251
|
Zheng D, Zhao K, Mehler MF. Profiling RE1/REST-mediated histone modifications in the human genome. Genome Biol 2009; 10:R9. [PMID: 19173732 PMCID: PMC2687797 DOI: 10.1186/gb-2009-10-1-r9] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Accepted: 01/27/2009] [Indexed: 11/26/2022] Open
Abstract
Background The transcriptional repressor REST (RE1 silencing transcription factor, also called NRSF for neuron-restrictive silencing factor) binds to a conserved RE1 motif and represses many neuronal genes in non-neuronal cells. This transcriptional regulation is transacted by several nucleosome-modifying enzymes recruited by REST to RE1 sites, including histone deacetylases (for example, HDAC1/2), demethylases (for example, LSD1), and methyltransferases (for example, G9a). Results We have investigated a panel of 38 histone modifications by ChIP-Seq analysis for REST-mediated changes. Our study reveals a systematic decline of histone acetylations modulated by the association of RE1 with REST (RE1/REST). By contrast, alteration of histone methylations is more heterogeneous, with some methylations increased (for example, H3K27me3, and H3K9me2/3) and others decreased (for example, H3K4me, and H3K9me1). Furthermore, the observation of such trends of histone modifications in upregulated genes demonstrates convincingly that these changes are not determined by gene expression but are RE1/REST dependent. The outcomes of REST binding to canonical and non-canonical RE1 sites were nearly identical. Our analyses have also provided the first direct evidence that REST induces context-specific nucleosome repositioning, and furthermore demonstrate that REST-mediated histone modifications correlate with the affinity of RE1 motifs and the abundance of RE1-bound REST molecules. Conclusions Our findings indicate that the landscape of REST-mediated chromatin remodeling is dynamic and complex, with novel histone modifying enzymes and mechanisms yet to be elucidated. Our results should provide valuable insights for selecting the most informative histone marks for investigating the mechanisms and the consequences of REST modulated nucleosome remodeling in both neural and non-neural systems.
Collapse
Affiliation(s)
- Deyou Zheng
- Institute for Brain Disorders and Neural Regeneration, Department of Neurology, Rose F Kennedy Center for the Study of Intellectual and Developmental Disabilities, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | | | | |
Collapse
|
253
|
Abstract
Adenovirus type 12 (Ad12) E1A protein (E1A-12) contains a unique 20-amino-acid spacer region between the second and third conserved regions. Substitution of a single amino acid in the spacer is able to abrogate Ad12 tumorigenesis. To investigate the function of the spacer, microarray analysis was performed on cells transformed by tumorigenic and nontumorigenic Ad12s that differ only by one amino acid in the spacer. Fewer than 0.8% of approximately 8,000 genes in the microarray exhibited differential expression of threefold and higher. Of these, more than half of the known genes with higher expression in the wild-type Ad12-transformed cells have neuronal-specific functions. Some of the other differentially expressed genes are involved in the regulation of the cell cycle, transcription, cell structure, and tumor invasiveness. Northern blot analyses of a subset of the neuronal genes, including Robo1, N-MYC, and alpha-internexin, confirmed their strong expression in multiple Ad12 tumorigenic cell lines. In contrast, these neuronal genes displayed only minor or negligible expression in cells transformed by spacer-mutated Ad12. Significantly, stable introduction of E1A-12 into nontumorigenic Ad5-transformed cells induced neuronal gene expression. We found that the neuron-restrictive silencer factor, which serves as a master repressor of neuronal genes, was inactivated in both Ad12- and Ad5-transformed cells via cytoplasmic retention, though only Ad12-transformed cells exhibited neuronal gene induction. Mutational analyses of the alpha-internexin promoter demonstrated that E1A-12-mediated neuronal gene induction further required the activation of neuronal promoter E-box elements. These results indicate that the spacer is involved in mediating neuronal and tumor-related genes.
Collapse
|
255
|
Seo E, Kim H, Kim R, Yun S, Kim M, Han JK, Costantini F, Jho EH. Multiple isoforms of beta-TrCP display differential activities in the regulation of Wnt signaling. Cell Signal 2008; 21:43-51. [PMID: 18929646 DOI: 10.1016/j.cellsig.2008.09.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2008] [Accepted: 09/09/2008] [Indexed: 10/21/2022]
Abstract
The F-box proteins beta-TrCP1 and 2 (beta-transducin repeat containing protein) have 2 and 3 isoforms, respectively, due to alternative splicing of exons encoding the N-terminal region. We identified an extra exon in between the previously known exons 1 and 2 of beta-TrCP1 and beta-TrCP2. Interestingly, sequence analysis suggested that many more isoforms are produced than previously identified, via the alternative splicing of all possible combination of exons II to V of beta-TrCP1 and exons II to IV of beta-TrCP2. Different mouse tissues show specific expression patterns of the isoforms, and the level of expression of the isoform that has been used in most published papers was very low. Yeast two-hybrid assays show that beta-TrCP1 isoforms containing exon III, which are the most highly expressed isoforms in most tissues, do not interact with Skp1. Indirect immunofluorescence analysis of transiently expressed beta-TrCP1 isoforms suggests that the presence of exon III causes beta-TrCP1 to localize in nuclei. Consistent with the above findings, isoforms including exon III showed a reduced ability to block ectopic embryonic axes induced via injection of Wnt8 or beta-catenin in Xenopus embryos. Overall, our data suggest that isoforms of beta-TrCPs generated by alternative splicing may have different biological roles.
Collapse
Affiliation(s)
- Eunjeong Seo
- Department of Life Science, The University of Seoul, Seoul, 130-743, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
256
|
Zhang P, Pazin MJ, Schwartz CM, Becker KG, Wersto RP, Dilley CM, Mattson MP. Nontelomeric TRF2-REST interaction modulates neuronal gene silencing and fate of tumor and stem cells. Curr Biol 2008; 18:1489-94. [PMID: 18818083 DOI: 10.1016/j.cub.2008.08.048] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2008] [Revised: 07/18/2008] [Accepted: 08/12/2008] [Indexed: 10/21/2022]
Abstract
Removal of TRF2, a telomere shelterin protein, recapitulates key aspects of telomere attrition including the DNA-damage response and cell-cycle arrest [1]. Distinct from the response of proliferating cells to loss of TRF2 [2, 3], in rodent noncycling cells, TRF2 inhibition promotes differentiation and growth [4, 5]. However, the mechanism that couples telomere gene-silencing features [6-8] to differentiation programs has yet to be elucidated. Here we describe an extratelomeric function of TRF2 in the regulation of neuronal genes mediated by the interaction of TRF2 with repressor element 1-silencing transcription factor (REST), a master repressor of gene networks devoted to neuronal functions [9-12]. TRF2-REST complexes are readily detected by coimmunoprecipitation assays and are localized to aggregated PML-nuclear bodies in undifferentiated pluripotent human NTera2 stem cells. Inhibition of TRF2, either by a dominant-negative mutant or by RNA interference, dissociates TRF2-REST complexes resulting in ubiquitin-proteasomal degradation of REST. Consequentially, REST-targeted neural genes (L1CAM, beta3-tubulin, synaptophysin, and others) are derepressed, resulting in acquisition of neuronal phenotypes. Notably, selective damage to telomeres without affecting TRF2 levels causes neither REST degradation nor cell differentiation. Thus, in addition to protecting telomeres, TRF2 possesses a novel role in stabilization of REST thereby controlling neural tumor and stem cell fate.
Collapse
Affiliation(s)
- Peisu Zhang
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland 21224, USA
| | | | | | | | | | | | | |
Collapse
|
257
|
Canzonetta C, Mulligan C, Deutsch S, Ruf S, O'Doherty A, Lyle R, Borel C, Lin-Marq N, Delom F, Groet J, Schnappauf F, De Vita S, Averill S, Priestley JV, Martin JE, Shipley J, Denyer G, Epstein CJ, Fillat C, Estivill X, Tybulewicz VL, Fisher EM, Antonarakis SE, Nizetic D. DYRK1A-dosage imbalance perturbs NRSF/REST levels, deregulating pluripotency and embryonic stem cell fate in Down syndrome. Am J Hum Genet 2008; 83:388-400. [PMID: 18771760 PMCID: PMC2556438 DOI: 10.1016/j.ajhg.2008.08.012] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2008] [Revised: 07/10/2008] [Accepted: 08/20/2008] [Indexed: 10/21/2022] Open
Abstract
Down syndrome (DS) is the most common cause of mental retardation. Many neural phenotypes are shared between DS individuals and DS mouse models; however, the common underlying molecular pathogenetic mechanisms remain unclear. Using a transchromosomic model of DS, we show that a 30%-60% reduced expression of Nrsf/Rest (a key regulator of pluripotency and neuronal differentiation) is an alteration that persists in trisomy 21 from undifferentiated embryonic stem (ES) cells to adult brain and is reproducible across several DS models. Using partially trisomic ES cells, we map this effect to a three-gene segment of HSA21, containing DYRK1A. We independently identify the same locus as the most significant eQTL controlling REST expression in the human genome. We show that specifically silencing the third copy of DYRK1A rescues Rest levels, and we demonstrate altered Rest expression in response to inhibition of DYRK1A expression or kinase activity, and in a transgenic Dyrk1A mouse. We reveal that undifferentiated trisomy 21 ES cells show DYRK1A-dose-sensitive reductions in levels of some pluripotency regulators, causing premature expression of transcription factors driving early endodermal and mesodermal differentiation, partially overlapping recently reported downstream effects of Rest +/-. They produce embryoid bodies with elevated levels of the primitive endoderm progenitor marker Gata4 and a strongly reduced neuroectodermal progenitor compartment. Our results suggest that DYRK1A-mediated deregulation of REST is a very early pathological consequence of trisomy 21 with potential to disturb the development of all embryonic lineages, warranting closer research into its contribution to DS pathology and new rationales for therapeutic approaches.
Collapse
Affiliation(s)
- Claudia Canzonetta
- Institute of Cell and Molecular Science, Barts & The London, Queen Mary's School of Medicine and Dentistry, University of London, 4 Newark Street, London E1 2AT, UK
| | - Claire Mulligan
- Institute of Cell and Molecular Science, Barts & The London, Queen Mary's School of Medicine and Dentistry, University of London, 4 Newark Street, London E1 2AT, UK
| | - Samuel Deutsch
- Department of Genetic Medicine and Development, Geneva University Medical School, Geneva CH-1211, Switzerland
| | - Sandra Ruf
- National Institute for Medical Research, Mill Hill, London NW7 1AA, UK
| | - Aideen O'Doherty
- National Institute for Medical Research, Mill Hill, London NW7 1AA, UK
- Department of Neurodegenerative Disease, Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Robert Lyle
- Department of Genetic Medicine and Development, Geneva University Medical School, Geneva CH-1211, Switzerland
| | - Christelle Borel
- Department of Genetic Medicine and Development, Geneva University Medical School, Geneva CH-1211, Switzerland
| | - Nathalie Lin-Marq
- Department of Genetic Medicine and Development, Geneva University Medical School, Geneva CH-1211, Switzerland
| | - Frederic Delom
- Institute of Cell and Molecular Science, Barts & The London, Queen Mary's School of Medicine and Dentistry, University of London, 4 Newark Street, London E1 2AT, UK
| | - Jürgen Groet
- Institute of Cell and Molecular Science, Barts & The London, Queen Mary's School of Medicine and Dentistry, University of London, 4 Newark Street, London E1 2AT, UK
| | - Felix Schnappauf
- Institute of Cell and Molecular Science, Barts & The London, Queen Mary's School of Medicine and Dentistry, University of London, 4 Newark Street, London E1 2AT, UK
| | - Serena De Vita
- Institute of Cell and Molecular Science, Barts & The London, Queen Mary's School of Medicine and Dentistry, University of London, 4 Newark Street, London E1 2AT, UK
| | - Sharon Averill
- Institute of Cell and Molecular Science, Barts & The London, Queen Mary's School of Medicine and Dentistry, University of London, 4 Newark Street, London E1 2AT, UK
| | - John V. Priestley
- Institute of Cell and Molecular Science, Barts & The London, Queen Mary's School of Medicine and Dentistry, University of London, 4 Newark Street, London E1 2AT, UK
| | - Joanne E. Martin
- Institute of Cell and Molecular Science, Barts & The London, Queen Mary's School of Medicine and Dentistry, University of London, 4 Newark Street, London E1 2AT, UK
| | - Janet Shipley
- The Institute of Cancer Research, Sutton, Surrey SM2 5NG, UK
| | - Gareth Denyer
- Department of Biochemistry, University of Sydney, Sydney NSW 2006, Australia
| | - Charles J. Epstein
- Department of Pediatrics, University of California, San Francisco, CA 94143-2911, USA
| | - Cristina Fillat
- Genes and Disease Program, Center for Genomic Regulation (CRG-UPF), and CIBERESP and CIBERER, Barcelona 08003, Spain
| | - Xavier Estivill
- Genes and Disease Program, Center for Genomic Regulation (CRG-UPF), and CIBERESP and CIBERER, Barcelona 08003, Spain
| | | | - Elizabeth M.C. Fisher
- Department of Neurodegenerative Disease, Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Stylianos E. Antonarakis
- Department of Genetic Medicine and Development, Geneva University Medical School, Geneva CH-1211, Switzerland
| | - Dean Nizetic
- Institute of Cell and Molecular Science, Barts & The London, Queen Mary's School of Medicine and Dentistry, University of London, 4 Newark Street, London E1 2AT, UK
| |
Collapse
|
258
|
Abstract
The nervous system contains a multitude of cell types which are specified during development by cascades of transcription factors acting combinatorially. Some of these transcription factors are only active during development, whereas others continue to function in the mature nervous system to maintain appropriate gene-expression patterns in differentiated cells. Underpinning the function of the nervous system is its plasticity in response to external stimuli, and many transcription factors are involved in regulating gene expression in response to neuronal activity, allowing us to learn, remember and make complex decisions. Here we review some of the recent findings that have uncovered the molecular mechanisms that underpin the control of gene regulatory networks within the nervous system. We highlight some recent insights into the gene-regulatory circuits in the development and differentiation of cells within the nervous system and discuss some of the mechanisms by which synaptic transmission influences transcription-factor activity in the mature nervous system. Mutations in genes that are important in epigenetic regulation (by influencing DNA methylation and post-translational histone modifications) have long been associated with neuronal disorders in humans such as Rett syndrome, Huntington's disease and some forms of mental retardation, and recent work has focused on unravelling their mechanisms of action. Finally, the discovery of microRNAs has produced a paradigm shift in gene expression, and we provide some examples and discuss the contribution of microRNAs to maintaining dynamic gene regulatory networks in the brain.
Collapse
|
259
|
Foijer F, Draviam VM, Sorger PK. Studying chromosome instability in the mouse. Biochim Biophys Acta Rev Cancer 2008; 1786:73-82. [PMID: 18706976 DOI: 10.1016/j.bbcan.2008.07.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Revised: 06/22/2008] [Accepted: 07/16/2008] [Indexed: 12/21/2022]
Abstract
Aneuploidy has long been recognized as one of the hallmarks of cancer. It nonetheless remains uncertain whether aneuploidy occurring early in the development of a cancer is a primary cause of oncogenic transformation, or whether it is an epiphenomenon that arises from a general breakdown in cell cycle control late in tumorigenesis. The accuracy of chromosome segregation is ensured both by the intrinsic mechanics of mitosis and by an error-checking spindle assembly checkpoint. Many cancers show altered expression of proteins involved in the spindle checkpoint or in proteins implicated in other mitotic processes. To understand the role of aneuploidy in the initiation and progression of cancer, a number of spindle checkpoint genes have been disrupted in mice, most through conventional gene targeting (to create germ-line knockouts). We describe the consequence of these mutations with respect to embryonic development, tumor progression and an unexpected link to premature aging; readers are referred elsewhere [1] for a discussion of other cell cycle regulators.
Collapse
Affiliation(s)
- Floris Foijer
- Harvard Medical School, Department of Systems Biology, 200 Longwood Avenue, Boston, MA 02115, USA
| | | | | |
Collapse
|