251
|
Song S, Wang S, Pigott VM, Jiang T, Foley LM, Mishra A, Nayak R, Zhu W, Begum G, Shi Y, Carney KE, Hitchens TK, Shull GE, Sun D. Selective role of Na + /H + exchanger in Cx3cr1 + microglial activation, white matter demyelination, and post-stroke function recovery. Glia 2018; 66:2279-2298. [PMID: 30043461 DOI: 10.1002/glia.23456] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 03/27/2018] [Accepted: 04/24/2018] [Indexed: 12/22/2022]
Abstract
Na+ /H+ exchanger (NHE1) activation is required for multiple microglial functions. We investigated effects of selective deletion of microglial Nhe1 in Cx3cr1-CreER ;Nhe1f/f mice on neuroinflammation and tissue repair after ischemic stroke. Infarct volume was similar in corn oil or tamoxifen (Tam)-treated mice at 48 hr and 14 days post-stroke. However, the Tam-treated mice showed significantly higher survival rate and faster neurological function recovery during day 1-14 post-stroke. Deletion of microglial Nhe1 prevented the elevation of CD11b+ /CD45low-med microglia in the ischemic hemisphere at day 3 post-stroke, but stimulated expression of Ym1, CD68, TGF-β, IL-10, decreased expression of CD86 and IL-1β, and reduced GFAP+ reactive astrocytes. Moreover, at day 14 post-stroke, enhanced white matter myelination was detected in the microglial Nhe1 deleted mice. In comparison, neuronal Nhe1-null mice (the CamKII-Cre+/- ;Nhe1f/f mice) showed a significant reduction in both acute and subacute infarct volume, along with increased survival rate and moderate neurological function recovery. However, these neuronal Nhe1-null mice did not exhibit reduced activation of CD11b+ /CD45low-med microglia or CD11b+ /CD45hi macrophages in the ischemic brains, and they exhibited no reductions in white matter lesions. Taken together, this study demonstrated that deletion of microglial and neuronal Nhe1 had differential effects on ischemic brain damage. Microglial NHE1 is involved in pro-inflammatory responses during post-stroke brain tissue repair. In contrast, neuronal NHE1 activation is directly associated with the acute ischemic neuronal injury but not inflammation. Our study reveals that NHE1 protein is a potential therapeutic target critical for differential regulation of ischemic neuronal injury, demyelination and tissue repair.
Collapse
Affiliation(s)
- Shanshan Song
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213.,Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213
| | - Shaoxia Wang
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213.,Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Victoria M Pigott
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213.,Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213
| | - Tong Jiang
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213.,Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213
| | - Lesley M Foley
- Animal Imaging Center, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213
| | - Abhishek Mishra
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213
| | - Rachana Nayak
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213
| | - Wen Zhu
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213
| | - Gulnaz Begum
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213.,Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213
| | - Yejie Shi
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213
| | - Karen E Carney
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213
| | - T Kevin Hitchens
- Animal Imaging Center, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213.,Department of Neurobiology, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213
| | - Gary E Shull
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, Cincinnati, Ohio, 45267
| | - Dandan Sun
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213.,Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213.,Veterans Affairs Pittsburgh Health Care System, Geriatric Research, Educational and Clinical Center, Pittsburgh, Pennsylvania
| |
Collapse
|
252
|
Thau-Zuchman O, Gomes RN, Dyall SC, Davies M, Priestley JV, Groenendijk M, De Wilde MC, Tremoleda JL, Michael-Titus AT. Brain Phospholipid Precursors Administered Post-Injury Reduce Tissue Damage and Improve Neurological Outcome in Experimental Traumatic Brain Injury. J Neurotrauma 2018; 36:25-42. [PMID: 29768974 PMCID: PMC6306688 DOI: 10.1089/neu.2017.5579] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Traumatic brain injury (TBI) leads to cellular loss, destabilization of membranes, disruption of synapses and altered brain connectivity, and increased risk of neurodegenerative disease. A significant and long-lasting decrease in phospholipids (PLs), essential membrane constituents, has recently been reported in plasma and brain tissue, in human and experimental TBI. We hypothesized that supporting PL synthesis post-injury could improve outcome post-TBI. We tested this hypothesis using a multi-nutrient combination designed to support the biosynthesis of PLs and available for clinical use. The multi-nutrient, Fortasyn® Connect (FC), contains polyunsaturated omega-3 fatty acids, choline, uridine, vitamins, cofactors required for PL biosynthesis, and has been shown to have significant beneficial effects in early Alzheimer's disease. Male C57BL/6 mice received a controlled cortical impact injury and then were fed a control diet or a diet enriched with FC for 70 days. FC led to a significantly improved sensorimotor outcome and cognition, reduced lesion size and oligodendrocyte loss, and it restored myelin. It reversed the loss of the synaptic protein synaptophysin and decreased levels of the axon growth inhibitor, Nogo-A, thus creating a permissive environment. It decreased microglia activation and the rise in ß-amyloid precursor protein and restored the depressed neurogenesis. The effects of this medical multi-nutrient suggest that support of PL biosynthesis post-TBI, a new treatment paradigm, has significant therapeutic potential in this neurological condition for which there is no satisfactory treatment. The multi-nutrient tested has been used in dementia patients and is safe and well tolerated, which would enable rapid clinical exploration in TBI.
Collapse
Affiliation(s)
- Orli Thau-Zuchman
- 1 Centre for Neuroscience and Trauma, The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Rita N Gomes
- 1 Centre for Neuroscience and Trauma, The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Simon C Dyall
- 3 Bournemouth University, Royal London House, Bournemouth, United Kingdom
| | - Meirion Davies
- 1 Centre for Neuroscience and Trauma, The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - John V Priestley
- 1 Centre for Neuroscience and Trauma, The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Martine Groenendijk
- 2 Nutricia Research-Nutricia Advanced Medical Nutrition, Utrecht, The Netherlands
| | - Martijn C De Wilde
- 2 Nutricia Research-Nutricia Advanced Medical Nutrition, Utrecht, The Netherlands
| | - Jordi L Tremoleda
- 1 Centre for Neuroscience and Trauma, The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Adina T Michael-Titus
- 1 Centre for Neuroscience and Trauma, The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
253
|
Recombinant Tissue Plasminogen Activator-conjugated Nanoparticles Effectively Targets Thrombolysis in a Rat Model of Middle Cerebral Artery Occlusion. Curr Med Sci 2018; 38:427-435. [PMID: 30074208 DOI: 10.1007/s11596-018-1896-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 11/09/2017] [Indexed: 10/28/2022]
Abstract
The efficacy and safety of recombinant tissue plasminogen activator (rtPA) need to be improved due to its low bioavailability and requirement of large dose administration. The purpose of this study was to develop a fibrin-targeted nanoparticle (NP) drug delivery system for thrombosis combination therapy. We conjugated rtPA to poly(ethylene glycol)- poly(e-caprolactone) (PEG-PCL) nanoparticles (rtPA-NP) and investigated its physicochemical characteristics such as particle size, zeta potential, enzyme activity of conjugated rtPA and its storage stability at 4°C. The thrombolytic activity of rtPA-NP was evaluated in vitro and in vivo as well as the half-life of rtPA-NP, the properties to fibrin targeting and its influences on systemic hemostasis in vivo. The results showed that rtPA-NP equivalent to 10% of a typical dose of rtPA could dissolve fibrin clots and were demonstrated to have a neuroprotective effect after focal cerebral ischemia as evidenced by decreased infarct volume and improved neurological deficit (P<0.001). RtPA-NP did not influence the in vivo hemostasis or coagulation system. The half-life of conjugated rtPA was shown to be approximately 18 times longer than that of free rtPA. These experiments suggested that rtPA-conjugated PEG-PCL nanoparticles might be a promising fibrin-targeted delivery system for a combination treatment of thrombosis.
Collapse
|
254
|
Domin H, Przykaza Ł, Kozniewska E, Boguszewski PM, Śmiałowska M. Neuroprotective effect of the group III mGlu receptor agonist ACPT-I after ischemic stroke in rats with essential hypertension. Prog Neuropsychopharmacol Biol Psychiatry 2018; 84:93-101. [PMID: 29438731 DOI: 10.1016/j.pnpbp.2018.02.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 01/22/2018] [Accepted: 02/08/2018] [Indexed: 12/26/2022]
Abstract
Our previous studies have shown that ACPT-I [(1S, 3R,4S)-1-aminocyclopentane-1,2,4-tricarboxylic acid], a blood-brain barrier permeable agonist of group III metabotropic glutamate (mGlu) receptors, was neuroprotective against middle cerebral artery occlusion/reperfusion (MCAO/R) in normotensive rats. Preclinical studies are typically performed on healthy animals, whereas stroke patients predominately exhibit comorbidities, such as hypertension; therefore, in the present study, we investigated the effect of ACPT-I in spontaneously hypertensive rats (SHR) after MCAO/R. We examined the potential neuroprotective action of ACPT-I (30 mg/kg) when administered during occlusion or reperfusion via the assessment of not only the brain infarction volume but also motor (CatWalk gait analysis and open field test) and sensorimotor (vibrissae-evoked forelimb-placing test) functions following MCAO/R. We determined that ACPT-I not only reduced the cortico-striatal infarction but also improved several gait parameters (run speed, run and stand durations, swing speed and stride length) and mobility when administered 30 min after the start of the occlusion or 30 min after the start of reperfusion. Moreover, the sensorimotor function was improved in hypertensive rats treated with ACPT-I during occlusion. In conclusion, the current findings provide further evidence for the neuroprotective effects of ACPT-I against ischemic damage. These findings may have clinical implications because hypertension is an important risk factor for ischemic stroke.
Collapse
Affiliation(s)
- Helena Domin
- Institute of Pharmacology, Polish Academy of Sciences, Department of Neurobiology, 31-343 Kraków, Smętna Street 12, Poland.
| | - Łukasz Przykaza
- Mossakowski Medical Research Centre, Polish Academy of Sciences, Department of Neurosurgery, Laboratory of Experimental Neurosurgery, A. Pawińskiego Street 5, 02-106 Warsaw, Poland.
| | - Ewa Kozniewska
- Mossakowski Medical Research Centre, Polish Academy of Sciences, Department of Neurosurgery, Laboratory of Experimental Neurosurgery, A. Pawińskiego Street 5, 02-106 Warsaw, Poland
| | - Paweł M Boguszewski
- Laboratory of Animal Models, Neurobiology Centre, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Str., 02-093 Warsaw, Poland
| | - Maria Śmiałowska
- Institute of Pharmacology, Polish Academy of Sciences, Department of Neurobiology, 31-343 Kraków, Smętna Street 12, Poland
| |
Collapse
|
255
|
ERK 1/2 Activation Mediates the Neuroprotective Effect of BpV(pic) in Focal Cerebral Ischemia-Reperfusion Injury. Neurochem Res 2018; 43:1424-1438. [PMID: 29882124 PMCID: PMC6006215 DOI: 10.1007/s11064-018-2558-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/11/2018] [Accepted: 05/23/2018] [Indexed: 12/30/2022]
Abstract
Bisperoxovanadium (pyridine-2-carboxyl) [bpV(pic)] is a commercially available PTEN inhibitor. Previous studies from us and others have shown that bpV(pic) confers neuroprotection in cerebral ischemia injury. We set up to determine whether ERK 1/2 activation plays a role in bpV(pic)-induced neuroprotective effect in cerebral ischemia injury. We found that the phosphorylation levels of Akt (p-AKT) and ERK1/2 (p-ERK 1/2) were down-regulated after cerebral ischemia–reperfusion injury. The injection of bpV(pic) after injury not only increased the level of p-AKT but also the level of p-ERK 1/2. While the inhibition of PTEN mediated the up-regulatation of p-AKT and p-ERK 1/2 by bpV(pic). Interestingly, the ERK 1/2 activation induced by bpV(pic) was also independent of the inhibition of PTEN. Our results indicate that bpV(pic) protects against OGD-induced neuronal death and promotes the functional recovery of stroke animals through PTEN inhibition and ERK 1/2 activation, respectively. This study suggests that the effect of bpV(pic) on ERK 1/2 signaling should be considered while using bpV(pic) as a PTEN inhibitor.
Collapse
|
256
|
Yan T, Venkat P, Chopp M, Zacharek A, Yu P, Ning R, Qiao X, Kelley MR, Chen J. APX3330 Promotes Neurorestorative Effects after Stroke in Type One Diabetic Rats. Aging Dis 2018; 9:453-466. [PMID: 29896433 PMCID: PMC5988600 DOI: 10.14336/ad.2017.1130] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 11/30/2017] [Indexed: 12/15/2022] Open
Abstract
APX3330 is a selective inhibitor of APE1/Ref-1 redox activity. In this study, we investigate the therapeutic effects and underlying mechanisms of APX3330 treatment in type one diabetes mellitus (T1DM) stroke rats. Adult male Wistar rats were induced with T1DM and subjected to transient middle cerebral artery occlusion (MCAo) and treated with either PBS or APX3330 (10mg/kg, oral gavage) starting at 24h after MCAo, and daily for 14 days. Rats were sacrificed at 14 days after MCAo and, blood brain barrier (BBB) permeability, ischemic lesion volume, immunohistochemistry, cell death assay, Western blot, real time PCR, and angiogenic ELISA array were performed. Compared to PBS treatment, APX3330 treatment of stroke in T1DM rats significantly improves neurological functional outcome, decreases lesion volume, and improves BBB integrity as well as decreases total vessel density and VEGF expression, while significantly increases arterial density in the ischemic border zone (IBZ). APX3330 significantly increases myelin density, oligodendrocyte number, oligodendrocyte progenitor cell number, synaptic protein expression, and induces M2 macrophage polarization in the IBZ of T1DM stroke rats. Compared to PBS treatment, APX3330 treatment significantly decreases plasminogen activator inhibitor type-1 (PAI-1), monocyte chemotactic protein-1 and matrix metalloproteinase 9 (MMP9) and receptor for advanced glycation endproducts expression in the ischemic brain of T1DM stroke rats. APX3330 treatment significantly decreases cell death and MMP9 and PAI-1 gene expression in cultured primary cortical neurons subjected to high glucose and oxygen glucose deprivation, compared to untreated control cells. APX3330 treatment increases M2 macrophage polarization and decreases inflammatory factor expression in the ischemic brain as well as promotes neuroprotective and neurorestorative effects after stroke in T1DM rats.
Collapse
Affiliation(s)
- Tao Yan
- 1Gerontology Institute, Neurology, Tianjin Medical University General Hospital, Tianjin Neurological Institute, Key Laboratory of Post-Neurotrauma Neurorepair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China.,2Department of Neurology, Henry Ford hospital, Detroit, MI, USA
| | - Poornima Venkat
- 2Department of Neurology, Henry Ford hospital, Detroit, MI, USA
| | - Michael Chopp
- 2Department of Neurology, Henry Ford hospital, Detroit, MI, USA.,3Department of Physics, Oakland University, Rochester, MI, USA
| | - Alex Zacharek
- 2Department of Neurology, Henry Ford hospital, Detroit, MI, USA
| | - Peng Yu
- 2Department of Neurology, Henry Ford hospital, Detroit, MI, USA
| | - Ruizhuo Ning
- 2Department of Neurology, Henry Ford hospital, Detroit, MI, USA.,4Department of Neurology, First Hospital Harbin, Harbin, China
| | - Xiaoxi Qiao
- 5Department of Ophthalmology, Henry Ford Hospital, Detroit, MI, USA
| | - Mark R Kelley
- 6Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jieli Chen
- 2Department of Neurology, Henry Ford hospital, Detroit, MI, USA
| |
Collapse
|
257
|
Teixeira LV, Almeida RF, Rohden F, Martins LAM, Spritzer PM, de Souza DOG. Neuroprotective Effects of Guanosine Administration on In Vivo Cortical Focal Ischemia in Female and Male Wistar Rats. Neurochem Res 2018; 43:1476-1489. [PMID: 29855847 DOI: 10.1007/s11064-018-2562-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 05/23/2018] [Accepted: 05/26/2018] [Indexed: 02/07/2023]
Abstract
Guanosine (GUO) has neuroprotective effects in experimental models of brain diseases involving glutamatergic excitotoxicity in male animals; however, its effects in female animals are poorly understood. Thus, we investigated the influence of gender and GUO treatment in adult male and female Wistar rats submitted to focal permanent cerebral ischemia in the motor cortex brain. Female rats were subdivided into non-estrogenic and estrogenic phase groups by estrous cycle verification. Immediately after surgeries, the ischemic animals were treated with GUO or a saline solution. Open field and elevated plus maze tasks were conducted with ischemic and naïve animals. Cylinder task, immunohistochemistry and infarct volume analyses were conducted only with ischemic animals. Female GUO groups achieved a full recovery of the forelimb symmetry at 28-35 days after the insult, while male GUO groups only partially recovered at 42 days, in the final evaluation. The ischemic insult affected long-term memory habituation to novelty only in female groups. Anxiety-like behavior, astrocyte morphology and infarct volume were not affected. Regardless the estrous cycle, the ischemic injury affected differently female and male animals. Thus, this study points that GUO is a potential neuroprotective compound in experimental stroke and that more studies, considering the estrous cycle, with both genders are recommended in future investigation concerning brain diseases.
Collapse
Affiliation(s)
- Luciele Varaschini Teixeira
- Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| | - Roberto Farina Almeida
- Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Francieli Rohden
- Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Leo Anderson Meira Martins
- Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Poli Mara Spritzer
- Department of Physiology, Laboratory of Molecular Endocrinology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Diogo Onofre Gomes de Souza
- Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
258
|
Yang Y, Zhong Q, Zhang H, Mo C, Yao J, Huang T, Zhou T, Tan W. Lipidomics study of the protective effects of isosteviol sodium on stroke rats using ultra high-performance supercritical fluid chromatography coupling with ion-trap and time-of-flight tandem mass spectrometry. J Pharm Biomed Anal 2018; 157:145-155. [PMID: 29800902 DOI: 10.1016/j.jpba.2018.05.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/16/2018] [Accepted: 05/16/2018] [Indexed: 01/10/2023]
Abstract
Isosteviol sodium (STV-Na) was reported to possess significant protective effects on ischemic stroke in recent years. However, the protective mechanism of STV-Na against stroke was still unclear. In this work, an untargeted lipidomics approach based on the ultra high-performance supercritical fluid chromatography coupling with ion-trap and time-of-flight tandem mass spectrometry (UHSFC-IT-TOF/MS) was employed to investigate the lipid profiles of stroke rats with STV-Na treatment for the first time. The possible mechanism of STV-Na was further elucidated. The UHSFC-IT-TOF/MS-based method achieved a fast separation of various lipids within 9 min with a qualified repeatability. Multivariate statistical analysis was used to show differences in lipid profiles induced by stroke and STV-Na treatment. The results showed a clear separation of the model group and the sham group, with the STV-Na group as well as EDA group located much closer to the sham group than the model group, which was consistent with the results of physiological and pathological assays, indicating the protective effects of STV-Na. Fifteen differential lipids that presented significant differences between the sham group and the model group were screened and identified. With the treatment of STV-Na, 15 differential lipids in stroke rats showed a tendency to the normal levels. Among them, 6 lipids were significantly reversed to the normal levels by STV-Na. The results of pathway analysis suggested the protective effects of STV-Na might be related to the regulation of several metabolic pathways including glycerophospholipid metabolism, arachidonic acid metabolism and sphingolipid metabolism. This work demonstrated that the UHSFC-IT-TOF/MS-based lipidomics profiling method was a useful tool to investigate the protective effects of STV-Na against stroke.
Collapse
Affiliation(s)
- Yang Yang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Qisheng Zhong
- Shimadzu (China) Corporation, Guangzhou branch, 510010, China
| | - Hao Zhang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Canlong Mo
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Jinting Yao
- Shimadzu (China) Corporation, Guangzhou branch, 510010, China
| | - Taohong Huang
- Shimadzu (China) Corporation, Shanghai branch, 200233, China
| | - Ting Zhou
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China.
| | - Wen Tan
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
259
|
Choi JI, Ha SK, Lim DJ, Kim SD, Kim SH. S100ß, Matrix Metalloproteinase-9, D-dimer, and Heat Shock Protein 70 Are Serologic Biomarkers of Acute Cerebral Infarction in a Mouse Model of Transient MCA Occlusion. J Korean Neurosurg Soc 2018; 61:548-558. [PMID: 29724092 PMCID: PMC6129755 DOI: 10.3340/jkns.2017.0200] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 10/08/2017] [Indexed: 11/27/2022] Open
Abstract
Objective Diagnosing acute cerebral infarction is crucial in determining prognosis of stroke patients. Although many serologic tests for prompt diagnosis are available, the clinical application of serologic tests is currently limited. We investigated whether S100β, matrix metalloproteinase-9 (MMP-9), D-dimer, and heat shock protein 70 (HSP70) can be used as biomarkers for acute cerebral infarction.
Methods Focal cerebral ischemia was induced using the modified intraluminal filament technique. Mice were randomly assigned to 30-minute occlusion (n=10), 60-minute occlusion (n=10), or sham (n=5) groups. Four hours later, neurological deficits were evaluated and blood samples were obtained. Infarction volumes were calculated and plasma S100β, MMP-9, D-dimer, and HSP70 levels were measured using enzyme-linked immunosorbent assay.
Results The average infarction volume was 12.32±2.31 mm3 and 46.9±7.43 mm3 in the 30- and 60-minute groups, respectively. The mean neurological score in the two ischemic groups was 1.6±0.55 and 3.2±0.70, respectively. S100β, MMP-9, and HSP70 expressions significantly increased after 4 hours of ischemia (p=0.001). Furthermore, S100β and MMP-9 expressions correlated with infarction volumes (p<0.001) and neurological deficits (p<0.001). There was no significant difference in D-dimer expression between groups (p=0.843). The area under the receiver operating characteristic curve (AUC) showed high sensitivity and specificity for MMP-9, HSP70 (AUC=1), and S100β (AUC=0.98).
Conclusion S100β, MMP-9, and HSP70 can complement current diagnostic tools to assess cerebral infarction, suggesting their use as potential biomarkers for acute cerebral infarction.
Collapse
Affiliation(s)
- Jong-Il Choi
- Department of Neurosurgery, Hallym University Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| | - Sung-Kon Ha
- Department of Neurosurgery, Korea University Medical Center, Seoul, Korea
| | - Dong-Jun Lim
- Department of Neurosurgery, Korea University Medical Center, Seoul, Korea
| | - Sang-Dae Kim
- Department of Neurosurgery, Korea University Medical Center, Seoul, Korea
| | - Se-Hoon Kim
- Department of Neurosurgery, Korea University Medical Center, Seoul, Korea
| |
Collapse
|
260
|
Xu X, Bass B, McKillop WM, Mailloux J, Liu T, Geremia NM, Hryciw T, Brown A. Sox9 knockout mice have improved recovery following stroke. Exp Neurol 2018; 303:59-71. [DOI: 10.1016/j.expneurol.2018.02.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 12/13/2017] [Accepted: 02/04/2018] [Indexed: 12/17/2022]
|
261
|
Bay V, Kjølby BF, Iversen NK, Mikkelsen IK, Ardalan M, Nyengaard JR, Jespersen SN, Drasbek KR, Østergaard L, Hansen B. Stroke infarct volume estimation in fixed tissue: Comparison of diffusion kurtosis imaging to diffusion weighted imaging and histology in a rodent MCAO model. PLoS One 2018; 13:e0196161. [PMID: 29698450 PMCID: PMC5919652 DOI: 10.1371/journal.pone.0196161] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 04/06/2018] [Indexed: 12/12/2022] Open
Abstract
Diffusion kurtosis imaging (DKI) is a new promising MRI technique with microstructural sensitivity superior to conventional diffusion tensor (DTI) based methods. In stroke, considerable mismatch exists between the infarct lesion outline obtained from the two methods, kurtosis and diffusion tensor derived metrics. We aim to investigate if this mismatch can be examined in fixed tissue. Our investigation is based on estimates of mean diffusivity (MD) and mean (of the) kurtosis tensor (MKT) obtained using recent fast DKI methods requiring only 19 images. At 24 hours post stroke, rat brains were fixed and prepared. The infarct was clearly visible in both MD and MKT maps. The MKT lesion volume was roughly 31% larger than the MD lesion volume. Subsequent histological analysis (hematoxylin) revealed similar lesion volumes to MD. Our study shows that structural components underlying the MD/MKT mismatch can be investigated in fixed tissue and therefore allows a more direct comparison between lesion volumes from MRI and histology. Additionally, the larger MKT infarct lesion indicates that MKT do provide increased sensitivity to microstructural changes in the lesion area compared to MD.
Collapse
Affiliation(s)
- Vibeke Bay
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Risskov, Denmark
| | - Birgitte F. Kjølby
- Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Nina K. Iversen
- Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Irene K. Mikkelsen
- Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Maryam Ardalan
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Risskov, Denmark
- Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Jens R. Nyengaard
- Core Center for Molecular Morphology, Section for Stereology and Microscopy, Centre for Stochastic Geometry and Advanced Bioimaging, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Sune N. Jespersen
- Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark
| | - Kim R. Drasbek
- Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Leif Østergaard
- Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Brian Hansen
- Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- * E-mail:
| |
Collapse
|
262
|
Huang JL, Liu WW, Sun XJ. Hydrogen inhalation improves mouse neurological outcomes after cerebral ischemia/reperfusion independent of anti-necroptosis. Med Gas Res 2018; 8:1-5. [PMID: 29770189 PMCID: PMC5937297 DOI: 10.4103/2045-9912.229596] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
This study aimed to investigate the role of necroptosis in the neuroprotection of hydrogen in a mouse model of cerebral ischemia/reperfusion (I/R) injury. C57BL mice were randomly divided into sham group, I/R group, hydrogen/oxygen group (HO), nitrogen/oxygen group (NO). Middle cerebral artery occlusion (MCAO) for 1 hour followed by reperfusion was introduced to animals which were allowed to inhale 66.7% hydrogen/33.3% oxygen for 90 minutes since the beginning of reperfusion. Mice in NO group inhaled 66.7% nitrogen/33.3% oxygen. 24 hours after MCAO, brain infarction, brain water content and neurological function were evaluated. The protein expression of mixed lineage kinase domain like protein (MLKL) was detected at 3, 6, 12, 24 and 72 hours after reperfusion in HO group and the protein and mRNA expression of MLKL at 24 hours after MCAO in four groups. Hydrogen inhalation significantly reduced infarct volume, attenuated brain edema and improved neurobehavioral deficit in MCAO mice. The MLKL expression increased after MCAO and peaked at 6-24 hours after reperfusion. However, hydrogen inhalation had no significant effect on the MLKL expression at transcriptional and translational levels after MCAO. This study indicates high concentration hydrogen improves mouse neurological outcome after cerebral I/R injury independent of anti-necroptosis.
Collapse
Affiliation(s)
- Jun-Long Huang
- Department of Navy Aeromedicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China.,Department of Diving and Hyperbaric Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Wen-Wu Liu
- Department of Diving and Hyperbaric Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Xue-Jun Sun
- Department of Navy Aeromedicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| |
Collapse
|
263
|
Irvine KA, Bishop RK, Won SJ, Xu J, Hamel KA, Coppes V, Singh P, Sondag A, Rome E, Basu J, Cittolin-Santos GF, Panter SS, Swanson RA. Effects of Veliparib on Microglial Activation and Functional Outcomes after Traumatic Brain Injury in the Rat and Pig. J Neurotrauma 2018; 35:918-929. [PMID: 29285982 DOI: 10.1089/neu.2017.5044] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The inflammation response induced by brain trauma can impair recovery. This response requires several hours to develop fully and thus provides a clinically relevant therapeutic window of opportunity. Poly(ADP-ribose) polymerase inhibitors suppress inflammatory responses, including brain microglial activation. We evaluated delayed treatment with veliparib, a poly(ADP-ribose) polymerase inhibitor, currently in clinical trials as a cancer therapeutic, in rats and pigs subjected to controlled cortical impact (CCI). In rats, CCI induced a robust inflammatory response at the lesion margins, scattered cell death in the dentate gyrus, and a delayed, progressive loss of corpus callosum axons. Pre-determined measures of cognitive and motor function showed evidence of attentional deficits that resolved after three weeks and motor deficits that recovered only partially over eight weeks. Veliparib was administered beginning 2 or 24 h after CCI and continued for up to 12 days. Veliparib suppressed CCI-induced microglial activation at doses of 3 mg/kg or higher and reduced reactive astrocytosis and cell death in the dentate gyrus, but had no significant effect on delayed axonal loss or functional recovery. In pigs, CCI similarly induced a perilesional microglial activation that was attenuated by veliparib. CCI in the pig did not, however, induce detectable persisting cognitive or motor impairment. Our results showed veliparib suppression of CCI-induced microglial activation with a delay-to-treatment interval of at least 24 h in both rats and pigs, but with no associated functional improvement. The lack of improvement in long-term recovery underscores the complexities in translating anti-inflammatory effects to clinically relevant outcomes.
Collapse
Affiliation(s)
- Karen-Amanda Irvine
- Department of Neurology University of California San Francisco, and San Francisco Veterans Affairs Medical Center; San Francisco, California
| | - Robin K Bishop
- Department of Neurology University of California San Francisco, and San Francisco Veterans Affairs Medical Center; San Francisco, California
| | - Seok Joon Won
- Department of Neurology University of California San Francisco, and San Francisco Veterans Affairs Medical Center; San Francisco, California
| | - Jianguo Xu
- Department of Neurology University of California San Francisco, and San Francisco Veterans Affairs Medical Center; San Francisco, California.,Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, People's Republic of China
| | - Katherine A Hamel
- Department of Neurological Surgery University of California San Francisco, and San Francisco Veterans Affairs Medical Center; San Francisco, California
| | - Valerie Coppes
- Department of Neurological Surgery University of California San Francisco, and San Francisco Veterans Affairs Medical Center; San Francisco, California
| | - Pardeep Singh
- Department of Neurology University of California San Francisco, and San Francisco Veterans Affairs Medical Center; San Francisco, California
| | - Andrew Sondag
- Department of Neurology University of California San Francisco, and San Francisco Veterans Affairs Medical Center; San Francisco, California
| | - Eric Rome
- Department of Neurology University of California San Francisco, and San Francisco Veterans Affairs Medical Center; San Francisco, California
| | - Jayinee Basu
- Department of Neurology University of California San Francisco, and San Francisco Veterans Affairs Medical Center; San Francisco, California
| | - Giordano Fabricio Cittolin-Santos
- Department of Neurology University of California San Francisco, and San Francisco Veterans Affairs Medical Center; San Francisco, California.,Programa de Pós Graduação em Ciências Biológicas: Bioquímica, UFRGS, Porto Alegre, Brazil; and Science Without Borders, CNPq, Brasilia, Brazil
| | - S Scott Panter
- Department of Neurological Surgery University of California San Francisco, and San Francisco Veterans Affairs Medical Center; San Francisco, California
| | - Raymond A Swanson
- Department of Neurology University of California San Francisco, and San Francisco Veterans Affairs Medical Center; San Francisco, California
| |
Collapse
|
264
|
Chen N, Chopp M, Xiong Y, Qian JY, Lu M, Zhou D, He L, Liu Z. Subacute intranasal administration of tissue plasminogen activator improves stroke recovery by inducing axonal remodeling in mice. Exp Neurol 2018. [PMID: 29518364 DOI: 10.1016/j.expneurol.2018.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In addition to thrombolysis, tissue plasminogen activator (tPA) can evoke neurorestorative processes. We therefore investigated the therapeutic effect of subacute intranasal administration of tPA post stroke on neurological recovery and on corticospinal innervation in mice. A transgenic mouse line, in which the pyramidal neurons and corticospinal tract (CST) axons are specifically labeled by yellow fluorescent protein (YFP) was employed. Adult CST-YFP mice were subjected to right unilateral middle cerebral artery occlusion (MCAo), and were randomly divided into groups treated with saline or tPA intranasally in the subacute phase. Pseudorabies virus (PRV)-614-monomeric red fluorescent protein (RFP) was injected into the left forelimb. The cervical spinal cord and brain were processed for fluorescent microscopy to detect YFP and RFP labeling. Primary embryonic neurons were cultured with tPA at different concentrations. Neurite length and branch numbers were then measured. In vivo, subacute tPA treatment significantly enhanced functional recovery (p < 0.05), and increased CST density in the denervated gray matter, and in the numbers of PRV-labeled neurons in bilateral cortices. The behavioral performance was significantly correlated with axonal density in the denervated spinal cord. In vitro, both neurite length and branch numbers significantly increased with concentration of tPA (p < 0.05). Our results demonstrate that tPA dose-dependently increases neurite outgrowth and branching of cultured cortical neurons. Subacute intranasal administration of tPA may provide enhance neurological recovery after stroke by promoting CST axonal remodeling.
Collapse
Affiliation(s)
- Ning Chen
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, Sichuan, PR China; Department of Neurology, Henry Ford Hospital, Detrot, MI, United States
| | - Michael Chopp
- Department of Neurology, Henry Ford Hospital, Detrot, MI, United States; Department of Physics, Oakland University, Rochester, MI, United States
| | - Ye Xiong
- Department of Neurosurgery, Henry Ford Hospital, Detroit, MI, United States
| | - Jian-Yong Qian
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, Sichuan, PR China
| | - Mei Lu
- Biostatistics and Research Epidemiology, Henry Ford Hospital, Detroit, MI, United States
| | - Dong Zhou
- Department of Neurology, Henry Ford Hospital, Detrot, MI, United States
| | - Li He
- Department of Neurology, Henry Ford Hospital, Detrot, MI, United States.
| | - Zhongwu Liu
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, Sichuan, PR China.
| |
Collapse
|
265
|
Yamamoto Y, Hosoda K, Imahori T, Tanaka J, Matsuo K, Nakai T, Irino Y, Shinohara M, Sato N, Sasayama T, Tanaka K, Nagashima H, Kohta M, Kohmura E. Pentose phosphate pathway activation via HSP27 phosphorylation by ATM kinase: A putative endogenous antioxidant defense mechanism during cerebral ischemia-reperfusion. Brain Res 2018; 1687:82-94. [PMID: 29510140 DOI: 10.1016/j.brainres.2018.03.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 02/24/2018] [Accepted: 03/01/2018] [Indexed: 11/19/2022]
Abstract
Molecular mechanism underlying ischemic stroke remains poorly understood. We previously reported glucose 6-phosphate dehydrogenase (G6PD) activity in pentose phosphate pathway (PPP) is activated via heat shock protein 27 (HSP27) phosphorylation at serine 85 (S85) by ataxia telangiectasia mutated (ATM) kinase during cerebral ischemia. This mechanism seems to be endogenous antioxidative system. To determine whether this system also works during reperfusion, we performed comparative metabolic analysis of reperfusion effect on metabolism in rat cortex using middle cerebral artery occlusion (MCAO). Metabolic profiling using gas-chromatography/mass-spectrometry analysis showed changes in metabolic state that depended on reperfusion time. Enrichment analysis showed PPP was significantly upregulated during ischemia-reperfusion. Significant increases in fructose 6-phosphate and ribulose 5-phosphate after reperfusion also suggested enhancement of PPP. In relation to PPP, ischemia-reperfusion induced an increase of up to 69-fold in HSP27 transcripts after 24-h reperfusion. Immunoblotting showed gradual increase in HSP27 protein and marked increase in HSP27 phosphorylation (S85) that were time-dependent (4.5-fold after 24-h reperfusion). G6PD activity was significantly elevated after 1-h MCAO (20%), reduced after 1-h reperfusion, increased gradually thereafter and significantly elevated after 24-h reperfusion. The NADPH/NAD+ ratio displayed similar increasing pattern. Intracerebroventricular injection of ATM kinase inhibitor (KU-55933) significantly reduced HSP27 phosphorylation and G6PD activity, significantly increased protein carbonyl, and resulted in increase in infarct size (100%) 24-h after reperfusion following 90-min MCAO. Consequently, G6PD activation via HSP27 phosphorylation by ATM kinase may be part of endogenous antioxidant defense neuroprotection mechanism that is activated during ischemia-reperfusion. These findings have important implications for treatment of stroke.
Collapse
Affiliation(s)
- Yusuke Yamamoto
- Department of Neurosurgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Kohkichi Hosoda
- Department of Neurosurgery, Kobe City Nishi-Kobe Medical Center, 5-7-1, Kojidai, Nishi-ku, Kobe 651-2273, Japan.
| | - Taichiro Imahori
- Department of Neurosurgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Jun Tanaka
- Department of Neurosurgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Kazuya Matsuo
- Department of Neurosurgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Tomoaki Nakai
- Department of Neurosurgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Yasuhiro Irino
- Division of Evidence-based Laboratory Medicine, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Masakazu Shinohara
- Division of Epidemiology, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Naoko Sato
- Department of Neurosurgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Takashi Sasayama
- Department of Neurosurgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Kazuhiro Tanaka
- Department of Neurosurgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Hiroaki Nagashima
- Department of Neurosurgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Masaaki Kohta
- Department of Neurosurgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Eiji Kohmura
- Department of Neurosurgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| |
Collapse
|
266
|
Wei ZZ, Zhang JY, Taylor TM, Gu X, Zhao Y, Wei L. Neuroprotective and regenerative roles of intranasal Wnt-3a administration after focal ischemic stroke in mice. J Cereb Blood Flow Metab 2018; 38:404-421. [PMID: 28430000 PMCID: PMC5851145 DOI: 10.1177/0271678x17702669] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 02/27/2017] [Accepted: 03/01/2017] [Indexed: 01/31/2023]
Abstract
Wnt signaling is a conserved pathway involved in expansion of neural progenitors and lineage specification during development. However, the role of Wnt signaling in the post-stroke brain has not been well-elucidated. We hypothesized that Wnt-3a would play an important role for neurogenesis and brain repair. Adult male mice were subjected to a focal ischemic stroke targeting the sensorimotor cortex. Mice that received Wnt-3a (2 µg/kg/day, 1 h after stroke and once a day for the next 2 days, intranasal delivery) had reduced infarct volume compared to stroke controls. Wnt-3a intranasal treatment of seven days upregulated the expression of brain-derived growth factor (BDNF), increased the proliferation and migration of neuroblasts from the subventricular zone (SVZ), resulting in increased numbers of newly formed neurons and endothelial cells in the peri-infarct zone. Both the molecular and cellular effects of Wnt-3a were blocked by the Wnt specific inhibitors XAV-939 or Dkk-1. In functional assays, Wnt-3a treatment enhanced the local cerebral blood flow (LCBF) in the peri-infarct, as well as improved sensorimotor functions in a battery of behavioral tests. Together, our data demonstrates that the Wnt-3a signaling can act as a dual neuroprotective and regenerative factor for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Zheng Zachory Wei
- Laboratories of Stem Cell Biology and Regenerative Medicine, Experimental Research Center and Neurological Disease Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA
| | - James Ya Zhang
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Tammi M Taylor
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Xiaohuan Gu
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Yingying Zhao
- Laboratories of Stem Cell Biology and Regenerative Medicine, Experimental Research Center and Neurological Disease Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Ling Wei
- Laboratories of Stem Cell Biology and Regenerative Medicine, Experimental Research Center and Neurological Disease Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
267
|
DeMars KM, McCrea AO, Siwarski DM, Sanz BD, Yang C, Candelario-Jalil E. Protective Effects of L-902,688, a Prostanoid EP4 Receptor Agonist, against Acute Blood-Brain Barrier Damage in Experimental Ischemic Stroke. Front Neurosci 2018. [PMID: 29527151 PMCID: PMC5829545 DOI: 10.3389/fnins.2018.00089] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Ischemic stroke occurs when a clot forms in the brain vasculature that starves downstream tissue of oxygen and nutrients resulting in cell death. The tissue immediately downstream of the blockage, the core, dies within minutes, but the surrounding tissue, the penumbra is potentially salvageable. Prostaglandin E2 binds to four different G-protein coupled membrane receptors EP1–EP4 mediating different and sometimes opposing responses. Pharmacological activation of the EP4 receptor has already been established as neuroprotective in stroke, but the mechanism(s) of protection are not well-characterized. In this study, we hypothesized that EP4 receptor activation reduces ischemic brain injury by reducing matrix metalloproteinase (MMP)-3/-9 production and blood-brain barrier (BBB) damage. Rats underwent transient ischemic stroke for 90 min. Animals received an intravenous injection of either the vehicle or L-902,688, a highly specific EP4 agonist, at the onset of reperfusion. Brain tissue was harvested at 24 h. We established a dose-response curve and used the optimal dose that resulted in the greatest infarct reduction to analyze BBB integrity compared to vehicle-treated rats. The presence of IgG, a blood protein, in the brain parenchyma is a marker of BBB damage, and L-902,688 (1 mg/kg; i.v.) dramatically reduced IgG extravasation (P < 0.05). Consistent with these data, we assessed zona occludens-1 and occludin, tight junction proteins integral to the maintenance of the BBB, and found reduced degradation with L-902,688 administration. With immunoblotting, qRT-PCR, and/or a fluorescence resonance energy transfer (FRET)-based activity assay, we next measured MMP-3/-9 since they are key effectors of BBB breakdown in stroke. In the cerebral cortex, not only was MMP-3 activity significantly decreased (P < 0.05), but L-902,688 treatment also reduced MMP-9 mRNA, protein, and enzymatic activity (P < 0.001). In addition, post-ischemic administration of the EP4 agonist significantly reduced pro-inflammatory cytokines IL-1β (P < 0.05) and IL-6 (P < 0.01) in the ischemic cerebral cortex. Most importantly, one injection of L-902,688 (1 mg/kg; i.v) at the onset of reperfusion significantly reduces neurological deficits up to 3 weeks later (P < 0.05). Our data show for the first time that pharmacological activation of EP4 with L-902,688 is neuroprotective in ischemic stroke by reducing MMP-3/-9 and BBB damage.
Collapse
Affiliation(s)
- Kelly M DeMars
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Austin O McCrea
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - David M Siwarski
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Brian D Sanz
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Changjun Yang
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Eduardo Candelario-Jalil
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| |
Collapse
|
268
|
Mo JL, Liu Q, Kou ZW, Wu KW, Yang P, Chen XH, Sun FY. MicroRNA-365 modulates astrocyte conversion into neuron in adult rat brain after stroke by targeting Pax6. Glia 2018; 66:1346-1362. [PMID: 29451327 PMCID: PMC6001668 DOI: 10.1002/glia.23308] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 01/18/2018] [Accepted: 01/29/2018] [Indexed: 01/01/2023]
Abstract
Reactive astrocytes induced by ischemia can transdifferentiate into mature neurons. This neurogenic potential of astrocytes may have therapeutic value for brain injury. Epigenetic modifications are widely known to involve in developmental and adult neurogenesis. PAX6, a neurogenic fate determinant, contributes to the astrocyte‐to‐neuron conversion. However, it is unclear whether microRNAs (miRs) modulate PAX6‐mediated astrocyte‐to‐neuron conversion. In the present study we used bioinformatic approaches to predict miRs potentially targeting Pax6, and transient middle cerebral artery occlusion (MCAO) to model cerebral ischemic injury in adult rats. These rats were given striatal injection of glial fibrillary acidic protein targeted enhanced green fluorescence protein lentiviral vectors (Lv‐GFAP‐EGFP) to permit cell fate mapping for tracing astrocytes‐derived neurons. We verified that miR‐365 directly targets to the 3′‐UTR of Pax6 by luciferase assay. We found that miR‐365 expression was significantly increased in the ischemic brain. Intraventricular injection of miR‐365 antagomir effectively increased astrocytic PAX6 expression and the number of new mature neurons derived from astrocytes in the ischemic striatum, and reduced neurological deficits as well as cerebral infarct volume. Conversely, miR‐365 agomir reduced PAX6 expression and neurogenesis, and worsened brain injury. Moreover, exogenous overexpression of PAX6 enhanced the astrocyte‐to‐neuron conversion and abolished the effects of miR‐365. Our results demonstrate that increase of miR‐365 in the ischemic brain inhibits astrocyte‐to‐neuron conversion by targeting Pax6, whereas knockdown of miR‐365 enhances PAX6‐mediated neurogenesis from astrocytes and attenuates neuronal injury in the brain after ischemic stroke. Our findings provide a foundation for developing novel therapeutic strategies for brain injury.
Collapse
Affiliation(s)
- Jia-Lin Mo
- Department of Neurobiology and State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Qi Liu
- Department of Neurobiology and State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Zeng-Wei Kou
- Department of Neurobiology and State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Kun-Wei Wu
- Department of Neurobiology and State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Institute for Basic Research on Aging and Medicine, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Ping Yang
- Department of Neurobiology and State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xian-Hua Chen
- Department of Neurobiology and State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Feng-Yan Sun
- Department of Neurobiology and State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Shanghai Key Laboratory of Clinical Geriatric Medicine, Research Center on Aging and Medicine, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Institute for Basic Research on Aging and Medicine, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| |
Collapse
|
269
|
Yang J, Qi J, Xiu B, Yang B, Niu C, Yang H. Reactive Oxygen Species Play a Biphasic Role in Brain Ischemia. J INVEST SURG 2018; 32:97-102. [PMID: 29420085 DOI: 10.1080/08941939.2017.1376131] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Jiping Yang
- Department of Medical Imaging, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Jinchong Qi
- Department of Medical Imaging, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Baoxin Xiu
- Department of Medical Imaging, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Bei Yang
- Department of Medical Imaging, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Caihong Niu
- Department of Medical Imaging, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Hua Yang
- Department of Medical Imaging, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| |
Collapse
|
270
|
Ahmadi-Eslamloo H, Dehghani GA, Moosavi SMS. Long-term treatment of diabetic rats with vanadyl sulfate or insulin attenuate acute focal cerebral ischemia/reperfusion injury via their antiglycemic effect. Metab Brain Dis 2018; 33:225-235. [PMID: 29151151 DOI: 10.1007/s11011-017-0153-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 11/14/2017] [Indexed: 02/01/2023]
Abstract
It is well-known that patients with diabetes mellitus have worse clinical outcomes following acute ischemic stroke. The intensifying effects of diabetes on ischemic brain injury have been shown to be mostly due to hyperglycemia, rather than the lack of insulin direct effects on brain. It is also well-approved that vanadium compounds have insulin-like and anti-diabetic effects, and the present study was designed to compare the protective effects of diabetes treatment with vanadium or insulin on ischemic/reperfused brain injury. Male Sprague-Dawley rats were divided into 4 groups (n = 21). Two groups of streptozotocin-induced diabetic rats were treated with either vanadyl sulfate or insulin at proper doses to similarly attenuate hyperglycemia during 45 days, while there was no treatment in the control diabetic and non-diabetic sham groups. Thereafter, all treated and non-treated diabetic rats were subjected to 60-min of the right middle cerebral artery occlusion followed by 12-h reperfusion, and then their brains were removed for evaluating blood-brain barrier leakage, tissue swelling, infarct size and oxidant status in both hemispheres. Vanadium and insulin that equally reduced blood glucose and water intake had some differences in their antidiabetic effects of ameliorating weight loss and hypertension during 45-days treatment period. However, they caused similar decrements in levels of Evans blue dye extravastion, edema, infarct volume and malondialdehyde in ischemic/reperfused cerebral hemisphere. Therefore, it can be suggested that insulin and vanadium via their antiglycemic effect cause reduction in cerebral production of oxidants following acute focal ischemia/reperfusion, which attenuate BBB disruption and brain tissue injury.
Collapse
Affiliation(s)
- Hossein Ahmadi-Eslamloo
- Department of Physiology, The Medical School, Shiraz University of Medical Sciences, Shiraz, 71365-1689, Iran
| | - Gholam Abbas Dehghani
- Department of Physiology, The Medical School, Shiraz University of Medical Sciences, Shiraz, 71365-1689, Iran
| | - Seyed Mostafa Shid Moosavi
- Department of Physiology, The Medical School, Shiraz University of Medical Sciences, Shiraz, 71365-1689, Iran.
- Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
271
|
Changes in resting-state functional connectivity after stroke in a mouse brain lacking extracellular matrix components. Neurobiol Dis 2018; 112:91-105. [PMID: 29367009 DOI: 10.1016/j.nbd.2018.01.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 12/26/2017] [Accepted: 01/17/2018] [Indexed: 12/30/2022] Open
Abstract
In the brain, focal ischemia results in a local region of cell death and disruption of both local and remote functional neuronal networks. Tissue reorganization following stroke can be limited by factors such as extracellular matrix (ECM) molecules that prevent neuronal growth and synaptic plasticity. The brain's ECM plays a crucial role in network formation, development, and regeneration of the central nervous system. Further, the ECM is essential for proper white matter tract development and for the formation of structures called perineuronal nets (PNNs). PNNs mainly surround parvalbumin/GABA inhibitory interneurons, of importance for processing sensory information. Previous studies have shown that downregulating PNNs after stroke reduces the neurite-inhibitory environment, reactivates plasticity, and promotes functional recovery. Resting-state functional connectivity (RS-FC) within and across hemispheres has been shown to correlate with behavioral recovery after stroke. However, the relationship between PNNs and RS-FC has not been examined. Here we studied a quadruple knock-out mouse (Q4) that lacks four ECM components: brevican, neurocan, tenascin-C and tenascin-R. We applied functional connectivity optical intrinsic signal (fcOIS) imaging in Q4 mice and wild-type (129S1 mice) before and 14 days after photothrombotic stroke (PT) to understand how the lack of crucial ECM components affects neuronal networks and functional recovery after stroke. Limb-placement ability was evaluated at 2, 7 and 14 days of recovery through the paw-placement test. Q4 mice exhibited significantly impaired homotopic RS-FC compared to wild-type mice, especially in the sensory and parietal regions. Changes in RS-FC were significantly correlated with the number of interhemispheric callosal crossings in those same regions. PT caused unilateral damage to the sensorimotor cortex and deficits of tactile-proprioceptive placing ability in contralesional fore- and hindlimbs, but the two experimental groups did not present significant differences in infarct size. Two weeks after PT, a general down-scaling of regional RS-FC as well as the number of regional functional connections was visible for all cortical regions and most notable in the somatosensory areas of both Q4 and wild-type mice. Q4 mice exhibited higher intrahemispheric RS-FC in contralesional sensory and motor cortices compared to control mice. We propose that the lack of growth inhibiting ECM components in the Q4 mice potentially worsen behavioral outcome in the early phase after stroke, but subsequently facilitates modulation of contralesional RS-FC which is relevant for recovery of sensory motor function. We conclude that Q4 mice represent a valuable model to study how the elimination of ECM genes compromises neuronal function and plasticity mechanisms after stroke.
Collapse
|
272
|
Park BN, Yoon JK, An YS. Bone marrow mesenchymal stem cell transplantation in acute brain trauma. Nuklearmedizin 2018; 52:192-7. [DOI: 10.3413/nukmed-0543-12-11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 05/06/2013] [Indexed: 01/22/2023]
Abstract
SummaryAim: This study was performed to evaluate the effects of intravenously transplanted rat bone-marrow derived mesenchymal stem cells (rBMSCs) in an acute brain trauma model using serial 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET) in rat models. Animals, methods: Trauma models were made using a controlled cortical impact injury device. The stem cell treatment group was treated with intravenous injections of BMSCs, and models without stem cell therapy comprised the control group. Serial 18F-FDG PET images were obtained 1, 7, 14, 21, and 28 days after trauma. The difference in 18F-FDG uptake between day 1 and each time point after trauma was analyzed with SPM2 (uncorrected p < 0.005). Results: The stem cell treatment group demonstrated significantly higher 18F-FDG uptake in the right parietal region at 14 days after trauma than at 1 day after trauma. An increase in glucose metabolism in the right parietal cortex appeared on days 21 and 28 after trauma in the group without stem cell treatment. The 18F-FDG uptake in the brain was improved over a broader area, including the right parietal and right primary somatosensory cortex, on days 21 and 28 after trauma in the stem cell treatment group compared with the group without stem cell treatment. Conclusion: BMSC therapy in trauma models led to improved glucose metabolism. This result might support the therapeutic effect of stem cells in brain trauma.
Collapse
|
273
|
Zhang Y, Chopp M, Emanuele M, Zhang L, Zhang ZG, Lu M, Zhang T, Mahmood A, Xiong Y. Treatment of Traumatic Brain Injury with Vepoloxamer (Purified Poloxamer 188). J Neurotrauma 2018; 35:661-670. [PMID: 29121826 DOI: 10.1089/neu.2017.5284] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Vepoloxamer is an amphipathic polymer that has shown potent hemorrheologic, cytoprotective, and anti-inflammatory effects in both pre-clinical and clinical studies. This study was designed to investigate the therapeutic effects of vepoloxamer on sensorimotor and cognitive functional recovery in rats after traumatic brain injury (TBI) induced by controlled cortical impact. Young adult male Wistar rats were randomly divided into the following groups: 1) sham; 2) saline; or 3) vepoloxamer. Vepoloxamer (300 mg/kg) or saline was administered over 60 min via intravenous infusion into tail veins starting at 2 h post-injury. Sensorimotor function and spatial learning were assessed using a modified neurological severity score and foot fault test, and Morris water maze test, respectively. The animals were sacrificed 35 days after injury and their brains were processed for measurement of lesion volume and neuroinflammation. Compared with the saline treatment, vepoloxamer initiated 2 h post-injury significantly improved sensorimotor functional recovery (Days 1-35; p < 0.0001) and spatial learning (Days 32-35; p < 0.0001), reduced cortical lesion volume by 20%, and reduced activation of microglia/macrophages and astrogliosis in many brain regions including injured cortex, corpus callosum, and hippocampus, as well as normalized the bleeding time and reduced brain hemorrhage and microthrombosis formation. In summary, vepoloxamer treatment initiated 2 h post-injury provides neuroprotection and anti-inflammation in rats after TBI and improves functional outcome, indicating that vepoloxamer treatment may have potential value for treatment of TBI. Further investigation of the optimal dose and therapeutic window of vepoloxamer treatment for TBI and the mechanisms underlying beneficial effects are warranted.
Collapse
Affiliation(s)
- Yanlu Zhang
- 1 Department of Neurosurgery, Henry Ford Hospital , Detroit, Michigan
| | - Michael Chopp
- 2 Department of Neurology, Henry Ford Hospital , Detroit, Michigan.,3 Department of Physics, Oakland University , Rochester, Michigan
| | | | - Li Zhang
- 2 Department of Neurology, Henry Ford Hospital , Detroit, Michigan
| | - Zheng Gang Zhang
- 2 Department of Neurology, Henry Ford Hospital , Detroit, Michigan
| | - Mei Lu
- 5 Department of Biostatistics and Research Epidemiology, Henry Ford Hospital , Detroit, Michigan
| | - Talan Zhang
- 5 Department of Biostatistics and Research Epidemiology, Henry Ford Hospital , Detroit, Michigan
| | - Asim Mahmood
- 1 Department of Neurosurgery, Henry Ford Hospital , Detroit, Michigan
| | - Ye Xiong
- 1 Department of Neurosurgery, Henry Ford Hospital , Detroit, Michigan
| |
Collapse
|
274
|
Knauss S, Endres M, Blaschke F, Hindinger C, Kunz A. Oral administration of a novel lipophilic PPARδ agonist is not neuroprotective after rodent cerebral ischemia. J Cereb Blood Flow Metab 2018; 38:174-185. [PMID: 29160120 PMCID: PMC5757448 DOI: 10.1177/0271678x17743876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Peroxisome proliferator-activated receptors are regulators of inflammatory signaling. This has fostered hope that PPAR agonists might have neuroprotective potential. We hypothesized that PPARδ activation by the novel orally administered lipophilic PPARδ agonist SAR145 may improve short- and long-term outcome after focal brain ischemia. We induced ischemia by transient filamentous middle cerebral artery occlusion (MCAo) in 227 C57BL/6 mice and administered SAR145 in varying doses and time windows post-injury. Outcome was assessed by three functional tests and histologically determining ischemic lesion sizes. In a second experiment, we tested SAR145 treatment in 40 PPARδ-knockout mice using the same procedures. Three independent groups treated with 10 mg/kg bodyweight SAR145 directly after filament removal showed a mean reduction in lesion sizes of 18 ± 10% compared to vehicle-treated groups. We did not observe a consistent improvement in the long-term functional outcome by SAR145-treatment. PPARδ-knockout mice showed a significantly higher mortality after MCAo. As expected, we did not find a reduction of lesion size by SAR145-treatment in PPARδ-knockout mice. In summary, we found no evidence of a long-term neuroprotective effect of post-injury SAR145 treatment in cerebral ischemia. However, PPARδ appears to play a pathophysiologic role in acute infarct development and overall mortality after brain ischemia.
Collapse
Affiliation(s)
- Samuel Knauss
- 1 Department of Experimental Neurology, 68146 Charité - Universitätsmedizin Berlin , corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,2 Center for Stroke Research Berlin, 68146 Charité - Universitätsmedizin Berlin , corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Matthias Endres
- 1 Department of Experimental Neurology, 68146 Charité - Universitätsmedizin Berlin , corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,2 Center for Stroke Research Berlin, 68146 Charité - Universitätsmedizin Berlin , corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,3 German Centre for Cardiovascular Research (DZHK), Berlin, Germany.,4 German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany.,5 Berlin Institute of Health (BIH), Berlin, Germany
| | - Florian Blaschke
- 6 Division of Cardiology, 72217 Charité - Universitätsmedizin Berlin , corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,7 Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Claudia Hindinger
- 1 Department of Experimental Neurology, 68146 Charité - Universitätsmedizin Berlin , corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,8 Department of Psychiatry, Psychotherapy and Psychosomatic Medicine, Ruppiner Kliniken, Brandenburg Medical School, Neuruppin, Germany
| | - Alexander Kunz
- 1 Department of Experimental Neurology, 68146 Charité - Universitätsmedizin Berlin , corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,2 Center for Stroke Research Berlin, 68146 Charité - Universitätsmedizin Berlin , corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
275
|
Ward SJ, Castelli F, Reichenbach ZW, Tuma RF. Surprising outcomes in cannabinoid CB1/CB2 receptor double knockout mice in two models of ischemia. Life Sci 2017; 195:1-5. [PMID: 29288767 DOI: 10.1016/j.lfs.2017.12.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 12/19/2017] [Accepted: 12/22/2017] [Indexed: 12/24/2022]
Abstract
AIMS We tested the hypothesis that CB1/CB2 receptor double knockout would produce significant increases in infarct size and volume and significant worsening in clinical score, using two mouse models, one of permanent ischemia and one of ischemia/reperfusion. MAIN METHODS Focal cerebral infarcts were created using either photo induced permanent injury or transient middle cerebral artery occlusion. Infarct volume and motor function were evaluated in cannabinoid receptor 1/cannabinoid receptor 2 double knockout mice. KEY FINDINGS The results surprisingly revealed that CB1/CB2 double knockout mice showed improved outcomes, with the most improvements in the mouse model of permanent ischemia. SIGNIFICANCE Although the number of individuals suffering from stroke in the United States and worldwide will continue to grow, therapeutic intervention for treatment following stroke remains frustratingly limited. Both the cannabinoid 1 receptor (CB1R) and the cannabinoid 2 receptor (CB2R) have been studied in relationship to stroke. Deletion of the CB2R has been shown to worsen outcome, while selective CB2R agonists have been demonstrated to be neuroprotective following stroke. Although initial studies of CB1R knockout mice demonstrated increased injury following stroke, indicating that activation of the CB1R was neuroprotective, later studies of selective antagonists of the CB1R also demonstrated a protective effect. Surprisingly the double knockout animals had improved outcome. Since the phenotype of the double knockout is not dramatically changed, significant changes in the contribution of other homeostatic pathways in compensation for the loss of these two important receptors may explain these apparently contradictory results.
Collapse
Affiliation(s)
- Sara Jane Ward
- Lewis Katz School of Medicine at Temple University, United States.
| | | | | | - Ronald F Tuma
- Lewis Katz School of Medicine at Temple University, United States
| |
Collapse
|
276
|
Guo Z, Yu S, Chen X, Zheng P, Hu T, Duan Z, Liu X, Liu Q, Ye R, Zhu W, Liu X. Suppression of NLRP3 attenuates hemorrhagic transformation after delayed rtPA treatment in thromboembolic stroke rats: Involvement of neutrophil recruitment. Brain Res Bull 2017; 137:229-240. [PMID: 29258866 DOI: 10.1016/j.brainresbull.2017.12.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 12/13/2017] [Accepted: 12/14/2017] [Indexed: 11/26/2022]
Abstract
BACKGROUND Inflammation and neutrophils play pivotal roles in hemorrhagic transformation (HT) after recombinant tissue plasminogen activator (rtPA) treatment in stroke; however, the contribution of Nod-like receptor protein 3 (NLRP3), a key component of the innate immune system, is not yet known. This study aimed to explore the role of NLRP3 in the delayed rtPA-induced HT and its association with the neutrophil recruitment. METHODS Rats were subjected to thromboembolic focal cerebral ischemia and delayed rtPA treatment at 4 h after ischemia to mimic HT. NLRP3 short hairpin RNAs (shRNA) were administered 72 h before ischemia. Additionally, rabbit anti-rat neutrophil serum (inducing neutropenia) was administered before cerebral ischemia. The infarct volume, edema volume, neurological deficit, hemorrhages, blood-brain barrier (BBB) integrity and brain neutrophil recruitment were evaluated at 24 h after cerebral ischemia. RESULTS Our results demonstrated that delayed rtPA treatment at 4 h after ischemia promoted the expression of NLRP3 in neurons, microglia and endothelial cells, degradation of BBB components, and HT. NLRP3 knockdown significantly attenuated NLRP3 expression, BBB disruption, and HT. It also improved neurological functions and reduced neutrophil recruitment. Rabbit anti-rat neutrophil serum, like NLRP3 shRNA, reduced hemorrhage score and hemorrhage volumes after rtPA treatment. Furthermore, the anti-rat neutrophil serum combined with NLRP3 shRNA didn't further increase the protective effect on HT compared to rabbit anti-rat neutrophil serum used alone. CONCLUSIONS Together, our data suggest that NLRP3 inhibition can reduce neutrophil recruitment, which may contribute to the inhibitory effect on HT.
Collapse
Affiliation(s)
- Zhiliang Guo
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China; Department of Neurology, Second Affiliated Hospital of Soochow University, Suzhou 215004, China.
| | - Shuhong Yu
- Department of Encephalopathy, Suzhou Integrated Traditional and Western Medicine Hospital, Suzhou 215101, China.
| | - Xin Chen
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China.
| | - Ping Zheng
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Australia.
| | - Ting Hu
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China.
| | - Zhenhui Duan
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China.
| | - Xiaoyun Liu
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China.
| | - Qian Liu
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China.
| | - Ruidong Ye
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China.
| | - Wusheng Zhu
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China.
| | - Xinfeng Liu
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China.
| |
Collapse
|
277
|
Kotoda M, Ishiyama T, Mitsui K, Hishiyama S, Matsukawa T. Neuroprotective effects of amiodarone in a mouse model of ischemic stroke. BMC Anesthesiol 2017; 17:168. [PMID: 29216818 PMCID: PMC5721470 DOI: 10.1186/s12871-017-0459-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 11/27/2017] [Indexed: 11/24/2022] Open
Abstract
Background Ion channels play a crucial role in the development of ischemic brain injury. Recent studies have reported that the blockade of various types of ion channels improves outcomes in experimental stroke models. Amiodarone, one of the most effective drugs for life-threatening arrhythmia, works as a multiple channel blocker and its characteristics cover all four Vaughan-Williams classes. Although it is known that amiodarone indirectly contributes to preventing ischemic stroke by maintaining sinus rhythm in patients with atrial fibrillation, the direct neuroprotective effect of amiodarone has not been clarified. The purpose of this study was to investigate the direct effect of amiodarone on ischemic stroke in mice. Methods Focal cerebral ischemia was induced via distal permanent middle cerebral artery occlusion (MCAO) in adult male mice. The amiodarone pre-treatment group received 50 mg/kg of amiodarone 1 h before MCAO; the amiodarone post-treatment groups received 50 mg/kg of amiodarone immediately after MCAO; the control group received vehicle only. In addition, the sodium channel opener veratrine and selective beta-adrenergic agonist isoprotelenol were used to elucidate the targeted pathway. Heart rate and blood pressure were monitored perioperatively. Infarct volume analysis was conducted 48 h after MCAO. The body asymmetry test and the corner test were used for neurological evaluation. Results Amiodarone pre-treatment and post-treatment reduced the heart rate but did not affect the blood pressure. No mice showed arrhythmia. Compared with the control group, the amiodarone pre-treatment group had smaller infarct volumes (8.9 ± 2.1% hemisphere [mean ± SD] vs. 11.2 ± 1.4%; P < 0.05) and improved functional outcomes: lower asymmetric body swing rates (52 ± 17% vs. 65 ± 18%; P < 0.05) and fewer left turns (7.1 ± 1.2 vs. 8.3 ± 1.2; P < 0.05). In contrast, amiodarone post-treatment did not improve the outcomes after MCAO. The neuroprotective effect of amiodarone pre-treatment was abolished by co-administration of veratrine but not by isoproterenol. Conclusions Amiodarone pre-treatment attenuated ischemic brain injury and improved functional outcomes without affecting heart rhythm and blood pressure. The present results showed that amiodarone pre-treatment has neuroprotective effects, at least in part, via blocking the sodium channels.
Collapse
Affiliation(s)
- Masakazu Kotoda
- Department of Anesthesiology, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan.
| | - Tadahiko Ishiyama
- Surgical Center, University of Yamanashi Hospital, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan
| | - Kazuha Mitsui
- Department of Anesthesiology, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan
| | - Sohei Hishiyama
- Department of Anesthesiology, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan
| | - Takashi Matsukawa
- Department of Anesthesiology, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan
| |
Collapse
|
278
|
Liu YH, Zhang ZP, Wang Y, Song J, Ma KT, Si JQ, Li L. Electrophysiological properties of strial pericytes and the effect of aspirin on pericyte K+ channels. Mol Med Rep 2017; 17:2861-2868. [PMID: 29257229 PMCID: PMC5783500 DOI: 10.3892/mmr.2017.8194] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 10/06/2017] [Indexed: 01/08/2023] Open
Abstract
The present study was designed to investigate the electrophysiological properties of strial pericytes and the effect of aspirin on pericyte K+ channels. Pericytes were identified by determining their morphological characteristics and using pericyte-associated immunofluorescence techniques. The electrophysiological properties of strial pericytes were observed with a whole-cell patch-clamp technique. Alterations in the outward current of cochlear pericytes in the stria vascularis of guinea pigs were examined following the application of K+ channel retardants. The effects of aspirin on pericyte K+ channels were also evaluated with the whole-cell patch-clamp technique. The results demonstrated that pericytes were desmin positive, and their nuclei were large and surrounded by a small proportion of the cytoplasm. Cytoplasmic processes gradually declined in size as branches grew parallel to the capillary axis. Thus, capillaries were surrounded by tips. The electrophysiological properties of the cochlear pericytes in the stria vascularis of guinea pigs were also determined. The membrane capacitance of the pericytes was 5.9±0.3 pF, while the membrane resistance and resting potential were 2.2±0.3 GΩ and −30.9±1.2 mV, respectively. The current densities of the pericytes (pA/pF) were 3.2±0.7, 10.6±1.0, 15.7±0.9 and 21.3±1.2 at command voltages of 0, +20, +40, and +60 mV, respectively. The K+ channels were activated when the pericytes were within the range of −20 mV to +20 mV, particularly at 0 mV. The inhibition rates of the outward current of cochlear pericytes in the stria vascularis of the guinea pigs were determined by administering iberiotoxin (IBTX) and IBTX + 4-aminopyridine. Once the background leakage current was removed, the following inhibition rates were obtained with 3, 10, 30, 300 and 1,000 µmol/l aspirin: 20.8±4.8, 34.1±6.9, 48.2±6.7, 63.6±7.1 and 65.7±8.1%, respectively. The outward current of the cochlear pericytes in the stria vascularis was inhibited by aspirin with a half maximal inhibitory concentration of 24.5±4.5 µmol/l. The membranes of the pericytes in the stria vascularis are characterized by high-conductance calcium-activated K+ (BKCa) and voltage-dependent K+ (KV) channels. The outward current of the cochlear pericytes in the stria vascularis of guinea pigs was inhibited by aspirin in a concentration-dependent manner. In addition, BKCa and KV channels were inhibited by aspirin.
Collapse
Affiliation(s)
- Yan-Hui Liu
- Department of Physiology, Medical College of Shihezi University, Shihezi, Xinjiang 832002, P.R. China
| | - Zhi-Ping Zhang
- Department of Physiology, Medical College of Shihezi University, Shihezi, Xinjiang 832002, P.R. China
| | - Yang Wang
- Department of Physiology, Medical College of Shihezi University, Shihezi, Xinjiang 832002, P.R. China
| | - Jia Song
- Department of Physiology, Medical College of Shihezi University, Shihezi, Xinjiang 832002, P.R. China
| | - Ke-Tao Ma
- Department of Physiology, Medical College of Shihezi University, Shihezi, Xinjiang 832002, P.R. China
| | - Jun-Qiang Si
- Department of Physiology, Medical College of Shihezi University, Shihezi, Xinjiang 832002, P.R. China
| | - Li Li
- Department of Physiology, Medical College of Shihezi University, Shihezi, Xinjiang 832002, P.R. China
| |
Collapse
|
279
|
Hakon J, Quattromani MJ, Sjölund C, Tomasevic G, Carey L, Lee JM, Ruscher K, Wieloch T, Bauer AQ. Multisensory stimulation improves functional recovery and resting-state functional connectivity in the mouse brain after stroke. NEUROIMAGE-CLINICAL 2017; 17:717-730. [PMID: 29264113 PMCID: PMC5726755 DOI: 10.1016/j.nicl.2017.11.022] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/27/2017] [Accepted: 11/23/2017] [Indexed: 10/25/2022]
Abstract
Stroke causes direct structural damage to local brain networks and indirect functional damage to distant brain regions. Neuroplasticity after stroke involves molecular changes within perilesional tissue that can be influenced by regions functionally connected to the site of injury. Spontaneous functional recovery can be enhanced by rehabilitative strategies, which provides experience-driven cell signaling in the brain that enhances plasticity. Functional neuroimaging in humans and rodents has shown that spontaneous recovery of sensorimotor function after stroke is associated with changes in resting-state functional connectivity (RS-FC) within and across brain networks. At the molecular level, GABAergic inhibitory interneurons can modulate brain plasticity in peri-infarct and remote brain regions. Among this cell-type, a decrease in parvalbumin (PV)-immunoreactivity has been associated with improved behavioral outcome. Subjecting rodents to multisensory stimulation through exposure to an enriched environment (EE) enhances brain plasticity and recovery of function after stroke. Yet, how multisensory stimulation relates to RS-FC has not been determined. In this study, we investigated the effect of EE on recovery of RS-FC and behavior in mice after stroke, and if EE-related changes in RS-FC were associated with levels of PV-expressing neurons. Photothrombotic stroke was induced in the sensorimotor cortex. Beginning 2 days after stroke, mice were housed in either standard environment (STD) or EE for 12 days. Housing in EE significantly improved lost tactile-proprioceptive function compared to mice housed in STD environment. RS-FC in the mouse was measured by optical intrinsic signal imaging 14 days after stroke or sham surgery. Stroke induced a marked reduction in RS-FC within several perilesional and remote brain regions. EE partially restored interhemispheric homotopic RS-FC between spared motor regions, particularly posterior secondary motor. Compared to mice housed in STD cages, EE exposure lead to increased RS-FC between posterior secondary motor regions and contralesional posterior parietal and retrosplenial regions. The increased regional RS-FC observed in EE mice after stroke was significantly correlated with decreased PV-immunoreactivity in the contralesional posterior motor region. In conclusion, experimental stroke and subsequent housing in EE induces dynamic changes in RS-FC in the mouse brain. Multisensory stimulation associated with EE enhances RS-FC among distinct brain regions relevant for recovery of sensorimotor function and controlled movements that may involve PV/GABA interneurons. Our results indicate that targeting neural circuitry involving spared motor regions across hemispheres by neuromodulation and multimodal sensory stimulation could improve rehabilitation after stroke.
Collapse
Key Words
- EE, enriched environment
- Enriched environment
- GSR, global signal regression
- M1, primary motor cortex
- M2, secondary motor cortex
- M2p, posterior secondary motor cortex
- MSR, multiple signal regression
- NDc, interhemispheric (contralateral) node degree
- NDi, intrahemispheric node degree
- Optical imaging
- PP, posterior parietal cortex
- PV, parvalbumin
- Parvalbumin
- ROI, region of interest
- RS, retrosplenial cortex
- RS-FC, resting-state functional connectivity
- Recovery
- Resting-state functional connectivity
- SFL, somatosensory forelimb cortex
- STD, standard environment
- Stroke
- VIS, visual cortex
- fcOIS, functional connectivity optical intrinsic signal imaging
Collapse
Affiliation(s)
- Jakob Hakon
- Laboratory for Experimental Brain Research, Division of Neurosurgery, Department of Clinical Sciences, Lund University, BMC A13, 22184 Lund, Sweden.
| | - Miriana Jlenia Quattromani
- Laboratory for Experimental Brain Research, Division of Neurosurgery, Department of Clinical Sciences, Lund University, BMC A13, 22184 Lund, Sweden
| | - Carin Sjölund
- Laboratory for Experimental Brain Research, Division of Neurosurgery, Department of Clinical Sciences, Lund University, BMC A13, 22184 Lund, Sweden
| | - Gregor Tomasevic
- Laboratory for Experimental Brain Research, Division of Neurosurgery, Department of Clinical Sciences, Lund University, BMC A13, 22184 Lund, Sweden; Department of Neurosurgery, University Hospital of Lund, Lund, Sweden
| | - Leeanne Carey
- School of Allied Health, La Trobe University, Melbourne, Vic., Australia; Neurorehabilitation and Recovery Laboratory, Florey Institute of Neuroscience and Mental Health, Melbourne, Vic., Australia
| | - Jin-Moo Lee
- Department of Radiology, Washington University, Saint Louis, MO 63110, USA; Department of Neurology, Washington University, Saint Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University, Saint Louis, MO 63110, USA
| | - Karsten Ruscher
- Laboratory for Experimental Brain Research, Division of Neurosurgery, Department of Clinical Sciences, Lund University, BMC A13, 22184 Lund, Sweden
| | - Tadeusz Wieloch
- Laboratory for Experimental Brain Research, Division of Neurosurgery, Department of Clinical Sciences, Lund University, BMC A13, 22184 Lund, Sweden
| | - Adam Q Bauer
- Department of Radiology, Washington University, Saint Louis, MO 63110, USA
| |
Collapse
|
280
|
McCullough LD, Mirza MA, Xu Y, Bentivegna K, Steffens EB, Ritzel R, Liu F. Stroke sensitivity in the aged: sex chromosome complement vs. gonadal hormones. Aging (Albany NY) 2017; 8:1432-41. [PMID: 27405096 PMCID: PMC4993340 DOI: 10.18632/aging.100997] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 06/22/2016] [Indexed: 11/25/2022]
Abstract
Stroke is a sexually dimorphic disease. Elderly women not only have higher stroke incidence than age-matched men, but also have poorer recovery and higher morbidity and mortality after stroke. In older, post-menopausal women, gonadal hormone levels are similar to that of men. This suggests that tissue damage and functional outcomes are influenced by biologic sex (XX vs. XY) rather than the hormonal milieu at older ages. We employed the Four Core Genotype (FCG) mouse model to study the contribution of sex chromosome complement and gonadal hormones to stroke sensitivity in aged mice in which the testis determining gene (Sry) is removed from the Y chromosome, allowing for the generation of XX males and XY females. XXF, XXM, XYF, XYM and XYwt aged mice were subjected to middle cerebral artery occlusion (MCAO). XXF and XXM mice had significantly larger infarct volumes than XYF and XYM cohorts respectively. There was no significant difference in hormone levels among aged FCG mice. XXF/XXM mice also had more robust microglial activation and higher serum levels of pro-inflammatory cytokines than XYF/XYM cohort respectively. We concluded that the sex chromosome complement contributes to ischemic sensitivity in aged animals and leads to sex differences in innate immune responses.
Collapse
Affiliation(s)
- Louise D McCullough
- Department of Neurology, University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX 77030, USA
| | - Mehwish A Mirza
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Yan Xu
- Department of Neurology, University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX 77030, USA
| | - Kathryn Bentivegna
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Eleanor B Steffens
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Rodney Ritzel
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Fudong Liu
- Department of Neurology, University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX 77030, USA
| |
Collapse
|
281
|
Ou Z, Tao MX, Gao Q, Zhang XL, Yang Y, Zhou JS, Zhang YD. Up-regulation of angiotensin-converting enzyme in response to acute ischemic stroke via ERK/NF-κB pathway in spontaneously hypertensive rats. Oncotarget 2017; 8:97041-97051. [PMID: 29228591 PMCID: PMC5722543 DOI: 10.18632/oncotarget.21156] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 09/08/2017] [Indexed: 12/02/2022] Open
Abstract
Cerebral ischemic stroke is usually caused by a temporary or permanent decrease in blood supply to the brain. Despite general progress in diagnosis and treatment, the prognosis of stroke is still unsatisfactory, and more detailed potential mechanisms are needed to investigate underlying the pathological process. Here, we showed that serum angiotensin-converting enzyme (ACE) concentration was positively correlated with infarct volume after acute ischemic stroke (AIS). Moreover, using a permanent middle cerebral artery occlusion rat model, we indicated for the first time that increased ACE expression in response to AIS was regulated by the ERK/NF-κB pathway in peri-infarct regions. More importantly, we disclosed that angiotensin II type 1 receptors were implicated in up-regulation of ACE expression in peri-infarct regions. These findings offer insight into ACE expression and activity in response to stroke, and further our understanding of ACE mechanisms.
Collapse
Affiliation(s)
- Zhou Ou
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Meng-Xing Tao
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Qing Gao
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Xue-Ling Zhang
- Department of Neurology, Suqian City People's Hospital, Suqian, People's Republic of China
| | - Yang Yang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Jun-Shan Zhou
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Ying-Dong Zhang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| |
Collapse
|
282
|
Gene Expression Analysis of the Effect of Ischemic Infarction in Whole Blood. Int J Mol Sci 2017; 18:ijms18112335. [PMID: 29113076 PMCID: PMC5713304 DOI: 10.3390/ijms18112335] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 10/30/2017] [Accepted: 11/01/2017] [Indexed: 12/20/2022] Open
Abstract
Given the abundance of stroke patients and deaths from stroke worldwide, many studies concerning the aftermath of stroke are being carried out. To reveal the precise effect of ischemic infarction, we conducted a comprehensive gene expression analysis. Alongside a middle cerebral artery occlusion (MCAO) Sprague–Dawley rat model, we used a group undergoing sham surgery for comparison, which was the same as MCAO surgery but without blood vessel occlusion. Subsequently, infarction of the brains of MCAO-treated rats occurred, but did not occur in the sham-treated rats. Using whole blood, we carried out DNA microarray analysis, revealing the gene expression alterations caused by stroke. Downregulation of immune pathways and cluster of differentiation (CD) molecules indicated immunodepression. By conducting miRNA microarray analysis, we extracted seven miRNAs as significantly regulated: miR-107-5p, miR-383-5p, miR-24-1-5p, mir-191b, miR-196b-5p, and miR-3552 were upregulated, and mir-194-1 was downregulated. Among these seven miRNAs, three had one target mRNA each that was extracted as differentially expressed, and the expression levels of all pairs were inversely correlated. This indicates the occurrence of miRNA–mRNA regulatory systems in blood: between miR-107-5p and H2A histone family member Z (H2afz), miR-196b-5p and protein tyrosine phosphatase receptor type C (Ptprc), and miR-3552 and serine/arginine-rich splicing factor 2 (Srsf2). Moreover, six miRNAs had matching human miRNAs with similar sequences, which are potential human stroke biomarkers.
Collapse
|
283
|
Ahmadi-Eslamloo H, Moosavi SMS, Dehghani GA. Cerebral Ischemia-Reperfusion Injuries in Vanadyl-Treated Diabetic Rats. IRANIAN JOURNAL OF MEDICAL SCIENCES 2017; 42:544-552. [PMID: 29184262 PMCID: PMC5684375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
BACKGROUND Ischemic stroke recovery is poor in diabetic mellitus (DM). Vanadium compounds (vanadium) relieve DM signs, but their influences on cerebral ischemia/reperfusion injury (I/RI) are inconclusive. Herein, the intensity of I/RI was inspected in vanadium-treated DM rats. METHODS Rats made diabetic with a single intravenous dose of streptozocin (39 mg/kg). Normal and DM rats used water or vanadyl solution for 45 days. Under isoflurane anesthesia, right middle cerebral artery occlusion was performed for 60 minutes and 12 hours reperfusion. Ischemic rats were divided into untreated-control normal (ICN) and diabetic (ICD), vanadium-treated normal (IVTN) and diabetic (IVTD) groups (n=14 each). After neurological deficit score (NDS) test, the rats were sacrificed and their brain removed and stained with triphenyltetrazolium chloride (TTC) to measure cerebral infarct volume (CIV, mm3) or Evans blue extravasation (EBE, μg/g wet-tissue). Data analysis was performed using one-way ANOVA and Tukey's test (SPSS software, version 21.0) and P values <0.05 were considered statistically significant. RESULTS Blood glucose (BG, mg/dL) was similar in ICN and IVTN, elevated in IVTD and ICD (245±6 vs. 344±2, P<0.001). The increased CIV in ICN and IVTN was similar (48±2 and 34±5), very high in ICD but lower in IVTD (249±37 vs. 110±16, P<0.001). EBE was absent in non-lesioned hemispheres, similarly increased in lesioned hemispheres of ICN and IVTN (14±1 and 13±1). EBE in IVTD was significantly lower than ICD (21±2 vs. 33±5, P=0.01). CONCLUSION I/RI was moderate in normoglycemia and did not change with vanadium. Hyperglycemia robustly intensified I/RI. Vanadium ameliorated hyperglycemia and reduced I/RI. Nonetheless, more investigations are required to link the mechanisms of vanadium on DM and stroke injuries.
Collapse
Affiliation(s)
| | | | - Gholam Abbas Dehghani
- Department of Physiology, Shiraz University of Medical Sciences, Shiraz, Iran,Correspondence: Gholam Abbas Dehghani, PhD; Department of Physiology, School of Medicine, Zand Blv., Shiraz, Iran Tel: +98 917171966 Fax: +98 71 32302026
| |
Collapse
|
284
|
Zhao SC, Wang C, Xu H, Wu WQ, Chu ZH, Ma LS, Zhang YD, Liu F. Age-related differences in interferon regulatory factor-4 and -5 signaling in ischemic brains of mice. Acta Pharmacol Sin 2017; 38:1425-1434. [PMID: 28905935 DOI: 10.1038/aps.2017.122] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 06/30/2017] [Indexed: 02/07/2023]
Abstract
Stroke is a disease that mainly affects the elderly. Since the age-related differences in stroke have not been well studied, modeling stroke in aged animals is clinically more relevant. The inflammatory responses to stroke are a fundamental pathological procedure, in which microglial activation plays an important role. Interferon regulatory factor-5 (IRF5) and IRF4 regulate M1 and M2 activation of macrophages, respectively, in peripheral inflammation; but it is unknown whether IRF5/IRF4 are also involved in cerebral inflammatory responses to stroke and whether age-related differences of the IRF5/IRF4 signaling exist in ischemic brain. Here, we investigated the influences of aging on IRF5/IRF4 signaling and post-stroke inflammation in mice. Both young (9-12 weeks) and aged (18 months) male mice were subjected to middle cerebral artery occlusion (MCAO). Morphological and biochemical changes in the ischemic brains and behavior deficits were assessed on 1, 3, and 7 d post-stroke. After MCAO, the aged mice showed smaller infarct sizes but higher neurological deficits and corner test scores than young mice. Young mice had higher levels of IRF4 and CD206 microglia in the ischemic brains, whereas the aged mice expressed more IRF5 and MHCII microglia. After MCAO, serum pro-inflammatory cytokines (TNF-α, iNOS, IL-6) were more prominently up-regulated in aged mice, whereas serum anti-inflammatory cytokines (TGF-β, IL-4, IL-10) were more prominently up-regulated in young mice. Our results demonstrate that aging has a significant influence on stroke outcomes in mice, which is probably mediated by age-specific inflammatory responses.
Collapse
|
285
|
Zhang H, Sun X, Xie Y, Zan J, Tan W. Isosteviol Sodium Protects Against Permanent Cerebral Ischemia Injury in Mice via Inhibition of NF-κB–Mediated Inflammatory and Apoptotic Responses. J Stroke Cerebrovasc Dis 2017; 26:2603-2614. [DOI: 10.1016/j.jstrokecerebrovasdis.2017.06.023] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 06/01/2017] [Accepted: 06/09/2017] [Indexed: 01/01/2023] Open
|
286
|
Cao L, Zhang D, Chen J, Qin YY, Sheng R, Feng X, Chen Z, Ding Y, Li M, Qin ZH. G6PD plays a neuroprotective role in brain ischemia through promoting pentose phosphate pathway. Free Radic Biol Med 2017; 112:433-444. [PMID: 28823591 DOI: 10.1016/j.freeradbiomed.2017.08.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 08/02/2017] [Accepted: 08/14/2017] [Indexed: 10/19/2022]
Abstract
TIGAR-regulated pentose phosphate pathway (PPP) plays a critical role in the neuronal survival during cerebral ischemia/reperfusion. Glucose-6-phosphate dehydrogenase (G6PD) is a rate-limiting enzyme in PPP and thus, we hypothesized that it plays an essential role in anti-oxidative defense through producing NADPH. The present study investigated the regulation and the role of G6PD in ischemia/reperfusion-induced neuronal injury with in vivo and in vitro models of ischemic stroke. The results showed that the levels of G6PD mRNA and protein were increased after ischemia/reperfusion. In vivo, lentivirus-mediated G6PD overexpression in mice markedly reduced neuronal damage after ischemia/reperfusion insult, while lentivirus-mediated G6PD knockdown exacerbated it. In vitro, overexpression of G6PD in cultured primary neurons decreased neuronal injury under oxygen and glucose deprivation/reoxygenation (OGD/R) condition, whereas knockdown of G6PD aggravated it. Overexpression of G6PD increased levels of NADPH and reduced form of glutathione (rGSH), and ameliorated ROS-induced macromolecular damage. On the contrary, knockdown of G6PD executed the opposite effects in mice and in primary neurons. Supplementation of exogenous NADPH alleviated the detrimental effects of G6PD knockdown, whereas further enhanced the beneficial effects of G6PD overexpression in ischemic injury. Therefore, our results suggest that G6PD protects ischemic brain injury through increasing PPP. Thus G6PD may be considered as potential therapeutic target for treatment of ischemic brain injury.
Collapse
Affiliation(s)
- Lijuan Cao
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, College of Pharmaceutical Science, Soochow University, Suzhou 215123, China
| | - Dingmei Zhang
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, College of Pharmaceutical Science, Soochow University, Suzhou 215123, China
| | - Jieyu Chen
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, College of Pharmaceutical Science, Soochow University, Suzhou 215123, China
| | - Yuan-Yuan Qin
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, College of Pharmaceutical Science, Soochow University, Suzhou 215123, China
| | - Rui Sheng
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, College of Pharmaceutical Science, Soochow University, Suzhou 215123, China
| | - Xing Feng
- Institute of Pediatric Research, Children's Hospital of Soochow University; Suzhou 215025, China
| | - Zhong Chen
- Institute of Neuroscience, College of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Yuqiang Ding
- Key Laboratory of Arrhythmias, Ministry of Education, East Hospital, Tongji University School of Medicine, 1239 Siping Road, Shanghai 200092, China
| | - Mei Li
- Institute of Pediatric Research, Children's Hospital of Soochow University; Suzhou 215025, China.
| | - Zheng-Hong Qin
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, College of Pharmaceutical Science, Soochow University, Suzhou 215123, China.
| |
Collapse
|
287
|
Zhang R, Xie X, Yu Q, Feng H, Wang M, Li Y, Liu Y. Constitutive Expression of Adiponectin in Endothelial Progenitor Cells Protects a Rat Model of Cerebral Ischemia. Neural Plast 2017; 2017:6809745. [PMID: 29201467 PMCID: PMC5671740 DOI: 10.1155/2017/6809745] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 08/15/2017] [Indexed: 02/05/2023] Open
Abstract
Endothelial progenitor cells (EPCs), as precursors to endothelial cells, play a significant part in the process of endogenous blood vessel repair and maintenance of endothelial integrity. Adiponectin (APN) is an adipocyte-specific adipocytokine. In this study, we aim to test whether we transplant a combined graft of EPCs transfected with the adiponectin gene into a rat model of cerebral ischemia could improve functional recovery after middle cerebral artery occlusion (MCAO). Sprague-Dawley (SD) rats were randomly divided into a MCAO control group, a MCAO EPC treatment group, and a MCAO LV-APN-EPC treatment group. A focal cerebral ischemia and reperfusion model was induced by the intraluminal suture method. After 2 h of reperfusion, EPCs were transplanted by injection through the tail vein. A rotarod test was conducted to assess behavioral function before MCAO and on days 1, 7, and 14 after MCAO. After 14 d, TTC staining, CD31 immunofluorescence, and TUNEL staining were used to evaluate infarct volume, microvessel density, and cell apoptosis. Results revealed that behavioral function, infarct area percentage, microvessel density, and cell apoptosis rates were more favorable in the LV-APN-EPC treatment group than in the EPC treatment group. These data suggested that gene-modified cell therapy may be a useful approach for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Renwei Zhang
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Xiaorui Xie
- Department of Neurology, Xiangyang Central Hospital, Xiangyang 441000, China
| | - Qing Yu
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Hongliang Feng
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Meiyao Wang
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Yan Li
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Yumin Liu
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| |
Collapse
|
288
|
Goreisan Inhibits Upregulation of Aquaporin 4 and Formation of Cerebral Edema in the Rat Model of Juvenile Hypoxic-Ischemic Encephalopathy. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:3209219. [PMID: 29234383 PMCID: PMC5664190 DOI: 10.1155/2017/3209219] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 07/09/2017] [Accepted: 08/01/2017] [Indexed: 12/18/2022]
Abstract
Secondary cerebral edema regulation is of prognostic significance in hypoxic-ischemic encephalopathy (HIE), and aquaporin 4 (AQP4) plays an important role in the pathogenesis of cerebral edema. The traditional Japanese herbal medicine Goreisan relieves brain edema in adults; however, its effect and pharmacological mechanism in children are unknown. We investigated the effects of Goreisan on HIE-associated brain edema and AQP4 expression in a juvenile rat model, established by combined occlusion of middle cerebral and common carotid arteries. Magnetic resonance imaging showed that the lesion areas were significantly smaller in the Goreisan- (2 g/kg) treated group than in the nontreated (saline) group at 24 and 48 h postoperatively. AQP4 mRNA levels in the lesion and nonlesion sides were significantly suppressed in the Goreisan group compared with the nontreated group 36 h postoperatively. Western blotting revealed that levels of AQP4 protein were significantly decreased in the Goreisan group compared with the nontreated group in the lesion side 72 h postoperatively, but not at 12 or 36 h. After 14 days, the Goreisan group had a significantly better survival rate. These findings suggest that Goreisan suppresses brain edema in HIE and improves survival in juvenile rats, possibly via regulation of AQP4 expression and function.
Collapse
|
289
|
Wu G, Zhu L, Yuan X, Chen H, Xiong R, Zhang S, Cheng H, Shen Y, An H, Li T, Li H, Zhang W. Britanin Ameliorates Cerebral Ischemia-Reperfusion Injury by Inducing the Nrf2 Protective Pathway. Antioxid Redox Signal 2017; 27:754-768. [PMID: 28186440 DOI: 10.1089/ars.2016.6885] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
AIMS Oxidative stress is considered the major cause of tissue injury after cerebral ischemia. The nuclear factor erythroid 2-related factor 2 (Nrf2) pathway is one of the most important defensive mechanisms against oxidative stresses and has been confirmed as a target for stroke treatment. Thus, we desired to find new Nrf2 activators and test their neuronal protective activity both in vivo and in vitro. RESULTS The herb-derived compound, Britanin, is a potent inducer of the Nrf2 system. Britanin can induce the expression of protective enzymes and reverse oxygen-glucose deprivation, followed by reperfusion (OGD-R)-induced neuronal injury in primary cortical neurons in vitro. Furthermore, the administration of Britanin significantly ameliorated middle cerebral artery occlusion-reperfusion (MCAO-R) insult in vivo. We report here the crystal structure of the complex of Britanin and the BTB domain of Keap1. Britanin selectively binds to a conserved cysteine residue, cysteine 151, of Keap1 and inhibits Keap1-mediated ubiquitination of Nrf2, leading to induction of the Nrf2 pathway. INNOVATION Britanin is a potent inducer of Nrf2. The complex crystal structure of Britanin and the BTB domain of Keap1 help clarify the mechanism of Nrf2 induction. Britanin was proven to protect primary cortical neurons against OGD-R-induced injury in an Nrf2-dependant way. Additionally, Britanin had excellent cerebroprotective effect in an MCAO-R model. CONCLUSION Our results demonstrate that the natural product Britanin with potent Nrf2-activating and neural protective activities both in vitro and in vivo could be developed into a cerebroprotective therapeutic agent. Antioxid. Redox Signal. 27, 754-768.
Collapse
Affiliation(s)
- Guozhen Wu
- 1 Department of Phytochemistry, School of Pharmacy, Second Military Medical University , Shanghai, P.R. China
| | - Lili Zhu
- 2 State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology , Shanghai, P.R. China
| | - Xing Yuan
- 1 Department of Phytochemistry, School of Pharmacy, Second Military Medical University , Shanghai, P.R. China
| | - Hao Chen
- 1 Department of Phytochemistry, School of Pharmacy, Second Military Medical University , Shanghai, P.R. China
| | - Rui Xiong
- 2 State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology , Shanghai, P.R. China
| | - Shoude Zhang
- 2 State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology , Shanghai, P.R. China
| | - Hao Cheng
- 3 Department of Pharmacology, School of Pharmacy, Second Military Medical University , Shanghai, P.R. China
| | - Yunheng Shen
- 1 Department of Phytochemistry, School of Pharmacy, Second Military Medical University , Shanghai, P.R. China
| | - Huazhang An
- 4 Cancer Institute, Institute of Translational Medicine, Second Military Medical University , Shanghai, P.R. China
| | - Tiejun Li
- 3 Department of Pharmacology, School of Pharmacy, Second Military Medical University , Shanghai, P.R. China
| | - Honglin Li
- 2 State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology , Shanghai, P.R. China
| | - Weidong Zhang
- 1 Department of Phytochemistry, School of Pharmacy, Second Military Medical University , Shanghai, P.R. China
| |
Collapse
|
290
|
Pan M, Wang P, Zheng C, Zhang H, Lin S, Shao B, Zhuge Q, Jin K. Aging Systemic Milieu Impairs Outcome after Ischemic Stroke in Rats. Aging Dis 2017; 8:519-530. [PMID: 28966798 PMCID: PMC5614318 DOI: 10.14336/ad.2017.0710] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 07/10/2017] [Indexed: 11/26/2022] Open
Abstract
Compelling evidence indicates that factors in the blood can profoundly reverse aging-related impairments, as exposure of aged mice to young blood rejuvenates adult stem cell function, improves cognition, and ameliorates cardiac hypertrophy. Systemic factors from mice can also extend the life span of a partner exposed to a lethal treatment or disease. These findings suggest that the systemic milieu of a healthy young partner may be beneficial for an aged organism. However, it is unknown whether a healthy young systemic milieu can improve functional recovery after ischemic stroke. Intraperitoneal administration of young plasma into aged rats after ischemic stroke induced by distal middle cerebral artery occlusion (dMCAO) reduced infarct volume and motor impairment, compared with vehicle group. On the contrary, intraperitoneal administration of plasma from aged rats into young ischemic rats worsened brain injury and motor deficits. Using a proteomic approach, we found that haptoglobin levels were significantly increased in serum of aged rats and that intraperitoneal administration of haptoglobin impaired outcome after ischemic stroke in young rats. Our data suggest that the aging systemic milieu plays a critical role in functional outcome after ischemic stroke.
Collapse
Affiliation(s)
- Mengxiong Pan
- 1Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.,2Institute for Healthy Aging, University of North Texas Health Science Center, Fort Worth, Texas 76107, USA
| | - Peng Wang
- 1Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Chengcai Zheng
- 1Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Hongxia Zhang
- 2Institute for Healthy Aging, University of North Texas Health Science Center, Fort Worth, Texas 76107, USA
| | - Siyang Lin
- 1Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Bei Shao
- 1Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Qichuan Zhuge
- 1Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Kunlin Jin
- 1Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.,2Institute for Healthy Aging, University of North Texas Health Science Center, Fort Worth, Texas 76107, USA
| |
Collapse
|
291
|
Sirtuin 6 protects the brain from cerebral ischemia/reperfusion injury through NRF2 activation. Neuroscience 2017; 366:95-104. [PMID: 28951325 DOI: 10.1016/j.neuroscience.2017.09.035] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 09/13/2017] [Accepted: 09/18/2017] [Indexed: 01/01/2023]
Abstract
Sirtuin 6 (SIRT6), a member of the sirtuin family of NAD(+)-dependent deacetylases, has been shown to produce beneficial effects in myocardial ischemia/reperfusion (I/R). However, the role of SIRT6 in cerebral I/R is largely unclear. In this study, we investigated the effects of SIRT6 overexpression in regulating I/R injury in a mouse cerebral I/R model in vivo and in oxygen-glucose-deprivation/reoxygenation (OGD/R)-stimulated neuro-2a neuroblastoma cells in vitro. We found that cerebral I/R (1 h/24 h) resulted in decreased SIRT6 expression in the cerebral cortex (P < 0.01). SIRT6 overexpression in the brain by in vivo gene transfer enhanced the antioxidant NRF2 signaling (P < 0.05), reduced oxidative stress (P < 0.05), and attenuated cerebral I/R-induced brain tissue damage and neurological deficits (P < 0.05). These neuroprotective effects of SIRT6 overexpression were abolished in NRF2 knockout mice. In neuro-2A neuroblastoma cells, SIRT6 overexpression increased total and nuclear NRF2 levels (P < 0.05), reduced oxidative stress (P < 0.05), and attenuated OGD/R-induced cell death (P < 0.05); these protective effects were blocked by NRF2 knockdown (P < 0.05). Moreover, in OGD/R-stimulated neuro-2A cells, SIRT6 overexpression produced similar protective effects to those induced by the antioxidant NAC, but no added benefits were detected when SIRT6 overexpression was used in combination with NAC (P > 0.05). These findings provide evidence that SIRT6 can protect the brain from cerebral I/R injury by suppressing oxidative stress via NRF2 activation. Thus, SIRT6 may serve as a potential therapeutic target for ischemic stroke.
Collapse
|
292
|
Fan Y, Ding S, Sun Y, Zhao B, Pan Y, Wan J. MiR-377 Regulates Inflammation and Angiogenesis in Rats After Cerebral Ischemic Injury. J Cell Biochem 2017; 119:327-337. [PMID: 28569430 DOI: 10.1002/jcb.26181] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 05/31/2017] [Indexed: 01/11/2023]
Abstract
Ischemic stroke is the leading cause of disabilities worldwide. MicroRNA-377 (miR-377) plays important roles in ischemic injury. The present study focused on the mechanisms of miR-377 in protecting ischemic brain injury in rats. Cerebral ischemia was induced by middle cerebral artery occlusion (MCAO) in rats. Primary rat microglial cells and brain microvascular endothelial cells (BMECs) were exposed to oxygen-glucose deprivation (OGD). The concentrations of cytokines (TNF-α, IL-1β, IL-6, IFN-γ, TGF-β, MMP2, COX2, and iNOS) in the culture medium were measured by specific ELISA. Tube formation assay was for the in vitro study of angiogenesis. Luciferase reporter assay was performed to confirm whether VEGF and EGR2 were direct targets of miR-377. The MCAO rats were intracerebroventricular (ICV) injection of miR-377 inhibitor to assess its protective effects in vivo. MiR-377 levels were decreased in the rat brain tissues at 1, 3, and 7 d after MCAO. Both microglia cells and BMECs under OGD showed markedly lower expression levels of miR-377 while higher expression levels of EGR2 and VEGF compared to those under normoxia conditions. Knockdown of miR-377 inhibited microglial activation and the release of pro-inflammatory cytokines after OGD. Suppression of miR-377 promoted the capillary-like tube formation and cell proliferation and migration of BMECs. The anti-inflammation effect of EGR2 and the angiogenesis effect of VEGF were regulated by miR-377 after OGD. Inhibition of miR-377 decreased cerebral infarct volume and suppressed cerebral inflammation but promoted angiogenesis in MCAO rats. Knockdown of miR-377 lessened the ischemic brain injury through promoting angiogenesis and suppressing cerebral inflammation. J. Cell. Biochem. 119: 327-337, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yiling Fan
- Department of Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Shenghao Ding
- Department of Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Yameng Sun
- Department of Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Bing Zhao
- Department of Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Yaohua Pan
- Department of Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Jieqing Wan
- Department of Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| |
Collapse
|
293
|
Begum G, Song S, Wang S, Zhao H, Bhuiyan MIH, Li E, Nepomuceno R, Ye Q, Sun M, Calderon MJ, Stolz DB, St Croix C, Watkins SC, Chen Y, He P, Shull GE, Sun D. Selective knockout of astrocytic Na + /H + exchanger isoform 1 reduces astrogliosis, BBB damage, infarction, and improves neurological function after ischemic stroke. Glia 2017; 66:126-144. [PMID: 28925083 DOI: 10.1002/glia.23232] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 08/25/2017] [Accepted: 08/29/2017] [Indexed: 01/25/2023]
Abstract
Stimulation of Na+ /H+ exchanger isoform 1 (NHE1) in astrocytes causes ionic dysregulation under ischemic conditions. In this study, we created a Nhe1flox/flox (Nhe1f/f ) mouse line with exon 5 of Nhe1 flanked with two loxP sites and selective ablation of Nhe1 in astrocytes was achieved by crossing Nhe1f/f mice with Gfap-CreERT2 Cre-recombinase mice. Gfap-CreERT2+/- ;Nhe1f/f mice at postnatal day 60-90 were treated with either corn oil or tamoxifen (Tam, 75 mg/kg/day, i.p.) for 5 days. After 30 days post-injection, mice underwent transient middle cerebral artery occlusion (tMCAO) to induce ischemic stroke. Compared with the oil-vehicle group (control), Tam-treated Gfap-CreERT2+/- ;Nhe1f/f (Nhe1 KO) mice developed significantly smaller ischemic infarction, less edema, and less neurological function deficits at 1-5 days after tMCAO. Immunocytochemical analysis revealed less astrocytic proliferation, less cellular hypertrophy, and less peri-lesion gliosis in Nhe1 KO mouse brains. Selective deletion of Nhe1 in astrocytes also reduced cerebral microvessel damage and blood-brain barrier (BBB) injury in ischemic brains. The BBB microvessels of the control brains show swollen endothelial cells, opened tight junctions, increased expression of proinflammatory protease MMP-9, and significant loss of tight junction protein occludin. In contrast, the Nhe1 KO mice exhibited reduced BBB breakdown and normal tight junction structure, with increased expression of occludin and reduced MMP-9. Most importantly, deletion of astrocytic Nhe1 gene significantly increased regional cerebral blood flow in the ischemic hemisphere at 24 hr post-MCAO. Taken together, our study provides the first line of evidence for a causative role of astrocytic NHE1 protein in reactive astrogliosis and ischemic neurovascular damage.
Collapse
Affiliation(s)
- Gulnaz Begum
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Shanshan Song
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Shaoxia Wang
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Hanshu Zhao
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - Eric Li
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Rachel Nepomuceno
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Qing Ye
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Ming Sun
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - Donna B Stolz
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Claudette St Croix
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Simon C Watkins
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Yinhuai Chen
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, Cincinnati, Ohio
| | - Pingnian He
- Department of Cellular and Molecular Physiology, Penn State Hershey College of Medicine, Hershey, Pennsylvania
| | - Gary E Shull
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, Cincinnati, Ohio
| | - Dandan Sun
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania.,Veterans Affairs Pittsburgh Health Care System, Geriatric Research, Educational and Clinical Center, Pittsburgh, Pennsylvania
| |
Collapse
|
294
|
Zhang J, Chen H, Huang W, Zhou C, Li J, Xing S, Chen L, Li C, Dang C, Liu G, Pei Z, Zeng J. Unfolded protein response is activated in the ipsilateral thalamus following focal cerebral infarction in hypertensive rats. Clin Exp Pharmacol Physiol 2017; 43:1216-1224. [PMID: 27558464 DOI: 10.1111/1440-1681.12657] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 08/14/2016] [Accepted: 08/24/2016] [Indexed: 12/11/2022]
Abstract
Focal cerebral cortical infarction causes secondary neurodegeneration in the remote regions, such as the ventroposterior nucleus of the thalamus. Retrograde degeneration of thalamocortical fibers is considered as the principle mechanism, but the exact molecular events remain to be elucidated. This study aimed to investigate whether unfolded protein response (UPR) is activated in thalamic neurons following distal middle cerebral artery occlusion (MCAO) in stroke-prone renovascular hypertensive rats. Immunostaining and immunoblotting were performed to evaluate the expression of Grp78 and its downstream effectors in the thalamus at 3, 7 and 14 days after MCAO. Secondary thalamic degeneration was assessed with Nissl staining and NeuN immunostaining. Neuronal death was not apparent at 3 days post-ischaemia but was evident in the thalamus at 7 and 14 days after MCAO. Grp78 level was reduced in the ipsilateral thalamus at 3 and 7 days after MCAO. In parallel, phosphorylated eIF2α and ATF4 levels were elevated, indicating the activation of UPR. In contrast, ATF6α and CHOP levels were not changed. These results suggest that UPR is activated before neuronal death in the ipsilateral thalamus after MCAO and may represent a key early event in the secondary thalamic degeneration.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Neurology and Stroke Center, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Hongbing Chen
- Department of Neurology and Stroke Center, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Weixian Huang
- Department of Neurology and Stroke Center, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Chunyan Zhou
- Department of Neurology and Stroke Center, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jingjing Li
- Department of Neurology and Stroke Center, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Shihui Xing
- Department of Neurology and Stroke Center, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Li Chen
- Department of Neurology, First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Chuo Li
- Department of Neurology, Guangzhou No. 8 People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Chao Dang
- Department of Neurology and Stroke Center, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Gang Liu
- Department of Neurology and Stroke Center, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zhong Pei
- Department of Neurology and Stroke Center, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jinsheng Zeng
- Department of Neurology and Stroke Center, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
295
|
Takase H, Kurihara Y, Yokoyama TA, Kawahara N, Takei K. LOTUS overexpression accelerates neuronal plasticity after focal brain ischemia in mice. PLoS One 2017; 12:e0184258. [PMID: 28880879 PMCID: PMC5589167 DOI: 10.1371/journal.pone.0184258] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 08/20/2017] [Indexed: 01/13/2023] Open
Abstract
Nogo receptor-1 (NgR1) and its ligands inhibit neuronal plasticity and limit functional recovery after brain damage such as ischemic stroke. We have previously shown that lateral olfactory tract usher substance (LOTUS) antagonizes NgR1-mediated signaling. Here, we investigated whether LOTUS enhances neuronal plasticity and functional recovery after brain focal ischemia in adult mice. Focal ischemic infarcts were induced in wild-type and LOTUS-overexpressing transgenic mice via middle cerebral artery occlusion. Endogenous LOTUS expression was increased in brain and cervical spinal cord of the contralateral side of ischemia in the chronic phase after brain ischemia. LOTUS overexpression accelerated midline-crossing axonal sprouting from the contralateral side to the ipsilateral side of ischemia in the medullar reticular formation and gray matter of denervated cervical spinal cord. Importantly, LOTUS overexpression improved neurological score highly correlated with laterality ratio of corticoreticular fibers of the medulla oblongata, indicating that LOTUS overexpression may overcome the inhibitory environment induced by NgR1 signaling for damaged motor pathway reconstruction after ischemic stroke. Thus, our data suggest that LOTUS overexpression accelerates neuronal plasticity in the brainstem and cervical spinal cord after stroke and LOTUS administration is useful for future therapeutic strategies.
Collapse
Affiliation(s)
- Hajime Takase
- Department of Neurosurgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan
- Molecular Medical Bioscience Laboratory, Department of Medical Life Science, Yokohama City University Graduate School of Medical Life Science, Yokohama, Japan
| | - Yuji Kurihara
- Molecular Medical Bioscience Laboratory, Department of Medical Life Science, Yokohama City University Graduate School of Medical Life Science, Yokohama, Japan
| | - Taka-akira Yokoyama
- Department of Neurosurgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan
- Molecular Medical Bioscience Laboratory, Department of Medical Life Science, Yokohama City University Graduate School of Medical Life Science, Yokohama, Japan
| | - Nobutaka Kawahara
- Department of Neurosurgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan
- * E-mail: (KT); (NK)
| | - Kohtaro Takei
- Molecular Medical Bioscience Laboratory, Department of Medical Life Science, Yokohama City University Graduate School of Medical Life Science, Yokohama, Japan
- * E-mail: (KT); (NK)
| |
Collapse
|
296
|
Khaksar S, Bigdeli MR. Intra-cerebral cannabidiol infusion-induced neuroprotection is partly associated with the TNF-α/TNFR1/NF-кB pathway in transient focal cerebral ischaemia. Brain Inj 2017; 31:1932-1943. [PMID: 28872345 DOI: 10.1080/02699052.2017.1358397] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND Stroke is a neurological disease, which, in addition to high mortality, imposes many financial and mental burdens on families and the society. The main objective of this study was to investigate the effect of cannabidiol (CBD) on one of the major inflammatory pathways in cerebral ischaemia. METHOD Using stereotaxic surgery, the cannula was implanted into the right lateral ventricle of rats. CBD (50, 100, and 200 ng/rat; i.c.v.) was administrated for five consecutive days. After pretreatment, the rats were subjected to 60 min of right middle cerebral artery occlusion (MCAO). After 24 h, neurological deficits score, infarct volume, brain oedema, and blood-brain barrier (BBB) permeability in total, core, and penumbra areas were assessed. The expression of tumour necrosis factor alfa (TNF-α), tumour necrosis factor receptor 1 (TNFR1), and nuclear factor-kappa B (NF-кB) in the mentioned regions was also studied. RESULTS Administration of CBD (100 and 200 ng/rat) caused a significant reduction in infarction, brain oedema, and BBB permeability compared with the vehicle-received group. Down-regulation of TNF-α, TNFR1, and NF-кB expression was also observed by CBD. CONCLUSION The results achieved in this study support the idea that CBD has a cerebroprotective effect (partly through suppression of TNF-α, TNFR1, and NF-кB) on ischaemic injury. ABBREVIATIONS CBD, cannabidiol; ANOVA, analysis of variance; PVDF, polyvinylidene difluoride; SDS-PAGE, sodium dodecyl sulphate polyacrylamide gel electrophoresis; SEM, standard error of mean.
Collapse
Affiliation(s)
- Sepideh Khaksar
- a Department of Physiology, Faculty of Life Sciences and Biotechnology , Shahid Beheshti University , Tehran , Iran
| | - Mohammad Reza Bigdeli
- a Department of Physiology, Faculty of Life Sciences and Biotechnology , Shahid Beheshti University , Tehran , Iran
| |
Collapse
|
297
|
Swendeman SL, Xiong Y, Cantalupo A, Yuan H, Burg N, Hisano Y, Cartier A, Liu CH, Engelbrecht E, Blaho V, Zhang Y, Yanagida K, Galvani S, Obinata H, Salmon JE, Sanchez T, Di Lorenzo A, Hla T. An engineered S1P chaperone attenuates hypertension and ischemic injury. Sci Signal 2017; 10:10/492/eaal2722. [PMID: 28811382 DOI: 10.1126/scisignal.aal2722] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Endothelial dysfunction, a hallmark of vascular disease, is restored by plasma high-density lipoprotein (HDL). However, a generalized increase in HDL abundance is not beneficial, suggesting that specific HDL species mediate protective effects. Apolipoprotein M-containing HDL (ApoM+HDL), which carries the bioactive lipid sphingosine 1-phosphate (S1P), promotes endothelial function by activating G protein-coupled S1P receptors. Moreover, HDL-bound S1P is limiting in several inflammatory, metabolic, and vascular diseases. We report the development of a soluble carrier for S1P, ApoM-Fc, which activated S1P receptors in a sustained manner and promoted endothelial function. In contrast, ApoM-Fc did not modulate circulating lymphocyte numbers, suggesting that it specifically activated endothelial S1P receptors. ApoM-Fc administration reduced blood pressure in hypertensive mice, attenuated myocardial damage after ischemia/reperfusion injury, and reduced brain infarct volume in the middle cerebral artery occlusion model of stroke. Our proof-of-concept study suggests that selective and sustained targeting of endothelial S1P receptors by ApoM-Fc could be a viable therapeutic strategy in vascular diseases.
Collapse
Affiliation(s)
- Steven L Swendeman
- Vascular Biology Program, Boston Children's Hospital, Boston, MA 02115, USA.,Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Yuquan Xiong
- Vascular Biology Program, Boston Children's Hospital, Boston, MA 02115, USA.,Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Anna Cantalupo
- Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA
| | - Hui Yuan
- Vascular Biology Program, Boston Children's Hospital, Boston, MA 02115, USA.,Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Nathalie Burg
- Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA.,Hospital for Special Surgery, New York, NY 10021, USA
| | - Yu Hisano
- Vascular Biology Program, Boston Children's Hospital, Boston, MA 02115, USA.,Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Andreane Cartier
- Vascular Biology Program, Boston Children's Hospital, Boston, MA 02115, USA.,Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Catherine H Liu
- Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA
| | - Eric Engelbrecht
- Vascular Biology Program, Boston Children's Hospital, Boston, MA 02115, USA.,Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Victoria Blaho
- Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA
| | - Yi Zhang
- Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA
| | - Keisuke Yanagida
- Vascular Biology Program, Boston Children's Hospital, Boston, MA 02115, USA.,Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Sylvain Galvani
- Vascular Biology Program, Boston Children's Hospital, Boston, MA 02115, USA.,Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Hideru Obinata
- Gunma University Initiative for Advanced Research, Gunma 371-8511, Japan
| | - Jane E Salmon
- Hospital for Special Surgery, New York, NY 10021, USA
| | - Teresa Sanchez
- Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA
| | - Annarita Di Lorenzo
- Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA
| | - Timothy Hla
- Vascular Biology Program, Boston Children's Hospital, Boston, MA 02115, USA. .,Department of Surgery, Harvard Medical School, Boston, MA 02115, USA.,Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA
| |
Collapse
|
298
|
Li P, Wang L, Zhou Y, Gan Y, Zhu W, Xia Y, Jiang X, Watkins S, Vazquez A, Thomson AW, Chen J, Yu W, Hu X. C-C Chemokine Receptor Type 5 (CCR5)-Mediated Docking of Transferred Tregs Protects Against Early Blood-Brain Barrier Disruption After Stroke. J Am Heart Assoc 2017; 6:e006387. [PMID: 28768648 PMCID: PMC5586468 DOI: 10.1161/jaha.117.006387] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 06/16/2017] [Indexed: 12/25/2022]
Abstract
BACKGROUND Despite recent evidence demonstrating a potent protective effect of adoptively transferred regulatory T cells (Tregs) in ischemic stroke, the mechanism for Treg mobilization and activation in the ischemic brain is, remarkably, unknown. This study determines the role of C-C chemokine receptor type 5 (CCR5) in mediating the docking and activation of transferred Tregs in their protection of early blood-brain barrier disruption after stroke. METHODS AND RESULTS Adoptive transfer of CCR5-/- Tregs failed to reduce brain infarct or neurological deficits, indicating an indispensable role of CCR5 in Treg-afforded protection against cerebral ischemia. Two-photon live imaging demonstrated that CCR5 was critical for Treg docking at the injured vessel wall, where they interact with blood-borne neutrophils/macrophages after cerebral ischemic injury. CCR5 deficiency on donor Tregs deprived of their early protection against blood-brain barrier damage. Using flow cytometry, real-time polymerase chain reaction, and immunostaining, we confirmed that the expression of CCL5, a CCR5 ligand, was significantly elevated on the injured endothelium after cerebral ischemia, accompanied by CCR5 upregulation on circulating Tregs. In a Treg-endothelial cell coculture, CCR5 expression was induced on Tregs on their exposure to ischemia-injured endothelial cells. Furthermore, CCR5 induction on Tregs enhanced expression of the inhibitory molecule programmed death ligand 1, which in turn inhibited neutrophil-derived matrix metallopeptidase 9. CONCLUSIONS These results suggest that CCR5 is a critical molecule for Treg-mediated blood-brain barrier protection and a potential target to optimize Treg therapy for stroke.
Collapse
Affiliation(s)
- Peiying Li
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Long Wang
- Department of Anesthesia and Intensive Care, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Yuxi Zhou
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yu Gan
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wen Zhu
- Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Yuguo Xia
- Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Xiaoyan Jiang
- Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh School of Medicine, Pittsburgh, PA
- State Key Laboratory of Medical Neurobiology and Institute of Brain Sciences, Fudan University, Shanghai, China
| | - Simon Watkins
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Alberto Vazquez
- McGowan Institute of Regenerative Medicine, University of Pittsburgh, PA
| | - Angus W Thomson
- Department of Surgery, Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Jun Chen
- Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh School of Medicine, Pittsburgh, PA
- State Key Laboratory of Medical Neurobiology and Institute of Brain Sciences, Fudan University, Shanghai, China
| | - Weifeng Yu
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Anesthesia and Intensive Care, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Xiaoming Hu
- Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh School of Medicine, Pittsburgh, PA
- State Key Laboratory of Medical Neurobiology and Institute of Brain Sciences, Fudan University, Shanghai, China
| |
Collapse
|
299
|
Bhuiyan MIH, Song S, Yuan H, Begum G, Kofler J, Kahle KT, Yang SS, Lin SH, Alper SL, Subramanya AR, Sun D. WNK-Cab39-NKCC1 signaling increases the susceptibility to ischemic brain damage in hypertensive rats. J Cereb Blood Flow Metab 2017; 37:2780-2794. [PMID: 27798271 PMCID: PMC5536788 DOI: 10.1177/0271678x16675368] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
With-no-lysine kinase (WNK) and Na+-K+-2Cl- cotransporter 1 (NKCC1) are involved in the pathogenesis of hypertension. In this study, we investigated the WNK-NKCC1 signaling pathway in spontaneously hypertensive rats (SHR) and their associated susceptibility to stroke injury. Basal NKCC1 protein levels were higher in SHR than in normotensive Wistar Kyoto (WKY) rat brains. After inducing ischemic stroke, adult male WKY and SHR received either saline or NKCC1 inhibitor bumetanide (10 mg/kg/day, i.p.) starting at 3-h post-reperfusion. NKCC1 inhibition blunted the extent of ischemic infarction in SHR and improved their neurobehavioral functions. Interestingly, ischemia led to increased NKCC1 phosphorylation in SHR but not in WKY rats. Pronounced elevation of WNK1, WNK2 and WNK4 protein and downregulation of WNK3 were detected in ischemic SHR, but not in ischemic WKY rats. Upregulation of WNK-NKCC1 complex in ischemic SHR brain was associated with increased Ca2+-binding protein 39 (Cab39), without increases in Ste20-related proline alanine-rich kinase or oxidative stress-responsive kinase-1. Moreover, subacute middle cerebral artery stroke human brain autopsy exhibited increased expression of NKCC1 protein. We conclude that augmented WNK-Cab39-NKCC1 signaling in SHR is associated with an increased susceptibility to ischemic brain damage and may serve as a novel target for anti-hypertensive and anti-ischemic stroke therapy.
Collapse
Affiliation(s)
| | - Shanshan Song
- 1 Department of Neurology, University of Pittsburgh, Pittsburgh, USA
| | - Hui Yuan
- 1 Department of Neurology, University of Pittsburgh, Pittsburgh, USA
| | - Gulnaz Begum
- 1 Department of Neurology, University of Pittsburgh, Pittsburgh, USA
| | - Julia Kofler
- 2 Department of Pathology, University of Pittsburgh, Pittsburgh, USA
| | - Kristopher T Kahle
- 3 Department of Neurosurgery, Yale University School of Medicine, New Haven, USA.,4 Department of Pediatrics, Yale University School of Medicine, New Haven, USA
| | - Sung-Sen Yang
- 5 Division of Nephrology, Department of Medicine, Tri-Service General Hospital, Taipei, Taiwan.,6 Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Shih-Hua Lin
- 5 Division of Nephrology, Department of Medicine, Tri-Service General Hospital, Taipei, Taiwan.,6 Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Seth L Alper
- 7 Division of Nephrology and Vascular Biology Center, Beth Israel Deaconess Medical Center, Boston, USA.,8 Department of Medicine, Harvard Medical School, Boston, USA
| | - Arohan R Subramanya
- 9 Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, USA
| | - Dandan Sun
- 1 Department of Neurology, University of Pittsburgh, Pittsburgh, USA.,10 Veterans Affairs Pittsburgh Health Care System, Geriatric Research, Educational and Clinical Center, Pittsburgh, USA
| |
Collapse
|
300
|
Akhoundzadeh K, Vakili A, Sameni HR, Vafaei AA, Rashidy-Pour A, Safari M, Mohammadkhani R. Effects of the combined treatment of bone marrow stromal cells with mild exercise and thyroid hormone on brain damage and apoptosis in a mouse focal cerebral ischemia model. Metab Brain Dis 2017; 32:1267-1277. [PMID: 28547077 DOI: 10.1007/s11011-017-0034-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Accepted: 05/16/2017] [Indexed: 01/20/2023]
Abstract
This study examined whether post-stroke bone marrow stromal cells (BMSCs) therapy combined with exercise (EX) and/or thyroid hormone (TH) could reduce brain damage in an experimental ischemic stroke in mice. Focal cerebral ischemia was induced under Laser Doppler Flowmetry (LDF) guide by 45 min of middle cerebral artery occlusion (MCAO), followed by 7 days of reperfusion in albino mice. BMSCs were injected into the right cerebral ventricle 24 h after MCAO, followed by daily injection of T3 (20 μg/100 g weight S.C) and 6 days of running on a treadmill. Infarct size, neurobehavioral test, TUNEL and BrdU positive cells were evaluated at 7 days after MCAO. Treatment with BMSCs and mild EX alone significantly reduced the infarct volume by 23% and 44%, respectively (both, p < 0.001). The BMSCs + TH, BMSCs + EX, and BMSCs + EX + TH combination therapies significantly reduced the infarct volume by 26%, 51%, and 70%, respectively (all, p < 0.001). A significant improvement in the neurobehavioral functioning was observed in the EX, BMSCs + EX, and BMSCs + EX+ TH groups (p < 0.001). The number of TUNEL-positive cells (a marker of apoptosis) was significantly reduced in the EX, BMSCs, BMSCs + EX, BMSCs + TH, and BMSCs + EX + TH groups (all, p < 0.001). Moreover, the combination therapy considerably increased BrdU-labeled cells in the subventricular zone (SVZ) (p < 0.01). Our findings indicated that the combined treatment of BMSCs with mild EX and TH more efficiently reduces the cerebral infarct size after stroke. More likely, these effects mediate via enchaining generation of new neuronal cells and the attenuation of apoptosis in ischemia stroke in young mice.
Collapse
Affiliation(s)
- Kobar Akhoundzadeh
- Research Center and Department of Physiology, Faculty of Medicine, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Abedin Vakili
- Research Center and Department of Physiology, Faculty of Medicine, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran.
| | - Hamid Reza Sameni
- Research Center of Nervous System Stem Cells, Department of Anatomy, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran.
| | - Abbas Ali Vafaei
- Research Center and Department of Physiology, Faculty of Medicine, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Ali Rashidy-Pour
- Research Center and Department of Physiology, Faculty of Medicine, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Manouchehr Safari
- Research Center of Nervous System Stem Cells, Department of Anatomy, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Razieh Mohammadkhani
- Research Center and Department of Physiology, Faculty of Medicine, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|