251
|
Reisfield GM, Goldberger BA, Gold MS, DuPont RL. The Mirage of Impairing Drug Concentration Thresholds: A Rationale for Zero Tolerance Per Se Driving under the Influence of Drugs Laws. J Anal Toxicol 2012; 36:353-6. [DOI: 10.1093/jat/bks037] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
252
|
Sigmon SC, Bisaga A, Nunes EV, O'Connor PG, Kosten T, Woody G. Opioid detoxification and naltrexone induction strategies: recommendations for clinical practice. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2012; 38:187-99. [PMID: 22404717 PMCID: PMC4331107 DOI: 10.3109/00952990.2011.653426] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Opioid dependence is a significant public health problem associated with high risk for relapse if treatment is not ongoing. While maintenance on opioid agonists (i.e., methadone, buprenorphine) often produces favorable outcomes, detoxification followed by treatment with the μ-opioid receptor antagonist naltrexone may offer a potentially useful alternative to agonist maintenance for some patients. METHOD Treatment approaches for making this transition are described here based on a literature review and solicitation of opinions from several expert clinicians and scientists regarding patient selection, level of care, and detoxification strategies. CONCLUSION Among the current detoxification regimens, the available clinical and scientific data suggest that the best approach may be using an initial 2-4 mg dose of buprenorphine combined with clonidine, other ancillary medications, and progressively increasing doses of oral naltrexone over 3-5 days up to the target dose of naltrexone. However, more research is needed to empirically validate the best approach for making this transition.
Collapse
Affiliation(s)
- Stacey C Sigmon
- Department of Psychiatry, University of Vermont College of Medicine, Burlington, 05401, USA.
| | | | | | | | | | | |
Collapse
|
253
|
Crosstalk between cdk5 and MEK-ERK signalling upon opioid receptor stimulation leads to upregulation of activator p25 and MEK1 inhibition in rat brain. Neuroscience 2012; 215:17-30. [PMID: 22537847 DOI: 10.1016/j.neuroscience.2012.04.035] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 04/03/2012] [Accepted: 04/16/2012] [Indexed: 11/21/2022]
Abstract
Cyclin-dependent kinase 5 (cdk5) participates in opioid receptor signalling through complex molecular mechanisms. The acute effects of selective μ-(fentanyl) and δ-(SNC-80) opioid receptor agonists, as well as the chronic effects of morphine (the prototypic opiate agonist mainly acting at μ-receptors), modulating cdk5 and activators p35/p25 and their interactions with neurotoxic/apoptotic factors, dopamine- and cAMP-regulated phosphoprotein of 32kDa (DARPP-32) and extracellular signal-regulated kinase (ERK) were quantified (Western Blot analyses) in the rat corpus striatum and/or cerebral cortex. To assess the involved mechanisms, MDL28170 was used to inhibit calpain activity and SL327 to disrupt MEK (ERK kinase)-ERK activation. Acute fentanyl (0.1mg/kg) and SNC-80 (10mg/kg) induced rapid (7-60 min) 2- to 4-fold increases of p25 content, without induction of cdk5/p25 pro-apoptotic c-Jun NH(2)-terminal protein kinase or aberrant cleavage of poly(ADP-ribose)-polymerase-1, a hallmark of apoptosis. In contrast, fentanyl and SNC-80 stimulated cdk5-mediated p-Thr75 DARPP-32 (+116-166%; PKA inhibition) and p-Thr286 MEK1 (+21-82%; MEK inactivation), and this latter effect resulted in uncoupling of MEK to ERK signals. Calpain inhibition with MDL28170 (cleavage of p35 to p25) attenuated fentanyl-induced p25 accumulation (-57%), but not the stimulation of p-Thr286 MEK1 or p-Thr75 DARPP-32. MEK-ERK inhibition with SL327 fully prevented fentanyl-induced p25 upregulation. Notably, chronic morphine treatment (10-100mg/kg for 6 days) also increased p25 content and p25/p35 ratio (and activated/inactivated MEK1) in rat brain cortex, which indicated that p25 upregulation persisted under the sustained stimulation of μ-opioid receptors. The results demonstrate that the acute stimulation of opioid receptors leads to upregulation of p25 activator through a MEK-ERK and calpain-dependent pathway, and to disruption of MEK-ERK signalling by a cdk5/p35-induced MEK1 inhibition. Moreover, the effects induced by the sustained stimulation of μ-receptors with morphine suggest the participation of cdk5/p25 complex in opiate-induced long-term neuroplasticity.
Collapse
|
254
|
Moulédous L, Froment C, Dauvillier S, Burlet-Schiltz O, Zajac JM, Mollereau C. GRK2 protein-mediated transphosphorylation contributes to loss of function of μ-opioid receptors induced by neuropeptide FF (NPFF2) receptors. J Biol Chem 2012; 287:12736-49. [PMID: 22375000 PMCID: PMC3339982 DOI: 10.1074/jbc.m111.314617] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 01/13/2012] [Indexed: 01/25/2023] Open
Abstract
Neuropeptide FF (NPFF) interacts with specific receptors to modulate opioid functions in the central nervous system. On dissociated neurons and neuroblastoma cells (SH-SY5Y) transfected with NPFF receptors, NPFF acts as a functional antagonist of μ-opioid (MOP) receptors by attenuating the opioid-induced inhibition of calcium conductance. In the SH-SY5Y model, MOP and NPFF(2) receptors have been shown to heteromerize. To understand the molecular mechanism involved in the anti-opioid activity of NPFF, we have investigated the phosphorylation status of the MOP receptor using phospho-specific antibody and mass spectrometry. Similarly to direct opioid receptor stimulation, activation of the NPFF(2) receptor by [D-Tyr-1-(NMe)Phe-3]NPFF (1DMe), an analog of NPFF, induced the phosphorylation of Ser-377 of the human MOP receptor. This heterologous phosphorylation was unaffected by inhibition of second messenger-dependent kinases and, contrarily to homologous phosphorylation, was prevented by inactivation of G(i/o) proteins by pertussis toxin. Using siRNA knockdown we could demonstrate that 1DMe-induced Ser-377 cross-phosphorylation and MOP receptor loss of function were mediated by the G protein receptor kinase GRK2. In addition, mass spectrometric analysis revealed that the phosphorylation pattern of MOP receptors was qualitatively similar after treatment with the MOP agonist Tyr-D-Ala-Gly (NMe)-Phe-Gly-ol (DAMGO) or after treatment with the NPFF agonist 1DMe, but the level of multiple phosphorylation was more intense after DAMGO. Finally, NPFF(2) receptor activation was sufficient to recruit β-arrestin2 to the MOP receptor but not to induce its internalization. These data show that NPFF-induced heterologous desensitization of MOP receptor signaling is mediated by GRK2 and could involve transphosphorylation within the heteromeric receptor complex.
Collapse
Affiliation(s)
- Lionel Moulédous
- From the Institut de Pharmacologie et de Biologie Structurale, CNRS/Université de Toulouse, UMR 5089, 205 Route de Narbonne, 31077 Toulouse Cedex, France
| | - Carine Froment
- From the Institut de Pharmacologie et de Biologie Structurale, CNRS/Université de Toulouse, UMR 5089, 205 Route de Narbonne, 31077 Toulouse Cedex, France
| | - Stéphanie Dauvillier
- From the Institut de Pharmacologie et de Biologie Structurale, CNRS/Université de Toulouse, UMR 5089, 205 Route de Narbonne, 31077 Toulouse Cedex, France
| | - Odile Burlet-Schiltz
- From the Institut de Pharmacologie et de Biologie Structurale, CNRS/Université de Toulouse, UMR 5089, 205 Route de Narbonne, 31077 Toulouse Cedex, France
| | - Jean-Marie Zajac
- From the Institut de Pharmacologie et de Biologie Structurale, CNRS/Université de Toulouse, UMR 5089, 205 Route de Narbonne, 31077 Toulouse Cedex, France
| | - Catherine Mollereau
- From the Institut de Pharmacologie et de Biologie Structurale, CNRS/Université de Toulouse, UMR 5089, 205 Route de Narbonne, 31077 Toulouse Cedex, France
| |
Collapse
|
255
|
Luo FC, Qi L, Lv T, Wang SD, Liu H, Nakamura H, Yodoi J, Bai J. Geranylgeranylacetone protects mice against morphine-induced hyperlocomotion, rewarding effect, and withdrawal syndrome. Free Radic Biol Med 2012; 52:1218-27. [PMID: 22285390 DOI: 10.1016/j.freeradbiomed.2012.01.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 01/03/2012] [Accepted: 01/09/2012] [Indexed: 10/14/2022]
Abstract
There are few efficacious interventions to combat morphine dependence. Thioredoxin-1 (Trx-1) and heat shock protein 70 (Hsp70) are emerging as important modulators of neuronal function. They have been shown to be involved in cellular protective mechanisms against a variety of toxic stressors. This study was designed to investigate the effects of geranylgeranylacetone (GGA), a pharmacological inducer of Trx-1 and Hsp70, on morphine-induced hyperlocomotion, rewarding effect, and withdrawal syndrome. Trx-1 and Hsp70 expression was increased in the frontal cortex, hippocampus, ventral tegmental area, and nucleus accumbens of mice after GGA treatment. GGA administration reduced morphine-induced motor activity and inhibited conditioned place preference. GGA markedly attenuated the morphine-naloxone-induced withdrawal signs, including jumping, rearing, and forepaw tremor. Furthermore, the activation of cAMP-responsive element-binding protein and the expression of ΔFosB and cyclin-dependent kinase 5 were decreased in the nucleus accumbens by GGA treatment after morphine withdrawal. In the nucleus accumbens, GGA enhanced morphine-induced expression of Trx-1 and Hsp70 after morphine withdrawal. These results suggest that strengthening the expression of Trx-1 and Hsp70 in the brain by using noncytotoxic pharmacological inducers may provide a novel therapeutic strategy for morphine dependence. GGA could be a safe and novel therapeutic agent for morphine dependence.
Collapse
Affiliation(s)
- Fu-Cheng Luo
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | | | | | | | | | | | | | | |
Collapse
|
256
|
Sarkar DK, Sengupta A, Zhang C, Boyadjieva N, Murugan S. Opiate antagonist prevents μ- and δ-opiate receptor dimerization to facilitate ability of agonist to control ethanol-altered natural killer cell functions and mammary tumor growth. J Biol Chem 2012; 287:16734-47. [PMID: 22451667 DOI: 10.1074/jbc.m112.347583] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the natural killer (NK) cells, δ-opiate receptor (DOR) and μ-opioid receptor (MOR) interact in a feedback manner to regulate cytolytic function with an unknown mechanism. Using RNK16 cells, a rat NK cell line, we show that MOR and DOR monomer and dimer proteins existed in these cells and that chronic treatment with a receptor antagonist reduced protein levels of the targeted receptor but increased levels of opposing receptor monomer and homodimer. The opposing receptor-enhancing effects of MOR and DOR antagonists were abolished following receptor gene knockdown by siRNA. Ethanol treatment increased MOR and DOR heterodimers while it decreased the cellular levels of MOR and DOR monomers and homodimers. The opioid receptor homodimerization was associated with an increased receptor binding, and heterodimerization was associated with a decreased receptor binding and the production of cytotoxic factors. Similarly, in vivo, opioid receptor dimerization, ligand binding of receptors, and cell function in immune cells were promoted by chronic treatment with an opiate antagonist but suppressed by chronic ethanol feeding. Additionally, a combined treatment of an MOR antagonist and a DOR agonist was able to reverse the immune suppressive effect of ethanol and reduce the growth and progression of mammary tumors in rats. These data identify a role of receptor dimerization in the mechanism of DOR and MOR feedback interaction in NK cells, and they further elucidate the potential for the use of a combined opioid antagonist and agonist therapy for the treatment of immune incompetence and cancer and alcohol-related diseases.
Collapse
Affiliation(s)
- Dipak K Sarkar
- Endocrine Program, Department of Animal Sciences, Rutgers, State University of New Jersey, New Brunswick, New Jersey 08901, USA
| | | | | | | | | |
Collapse
|
257
|
Morgan MM, Christie MJ. Analysis of opioid efficacy, tolerance, addiction and dependence from cell culture to human. Br J Pharmacol 2012; 164:1322-34. [PMID: 21434879 DOI: 10.1111/j.1476-5381.2011.01335.x] [Citation(s) in RCA: 190] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Opioid agonists are the most effective treatment for pain, but their use is limited by side effects, tolerance and fears of addiction and dependence. A major goal of opioid research is to develop agonists that have high analgesic efficacy and a low profile for side effects, tolerance, addiction and dependence. Unfortunately, there is a serious lack of experimental data comparing the degree to which different opioids produce these effects in humans. In contrast, a wide range of experimental techniques from heterologous expression systems to behaviour assessment in whole animals have been developed to study these problems. The objective of this review is to describe and evaluate these techniques as they are used to study opioid efficacy, tolerance, addiction and dependence.
Collapse
Affiliation(s)
- Michael M Morgan
- Department of Psychology, Washington State University Vancouver, Vancouver, WA, USA
| | | |
Collapse
|
258
|
Enquist J, Ferwerda M, Milan-Lobo L, Whistler JL. Chronic methadone treatment shows a better cost/benefit ratio than chronic morphine in mice. J Pharmacol Exp Ther 2012; 340:386-92. [PMID: 22062352 PMCID: PMC3263965 DOI: 10.1124/jpet.111.187583] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 11/04/2011] [Indexed: 01/30/2023] Open
Abstract
Chronic treatment of pain with opiate drugs can lead to analgesic tolerance and drug dependence. Although all opiate drugs can promote tolerance and dependence in practice, the severity of those unwanted side effects differs depending on the drug used. Although each opiate drug has its own unique set of pharmacological profiles, methadone is the only clinically used opioid drug that produces substantial receptor endocytosis at analgesic doses. Here, we examined whether moderate doses of methadone carry any benefits over chronic use of equianalgesic morphine, the prototypical opioid. Our data show that chronic administration of methadone produces significantly less analgesic tolerance than morphine. Furthermore, we found significantly reduced precipitated withdrawal symptoms after chronic methadone treatment than after chronic morphine treatment. Finally, using a novel animal model with a degrading μ-opioid receptor we showed that, although endocytosis seems to protect against tolerance development, endocytosis followed by receptor degradation produces a rapid onset of analgesic tolerance to methadone. Together, these data indicated that opioid drugs that promote receptor endocytosis and recycling, such as methadone, may be a better choice for chronic pain treatment than morphine and its derivatives that do not.
Collapse
Affiliation(s)
- Johan Enquist
- Ernest Gallo Clinic and Research Center, Emeryville, CA 94608, USA
| | | | | | | |
Collapse
|
259
|
Mansourian A, Askarzadeh M, Shabani M, Divsalar K. Comparison of Duration of Spinal Anesthesia with Lidocaine or Lidocaine plus Epinephrine between Addicts and Non-addicts. ADDICTION & HEALTH 2012; 4:95-101. [PMID: 24494142 PMCID: PMC3905547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2012] [Accepted: 05/27/2012] [Indexed: 12/03/2022]
Abstract
BACKGROUND Duration of spinal anesthesia depends on the type of anesthetic agent, dosage and additive materials such as epinephrine, ephedrine and opioid. We compared the duration of spinal anesthesia with lidocaine 5% with or without epinephrine in addict and non-addict patients undergoing inferior limb fracture surgery. METHODS This single blinded randomized clinical trial was performed on 201 males (height ranged 150-180 cm) who referred to the Shahid Bahonar Hospital of Kerman for the inferior limb fracture. Their physical class was matched to the American association standard class 1 and 2, and they were appropriate candidates for the spinal anesthesia. The addict or non-addict groups were each divided into two subgroups. 75 mg of 5% lidocaine was prescribed for one subgroup, and the other subgroup received 75 mg of 5% lidocaine plus 0.2 mg epinephrine. The level of primary anesthesia was elevated to T6. Duration of returning to the 4 primary sensory levels was measured since baseline. FINDINGS A significant increase in the duration of anesthesia level in both addict and non-addict patients receiving lidocaine plus epinephrine was observed compared to the subgroups receiving lidocaine alone (P < 0.01). Duration of decrease in sensory level in addict subgroups receiving lidocaine or lidocaine plus epinephrine was lower compared to non-addict patients (P < 0.001). In addict subgroup receiving lidocaine alone, a significant decrease was observed in the time needed for decrease in sensory level (P < 0.01). CONCLUSION According to the results of this study, regardless of the anesthetic agent being used, duration of spinal anesthesia was shorter in addict patients compared to non-addict ones. Addition of epinephrine to lidocaine 5% increased the duration of spinal anesthesia in both addict and non-addict patients.
Collapse
Affiliation(s)
- Afshin Mansourian
- Resident, Department of Anesthesiology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Askarzadeh
- Assistant Professor, Department of Anesthesiology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Shabani
- Assistant Professor, Neuroscience Research Center, Kerman University of Medical Sciences, Kerman, Iran,Correspondence to: Mohammad Shabani MD,
| | - Kouros Divsalar
- Researcher, Neuroscience Research Center, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
260
|
Dacher M, Nugent FS. Opiates and plasticity. Neuropharmacology 2011; 61:1088-96. [DOI: 10.1016/j.neuropharm.2011.01.028] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Revised: 01/07/2011] [Accepted: 01/17/2011] [Indexed: 11/30/2022]
|
261
|
Ramos-Miguel A, Miralles A, García-Sevilla JA. Correlation of rat cortical Fas-associated death domain (FADD) protein phosphorylation with the severity of spontaneous morphine abstinence syndrome: role of α(2)-adrenoceptors and extracellular signal-regulated kinases. J Psychopharmacol 2011; 25:1691-702. [PMID: 21088039 DOI: 10.1177/0269881110387842] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Fas-associated death domain (FADD) phosphorylation was recently implicated in opiate-induced neuroplasticity. To further explore the role of FADD in the mechanisms of morphine-induced physical dependence, the regulation of cortical p-FADD (and their interactions with α(2)-adrenoceptors and other signalling pathways) was assessed during spontaneous opiate withdrawal (SW) in morphine-dependent rats (10-100 mg/kg for 6 days). The main results indicated that oligomeric p-FADD in the cerebral cortex mirrored the time course of morphine SW (12-96 h), which resulted in a striking correlation between p-FADD and the intensity (behavioural scores) of morphine abstinence (Spearman correlation coefficient: 0.59, n = 39, p < 0.0001). The inactivation of brain α(2)-adrenoceptors (EEDQ at SW 12 h) further enhanced morphine abstinence intensity and cortical p-FADD content at SW 24 h. The disruption of ERK1/2 signalling (SL 327 at SW 4 h and SW 8 h) did not alter morphine abstinence at SW 12 h, but it attenuated the behavioural syndrome at SW 24 h. This inhibition of ERK1/2, however, did not prevent the up-regulation of oligomeric p-FADD at SW 12 h and 24 h. These data indicate that cortical oligomeric p-FADD, mainly through an interaction with inhibitory α(2)-adrenoceptors, plays a functional role in the behavioural expression of morphine abstinence in rats.
Collapse
Affiliation(s)
- Alfredo Ramos-Miguel
- Laboratori de Neurofarmacologia, IUNICS, Universitat de les Illes Balears, Palma de Mallorca, Spain
| | | | | |
Collapse
|
262
|
Bajo M, Roberto M, Madamba SG, Siggins GR. Neuroadaptation of GABAergic transmission in the central amygdala during chronic morphine treatment. Addict Biol 2011; 16:551-64. [PMID: 21182569 PMCID: PMC3117063 DOI: 10.1111/j.1369-1600.2010.00269.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
We investigated possible alterations of pharmacologically-isolated, evoked GABA(A) inhibitory postsynaptic potentials (eIPSPs) and miniature GABA(A) inhibitory postsynaptic currents (mIPSCs) in the rat central amygdala (CeA) elicited by acute application of µ-opioid receptor (MOR) agonists (DAMGO and morphine; 1 µM) and by chronic morphine treatment with morphine pellets. The acute activation of MORs decreased the amplitudes of eIPSPs, increased paired-pulse facilitation (PPF) of eIPSPs and decreased the frequency (but not the amplitude) of mIPSCs in a majority of CeA neurons, suggesting that acute MOR-dependent modulation of this GABAergic transmission is mediated predominantly via presynaptic inhibition of GABA release. We observed no significant changes in the membrane properties, eIPSPs, PPF or mIPSCs of CeA neurons during chronic morphine treatment compared to CeA of naïve or sham rats. Superfusion of the MOR antagonist CTOP (1 µM) increased the mean amplitude of eIPSPs in a majority of CeA neurons to the same degree in both naïve/sham and morphine-treated rats, suggesting a tonic activation of MORs in both conditions. Superfusion of DAMGO decreased eIPSP amplitudes and the frequency of mIPSCs equally in both naïve/sham and morphine-treated rats but decreased the amplitude of mIPSCs only in morphine treated rats, an apparent postsynaptic action. Our combined findings suggest the development of tolerance of the CeA GABAergic system to inhibitory effects of acute activation of MORs on presynaptic GABA release and possible alteration of MOR-dependent postsynaptic mechanisms that may represent important neuroadaptations of the GABAergic and MOR systems during chronic morphine treatment.
Collapse
MESH Headings
- Amygdala/drug effects
- Amygdala/physiology
- Analgesics, Opioid/pharmacology
- Animals
- Drug Tolerance
- Enkephalin, Ala(2)-MePhe(4)-Gly(5)-/pharmacology
- Inhibitory Postsynaptic Potentials/drug effects
- Inhibitory Postsynaptic Potentials/physiology
- Male
- Miniature Postsynaptic Potentials/drug effects
- Miniature Postsynaptic Potentials/physiology
- Morphine/pharmacology
- Narcotics/pharmacology
- Neurons/drug effects
- Neurons/physiology
- Patch-Clamp Techniques
- Rats
- Rats, Sprague-Dawley
- Receptors, GABA-A/drug effects
- Receptors, GABA-A/physiology
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/antagonists & inhibitors
- Receptors, Opioid, mu/physiology
- Somatostatin/analogs & derivatives
- Somatostatin/pharmacology
- Synaptic Transmission/drug effects
- Synaptic Transmission/physiology
Collapse
Affiliation(s)
- Michal Bajo
- Molecular and Integrative Neurosciences Department, The Scripps Research Institute, La Jolla, California, USA
| | - Marisa Roberto
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, California, USA
| | - Samuel G. Madamba
- Molecular and Integrative Neurosciences Department, The Scripps Research Institute, La Jolla, California, USA
| | - George Robert Siggins
- Molecular and Integrative Neurosciences Department, The Scripps Research Institute, La Jolla, California, USA
| |
Collapse
|
263
|
|
264
|
Bigal ME. Tolerance to Headache Medications. Headache 2011; 51:1346-9. [DOI: 10.1111/j.1526-4610.2011.01987.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
265
|
Huxtable CA, Roberts LJ, Somogyi AA, Macintyre PE. Acute Pain Management in Opioid-Tolerant Patients: A Growing Challenge. Anaesth Intensive Care 2011; 39:804-23. [DOI: 10.1177/0310057x1103900505] [Citation(s) in RCA: 162] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In Australia and New Zealand, in parallel with other developed countries, the number of patients prescribed opioids on a long-term basis has grown rapidly over the last decade. The burden of chronic pain is more widely recognised and there has been an increase in the use of opioids for both cancer and non-cancer indications. While the prevalence of illicit opioid use has remained relatively stable, the diversion and abuse of prescription opioids has escalated, as has the number of individuals receiving methadone or buprenorphine pharmacotherapy for opioid addiction. As a result, the proportion of opioid-tolerant patients requiring acute pain management has increased, often presenting clinicians with greater challenges than those faced when treating the opioid-naïve. Treatment aims include effective relief of acute pain, prevention of drug withdrawal, assistance with any related social, psychiatric and behavioural issues, and ensuring continuity of long-term care. Pharmacological approaches incorporate the continuation of usual medications (or equivalent), short-term use of sometimes much higher than average doses of additional opioid, and prescription of non-opioid and adjuvant drugs, aiming to improve pain relief and attenuate opioid tolerance and/or opioid-induced hyperalgesia. Discharge planning should commence at an early stage and may involve the use of a ‘Reverse Pain Ladder’ aiming to limit duration of additional opioid use. Legislative requirements may restrict which drugs can be prescribed at the time of hospital discharge. At all stages, there should be appropriate and regular consultation and liaison with the patient, other treating teams and specialist services.
Collapse
Affiliation(s)
- C. A. Huxtable
- Department of Anaesthesia, Pain Medicine and Hyperbaric Medicine, Royal Adelaide Hospital and Discipline of Pharmacology, School of Medical Sciences and Discipline of Acute Care Medicine, University of Adelaide, Adelaide, South Australia and Department of Anaesthesia and Pain Management, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
- Department of Anaesthesia, Pain Medicine and Hyperbaric Medicine, Royal Adelaide Hospital
| | - L. J. Roberts
- Department of Anaesthesia, Pain Medicine and Hyperbaric Medicine, Royal Adelaide Hospital and Discipline of Pharmacology, School of Medical Sciences and Discipline of Acute Care Medicine, University of Adelaide, Adelaide, South Australia and Department of Anaesthesia and Pain Management, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
- Department of Anaesthesia and Pain Management, Sir Charles Gairdner Hospital
| | - A. A. Somogyi
- Department of Anaesthesia, Pain Medicine and Hyperbaric Medicine, Royal Adelaide Hospital and Discipline of Pharmacology, School of Medical Sciences and Discipline of Acute Care Medicine, University of Adelaide, Adelaide, South Australia and Department of Anaesthesia and Pain Management, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
- Discipline of Pharmacology, School of Medical Sciences, University of Adelaide
| | - P. E. Macintyre
- Department of Anaesthesia, Pain Medicine and Hyperbaric Medicine, Royal Adelaide Hospital and Discipline of Pharmacology, School of Medical Sciences and Discipline of Acute Care Medicine, University of Adelaide, Adelaide, South Australia and Department of Anaesthesia and Pain Management, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
- Department of Anaesthesia, Pain Medicine and Hyperbaric Medicine, Royal Adelaide Hospital and Associate Professor, Discipline of Acute Care Medicine, University of Adelaide
| |
Collapse
|
266
|
Hutchinson MR, Shavit Y, Grace PM, Rice KC, Maier SF, Watkins LR. Exploring the neuroimmunopharmacology of opioids: an integrative review of mechanisms of central immune signaling and their implications for opioid analgesia. Pharmacol Rev 2011; 63:772-810. [PMID: 21752874 PMCID: PMC3141878 DOI: 10.1124/pr.110.004135] [Citation(s) in RCA: 291] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Vastly stimulated by the discovery of opioid receptors in the early 1970s, preclinical and clinical research was directed at the study of stereoselective neuronal actions of opioids, especially those played in their crucial analgesic role. However, during the past decade, a new appreciation of the non-neuronal actions of opioids has emerged from preclinical research, with specific appreciation for the nonclassic and nonstereoselective sites of action. Opioid activity at Toll-like receptors, newly recognized innate immune pattern recognition receptors, adds substantially to this unfolding story. It is now apparent from molecular and rodent data that these newly identified signaling events significantly modify the pharmacodynamics of opioids by eliciting proinflammatory reactivity from glia, the immunocompetent cells of the central nervous system. These central immune signaling events, including the release of cytokines and chemokines and the associated disruption of glutamate homeostasis, cause elevated neuronal excitability, which subsequently decreases opioid analgesic efficacy and leads to heightened pain states. This review will examine the current preclinical literature of opioid-induced central immune signaling mediated by classic and nonclassic opioid receptors. A unification of the preclinical pharmacology, neuroscience, and immunology of opioids now provides new insights into common mechanisms of chronic pain, naive tolerance, analgesic tolerance, opioid-induced hyperalgesia, and allodynia. Novel pharmacological targets for future drug development are discussed in the hope that disease-modifying chronic pain treatments arising from the appreciation of opioid-induced central immune signaling may become practical.
Collapse
Affiliation(s)
- Mark R Hutchinson
- Discipline of Pharmacology, School of Medical Science, University of Adelaide, South Australia, Australia, 5005.
| | | | | | | | | | | |
Collapse
|
267
|
Morphine-conditioned cue alters c-Fos protein expression in the brain of crayfish. Brain Res Bull 2011; 85:385-95. [DOI: 10.1016/j.brainresbull.2011.04.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Revised: 04/01/2011] [Accepted: 04/10/2011] [Indexed: 12/11/2022]
|
268
|
Daijo H, Kai S, Tanaka T, Wakamatsu T, Kishimoto S, Suzuki K, Harada H, Takabuchi S, Adachi T, Fukuda K, Hirota K. Fentanyl activates hypoxia-inducible factor 1 in neuronal SH-SY5Y cells and mice under non-hypoxic conditions in a μ-opioid receptor-dependent manner. Eur J Pharmacol 2011; 667:144-52. [PMID: 21703258 DOI: 10.1016/j.ejphar.2011.06.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Revised: 04/20/2011] [Accepted: 06/06/2011] [Indexed: 10/18/2022]
Abstract
Hypoxia-inducible factor 1 (HIF-1) is the main transcription factor responsible for hypoxia-induced gene expression. Perioperative drugs including anesthetics have been reported to affect HIF-1 activity. However, the effect of fentanyl on HIF-1 activity is not well documented. In this study, we investigated the effect of fentanyl and other opioids on HIF-1 activity in human SH-SY5Y neuroblastoma cells, hepatoma Hep3B cells, lung adenocarcinoma A549 cells and mice. Cells were exposed to fentanyl, and HIF-1 protein expression was examined by Western blot analysis using anti-HIF-1α and β antibodies. HIF-1-dependent gene expression was investigated by semi-quantitative real-time reverse transcriptase (RT)-PCR (qRT-PCR) and luciferase assay. Furthermore, fentanyl was administered intraperitoneally and HIF-1-dependent gene expression was investigated by qRT-PCR in the brains and kidneys of mice. A 10-μM concentration of fentanyl and other opioids, including 1 μM morphine and 4 μM remifentanil, induced HIF-1α protein expression and HIF-1 target gene expression in an opioid receptor-dependent manner in SH-SY5Y cells with activity peaking at 24h. Fentanyl did not augment HIF-1α expression during hypoxia-induced induction. HIF-1α stabilization assays and experiments with cycloheximide revealed that fentanyl increased translation from HIF-1α mRNA but did not stabilize the HIF-1α protein. Furthermore, fentanyl induced HIF-1 target gene expression in the brains of mice but not in their kidneys in a naloxone-sensitive manner. In this report, we describe for the first time that fentanyl, both in vitro and in vivo, induces HIF-1 activation under non-hypoxic conditions, leading to increases in expression of genes associated with adaptation to hypoxia.
Collapse
Affiliation(s)
- Hiroki Daijo
- Department of Anesthesia, Kyoto University Hospital, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
269
|
Nagi K, Piñeyro G. Regulation of opioid receptor signalling: implications for the development of analgesic tolerance. Mol Brain 2011; 4:25. [PMID: 21663702 PMCID: PMC3138391 DOI: 10.1186/1756-6606-4-25] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Accepted: 06/13/2011] [Indexed: 11/10/2022] Open
Abstract
Opiate drugs are the most effective analgesics available but their clinical use is restricted by severe side effects. Some of these undesired actions appear after repeated administration and are related to adaptive changes directed at counteracting the consequences of sustained opioid receptor activation. Here we will discuss adaptations that contribute to the development of tolerance. The focus of the first part of the review is set on molecular mechanisms involved in the regulation of opioid receptor signalling in heterologous expression systems and neurons. In the second part we assess how adaptations that take place in vivo may contribute to analgesic tolerance developed during repeated opioid administration.
Collapse
Affiliation(s)
- Karim Nagi
- Département de Pharmacologie, Faculté de Médecine, Université de Montréal, Canada
| | | |
Collapse
|
270
|
Peregud DI, Yakovlev AA, Panchenko LF, Gulyaeva NV. Expression of the mRNA of neurotrophins in brain regions of rats after spontaneous morphine withdrawal. NEUROCHEM J+ 2011. [DOI: 10.1134/s181971241102005x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
271
|
Berthoud HR, Lenard NR, Shin AC. Food reward, hyperphagia, and obesity. Am J Physiol Regul Integr Comp Physiol 2011; 300:R1266-77. [PMID: 21411768 PMCID: PMC3119156 DOI: 10.1152/ajpregu.00028.2011] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Accepted: 03/11/2011] [Indexed: 01/14/2023]
Abstract
Given the unabated obesity problem, there is increasing appreciation of expressions like "my eyes are bigger than my stomach," and recent studies in rodents and humans suggest that dysregulated brain reward pathways may be contributing not only to drug addiction but also to increased intake of palatable foods and ultimately obesity. After describing recent progress in revealing the neural pathways and mechanisms underlying food reward and the attribution of incentive salience by internal state signals, we analyze the potentially circular relationship between palatable food intake, hyperphagia, and obesity. Are there preexisting individual differences in reward functions at an early age, and could they be responsible for development of obesity later in life? Does repeated exposure to palatable foods set off a cascade of sensitization as in drug and alcohol addiction? Are reward functions altered by secondary effects of the obese state, such as increased signaling through inflammatory, oxidative, and mitochondrial stress pathways? Answering these questions will significantly impact prevention and treatment of obesity and its ensuing comorbidities as well as eating disorders and drug and alcohol addiction.
Collapse
Affiliation(s)
- Hans-Rudolf Berthoud
- Neurobiology of Nutrition Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, 70808, USA.
| | | | | |
Collapse
|
272
|
Recovery from mu-opioid receptor desensitization after chronic treatment with morphine and methadone. J Neurosci 2011; 31:4434-43. [PMID: 21430144 DOI: 10.1523/jneurosci.4874-10.2011] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Chronic treatment with morphine results in a decrease in μ-opioid receptor sensitivity, an increase in acute desensitization, and a reduction in the recovery from acute desensitization in locus ceruleus neurons. With acute administration, morphine is unlike many other opioid agonists in that it does not mediate robust acute desensitization or induce receptor trafficking. This study compares μ-opioid receptor desensitization and trafficking in brain slices taken from rats treated for 6-7 d with a range of doses of morphine (60, 30, and 15 mg · kg(-1) · d(-1)) and methadone (60, 30, and 5 mg · kg(-1) · d(-1)) applied by subcutaneous implantation of osmotic minipumps. Mice were treated with 45 mg · kg(-1) · d(-1). In morphine-treated animals, recovery from acute [Met](5)enkephalin-induced desensitization and receptor recycling was diminished. In contrast, recovery and recycling were unchanged in slices from methadone-treated animals. Remarkably the reduced recovery from desensitization and receptor recycling found in slices from morphine-treated animals were not observed in animals lacking β-arrestin-2. Furthermore, pharmacological inhibition of G-protein receptor kinase 2 (GRK2), although not affecting the ability of [Met](5)enkephalin to induce desensitization, acutely reversed the delay in recovery from desensitization produced by chronic morphine treatment. These results characterize a previously unidentified function of the GRK/arrestin system in mediating opioid regulation in response to chronic morphine administration. They also suggest that the GRK/arrestin system, rather than serving as a primary mediator of acute desensitization, controls recovery from desensitization by regulating receptor reinsertion to the plasma membrane after chronic treatment with morphine. The sustained GRK/arrestin-dependent desensitization is another way in which morphine and methadone are distinguished.
Collapse
|
273
|
Vasileiou I, Giaginis C, Klonaris C, Theocharis S. Insight into pain-inducing and -related gene expression: a challenge for development of novel targeted therapeutic approaches. Fundam Clin Pharmacol 2011; 25:48-62. [PMID: 20070377 DOI: 10.1111/j.1472-8206.2009.00809.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The multidimensional issue of pain in relation to the need for efficient treatment has been the focus of extensive research. Gaining insight into the molecular mechanisms of pain and identifying specific genes and proteins as possible drug targets is strongly required considering that not all patients can be adequately treated with the currently available drugs. This up-to-date review aimed to summarize the findings of recent proteomic and genomic approaches in different types of pain to comment on their potential role in pain signaling pathways and to evaluate their possible contribution to the development of novel and possibly more targeted pain therapeutic strategies. Although pain treatment strategies have been greatly improved during the past century, no ideal targeted pain treatment has been developed. The development of modern and accurate platforms of technology for the study of genetics and physiology of pain has led to the identification of an increased number of altered genes and proteins that are involved in pain-related pathways. Through genomics and proteomics, pain-related genes and proteins, respectively, may be identified as diagnostic markers or drug targets improving therapeutic strategies. Furthermore, such molecular mediators of pain may reveal novel strategies for individualized pain management. The utilization of unique experimental approaches (through specific animal models) as well as powered genetic association studies conducted on appropriate populations is more than essential.
Collapse
Affiliation(s)
- Ioanna Vasileiou
- Department of Forensic Medicine & Toxicology, Medical School, National & Kapodistrian University of Athens, Athens, Greece
| | | | | | | |
Collapse
|
274
|
Lam H, Maga M, Pradhan A, Evans CJ, Maidment NT, Hales TG, Walwyn W. Analgesic tone conferred by constitutively active mu opioid receptors in mice lacking β-arrestin 2. Mol Pain 2011; 7:24. [PMID: 21486473 PMCID: PMC3090352 DOI: 10.1186/1744-8069-7-24] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Accepted: 04/12/2011] [Indexed: 01/04/2023] Open
Abstract
Hedonic reward, dependence and addiction are unwanted effects of opioid analgesics, linked to the phasic cycle of μ opioid receptor activation, tolerance and withdrawal. In vitro studies of recombinant G protein coupled receptors (GPCRs) over expressed in cell lines reveal an alternative tonic signaling mechanism that is independent of agonist. Such studies demonstrate that constitutive GPCR signaling can be inhibited by inverse agonists but not by neutral antagonists. However, ligand-independent activity has been difficult to examine in vivo, at the systems level, due to relatively low levels of constitutive activity of most GPCRs including μ receptors, often necessitating mutagenesis or pharmacological manipulation to enhance basal signaling. We previously demonstrated that the absence of β-arrestin 2 (β-arr2) augments the constitutive coupling of μ receptors to voltage-activated Ca2+ channels in primary afferent dorsal root ganglion neurons from β-arr2-/- mice. We used this in vitro approach to characterize neutral competitive antagonists and inverse agonists of the constitutively active wild type μ receptors in neurons. We administered these agents to β-arr2-/- mice to explore the role of constitutive μ receptor activity in nociception and hedonic tone. This study demonstrates that the induction of constitutive μ receptor activity in vivo in β-arr2-/- mice prolongs tail withdrawal from noxious heat, a phenomenon that was reversed by inverse agonists, but not by antagonists that lack negative efficacy. By contrast, the aversive effects of inverse agonists were similar in β-arr2-/- and β-arr2+/+ mice, suggesting that hedonic tone was unaffected.
Collapse
Affiliation(s)
- Hoa Lam
- Institute of Academic Anaesthesia, Centre for Neuroscience, University of Dundee, Dundee DD19SY, UK
| | | | | | | | | | | | | |
Collapse
|
275
|
Davis MP. Opioid tolerance and hyperalgesia: basic mechanisms and management in review. PROGRESS IN PALLIATIVE CARE 2011. [DOI: 10.1179/174329111x13045147380537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
276
|
Kabli N, Martin N, Fan T, Nguyen T, Hasbi A, Balboni G, O'Dowd BF, George SR. Agonists at the δ-opioid receptor modify the binding of µ-receptor agonists to the µ-δ receptor hetero-oligomer. Br J Pharmacol 2011; 161:1122-36. [PMID: 20977461 DOI: 10.1111/j.1476-5381.2010.00944.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND AND PURPOSE µ- and δ-opioid receptors form heteromeric complexes with unique ligand binding and G protein-coupling profiles linked to G protein α z-subunit (Gα(z) ) activation. However, the mechanism of action of agonists and their regulation of the µ-δ receptor heteromer are not well understood. EXPERIMENTAL APPROACH Competition radioligand binding, cell surface receptor internalization in intact cells, confocal microscopy and receptor immunofluorescence techniques were employed to study the regulation of the µ-δ receptor heteromer in heterologous cells with and without agonist exposure. KEY RESULTS Gα(z) enhanced affinity of some agonists at µ-δ receptor heteromers, independent of agonist chemical structure. δ-Opioid agonists displaced µ-agonist binding with high affinity from µ-δ heteromers, but not µ receptor homomers, suggestive of δ-agonists occupying a novel µ-receptor ligand binding pocket within the heteromers. Also, δ-agonists induced internalization of µ-opioid receptors in cells co-expressing µ- and δ-receptors, but not those expressing µ-receptors alone, indicative of µ-δ heteromer internalization. This dose-dependent, Pertussis toxin-resistant and clathrin- and dynamin-dependent effect required agonist occupancy of both µ- and δ-opioid receptors. In contrast to µ-receptor homomers, agonist-induced internalization of µ-δ heteromers persisted following chronic morphine exposure. CONCLUSIONS AND IMPLICATIONS The µ-δ receptor heteromer may contain a novel δ-agonist-detected, high-affinity, µ-receptor ligand binding pocket and is regulated differently from the µ-receptor homomer following chronic morphine exposure. Occupancy of both µ- and δ-receptor binding pockets is required for δ-agonist-induced endocytosis of µ-δ receptor heteromers. δ-Opioid agonists target µ-δ receptor heteromers, and thus have a broader pharmacological specificity than previously identified.
Collapse
Affiliation(s)
- N Kabli
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
277
|
Ligand-directed trafficking of the δ-opioid receptor in vivo: two paths toward analgesic tolerance. J Neurosci 2011; 30:16459-68. [PMID: 21147985 DOI: 10.1523/jneurosci.3748-10.2010] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
δ-Opioid receptors are G-protein-coupled receptors that regulate nociceptive and emotional responses. It has been well established that distinct agonists acting at the same G-protein-coupled receptor can engage different signaling or regulatory responses. This concept, known as biased agonism, has important biological and therapeutic implications. Ligand-biased responses are well described in cellular models, however, demonstrating the physiological relevance of biased agonism in vivo remains a major challenge. The aim of this study was to investigate the long-term consequences of ligand-biased trafficking of the δ-opioid receptor, at both the cellular and behavioral level. We used δ agonists with similar binding and analgesic properties, but high [SNC80 ((+)-4-[(αR)-α-((2S,5R)-4-allyl-2,5-dimethyl-1-piperazinyl)-3-methoxybenzyl]-N,N-diethylbenzamide)]- or low [ARM390 (N,N-diethyl-4-(phenyl-piperidin-4-ylidenemethyl)-benzamide)]-internalization potencies. As we found previously, a single SNC80-but not ARM390-administration triggered acute desensitization of the analgesic response in mice. However, daily injections of either compound over 5 d produced full analgesic tolerance. SNC80-tolerant animals showed widespread receptor downregulation, and tolerance to analgesic, locomotor and anxiolytic effects of the agonist. Hence, internalization-dependent tolerance developed, as a result of generalized receptor degradation. In contrast, ARM390-tolerant mice showed intact receptor expression, but δ-opioid receptor coupling to Ca²+ channels was abolished in dorsal root ganglia. Concomitantly, tolerance developed for agonist-induced analgesia, but not locomotor or anxiolytic responses. Therefore, internalization-independent tolerance was produced by anatomically restricted adaptations leading to pain-specific tolerance. Hence, ligand-directed receptor trafficking of the δ-opioid receptor engages distinct adaptive responses, and this study reveals a novel aspect of biased agonism in vivo.
Collapse
|
278
|
Fyfe LW, Cleary DR, Macey TA, Morgan MM, Ingram SL. Tolerance to the antinociceptive effect of morphine in the absence of short-term presynaptic desensitization in rat periaqueductal gray neurons. J Pharmacol Exp Ther 2010; 335:674-80. [PMID: 20739455 PMCID: PMC2993552 DOI: 10.1124/jpet.110.172643] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Accepted: 08/24/2010] [Indexed: 11/22/2022] Open
Abstract
Opioids activate the descending antinociceptive pathway from the ventrolateral periaqueductal gray (vlPAG) by both pre- and postsynaptic inhibition of tonically active GABAergic neurons (i.e., disinhibition). Previous research has shown that short-term desensitization of postsynaptic μ-opioid receptors (MOPrs) in the vlPAG is increased with the development of opioid tolerance. Given that pre- and postsynaptic MOPrs are coupled to different signaling mechanisms, the present study tested the hypothesis that short-term desensitization of presynaptic MOPrs also contributes to opioid tolerance. Twice-daily injections of morphine (5 mg/kg s.c.) for 2 days caused a rightward shift in the morphine dose-response curve on the hot plate test (D(50) = 9.9 mg/kg) compared with saline-pretreated (5.3 mg/kg) male Sprague-Dawley rats. In vitro whole-cell patch-clamp recordings from vlPAG slices revealed that inhibition of evoked inhibitory postsynaptic currents (eIPSCs) by the MOPr-selective agonist [d-Ala(2),N-Me-Phe(4),Gly(5)-ol]-enkephalin was decreased in morphine-tolerant (EC(50) = 708 nM) compared with saline-pretreated rats (EC(50) = 163 nM). However, short-term desensitization of MOPr inhibition of eIPSCs was not observed in either saline- or morphine-pretreated rats. Reducing the number of available MOPrs with the irreversible opioid receptor antagonist, β-chlornaltrexamine decreased maximal MOPr inhibition with no evidence of desensitization, indicating that the lack of observed desensitization is not caused by receptor reserve. These results demonstrate that tolerance to the antinociceptive effect of morphine is associated with a decrease in presynaptic MOPr sensitivity or coupling to effectors, but this change is independent of short-term MOPr desensitization.
Collapse
Affiliation(s)
- Leon W Fyfe
- Department of Psychology, Washington State University, Vancouver, Washington 98686, USA
| | | | | | | | | |
Collapse
|
279
|
|
280
|
McPherson J, Rivero G, Baptist M, Llorente J, Al-Sabah S, Krasel C, Dewey WL, Bailey CP, Rosethorne EM, Charlton SJ, Henderson G, Kelly E. μ-opioid receptors: correlation of agonist efficacy for signalling with ability to activate internalization. Mol Pharmacol 2010; 78:756-66. [PMID: 20647394 PMCID: PMC2981392 DOI: 10.1124/mol.110.066613] [Citation(s) in RCA: 223] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Accepted: 07/20/2010] [Indexed: 01/08/2023] Open
Abstract
We have compared the ability of a number of μ-opioid receptor (MOPr) ligands to activate G proteins with their abilities to induce MOPr phosphorylation, to promote association of arrestin-3 and to cause MOPr internalization. For a model of G protein-coupled receptor (GPCR) activation where all agonists stabilize a single active conformation of the receptor, a close correlation between signaling outputs might be expected. Our results show that overall there is a very good correlation between efficacy for G protein activation and arrestin-3 recruitment, whereas a few agonists, in particular endomorphins 1 and 2, display apparent bias toward arrestin recruitment. The agonist-induced phosphorylation of MOPr at Ser(375), considered a key step in MOPr regulation, and agonist-induced internalization of MOPr were each found to correlate well with arrestin-3 recruitment. These data indicate that for the majority of MOPr agonists the ability to induce receptor phosphorylation, arrestin-3 recruitment, and internalization can be predicted from their ability as agonists to activate G proteins. For the prototypic MOPr agonist morphine, its relatively weak ability to induce MOPr internalization can be explained by its low agonist efficacy.
Collapse
Affiliation(s)
- Jamie McPherson
- Department of Physiology and Pharmacology, School of Medical Sciences, University of Bristol, Bristol, BS8 1TD, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
281
|
Parlato R, Cruz H, Otto C, Murtra P, Parkitna JR, Martin M, Bura SA, Begus-Nahrmann Y, von Bohlen und Halbach O, Maldonado R, Schütz G, Lüscher C. Effects of the cell type-specific ablation of the cAMP-responsive transcription factor in noradrenergic neurons on locus coeruleus firing and withdrawal behavior after chronic exposure to morphine. J Neurochem 2010; 115:563-73. [PMID: 20367754 DOI: 10.1111/j.1471-4159.2010.06709.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Repeated exposure to opiates leads to cellular and molecular changes and behavioral alterations reflecting a state of dependence. In noradrenergic neurons, cyclic AMP (cAMP)-dependent pathways are activated during opiate withdrawal, but their contribution to the activity of locus coeruleus noradrenergic neurons and behavioral manifestations remains controversial. Here, we test whether the cAMP-dependent transcription factors cAMP responsive element binding protein (CREB) and cAMP-responsive element modulator (CREM) in noradrenergic neurons control the cellular markers and the physical signs of morphine withdrawal in mice. Using the Cre/loxP system we ablated the Creb1 gene in noradrenergic neurons. To avoid adaptive effects because of compensatory up-regulation of CREM, we crossed the conditional Creb1 mutant mice with a Crem-/- line. We found that the enhanced expression of tyrosine hydroxylase normally observed during withdrawal was attenuated in CREB/CREM mutants. Moreover, the withdrawal-associated cellular hyperactivity and c-fos expression was blunted. In contrast, naloxone-precipitated withdrawal signs, such as jumping, paw tremor, tremor and mastication were preserved. We conclude by a specific genetic approach that the withdrawal-associated hyperexcitability of noradrenergic neurons depends on CREB/CREM activity in these neurons, but does not mediate several behavioral signs of morphine withdrawal.
Collapse
Affiliation(s)
- Rosanna Parlato
- Department of Molecular Biology of the Cell I, German Cancer Research Center, Heidelberg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
282
|
Proskuryakova TV, Shokhonova VA, Chumakova YA, Bashkatova VG, Sudakov SK. Modulation of peripheral opioid receptors affects the concentration of mu-opioid receptors in rat brain. Bull Exp Biol Med 2010; 148:357-9. [PMID: 20396687 DOI: 10.1007/s10517-010-0711-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Radioligand binding assay was used to evaluate characteristics of central mu-opioid receptors after peripheral administration of mu-opioid receptor agonist loperamide and antagonist methylnaloxone. These substances do not cross the blood-brain barrier. Loperamide and methylnaloxone produced opposite effects on the density of mu-opioid receptors in the frontal cortex of rat brain. These data confirm our hypothesis on reciprocal interactions between central and peripheral compartments of the endogenous opioid system.
Collapse
Affiliation(s)
- T V Proskuryakova
- P K Anokhin Institute of Normal Physiology, Russian Academy of Medical Sciences, Moscow, Russia
| | | | | | | | | |
Collapse
|
283
|
Spartà A, Baiula M, Campbell G, Spampinato S. β-Arrestin 2-mediated heterologous desensitization of IGF-IR by prolonged exposure of SH-SY5Y neuroblastoma cells to a mu opioid agonist. FEBS Lett 2010; 584:3580-6. [DOI: 10.1016/j.febslet.2010.07.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 07/14/2010] [Accepted: 07/15/2010] [Indexed: 12/22/2022]
|
284
|
Zahm DS. Pharmacotherapeutic approach to the treatment of addiction: persistent challenges. MISSOURI MEDICINE 2010; 107:276-280. [PMID: 20806841 PMCID: PMC2964348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The sequence of pathophysiological responses to repeated self-administration of addictive compounds is briefly described, as are prospects for development of drugs for addiction and some of those currently available. It is noted that the varying vulnerability of individuals to addictions creates ethical concerns regarding the application of drug abuse pharmacotherapies as they become more efficacious. It is noted further that relapse remains the most persistent challenge in the treatment of addictions.
Collapse
Affiliation(s)
- Daniel S Zahm
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, USA.
| |
Collapse
|
285
|
Bhalla S, Zhang Z, Patterson N, Gulati A. Effect of endothelin-A receptor antagonist on mu, delta and kappa opioid receptor-mediated antinociception in mice. Eur J Pharmacol 2010; 635:62-71. [DOI: 10.1016/j.ejphar.2010.03.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Revised: 02/15/2010] [Accepted: 03/03/2010] [Indexed: 11/26/2022]
|
286
|
Ingram SL, Traynor JR. Role of protein kinase C in functional selectivity for desensitization at the mu-opioid receptor: from pharmacological curiosity to therapeutic potential. Br J Pharmacol 2010; 158:154-6. [PMID: 19719778 DOI: 10.1111/j.1476-5381.2009.00198.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Opioid agonists are the best therapy for moderate to severe pain, but clinical use is limited due to the development of tolerance and dependence. For the first time, Bailey and co-workers have demonstrated functional selectivity for agonist-induced desensitization of mu-opioid receptors (MOR) in mature rat locus coeruleus neurons. Native MORs are differentially desensitized through separate, agonist-dependent signalling pathways; desensitization of the morphine-occupied receptor occurs via a protein kinase C alpha-dependent pathway while [D-Ala(2), N-MePhe(4), Gly-ol]enkephalin-mediated desensitization is via a G protein receptor kinase subtype 2-dependent mechanism. These results suggest that MORs adopt separate conformational states that either result in different efficiencies of G protein activation or access to phosphorylation by desensitization machinery (e.g. protein kinase C alpha or G protein receptor kinase subtype 2). Further study of the interaction of protein kinase C with MORs in native neurons will enhance our understanding of agonist-induced functional selectivity for desensitization at MORs and provide important insights into how to selectively modulate agonist efficacy to enhance therapeutic capabilities of opioid drugs.
Collapse
Affiliation(s)
- Susan L Ingram
- Department of Psychology, Washington State University Vancouver, Vancouver, WA, USA
| | | |
Collapse
|
287
|
Trigo JM, Martin-García E, Berrendero F, Robledo P, Maldonado R. The endogenous opioid system: a common substrate in drug addiction. Drug Alcohol Depend 2010; 108:183-94. [PMID: 19945803 DOI: 10.1016/j.drugalcdep.2009.10.011] [Citation(s) in RCA: 155] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Revised: 09/30/2009] [Accepted: 10/28/2009] [Indexed: 12/17/2022]
Abstract
Drug addiction is a chronic brain disorder leading to complex adaptive changes within the brain reward circuits that involve several neurotransmitters. One of the neurochemical systems that plays a pivotal role in different aspects of addiction is the endogenous opioid system (EOS). Opioid receptors and endogenous opioid peptides are largely distributed in the mesolimbic system and modulate dopaminergic activity within these reward circuits. Chronic exposure to the different prototypical drugs of abuse, including opioids, alcohol, nicotine, psychostimulants and cannabinoids has been reported to produce significant alterations within the EOS, which seem to play an important role in the development of the addictive process. In this review, we will describe the adaptive changes produced by different drugs of abuse on the EOS, and the current knowledge about the contribution of each component of this neurobiological system to their addictive properties.
Collapse
Affiliation(s)
- José Manuel Trigo
- Laboratori de Neurofarmacologia, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, PRBB, Barcelona, Spain
| | | | | | | | | |
Collapse
|
288
|
Abstract
Molecular neurobiological studies have yielded enormous amounts of valuable information about neuronal response mechanisms and their adaptive changes. However, in relation to addiction this information is of limited value because almost every cell function appears to be involved. Thus it tells us only that neurons adapt to 'addictive drugs' as they do to all sorts of other functional disturbances. This information may be of limited help in the development of potential auxiliary agents for treatment of addiction. However, a reductionist approach which attempts to analyse addiction at ever finer levels of structure and function, is inherently incapable of explaining what causes these mechanisms to be brought into play in some cases and not in others, or by self-administration of a drug but not by passive exposure. There is abundant evidence that psychological, social, economic and specific situational factors play important roles in initiating addiction, in addition to genetic and other biological factors. Therefore, if we hope to be able to make predictions at any but a statistical level, or to develop effective means of prevention, it is necessary to devise appropriate integrative approaches to the study of addiction, rather than pursue an ever-finer reductive approach which leads steadily farther away from the complex interaction of drug, user, environment and specific situations that characterizes the problem in humans.
Collapse
Affiliation(s)
- Harold Kalant
- Department of Pharmacology, University of Toronto, Toronto, Canada.
| |
Collapse
|
289
|
Georganta EM, Agalou A, Georgoussi Z. Multi-component signaling complexes of the delta-opioid receptor with STAT5B and G proteins. Neuropharmacology 2010; 59:139-48. [PMID: 20433855 DOI: 10.1016/j.neuropharm.2010.04.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Revised: 02/25/2010] [Accepted: 04/09/2010] [Indexed: 11/28/2022]
Abstract
Besides mediating opioid responses in the nervous system and the peripheral tissues, opioid receptors are implicated in signaling mechanisms shared by cytokine receptors. Recent observations have shown that the Signal Transducer and Activator of Transcription 5A (STAT5A) interacts with the mu-opioid receptor (mu-OR) and is phosphorylated upon mu-OR stimulation (Mazarakou and Georgoussi, 2005). In the present study we demonstrate that another member of the STAT family, STAT5B, associates constitutively with the C-terminal tail of the delta-opioid receptor (delta-CT). [D-Ser(2), Leu(5), Thr(6)]-enkephalin-exposure of HEK293 cells, expressing stably the delta-opioid receptor (delta-OR), leads to receptor-dependent STAT5B tyrosine phosphorylation and transcriptional activation. This phosphorylation occurs in a G protein-dependent manner and is carried out by a c-Src kinase. Co-immunoprecipitation studies indicate that STAT5B forms pairs with selective Galpha and Gbetagamma subunits of G proteins and activated c-Src kinase in HEK293 cells. These interactions are formed either constitutively, or upon receptor stimulation. We also demonstrate that the delta-CT serves as a platform for the formation of a multi-component signaling complex (signalosome), consisting of STAT5B, c-Src and selective G protein members. We can thus conclude that STAT5B signaling can be modulated by its coupling with a specific subset of G protein subunits, revealing a novel signaling mechanism for the transcriptional regulation of STAT5B-dependent genes.
Collapse
Affiliation(s)
- Eirini-Maria Georganta
- Laboratory of Cellular Signaling and Molecular Pharmacology, Institute of Biology, National Centre for Scientific Research Demokritos, 15310 Ag. Paraskevi-Attikis, Athens, Greece
| | | | | |
Collapse
|
290
|
Olive MF. Cognitive effects of Group I metabotropic glutamate receptor ligands in the context of drug addiction. Eur J Pharmacol 2010; 639:47-58. [PMID: 20371237 DOI: 10.1016/j.ejphar.2010.01.029] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Revised: 01/14/2010] [Accepted: 01/20/2010] [Indexed: 01/03/2023]
Abstract
Glutamate plays a pivotal role in regulating drug self-administration and drug-seeking behavior, and the past decade has witnessed a substantial surge of interest in the role of Group I metabotropic glutamate receptors (mGlu(1) and mGlu(5) receptors) in mediating these behaviors. As will be reviewed here, Group I mGlu receptors are involved in normal and drug-induced synaptic plasticity, drug reward, reinforcement and relapse-like behaviors, and addiction-related cognitive processes such as maladaptive learning and memory, behavioral inflexibility, and extinction learning. Animal models of addiction have revealed that antagonists of Group I mGlu receptors, particularly the mGlu(5) receptor, reduce self-administration of virtually all drugs of abuse. Since inhibitors of mGlu5 receptor function have now entered clinical trials for other medical conditions and appear to be well-tolerated, a key question that remains unanswered is - what changes in cognition are produced by these compounds that result in reduced drug intake and drug-seeking behavior? Finally, in contrast to mGlu(5) receptor antagonists, recent studies have indicated that positive allosteric modulation of mGlu(5) receptors actually enhances synaptic plasticity and improves various aspects of cognition, including spatial learning, behavioral flexibility, and extinction of drug-seeking behavior. Thus, while inhibition of Group I mGlu receptor function may reduce drug reward, reinforcement, and relapse-related behaviors, positive allosteric modulation of the mGlu5 receptor subtype may actually enhance cognition and potentially reverse some of the cognitive deficits associated with chronic drug use.
Collapse
Affiliation(s)
- M Foster Olive
- Center for Drug and Alcohol Programs, Department of Psychiatry, Medical University of South Carolina, 67 President Street, MSC 861, Charleston, SC 29425, USA.
| |
Collapse
|
291
|
Scoto GM, Aricò G, Iemolo A, Ronsisvalle G, Parenti C. Selective inhibition of the NOP receptor in the ventrolateral periaqueductal gray attenuates the development and the expression of tolerance to morphine-induced antinociception in rats. Peptides 2010; 31:696-700. [PMID: 20067813 DOI: 10.1016/j.peptides.2009.12.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Revised: 12/30/2009] [Accepted: 12/30/2009] [Indexed: 12/14/2022]
Abstract
The ventrolateral periaqueductal gray (vlPAG) is a major site of opioid analgesic action and a key locus for the development of morphine tolerance. Previous experimental evidence supports the hypothesis that the brain synthesizes and secretes neuropeptides, which act as a part of the homeostatic system to attenuate the effects of morphine and endogenous opioid peptides. Among the known antiopioid peptides, nociceptin/orphanin FQ (N/OFQ) has been shown to inhibit various opioid effects, especially analgesia. The present study investigated the effect of NOP receptor blockade on the tolerance to morphine antinociception in the vlPAG. Systemic morphine (10mg/kg s.c. twice per day) induced an antinociceptive effect that diminished significantly on the third day when tolerance developed, as quantified by the tail flick and the hot plate tests. Intra vlPAG (i.vlPAG) administration of the NOP receptor antagonist (+/-)-J 113397 restored the opioid's analgesic effect. When (+/-)-J 113397 was administered beginning the first day preceding each morphine administration, tolerance did not develop, but it appeared if the NOP antagonist had been suspended. These data suggest that the N/OFQ in the vlPAG may play a key role in opioid-induced antinociceptive tolerance.
Collapse
Affiliation(s)
- Giovanna M Scoto
- Department of Pharmaceutical Sciences-Pharmacology Section, University of Catania, vle A Doria 6, 95125 Catania, Italy.
| | | | | | | | | |
Collapse
|
292
|
Jin J, Kittanakom S, Wong V, Reyes BAS, Van Bockstaele EJ, Stagljar I, Berrettini W, Levenson R. Interaction of the mu-opioid receptor with GPR177 (Wntless) inhibits Wnt secretion: potential implications for opioid dependence. BMC Neurosci 2010; 11:33. [PMID: 20214800 PMCID: PMC2841195 DOI: 10.1186/1471-2202-11-33] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Accepted: 03/09/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Opioid agonist drugs produce analgesia. However, long-term exposure to opioid agonists may lead to opioid dependence. The analgesic and addictive properties of opioid agonist drugs are mediated primarily via the mu-opioid receptor (MOR). Opioid agonists appear to alter neuronal morphology in key brain regions implicated in the development of opioid dependence. However, the precise role of the MOR in the development of these neuronal alterations remains elusive. We hypothesize that identifying and characterizing novel MOR interacting proteins (MORIPs) may help to elucidate the underlying mechanisms involved in the development of opioid dependence. RESULTS GPR177, the mammalian ortholog of Drosophila Wntless/Evi/Sprinter, was identified as a MORIP in a modified split ubiquitin yeast two-hybrid screen. GPR177 is an evolutionarily conserved protein that plays a critical role in mediating Wnt protein secretion from Wnt producing cells. The MOR/GPR177 interaction was validated in pulldown, coimmunoprecipitation, and colocalization studies using mammalian tissue culture cells. The interaction was also observed in rodent brain, where MOR and GPR177 were coexpressed in close spatial proximity within striatal neurons. At the cellular level, morphine treatment caused a shift in the distribution of GPR177 from cytosol to the cell surface, leading to enhanced MOR/GPR177 complex formation at the cell periphery and the inhibition of Wnt protein secretion. CONCLUSIONS It is known that chronic morphine treatment decreases dendritic arborization and hippocampal neurogenesis, and Wnt proteins are essential for these processes. We therefore propose that the morphine-mediated MOR/GPR177 interaction may result in decreased Wnt secretion in the CNS, resulting in atrophy of dendritic arbors and decreased neurogenesis. Our results demonstrate a previously unrecognized role for GPR177 in regulating cellular response to opioid drugs.
Collapse
Affiliation(s)
- Jay Jin
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | | | | | | | | | | | | | | |
Collapse
|
293
|
Buchman DZ, Skinner W, Illes J. Negotiating the Relationship Between Addiction, Ethics, and Brain Science. AJOB Neurosci 2010; 1:36-45. [PMID: 20676352 PMCID: PMC2910924 DOI: 10.1080/21507740903508609] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Advances in neuroscience are changing how mental health issues such as addiction are understood and addressed as a brain disease. Although a brain disease model legitimizes addiction as a medical condition, it promotes neuro-essentialist thinking, categorical ideas of responsibility and free choice, and undermines the complexity involved in its emergence. We propose a 'biopsychosocial systems' model where psycho-social factors complement and interact with neurogenetics. A systems approach addresses the complexity of addiction and approaches free choice and moral responsibility within the biological, lived experience and socio-historical context of the individual. We examine heroin-assisted treatment as an applied case example within our framework. We conclude with a discussion of the model and its implications for drug policy, research, addiction health care systems and delivery, and treatment of substance use problems.
Collapse
Affiliation(s)
- Daniel Z. Buchman
- National Core for Neuroethics, The University of British Columbia, Vancouver, BC, Canada
| | - Wayne Skinner
- Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, The University of Toronto, Toronto, ON, Canada
| | - Judy Illes
- National Core for Neuroethics, The University of British Columbia, Vancouver, BC, Canada
- Division of Neurology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
294
|
Glass MJ. The role of functional postsynaptic NMDA receptors in the central nucleus of the amygdala in opioid dependence. VITAMINS AND HORMONES 2010; 82:145-66. [PMID: 20472137 DOI: 10.1016/s0083-6729(10)82008-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Activation of ionotropic N-methyl-D-aspartate (NMDA)-type glutamate receptors in limbic system nuclei, such as the central nucleus of the amygdala (CeA), plays an essential role in autonomic, behavioral, and affective processes that are profoundly impacted by exposure to opioids. However, the heterogeneous ultrastructural distribution of the NMDA receptor, its complex pharmacology, and the paucity of genetic models have hampered the development of linkages between functional amygdala NMDA receptors and opioid dependence. To overcome these shortcomings, high-resolution imaging and molecular pharmacology were used to (1) Identify the ultrastructural localization of the essential NMDA-NR1 receptor (NR1) subunit and its relationship to the mu-opioid receptor (microOR), the major cellular target of abused opioids like morphine, in the CeA and (2) Determine the effect of CeA NR1 deletion on the physical, and particularly, psychological aspects of opioid dependence. Combined immunogold and immuoperoxidase electron microscopic analysis showed that NR1 was prominently expressed in postsynaptic (i.e., somata, dendrites) locations of CeA neurons, where they were also frequently colocalized with the microOR. A spatial-temporal deletion of NR1 in postsynaptic sites of CeA neurons was produced by local microinjection of a neurotropic recombinant adeno-associated virus (rAAV), expressing the green fluorescent protein (GFP) reporter and Cre recombinase (rAAV-GFP-Cre), in adult "floxed" NR1 (fNR1) mice. Mice with deletion of NR1 in the CeA showed no obvious impairments in sensory, motor, or nociceptive function. In addition, when administered chronic morphine, these mice also displayed an acute physical withdrawal syndrome precipitated by naloxone. However, opioid-dependent CeA NR1 knockout mice failed to exhibit a conditioned place aversion induced by naloxone-precipitated withdrawal. These results indicate that postsynaptic NMDA receptor activity in central amygdala neurons is required for the expression of a learned affective behavior associated with opioid withdrawal. The neurogenetic dissociation of physical and psychological properties of opioid dependence demonstrates the value of combined ultrastructural analysis and molecular pharmacology in clarifying the neurobiological mechanisms subserving opioid-mediated plasticity.
Collapse
Affiliation(s)
- Michael J Glass
- Department of Neurology and Neuroscience, Weill Cornell Medical College, New York, USA
| |
Collapse
|
295
|
Mannelli P, Patkar A, Rozen S, Matson W, Krishnan R, Kaddurah- Daouk R. Opioid use affects antioxidant activity and purine metabolism: preliminary results. Hum Psychopharmacol 2009; 24:666-75. [PMID: 19760630 PMCID: PMC3183957 DOI: 10.1002/hup.1068] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVE More must be learned about metabolic and biochemical alterations that contribute to the development and expression of drug dependence. Experimental opioid administration influences mechanisms and indices of oxidative stress, such as antioxidant compounds and purine metabolism. We examined perturbations of neurotransmitter-related pathways in opioid dependence (OD). METHODS In this preliminary study, we used a targeted metabolomics platform to explore whether biochemical changes were associated with OD by comparing OD individuals (n = 14) and non-drug users (n = 10). RESULTS OD patients undergoing short-term methadone detoxification showed altered oxidation-reduction activity, as confirmed by higher plasma levels of alpha- and gamma-tocopherol and increased GSH/GSSG ratio. OD individuals had also altered purine metabolism, showing increased concentration of guanine and xanthosine, with decreased guanosine, hypoxanthine and hypoxanthine/xanthine and xanthine/xanthosine ratios. Other drug use in addition to opioids was associated with partly different biochemical changes. CONCLUSIONS This is a preliminary investigation using metabolomics and showing multiple peripheral alterations of metabolic pathways in OD. Further studies should explore the metabolic profile of conditions of opioid abuse, withdrawal and long-term abstinence in relation to agonist and antagonist treatment and investigate biochemical signatures of opioid substances and medications.
Collapse
Affiliation(s)
- Paolo Mannelli
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, 2218 Elder Street, Durham, NC 27705, USA.
| | - Ashwin Patkar
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina, USA
| | - Steve Rozen
- Duke-NUS Graduate Medical School Singapore, Singapore
| | - Wayne Matson
- Bedford Veterans Administration Medical Center, Bedford, Massachusetts, USA
| | - Ranga Krishnan
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina, USA,Duke-NUS Graduate Medical School Singapore, Singapore
| | - Rima Kaddurah- Daouk
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina, USA,Correspondence to: R. K. Daouk, Center for Pharmacometabolomics, Duke University Medical Center, Durham, NC 27705, USA. Tel: 919-684-2611. Fax: (919) 681-7668.
| |
Collapse
|
296
|
Ultrastructural relationship between N-methyl-D-aspartate-NR1 receptor subunit and mu-opioid receptor in the mouse central nucleus of the amygdala. Neuroscience 2009; 163:857-67. [PMID: 19607886 DOI: 10.1016/j.neuroscience.2009.07.020] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Revised: 07/09/2009] [Accepted: 07/10/2009] [Indexed: 12/23/2022]
Abstract
The central nucleus of the amygdala (CeA) is an important neuroanatomical substrate of emotional processes that are critically involved in addictive behaviors. Glutamate and opioid systems in the CeA play significant roles in neural plasticity and addictive processes, however the cellular sites of interaction between agonists of N-methyl-d-aspartate (NMDA) and mu-opioid receptors (muOR) in the CeA are unknown. Dual labeling immunocytochemistry was used to determine the ultrastructural relationship between the essential NMDA-NR1 receptor subunit and muOR in the CeA. It was found that over 80% of NR1-labeled profiles were dendrites while less than 10% were axons. In the case of muOR-labeled profiles, approximately 60% were dendritic, and over 35% were axons. Despite their somewhat distinctive patterns of cellular location, numerous dual-labeled profiles were observed. Approximately 80% of these were dendritic, and less than 10% were axonal. Moreover, many dual-labeled dendritic profiles were contacted by axon terminals receiving asymmetric-type synapses indicative of excitatory signaling. These results indicate that NMDA and muORs are strategically localized in dendrites, including those receiving excitatory synapses, of central amygdala neurons. Thus, postsynaptic co-modulation of central amygdala neurons may be a key cellular substrate mediating glutamate and opioid interaction on neural signaling and plasticity associated with normal and pathological emotional processes associated with addictive behaviors.
Collapse
|
297
|
Walwyn W, John S, Maga M, Evans CJ, Hales TG. Delta receptors are required for full inhibitory coupling of mu-receptors to voltage-dependent Ca(2+) channels in dorsal root ganglion neurons. Mol Pharmacol 2009; 76:134-43. [PMID: 19357247 PMCID: PMC2701458 DOI: 10.1124/mol.109.055913] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Accepted: 04/08/2009] [Indexed: 11/22/2022] Open
Abstract
Recombinant micro and delta opioid receptors expressed in cell lines can form heterodimers with distinctive properties and trafficking. However, a role for opioid receptor heterodimerization in neurons has yet to be identified. The inhibitory coupling of opioid receptors to voltage-dependent Ca(2+) channels (VDCCs) is a relatively inefficient process and therefore provides a sensitive assay of altered opioid receptor function and expression. We examined micro-receptor coupling to VDCCs in dorsal root ganglion neurons of delta(+/+), delta(+/-), and delta(-/-) mice. Neurons deficient in delta receptors exhibited reduced inhibition of VDCCs by morphine and [D-Ala(2),Phe(4),Gly(5)-ol]-enkephalin (DAMGO). An absence of delta receptors caused reduced efficacy of DAMGO without affecting potency. An absence of delta receptors reduced neither the density of VDCCs nor their inhibition by either the GABA(B) receptor agonist baclofen or intracellular guanosine 5'-O-(3-thio)triphosphate. Flow cytometry revealed a reduction in micro-receptor surface expression in delta(-/-) neurons without altered DAMGO-induced internalization. There was no change in micro-receptor mRNA levels. D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH(2)-sensitive mu-receptor-coupling efficacy was fully restored to delta(+/+) levels in delta(-/-) neurons by expression of recombinant delta receptors. However, the dimerization-deficient delta-15 construct expressed in delta(-/-) neurons failed to fully restore the inhibitory coupling of micro-receptors compared with that seen in delta(+/+) neurons, suggesting that, although not essential for micro-receptor function, micro-delta receptor dimerization contributes to full micro-agonist efficacy. Because DAMGO exhibited a similar potency in delta(+/+) and delta(-/-) neurons and caused similar levels of internalization, the role for heterodimerization is probably at the level of receptor biosynthesis.
Collapse
MESH Headings
- Animals
- Calcium Channels/physiology
- Dimerization
- Enkephalin, Ala(2)-MePhe(4)-Gly(5)-/pharmacology
- Enkephalin, D-Penicillamine (2,5)-/pharmacology
- Ganglia, Spinal/metabolism
- Mice
- Mice, Inbred C57BL
- Receptors, Opioid, delta/chemistry
- Receptors, Opioid, delta/physiology
- Receptors, Opioid, mu/chemistry
- Receptors, Opioid, mu/physiology
Collapse
Affiliation(s)
- Wendy Walwyn
- Department of Psychiatry and Biobehavioral Sciences, Center for Health Sciences, University of California, Los Angeles, CA, USA
| | | | | | | | | |
Collapse
|
298
|
Ramos-Miguel A, García-Fuster M, Callado L, La Harpe R, Meana J, García-Sevilla J. Phosphorylation of FADD (Fas-associated death domain protein) at serine 194 is increased in the prefrontal cortex of opiate abusers: Relation to mitogen activated protein kinase, phosphoprotein enriched in astrocytes of 15 kDa, and Akt signaling pathways involved in neuroplasticity. Neuroscience 2009; 161:23-38. [DOI: 10.1016/j.neuroscience.2009.03.028] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2008] [Revised: 02/27/2009] [Accepted: 03/11/2009] [Indexed: 02/07/2023]
|
299
|
Brown RM, Lawrence AJ. Neurochemistry underlying relapse to opiate seeking behaviour. Neurochem Res 2009; 34:1876-87. [PMID: 19418222 DOI: 10.1007/s11064-009-9967-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Accepted: 03/27/2009] [Indexed: 11/24/2022]
Abstract
Relapse is a major clinical problem and remains a major challenge in the treatment of addictions. A goal of current research is to gain a greater understanding of the neurochemistry underlying relapse to opiate use. Factors which trigger relapse in humans such as stress, exposure to opiates and/or drug-associated cues, can also trigger opiate-seeking in animals. This review will overview preclinical studies relating to the neurochemistry of opiate-seeking with a focus on studies published from 2005 to present.
Collapse
Affiliation(s)
- Robyn M Brown
- Howard Florey Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | | |
Collapse
|
300
|
Pierre S, Eschenhagen T, Geisslinger G, Scholich K. Capturing adenylyl cyclases as potential drug targets. Nat Rev Drug Discov 2009; 8:321-35. [PMID: 19337273 DOI: 10.1038/nrd2827] [Citation(s) in RCA: 181] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cyclic AMP (cAMP) is an important intracellular signalling mediator. It is generated in mammals by nine membrane-bound and one soluble adenylyl cyclases (ACs), each with distinct regulation and expression patterns. Although many drugs inhibit or stimulate AC activity through the respective upstream G-protein coupled receptors (for example, opioid or beta-adrenergic receptors), ACs themselves have not been major drug targets. Over the past decade studies on the physiological functions of the different mammalian AC isoforms as well as advances in the development of isoform-selective AC inhibitors and activators suggest that ACs could be useful drug targets. Here we discuss the therapeutic potential of isoform-selective compounds in various clinical settings, including neuropathic pain, neurodegenerative disorders, congestive heart failure, asthma and male contraception.
Collapse
Affiliation(s)
- Sandra Pierre
- Pharmazentrum Frankfurt, ZAFES, Institut für Klinische Pharmakologie, Klinikum der Goethe-Universität Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | | | | | | |
Collapse
|