Genetic alterations occur due to failures of the genome stability pathways. In many cancers, the rate of alteration is further accelerated by the deregulation of these processes. The deubiquitinating enzyme ubiquitin specific protease 7 (USP7) has recently emerged as a key regulator of ubiquitination in the genome stability pathways. USP7 is also deregulated in many cancer types, where deviances in USP7 protein levels are correlated with cancer progression. In this work, we review the increasingly evident role of USP7 in maintaining genome stability, the links between USP7 deregulation and cancer progression, as well as the rationale of targeting USP7 in cancer therapy.
Collapse
Affiliation(s)
- Gabrielle J Valles
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT, United States
| | - Irina Bezsonova
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT, United States
| | - Roger Woodgate
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Nicholas W Ashton
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
280
|
Roderfeld M, Padem S, Lichtenberger J, Quack T, Weiskirchen R, Longerich T, Schramm G, Churin Y, Irungbam K, Tschuschner A, Windhorst A, Grevelding CG, Roeb E. Schistosoma mansoni Egg-Secreted Antigens Activate Hepatocellular Carcinoma-Associated Transcription Factors c-Jun and STAT3 in Hamster and Human Hepatocytes. Hepatology 2020; 72:626-641. [PMID: 30053321 PMCID: PMC7496692 DOI: 10.1002/hep.30192] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 07/23/2018] [Indexed: 12/16/2022]
Abstract
Clinical data have provided evidence that schistosomiasis can promote hepatocellular carcinogenesis. c-Jun and STAT3 are critical regulators of liver cancer development and progression. The aim of the present study was to investigate the hepatocellular activation of c-Jun and STAT3 by Schistosoma mansoni infection. Expression and function of c-Jun and STAT3 as well as proliferation and DNA repair were analyzed by western blotting, electrophoretic mobility-shift assay, and immunohistochemistry in liver of S. mansoni-infected hamsters, Huh7 cells, primary hepatocytes, and human liver biopsies. Hepatocellular activation of c-Jun was demonstrated by nuclear translocation of c-Jun, enhanced phosphorylation (Ser73), and AP-1/DNA-binding in response to S. mansoni infection. Nuclear c-Jun staining pattern around lodged eggs without ambient immune reaction, and directionally from granuloma to the central veins, suggested that substances released from schistosome eggs were responsible for the observed effects. In addition, hepatocytes with c-Jun activation show cell activation and DNA double-strand breaks. These findings from the hamster model were confirmed by analyses of human biopsies from patients with schistosomiasis. Cell culture experiments finally demonstrated that activation of c-Jun and STAT3 as well as DNA repair were induced by an extract from schistosome eggs (soluble egg antigens) and culture supernatants of live schistosome egg (egg-conditioned medium), and in particular by IPSE/alpha-1, the major component secreted by live schistosome eggs. The permanent activation of hepatocellular carcinoma-associated proto-oncogenes such as c-Jun and associated transcription factors including STAT3 by substances released from tissue-trapped schistosome eggs may be important factors contributing to the development of liver cancer in S. mansoni-infected patients. Therefore, identification and therapeutic targeting of the underlying pathways is a useful strategy to prevent schistosomiasis-associated carcinogenesis.
Collapse
Affiliation(s)
- Martin Roderfeld
- Department of GastroenterologyJustus‐Liebig‐UniversityGiessenGermany
| | - Sevinc Padem
- Department of GastroenterologyJustus‐Liebig‐UniversityGiessenGermany
| | | | - Thomas Quack
- Institute of ParasitologyBFS, Justus‐Liebig‐UniversityGiessenGermany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical ChemistryRWTH University Hospital AachenAachenGermany
| | - Thomas Longerich
- Translational Gastrointestinal Pathology, Institute of PathologyUniversity Hospital HeidelbergHeidelbergGermany
| | - Gabriele Schramm
- Experimental Pneumology, Priority Research Area Asthma & AllergyResearch Center BorstelParkallee, BorstelGermany
| | - Yuri Churin
- Department of GastroenterologyJustus‐Liebig‐UniversityGiessenGermany
| | - Karuna Irungbam
- Department of GastroenterologyJustus‐Liebig‐UniversityGiessenGermany
| | | | - Anita Windhorst
- Institute for Medical InformaticsJustus‐Liebig‐UniversityGiessenGermany
| | | | - Elke Roeb
- Department of GastroenterologyJustus‐Liebig‐UniversityGiessenGermany
| |
Collapse
|
281
|
Burgess JT, Rose M, Boucher D, Plowman J, Molloy C, Fisher M, O'Leary C, Richard DJ, O'Byrne KJ, Bolderson E. The Therapeutic Potential of DNA Damage Repair Pathways and Genomic Stability in Lung Cancer. Front Oncol 2020; 10:1256. [PMID: 32850380 PMCID: PMC7399071 DOI: 10.3389/fonc.2020.01256] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/17/2020] [Indexed: 12/16/2022] Open
Abstract
Despite advances in our understanding of the molecular biology of the disease and improved therapeutics, lung cancer remains the most common cause of cancer-related deaths worldwide. Therefore, an unmet need remains for improved treatments, especially in advanced stage disease. Genomic instability is a universal hallmark of all cancers. Many of the most commonly prescribed chemotherapeutics, including platinum-based compounds such as cisplatin, target the characteristic genomic instability of tumors by directly damaging the DNA. Chemotherapies are designed to selectively target rapidly dividing cells, where they cause critical DNA damage and subsequent cell death (1, 2). Despite the initial efficacy of these drugs, the development of chemotherapy resistant tumors remains the primary concern for treatment of all lung cancer patients. The correct functioning of the DNA damage repair machinery is essential to ensure the maintenance of normal cycling cells. Dysregulation of these pathways promotes the accumulation of mutations which increase the potential of malignancy. Following the development of the initial malignancy, the continued disruption of the DNA repair machinery may result in the further progression of metastatic disease. Lung cancer is recognized as one of the most genomically unstable cancers (3). In this review, we present an overview of the DNA damage repair pathways and their contributions to lung cancer disease occurrence and progression. We conclude with an overview of current targeted lung cancer treatments and their evolution toward combination therapies, including chemotherapy with immunotherapies and antibody-drug conjugates and the mechanisms by which they target DNA damage repair pathways.
Collapse
Affiliation(s)
- Joshua T Burgess
- Cancer & Ageing Research Program, School of Biomedical Sciences, Institute of Health and Biomedical Innovation at the Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Maddison Rose
- Cancer & Ageing Research Program, School of Biomedical Sciences, Institute of Health and Biomedical Innovation at the Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Didier Boucher
- Cancer & Ageing Research Program, School of Biomedical Sciences, Institute of Health and Biomedical Innovation at the Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Jennifer Plowman
- Cancer & Ageing Research Program, School of Biomedical Sciences, Institute of Health and Biomedical Innovation at the Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Christopher Molloy
- Cancer & Ageing Research Program, School of Biomedical Sciences, Institute of Health and Biomedical Innovation at the Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Mark Fisher
- Cancer & Ageing Research Program, School of Biomedical Sciences, Institute of Health and Biomedical Innovation at the Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Connor O'Leary
- Cancer & Ageing Research Program, School of Biomedical Sciences, Institute of Health and Biomedical Innovation at the Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, QLD, Australia.,Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Derek J Richard
- Cancer & Ageing Research Program, School of Biomedical Sciences, Institute of Health and Biomedical Innovation at the Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Kenneth J O'Byrne
- Cancer & Ageing Research Program, School of Biomedical Sciences, Institute of Health and Biomedical Innovation at the Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, QLD, Australia.,Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Emma Bolderson
- Cancer & Ageing Research Program, School of Biomedical Sciences, Institute of Health and Biomedical Innovation at the Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, QLD, Australia.,Princess Alexandra Hospital, Brisbane, QLD, Australia
| |
Collapse
|
282
|
Neumann S, Porritt MJ, Osman AM, Kuhn HG. Cranial irradiation at early postnatal age impairs stroke-induced neural stem/progenitor cell response in the adult brain. Sci Rep 2020; 10:12369. [PMID: 32703986 PMCID: PMC7378832 DOI: 10.1038/s41598-020-69266-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 07/09/2020] [Indexed: 11/29/2022] Open
Abstract
Cranial irradiation (IR) is commonly used to treat primary brain tumors and metastatic diseases. However, cranial IR-treated patients often develop vascular abnormalities later in life that increase their risk for cerebral ischemia. Studies in rodents have demonstrated that IR impairs maintenance of the neural stem/precursor cell (NSPC) pool and depletes neurogenesis. We and others have previously shown that stroke triggers NSPC proliferation in the subventricular zone and migration towards the stroke-injured neocortex. Whether this response is sustained in the irradiated brain remains unknown. Here, we demonstrate that cranial IR in mice at an early postnatal age significantly reduced the number to neuronal progenitors responding to cortical stroke in adults. This was accompanied by a reduced number of microglia/macrophages in the peri-infarct cortex; however, the astrocytic response was not altered. Our findings indicate that IR impairs the endogenous repair capacity in the brain in response to stroke, hence pointing to another side effect of cranial radiotherapy which requires further attention.
Collapse
Affiliation(s)
- Susanne Neumann
- Department of Clinical Neuroscience, Institute for Neuroscience and Physiology, University of Gothenburg, Box 436, 405 30, Gothenburg, Sweden.,Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, 171 76, Stockholm, Sweden
| | - Michelle J Porritt
- Department of Clinical Neuroscience, Institute for Neuroscience and Physiology, University of Gothenburg, Box 436, 405 30, Gothenburg, Sweden
| | - Ahmed M Osman
- Department of Women's and Children's Health, Karolinska Institutet, 171 64, Stockholm, Sweden
| | - H Georg Kuhn
- Department of Clinical Neuroscience, Institute for Neuroscience and Physiology, University of Gothenburg, Box 436, 405 30, Gothenburg, Sweden.
| |
Collapse
|
283
|
Clear AD, Manthey GM, Lewis O, Lopez IY, Rico R, Owens S, Negritto MC, Wolf EW, Xu J, Kenjić N, Perry JJP, Adamson AW, Neuhausen SL, Bailis AM. Variants of the human RAD52 gene confer defects in ionizing radiation resistance and homologous recombination repair in budding yeast. ACTA ACUST UNITED AC 2020; 7:270-285. [PMID: 33015141 PMCID: PMC7517009 DOI: 10.15698/mic2020.10.732] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
RAD52 is a structurally and functionally conserved component of the DNA double-strand break (DSB) repair apparatus from budding yeast to humans. We recently showed that expressing the human gene, HsRAD52 in rad52 mutant budding yeast cells can suppress both their ionizing radiation (IR) sensitivity and homologous recombination repair (HRR) defects. Intriguingly, we observed that HsRAD52 supports DSB repair by a mechanism of HRR that conserves genome structure and is independent of the canonical HR machinery. In this study we report that naturally occurring variants of HsRAD52, one of which suppresses the pathogenicity of BRCA2 mutations, were unable to suppress the IR sensitivity and HRR defects of rad52 mutant yeast cells, but fully suppressed a defect in DSB repair by single-strand annealing (SSA). This failure to suppress both IR sensitivity and the HRR defect correlated with an inability of HsRAD52 protein to associate with and drive an interaction between genomic sequences during DSB repair by HRR. These results suggest that HsRAD52 supports multiple, distinct DSB repair apparatuses in budding yeast cells and help further define its mechanism of action in HRR. They also imply that disruption of HsRAD52-dependent HRR in BRCA2-defective human cells may contribute to protection against tumorigenesis and provide a target for killing BRCA2-defective cancers.
Collapse
Affiliation(s)
- Alissa D Clear
- Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, Duarte, CA, USA.,Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Duarte, CA, USA.,bioStrategies Group, Chicago, IL, USA
| | - Glenn M Manthey
- Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, Duarte, CA, USA.,Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Olivia Lewis
- City of Hope - Duarte High School NIH Science Education Partnership Award Program, Duarte, CA, USA.,Barbara Bush Houston Literacy Foundation, Houston, TX, USA
| | - Isabelle Y Lopez
- City of Hope - Duarte High School NIH Science Education Partnership Award Program, Duarte, CA, USA.,California State Polytechnic University at Pomona, Pomona, CA, USA
| | - Rossana Rico
- City of Hope - Duarte High School NIH Science Education Partnership Award Program, Duarte, CA, USA.,Henry Samueli School of Engineering and Applied Sciences, University of California at Los Angeles, Los Angeles, CA, USA
| | - Shannon Owens
- Eugene and Ruth Roberts Summer Student Academy, Beckman Research Institute of City of Hope, Duarte, CA, USA.,Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California at Davis, Davis, CA, USA
| | | | - Elise W Wolf
- Molecular Biology Program, Pomona College, Claremont, CA, USA.,Department of Microbiology and Immunology, University of California at San Francisco, San Francisco, CA, USA
| | - Jason Xu
- Molecular Biology Program, Pomona College, Claremont, CA, USA.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nikola Kenjić
- Department of Biochemistry, University of California at Riverside, Riverside, CA, USA
| | - J Jefferson P Perry
- Department of Biochemistry, University of California at Riverside, Riverside, CA, USA
| | - Aaron W Adamson
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Susan L Neuhausen
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Adam M Bailis
- Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, Duarte, CA, USA.,Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Duarte, CA, USA.,College of Health Professions, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
284
|
Jiang Y, Li W, Yan Y, Yao X, Gu W, Zhang H. LINC01094 triggers radio-resistance in clear cell renal cell carcinoma via miR-577/CHEK2/FOXM1 axis. Cancer Cell Int 2020; 20:274. [PMID: 32595418 PMCID: PMC7315499 DOI: 10.1186/s12935-020-01306-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 05/28/2020] [Indexed: 12/19/2022] Open
Abstract
Background Radioresistance is an obstacle to limit efficacy of radiotherapy. Meanwhile, long non-coding RNAs (lncRNAs) have been reported to affect radioresistance. Here, we aimed to investigate lncRNAs involving radioresistance development of clear cell renal cell carcinoma (ccRCC), the most frequent type of renal cell carcinoma (RCC). Methods The mRNA and protein expressions of genes were measured via qRT-PCR and western blot. The relationships among genes were verified by RIP and luciferase reporter assay. The radioresistance of ccRCC cells was evaluated through clonogenic survival assay, MTT assay and TUNEL assay. Results LINC01094 was over-expressed in ccRCC cell lines. LINC01094 expression was increased along with the radiation exposure time and the final stable level was 8 times of the initial level. Knockdown of LINC01094 resulted in enhanced radiosensitivity of ccRCC cells. Mechanically, LINC01094 was a ceRNA of CHEK2 by sponging miR-577. Also, the enhancement of LINC01094 on ccRCC radioresistance was mediated by CHEK2-stabilized FOXM1 protein. Conclusion LINC01094 facilitates ccRCC radioresistance by targeting miR-577/CHEK2/FOXM1 axis, blazing a new trail for overcoming radioresistance in ccRCC.
Collapse
Affiliation(s)
- Yufeng Jiang
- Department of Urology, Chongming Branch, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No.66 Xiangyang Road, Chongming District, Shanghai, 202157 China
| | - Wei Li
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No.301 Yanchang Road, Jing'an District, Shanghai, 200072 China
| | - Yang Yan
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No.301 Yanchang Road, Jing'an District, Shanghai, 200072 China
| | - Xudong Yao
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No.301 Yanchang Road, Jing'an District, Shanghai, 200072 China
| | - Wenyu Gu
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No.301 Yanchang Road, Jing'an District, Shanghai, 200072 China
| | - Haimin Zhang
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No.301 Yanchang Road, Jing'an District, Shanghai, 200072 China
| |
Collapse
|
285
|
Fang J, Wood AM, Chen Y, Yue J, Ming R. Genomic variation between PRSV resistant transgenic SunUp and its progenitor cultivar Sunset. BMC Genomics 2020; 21:398. [PMID: 32532215 PMCID: PMC7291442 DOI: 10.1186/s12864-020-06804-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 06/05/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The safety of genetically transformed plants remains a subject of scrutiny. Genomic variants in PRSV resistant transgenic papaya will provide evidence to rationally address such concerns. RESULTS In this study, a total of more than 74 million Illumina reads for progenitor 'Sunset' were mapped onto transgenic papaya 'SunUp' reference genome. 310,364 single nucleotide polymorphisms (SNPs) and 34,071 small Inserts/deletions (InDels) were detected between 'Sunset' and 'SunUp'. Those variations have an uneven distribution across nine chromosomes in papaya. Only 0.27% of mutations were predicted to be high-impact mutations. ATP-related categories were highly enriched among these high-impact genes. The SNP mutation rate was about 8.4 × 10- 4 per site, comparable with the rate induced by spontaneous mutation over numerous generations. The transition-to-transversion ratio was 1.439 and the predominant mutations were C/G to T/A transitions. A total of 3430 nuclear plastid DNA (NUPT) and 2764 nuclear mitochondrial DNA (NUMT) junction sites have been found in 'SunUp', which is proportionally higher than the predicted total NUPT and NUMT junction sites in 'Sunset' (3346 and 2745, respectively). Among all nuclear organelle DNA (norgDNA) junction sites, 96% of junction sites were shared by 'SunUp' and 'Sunset'. The average identity between 'SunUp' specific norgDNA and corresponding organelle genomes was higher than that of norgDNA shared by 'SunUp' and 'Sunset'. Six 'SunUp' organelle-like borders of transgenic insertions were nearly identical to corresponding sequences in organelle genomes (98.18 ~ 100%). None of the paired-end spans of mapped 'Sunset' reads were elongated by any 'SunUp' transformation plasmid derived inserts. Significant amounts of DNA were transferred from organelles to the nuclear genome during bombardment, including the six flanking sequences of the three transgenic insertions. CONCLUSIONS Comparative whole-genome analyses between 'SunUp' and 'Sunset' provide a reliable estimate of genome-wide variations and evidence of organelle-to-nucleus transfer of DNA associated with biolistic transformation.
Collapse
Affiliation(s)
- Jingping Fang
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Product of State Oceanic Administration, Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, Fujian, China.,Center of Engineering Technology Research for Microalgae Germplasm Improvement of Fujian, Southern Institute of Oceanography, Fujian Normal University, Fuzhou, 350117, Fujian, China.,FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.,Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Andrew Michael Wood
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Youqiang Chen
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Product of State Oceanic Administration, Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, Fujian, China.,Center of Engineering Technology Research for Microalgae Germplasm Improvement of Fujian, Southern Institute of Oceanography, Fujian Normal University, Fuzhou, 350117, Fujian, China
| | - Jingjing Yue
- FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Ray Ming
- FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China. .,Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
286
|
Al-Khatib SM, Abdo N, Al-Eitan LN, Al-Mistarehi AHW, Zahran DJ, Al Ajlouni M, Kewan TZ. The Impact of the Genetic Polymorphism in DNA Repair Pathways on Increased Risk of Glioblastoma Multiforme in the Arab Jordanian Population: A Case-Control Study. APPLICATION OF CLINICAL GENETICS 2020; 13:115-126. [PMID: 32606887 PMCID: PMC7295542 DOI: 10.2147/tacg.s248994] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 05/22/2020] [Indexed: 01/06/2023]
Abstract
Introduction Among the Jordanian population, brain tumors are the tenth most common type of cancers in both males and females, comprising 2.8% of all newly diagnosed neoplasms. Diffuse gliomas are the most prevalent and the most aggressive primary brain tumors in adults. The incidence of diffuse gliomas varies among different populations; this variation is partially linked to genetic polymorphisms. The purpose of the study is to examine the association between (BRCA1 rs799917G>A, rs1799966T>C, EXO1 rs1047840G>A, EME1 rs12450550T>C, ERCC2 rs13181T>G, rs1799793C>T, and XRCC1 rs1799782G>A) DNA repair gene polymorphisms and glioblastoma multiforme (GBM) susceptibility, and survival in the Jordanian Arab population. Methods Eighty-four patients diagnosed with glioblastoma multiforme at the King Abdullah University Hospital (KAUH) between 2013 and 2018 and 225 healthy cancer-free control subjects with similar geographic and ethnic backgrounds to the patients were included in the study. Genomic DNA was extracted from the formalin-fixed paraffin-embedded tissues of the subjects. The Sequenom MassARRAY® sequencer system (iPLEX GOLD) was used. The analyses included assessments of population variability and survival. Results This study is the first to address the relationship between BRCA1 rs1799966 and rs799917 SNP, and the risk of GBM among the Arab Jordanian population. The findings of the study show that BRCA1 rs799917 is associated with decreased risk of GBM in the recessive model (AA vs G/G-A/G: OR, 0.46, 95% CI, 0.26-0.82, p=0.01) and the same SNP is associated with increased risk of GBM in the overdominant model (AG vs G/G-A/A: OR, 1.72, 95% CI, 1.02-2.89, p=0.04).
Collapse
Affiliation(s)
- Sohaib M Al-Khatib
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Nour Abdo
- Department of Public Health, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Laith N Al-Eitan
- Department of Biotechnology and Genetic Engineering, Faculty of Science and Arts, Jordan University of Science and Technology, Irbid, Jordan
| | - Abdel-Hameed W Al-Mistarehi
- Department of Family Medicine, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Deeb Jamil Zahran
- Department of Internal Medicine, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Marwan Al Ajlouni
- Department of Public Health, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Tariq Zuheir Kewan
- Department of Internal Medicine, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| |
Collapse
|
287
|
Han X, Hao H, Li Q, Liu C, Lei J, Yu F, Chen K, Liu Y, Huang T. The interaction mechanism between fludarabine and human serum albumin researched by comprehensive spectroscopic methods and molecular docking technique. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 233:118170. [PMID: 32143170 DOI: 10.1016/j.saa.2020.118170] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 02/03/2020] [Accepted: 02/16/2020] [Indexed: 06/10/2023]
Abstract
Fludarabine (Flu) is widely used to treat B-cell chronic lymphocytic leukemia. HSA is of the essence to human, especially in blood circulation system. The interaction mechanism between Flu and HSA was studied by comprehensive spectroscopic methods and molecular docking technique. UV-vis and FL spectrum results indicated that Flu bond with HSA, and there was a new complex produced at the binding site I in subdomain IIA. Association constants at 298 K were 1.637 × 104 M-1 and 1.552 × 104 M-1 at 310 K, respectively. The negative enthalpy (ΔH) and positive entropy (ΔS) values for the interaction revealed that the binding behavior was driven by hydrophobic forces and hydrogen bonds. The results obtained from UV, RLS spectra, 3D fluorescence and CD spectrum illustrated that Flu could change the secondary structure of HSA. According to molecule docking result, the binding energy of interaction is -11.15 kcal/mol.
Collapse
Affiliation(s)
- XiaoLe Han
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan 430074, China.
| | - Hao Hao
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan 430074, China
| | - QingYu Li
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan 430074, China
| | - ChenYin Liu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan 430074, China
| | - JiaWen Lei
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan 430074, China
| | - Fan Yu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan 430074, China
| | - Ke Chen
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan 430074, China
| | - Yi Liu
- State Key Laboratory of Virology & Key laboratory of Analytical Chemistry for Biology and Medicine (MOE), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Tao Huang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan 430074, China.
| |
Collapse
|
288
|
Karakaidos P, Karagiannis D, Rampias T. Resolving DNA Damage: Epigenetic Regulation of DNA Repair. Molecules 2020; 25:molecules25112496. [PMID: 32471288 PMCID: PMC7321228 DOI: 10.3390/molecules25112496] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/22/2020] [Accepted: 05/25/2020] [Indexed: 12/18/2022] Open
Abstract
Epigenetic research has rapidly evolved into a dynamic field of genome biology. Chromatin regulation has been proved to be an essential aspect for all genomic processes, including DNA repair. Chromatin structure is modified by enzymes and factors that deposit, erase, and interact with epigenetic marks such as DNA and histone modifications, as well as by complexes that remodel nucleosomes. In this review we discuss recent advances on how the chromatin state is modulated during this multi-step process of damage recognition, signaling, and repair. Moreover, we examine how chromatin is regulated when different pathways of DNA repair are utilized. Furthermore, we review additional modes of regulation of DNA repair, such as through the role of global and localized chromatin states in maintaining expression of DNA repair genes, as well as through the activity of epigenetic enzymes on non-nucleosome substrates. Finally, we discuss current and future applications of the mechanistic interplays between chromatin regulation and DNA repair in the context cancer treatment.
Collapse
Affiliation(s)
| | - Dimitris Karagiannis
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA;
| | - Theodoros Rampias
- Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece;
- Correspondence: ; Tel.: +30-210-659-7469
| |
Collapse
|
289
|
Suraweera A, Duff A, Adams MN, Jekimovs C, Duijf PHG, Liu C, McTaggart M, Beard S, O'Byrne KJ, Richard DJ. Defining COMMD4 as an anti-cancer therapeutic target and prognostic factor in non-small cell lung cancer. Br J Cancer 2020; 123:591-603. [PMID: 32439936 PMCID: PMC7434762 DOI: 10.1038/s41416-020-0899-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 04/19/2020] [Accepted: 05/01/2020] [Indexed: 01/04/2023] Open
Abstract
Background Non-small cell lung cancers (NSCLC) account for 85–90% of all lung cancers. As drug resistance critically impairs chemotherapy effectiveness, there is great need to identify new therapeutic targets. The aims of this study were to investigate the prognostic and therapeutic potential of the copper-metabolism-domain-protein, COMMD4, in NSCLC. Methods The expression of COMMD4 in NSCLC was investigated using bioinformatic analysis, immunoblotting of immortalised human bronchial epithelial (HBEC) and NSCLC cell lines, qRT-PCR and immunohistochemistry of tissue microarrays. COMMD4 function was additionally investigated in HBEC and NSCLC cells depleted of COMMD4, using small interfering RNA sequences. Results Bioinformatic analysis and in vitro analysis of COMMD4 transcripts showed that COMMD4 levels were upregulated in NSCLC and elevated COMMD4 was associated with poor prognosis in adenocarcinoma (ADC). Immunoblotting demonstrated that COMMD4 expression was upregulated in NSCLC cells and siRNA-depletion of COMMD4, decreased cell proliferation and reduced cell viability. Cell death was further enhanced after exposure to DNA damaging agents. COMMD4 depletion caused NSCLC cells to undergo mitotic catastrophe and apoptosis. Conclusions Our data indicate that COMMD4 may function as a prognostic factor in ADC NSCLC. Additionally, COMMD4 is a potential therapeutic target for NSCLC, as its depletion induces cancer cell death.
Collapse
Affiliation(s)
- Amila Suraweera
- Queensland University of Technology (QUT), School of Biomedical Sciences, Institute of Health and Biomedical Innovation and Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia. .,Princess Alexandra Hospital, 199 Ipswich Road, Woolloongabba, QLD, 4102, Australia.
| | - Alex Duff
- Queensland University of Technology (QUT), School of Biomedical Sciences, Institute of Health and Biomedical Innovation and Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
| | - Mark N Adams
- Queensland University of Technology (QUT), School of Biomedical Sciences, Institute of Health and Biomedical Innovation and Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia.,Princess Alexandra Hospital, 199 Ipswich Road, Woolloongabba, QLD, 4102, Australia
| | - Christian Jekimovs
- Queensland University of Technology (QUT), School of Biomedical Sciences, Institute of Health and Biomedical Innovation and Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
| | - Pascal H G Duijf
- Queensland University of Technology (QUT), School of Biomedical Sciences, Institute of Health and Biomedical Innovation and Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia.,University of Queensland Diamantina Insitute, Translational Research Institute, 37 Kent Street, Woolloogabba, QLD, 4102, Australia
| | - Cheng Liu
- Envoi Specialist Pathologists, Brisbane, QLD, Australia.,Faculty of Medicine, University of Queensland, Herston, QLD, 4006, Australia.,The Conjoint Gastroenterology Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia
| | - Matthew McTaggart
- Queensland University of Technology (QUT), School of Biomedical Sciences, Institute of Health and Biomedical Innovation and Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
| | - Sam Beard
- Queensland University of Technology (QUT), School of Biomedical Sciences, Institute of Health and Biomedical Innovation and Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
| | - Kenneth J O'Byrne
- Queensland University of Technology (QUT), School of Biomedical Sciences, Institute of Health and Biomedical Innovation and Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia.,Princess Alexandra Hospital, 199 Ipswich Road, Woolloongabba, QLD, 4102, Australia
| | - Derek J Richard
- Queensland University of Technology (QUT), School of Biomedical Sciences, Institute of Health and Biomedical Innovation and Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia. .,Princess Alexandra Hospital, 199 Ipswich Road, Woolloongabba, QLD, 4102, Australia.
| |
Collapse
|
290
|
Hou T, Cao Z, Zhang J, Tang M, Tian Y, Li Y, Lu X, Chen Y, Wang H, Wei FZ, Wang L, Yang Y, Zhao Y, Wang Z, Wang H, Zhu WG. SIRT6 coordinates with CHD4 to promote chromatin relaxation and DNA repair. Nucleic Acids Res 2020; 48:2982-3000. [PMID: 31970415 PMCID: PMC7102973 DOI: 10.1093/nar/gkaa006] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/02/2019] [Accepted: 01/03/2020] [Indexed: 01/08/2023] Open
Abstract
Genomic instability is an underlying hallmark of cancer and is closely associated with defects in DNA damage repair (DDR). Chromatin relaxation is a prerequisite for DDR, but how chromatin accessibility is regulated remains elusive. Here we report that the histone deacetylase SIRT6 coordinates with the chromatin remodeler CHD4 to promote chromatin relaxation in response to DNA damage. Upon DNA damage, SIRT6 rapidly translocates to DNA damage sites, where it interacts with and recruits CHD4. Once at the damage sites, CHD4 displaces heterochromatin protein 1 (HP1) from histone H3 lysine 9 trimethylation (H3K9me3). Notably, loss of SIRT6 or CHD4 leads to impaired chromatin relaxation and disrupted DNA repair protein recruitment. These molecular changes, in-turn, lead to defective homologous recombination (HR) and cancer cell hypersensitivity to DNA damaging agents. Furthermore, we show that SIRT6-mediated CHD4 recruitment has a specific role in DDR within compacted chromatin by HR in G2 phase, which is an ataxia telangiectasia mutated (ATM)-dependent process. Taken together, our results identify a novel function for SIRT6 in recruiting CHD4 onto DNA double-strand breaks. This newly identified novel molecular mechanism involves CHD4-dependent chromatin relaxation and competitive release of HP1 from H3K9me3 within the damaged chromatin, which are both essential for accurate HR.
Collapse
Affiliation(s)
- Tianyun Hou
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Ziyang Cao
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Jun Zhang
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, International Cancer Center, Department of Biochemistry and Molecular Biology, Shenzhen University School of Medicine, Shenzhen 518055, China
| | - Ming Tang
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, International Cancer Center, Department of Biochemistry and Molecular Biology, Shenzhen University School of Medicine, Shenzhen 518055, China
| | - Yuan Tian
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, International Cancer Center, Department of Biochemistry and Molecular Biology, Shenzhen University School of Medicine, Shenzhen 518055, China
| | - Yinglu Li
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, International Cancer Center, Department of Biochemistry and Molecular Biology, Shenzhen University School of Medicine, Shenzhen 518055, China
| | - Xiaopeng Lu
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, International Cancer Center, Department of Biochemistry and Molecular Biology, Shenzhen University School of Medicine, Shenzhen 518055, China
| | - Yongcan Chen
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, International Cancer Center, Department of Biochemistry and Molecular Biology, Shenzhen University School of Medicine, Shenzhen 518055, China
| | - Hui Wang
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Fu-Zheng Wei
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Lina Wang
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Yang Yang
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Ying Zhao
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Zimei Wang
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, International Cancer Center, Department of Biochemistry and Molecular Biology, Shenzhen University School of Medicine, Shenzhen 518055, China
| | - Haiying Wang
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Wei-Guo Zhu
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.,Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, International Cancer Center, Department of Biochemistry and Molecular Biology, Shenzhen University School of Medicine, Shenzhen 518055, China
| |
Collapse
|
291
|
Zhang R, Liu W, Sun J, Kong Y, Chen C. Roles of RNF126 and BCA2 E3 ubiquitin ligases in DNA damage repair signaling and targeted cancer therapy. Pharmacol Res 2020; 155:104748. [DOI: 10.1016/j.phrs.2020.104748] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 03/04/2020] [Accepted: 03/05/2020] [Indexed: 01/16/2023]
|
292
|
Wang Y, Wang Q, Chen S, Hu Y, Yu C, Liu R, Wang Z. Screening of Long Noncoding RNAs Induced by Radiation Using Microarray. Dose Response 2020; 18:1559325820916304. [PMID: 32341682 PMCID: PMC7169363 DOI: 10.1177/1559325820916304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 11/13/2019] [Accepted: 02/24/2020] [Indexed: 11/15/2022] Open
Abstract
DNA damage repair and G2/M arrest are the key factors regulating the survival of
cancer cells exposed to radiation. Recent studies have shown that long noncoding
RNAs (lncRNAs) play important roles in a variety of biological processes,
including DNA repair, cell cycle regulation, differentiation, and epigenetic
regulation. However, the knowledge about the genome scale of lncRNAs and their
potential biological functions in tumor cells exposed to radiation are still
unclear. In this study, we used LncRNA + mRNA Human Gene Expression Microarray
V4.0 to profile lncRNA and messenger RNA (mRNA) from HeLa, MCF-7, and A549 cells
after irradiation with 4 Gy of γ-radiation. We identified 230, 227, and 274
differentially expressed lncRNAs and 150, 214, and 274 differentially expressed
mRNAs in HeLa, MCF-7, and A549 cells, respectively, among which there are 14
common differentially expressed lncRNAs and 22 common differentially expressed
mRNAs in all of the 3 cell lines. Gene Ontology and Kyoto Encyclopedia of Genes
and Genomes pathway analysis indicated that these differentially expressed mRNAs
were mainly associated with cell cycle. Further, we also predicted the target
genes and functions of these differentially expressed lncRNAs. Our study on
lncRNAs has greatly expanded the field of gene research in the relationship of
radiation, cell cycle, and DNA damage.
Collapse
Affiliation(s)
- Yilong Wang
- Department of Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Qi Wang
- Department of Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Shuangjing Chen
- Department of Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Yingchun Hu
- Department of Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Chang Yu
- Department of Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Ruixue Liu
- Department of Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Zhidong Wang
- Department of Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| |
Collapse
|
293
|
Alhmoud JF, Woolley JF, Al Moustafa AE, Malki MI. DNA Damage/Repair Management in Cancers. Cancers (Basel) 2020; 12:E1050. [PMID: 32340362 PMCID: PMC7226105 DOI: 10.3390/cancers12041050] [Citation(s) in RCA: 184] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 04/18/2020] [Accepted: 04/20/2020] [Indexed: 12/11/2022] Open
Abstract
DNA damage is well recognized as a critical factor in cancer development and progression. DNA lesions create an abnormal nucleotide or nucleotide fragment, causing a break in one or both chains of the DNA strand. When DNA damage occurs, the possibility of generated mutations increases. Genomic instability is one of the most important factors that lead to cancer development. DNA repair pathways perform the essential role of correcting the DNA lesions that occur from DNA damaging agents or carcinogens, thus maintaining genomic stability. Inefficient DNA repair is a critical driving force behind cancer establishment, progression and evolution. A thorough understanding of DNA repair mechanisms in cancer will allow for better therapeutic intervention. In this review we will discuss the relationship between DNA damage/repair mechanisms and cancer, and how we can target these pathways.
Collapse
Affiliation(s)
- Jehad F. Alhmoud
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - John F. Woolley
- Department of Molecular & Clinical Pharmacology, Liverpool University, Liverpool L69 3GE, UK;
| | | | - Mohammed Imad Malki
- College of Medicine, QU Health, Qatar University, Doha P. O. Box 2713, Qatar;
| |
Collapse
|
294
|
Modification of PARP4, XRCC3, and RAD51 Gene Polymorphisms on the Relation between Bisphenol A Exposure and Liver Abnormality. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17082794. [PMID: 32316696 PMCID: PMC7216258 DOI: 10.3390/ijerph17082794] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/13/2020] [Accepted: 04/16/2020] [Indexed: 12/18/2022]
Abstract
Repair genes may play critical roles in the relationships between environmental exposure and health outcomes. However, no evidence is available about the effect of repair gene polymorphisms on the relationship between bisphenol A (BPA) exposure and liver abnormality. Therefore, we evaluated the effect of nine genotyped polymorphisms in three repair genes, poly(ADP-ribose) polymerase family member 4 (PARP4), X-ray repair cross complementing 3 (XRCC3), and RAD51 recombinase (RAD51), on the relationship between BPA exposure and liver abnormality using repeated measures data for an elderly population. A significant association between BPA levels and liver abnormality was found only in elders with the PARP4 G-C-G haplotype, XRCC3 G-A-G haplotype, or RAD51 T-A-A haplotype (odds ratio (OR) = 2.16 and p = 0.0014 for PARP4; OR = 1.57 and p = 0.0249 for XRCC3; OR = 1.43 and p = 0.0422 for RAD51). Particularly, PARP4 and XRCC3 showed significant interactions with BPA exposure in relation to liver abnormality (p < 0.05 for both genes). These results indicate that PARP4, XRCC3, and RAD51 gene polymorphisms have modification effects on the relationship between BPA exposure and liver abnormality.
Collapse
|
295
|
Ihara M, Shichijo K, Takeshita S, Kudo T. Wortmannin, a specific inhibitor of phosphatidylinositol-3-kinase, induces accumulation of DNA double-strand breaks. JOURNAL OF RADIATION RESEARCH 2020; 61:171-176. [PMID: 32052028 PMCID: PMC7246056 DOI: 10.1093/jrr/rrz102] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 11/15/2019] [Accepted: 01/14/2020] [Indexed: 06/10/2023]
Abstract
Wortmannin, a fungal metabolite, is a specific inhibitor of the phosphatidylinositol 3-kinase (PI3K) family, which includes double-stranded DNA dependent protein kinase (DNA-PK) and ataxia telangiectasia mutated kinase (ATM). We investigated the effects of wortmannin on DNA damage in DNA-PK-deficient cells obtained from severe combined immunodeficient mice (SCID cells). Survival of wortmannin-treated cells decreased in a concentration-dependent manner. After treatment with 50 μM wortmannin, survival decreased to 60% of that of untreated cells. We observed that treatment with 20 and 50 μM wortmannin induced DNA damage equivalent to that by 0.37 and 0.69 Gy, respectively, of γ-ray radiation. The accumulation of DNA double-strand breaks (DSBs) in wortmannin-treated SCID cells was assessed using pulsed-field gel electrophoresis. The maximal accumulation was observed 4 h after treatment. Moreover, the presence of DSBs was confirmed by the ability of nuclear extracts from γ-ray-irradiated SCID cells to produce in vitro phosphorylation of histone H2AX. These results suggest that wortmannin induces cellular toxicity by accumulation of spontaneous DSBs through inhibition of ATM.
Collapse
Affiliation(s)
- Makoto Ihara
- Department of Radioisotope Medicine, Atomic Bomb Disease and Hibakusha Medicine Unit, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Nagasaki 852-8523, Japan
- Department of Molecular Medicine, Nagasaki University, Graduate School of Biomedical Sciences, Nagasaki, Nagasaki 852-8523, Japan
| | - Kazuko Shichijo
- Department of Tumor and Diagnostic Pathology, Atomic Bomb Disease and Hibakusha Medicine Unit, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Nagasaki 852-8523, Japan
| | - Satoshi Takeshita
- Department of Radioisotope Medicine, Atomic Bomb Disease and Hibakusha Medicine Unit, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Nagasaki 852-8523, Japan
- Joint Research Office, Research Promotion Division, Office for Research Initiative and Development, Nagasaki University, Nagasaki, Nagasaki 852-8521, Japan
| | - Takashi Kudo
- Department of Radioisotope Medicine, Atomic Bomb Disease and Hibakusha Medicine Unit, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Nagasaki 852-8523, Japan
| |
Collapse
|
296
|
Sinha S, Wang SM. Classification of VUS and unclassified variants in BRCA1 BRCT repeats by molecular dynamics simulation. Comput Struct Biotechnol J 2020; 18:723-736. [PMID: 32257056 PMCID: PMC7125325 DOI: 10.1016/j.csbj.2020.03.013] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 03/15/2020] [Accepted: 03/17/2020] [Indexed: 10/29/2022] Open
Abstract
Pathogenic mutation in BRCA1 gene is one of the most penetrant genetic predispositions towards cancer. Identification of the mutation provides important aspect in prevention and treatment of the mutation-caused cancer. Of the large quantity of genetic variants identified in human BRCA1, substantial portion is classified as Variant of Uncertain Significance (VUS) or unclassified variants due to the lack of functional evidence. In this study, we focused on the VUS and unclassified variants in BRCT repeat located at BRCA1 C-terminal. Utilizing the well-determined structure of BRCT repeats, we measured the influence of the variants on the structural conformations of BRCT repeats by using molecular dynamics simulation (MDS) consisting of RMSD (Root-mean-square-deviation), RMSF (Root-mean-square-fluctuations), Rg (Radius of gyration), SASA (Solvent accessible surface area), NH bond (hydrogen bond) and Covariance analysis. Using this approach, we analyzed 131 variants consisting of 89 VUS (Variant of Uncertain Significance) and 42 unclassified variants (unclassifiable by current methods) within BRCT repeats and were able to differentiate them into 78 Deleterious and 53 Tolerated variants. Comparing the results made by the saturation genome editing assay, multiple experimental assays, and BRCA1 reference databases shows that our approach provides high specificity, sensitivity and robust. Our study opens an avenue to classify VUS and unclassified variants in many cancer predisposition genes with known protein structure.
Collapse
Affiliation(s)
- Siddharth Sinha
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, China
| | - San Ming Wang
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, China
| |
Collapse
|
297
|
Li F, Zhang H, Li Q, Wu F, Wang Y, Wang Z, Wang X, Huang C. CDCA2 acts as an oncogene and induces proliferation of clear cell renal cell carcinoma cells. Oncol Lett 2020; 19:2466-2474. [PMID: 32194746 PMCID: PMC7039090 DOI: 10.3892/ol.2020.11322] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 12/17/2019] [Indexed: 01/20/2023] Open
Abstract
Cell division cycle-associated 2 (CDCA2) plays an important role in regulating chromosome structure during mitosis. It is highly expressed in oral squamous cell carcinoma, neuroblastoma and lung adenocarcinoma, and its upregulation is positively associated with tumor progression. However, the expression, biological function and underlying mechanisms of the role of CDCA2 in clear cell renal cell carcinoma (ccRCC) remain poorly understood. In the present study, CDCA2 was demonstrated to be upregulated in ccRCC tissues compared with normal kidney tissue, where higher expression was generally associated with the degree of malignancy. Small interfering RNA-mediated knockdown of CDCA2 expression inhibited the viability and proliferation of 786-O and CAKI-1 cells, as measured by an MTT assay, colony formation assay and flow cytometry. Furthermore, western blot analysis suggested that CDCA2 regulates cell proliferation through the cell cycle-associated proteins cyclin D1 and cyclin dependent kinase 4, and the apoptotic protein Bcl-2. In conclusion, the present study indicated that CDCA2 may be an important factor in ccRCC progression and could be a potential therapeutic target in this disease.
Collapse
Affiliation(s)
- Fang Li
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, P.R. China
| | - Huahua Zhang
- Medical Research and Experimental Center, Medical College, Yan'an University, Yan'an, Shaanxi 716000, P.R. China
| | - Qian Li
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, P.R. China
| | - Fei Wu
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, P.R. China
| | - Yu Wang
- Medical Research and Experimental Center, Medical College, Yan'an University, Yan'an, Shaanxi 716000, P.R. China
| | - Zhenzhen Wang
- Department of Prosthodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi 710004 P.R. China
| | - Xiaofei Wang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, P.R. China
| | - Chen Huang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, P.R. China.,Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education of China, Xi'an, Shaanxi 710004 P.R. China
| |
Collapse
|
298
|
Singh N, Bhakuni R, Chhabria D, Kirubakaran S. MDC1 depletion promotes cisplatin induced cell death in cervical cancer cells. BMC Res Notes 2020; 13:146. [PMID: 32160908 PMCID: PMC7066845 DOI: 10.1186/s13104-020-04996-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 03/03/2020] [Indexed: 01/10/2023] Open
Abstract
OBJECTIVE Cisplatin, the most common chemotherapeutic drug for the treatment of advanced stage cervical cancers has limitations in terms of drugs resistance observed in patients partly due to functional DNA damage repair (DDR) processes in the cell. Mediator of DNA damage checkpoint 1 (MDC1) is an important protein in the Ataxia telangiectasia mutated (ATM) mediated double stranded DNA break (DSB) repair pathway. In this regard, we investigated the effect of MDC1 change in expression on the cisplatin sensitivity in cervical cancer cells. RESULTS Through modulation of MDC1 expression in the cervical cancer cell lines; Hela, SiHa and Caski, we found that all the three cell lines silenced for MDC1 exhibited higher sensitivity to cisplatin treatment with inefficiency in accumulation of p γH2AX, Ser 139 foci and increased accumulation of pChk2 Thr 68 at the damaged chromatin followed by enhanced apoptosis. Further, we observed the increased p53 Ser 15 phosphorylation in the MDC1 depleted cells. Our studies suggest that MDC1 expression could be a key determinant in cervical cancer prognosis and its depletion in combination with cisplatin has the potential to be explored for the sensitisation of chemo-resistant cervical cancer cells.
Collapse
Affiliation(s)
- Neeru Singh
- Biological Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat, 382355, India
| | - Rashmi Bhakuni
- Biological Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat, 382355, India
| | - Dimple Chhabria
- Biological Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat, 382355, India
| | - Sivapriya Kirubakaran
- Indian Institute of Technology Gandhinagar, Palaj Campus, Gandhinagar, Gujarat, 382355, India.
| |
Collapse
|
299
|
Miret N, Zappia CD, Altamirano G, Pontillo C, Zárate L, Gómez A, Lasagna M, Cocca C, Kass L, Monczor F, Randi A. AhR ligands reactivate LINE-1 retrotransposon in triple-negative breast cancer cells MDA-MB-231 and non-tumorigenic mammary epithelial cells NMuMG. Biochem Pharmacol 2020; 175:113904. [PMID: 32156659 DOI: 10.1016/j.bcp.2020.113904] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 03/04/2020] [Indexed: 12/11/2022]
Abstract
Breast cancer is the most common cancer type in females worldwide. Environmental exposure to pesticides affecting hormonal homeostasis does not necessarily induce DNA mutations but may influence gene expression by disturbances in epigenetic regulation. Expression of long interspersed nuclear element-1 (LINE-1) has been associated with tumorigenesis in several cancers. In nearly all somatic cells, LINE-1 is silenced by DNA methylation in the 5́'UTR and reactivated during disease initiation and/or progression. Strong ligands of aryl hydrocarbon receptor (AhR) activate LINE-1 through the transforming growth factor-β1 (TGF-β1)/Smad pathway. Hexachlorobenzene (HCB) and chlorpyrifos (CPF), both weak AhR ligands, promote cell proliferation and migration in breast cancer cells, as well as tumor growth in rat models. In this context, our aim was to examine the effect of these pesticides on LINE-1 expression and ORF1p localization in the triple-negative breast cancer cell line MDA-MB-231 and the non-tumorigenic epithelial breast cell line NMuMG, and to evaluate the role of TGF-β1 and AhR pathways. Results show that 0.5 μM CPF and 0.005 μM HCB increased LINE-1 mRNA expression through Smad and AhR signaling in MDA-MB-231. In addition, the methylation of the first sites in 5́'UTR of LINE-1 was reduced by pesticide exposure, although the farther sites remained unaffected. Pesticides modulated ORF1p localization in MDA-MB-231: 0.005 μM HCB and 50 μM CPF increased nuclear translocation, while both induced cytoplasmic retention at 0.5 and 5 μM. Moreover, both stimulated double-strand breaks, enhancing H2AX phosphorylation, coincidentally with ORF1p nuclear localization. In NMuMG similar results were observed, since they heighten LINE-1 mRNA levels. CPF effect was through AhR and TGF-β1 signaling, whereas HCB action depends only of AhR. In addition, both pesticides increase ORF1p expression and nuclear localization. Our results provide experimental evidence that HCB and CPF exposure modify LINE-1 methylation levels and induce LINE-1 reactivation, suggesting that epigenetic mechanisms could contribute to pesticide-induced breast cancer progression.
Collapse
Affiliation(s)
- Noelia Miret
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Paraguay 2155, 5to piso (CP 1121), Buenos Aires, Argentina
| | - C Daniel Zappia
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Investigaciones Farmacológicas (UBA-CONICET), Laboratorio de Farmacología de Receptores, Junín 954, planta baja (CP1113), Buenos Aires, Argentina
| | - Gabriela Altamirano
- Universidad Nacional del Litoral, Facultad de Bioquímica y Ciencias Biológicas, Cátedra de Patología Humana, Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Ciudad Universitaria UNL, Paraje El Pozo (CP3000), Santa Fe, Argentina
| | - Carolina Pontillo
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Paraguay 2155, 5to piso (CP 1121), Buenos Aires, Argentina
| | - Lorena Zárate
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Paraguay 2155, 5to piso (CP 1121), Buenos Aires, Argentina
| | - Ayelén Gómez
- Universidad Nacional del Litoral, Facultad de Bioquímica y Ciencias Biológicas, Cátedra de Patología Humana, Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Ciudad Universitaria UNL, Paraje El Pozo (CP3000), Santa Fe, Argentina
| | - Marianela Lasagna
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Físico-Matemática, Laboratorio de Radioisótopos, Junín 954, 1er subsuelo (CP1113), Buenos Aires, Argentina
| | - Claudia Cocca
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Físico-Matemática, Laboratorio de Radioisótopos, Junín 954, 1er subsuelo (CP1113), Buenos Aires, Argentina
| | - Laura Kass
- Universidad Nacional del Litoral, Facultad de Bioquímica y Ciencias Biológicas, Cátedra de Patología Humana, Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Ciudad Universitaria UNL, Paraje El Pozo (CP3000), Santa Fe, Argentina
| | - Federico Monczor
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Investigaciones Farmacológicas (UBA-CONICET), Laboratorio de Farmacología de Receptores, Junín 954, planta baja (CP1113), Buenos Aires, Argentina
| | - Andrea Randi
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Paraguay 2155, 5to piso (CP 1121), Buenos Aires, Argentina.
| |
Collapse
|
300
|
Li Z, Bao J, Qi Y, Zhang JZH. Computational approaches to studying methylated H4K20 recognition by DNA repair factor 53BP1. Phys Chem Chem Phys 2020; 22:6136-6144. [PMID: 32124883 DOI: 10.1039/c9cp05635a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Histone lysine methylation regulates the recruitment of mammalian DNA repair factor 53BP1 to the histone H4 lysine 20 (H4K20), through specific recognition of the tandem Tudor domain of 53BP1. The di- and mono-methylated H4K20 bind to 53BP1 with high affinity, but the non- and tri-methylated H4K20 do not. Here, we develop a new approach to carry out computational study to unravel the binding mechanism of methylated H4K20 by 53BP1 and to compute relative binding affinities of different methylations of H4K20 by 53BP1. First, hot spots in 53BP1 were predicted by computational alanine scanning and aromatic cages formed by W1495, Y1500, Y1502, and Y1523 are found to provide the dominant binding to di- and mono-methylated H4K20 in addition to D1521. Secondly, a de-methylation method is proposed to predict relative binding free energies between 53BP1 and different methylated states of H4K20. Finally, the tri-methylated and non-methylated H4K20/53BP1 complexes are found to be dynamically unstable, explaining the experimental finding that neither can bind to 53BP1. The present work provides an important theoretical basis for our understanding of histone methylations of H4K20 and their recognition mechanism by DNA repair factor 53BP1.
Collapse
Affiliation(s)
- Zhendong Li
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry & Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China.
| | | | | | | |
Collapse
|