251
|
Holdt LM, Kohlmaier A, Teupser D. Molecular functions and specific roles of circRNAs in the cardiovascular system. Noncoding RNA Res 2018; 3:75-98. [PMID: 30159442 PMCID: PMC6096412 DOI: 10.1016/j.ncrna.2018.05.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 05/11/2018] [Accepted: 05/11/2018] [Indexed: 12/25/2022] Open
Abstract
As part of the superfamily of long noncoding RNAs, circular RNAs (circRNAs) are emerging as a new type of regulatory molecules that partake in gene expression control. Here, we review the current knowledge about circRNAs in cardiovascular disease. CircRNAs are not only associated with different types of cardiovascular disease, but they have also been identified as intracellular effector molecules for pathophysiological changes in cardiovascular tissues, and as cardiovascular biomarkers. This evidence is put in the context of the current understanding of general circRNA biogenesis and of known interactions of circRNAs with DNA, RNA, and proteins.
Collapse
Affiliation(s)
- Lesca M. Holdt
- Institute of Laboratory Medicine, University Hospital, LMU Munich, Germany
| | | | | |
Collapse
|
252
|
Structural basis for MTR4-ZCCHC8 interactions that stimulate the MTR4 helicase in the nuclear exosome-targeting complex. Proc Natl Acad Sci U S A 2018; 115:E5506-E5515. [PMID: 29844170 PMCID: PMC6004480 DOI: 10.1073/pnas.1803530115] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Aberrant or unwanted transcripts can be degraded by the RNA exosome with the help of the nuclear exosome-targeting (NEXT) complex. NEXT, composed of RNA-binding protein RBM7, scaffold ZCCHC8, and helicase MTR4, is implicated in stress response, neurodegeneration, and viral ribogenesis. Here, we characterize the activities of NEXT that support its role in exosome-mediated decay. NEXT catalyzes 3′→5′ helicase activity and disrupts RNA:RNA and DNA:RNA duplexes more efficiently than MTR4. Optimal activity is observed when substrates include a uridine-rich motif, for interactions with RBM7, and a 3′ poly(A) tail. The ZCCHC8 C-terminal domain binds the helicase core and can stimulate MTR4 helicase/ATPase activities. Our results highlight the interplay among NEXT subunits to ensure effective targeting of substrates. The nuclear exosome-targeting (NEXT) complex functions as an RNA exosome cofactor and is involved in surveillance and turnover of aberrant transcripts and noncoding RNAs. NEXT is a ternary complex composed of the RNA-binding protein RBM7, the scaffold zinc-knuckle protein ZCCHC8, and the helicase MTR4. While RNA interactions with RBM7 are known, it remains unclear how NEXT subunits collaborate to recognize and prepare substrates for degradation. Here, we show that MTR4 helicase activity is enhanced when associated with RBM7 and ZCCHC8. While uridine-rich substrates interact with RBM7 and are preferred, optimal activity is observed when substrates include a polyadenylated 3′ end. We identify a bipartite interaction of ZCCHC8 with MTR4 and uncover a role for the conserved C-terminal domain of ZCCHC8 in stimulating MTR4 helicase and ATPase activities. A crystal structure reveals that the ZCCHC8 C-terminal domain binds the helicase core in a manner that is distinct from that observed for Saccharomyces cerevisiae exosome cofactors Trf4p and Air2p. Our results are consistent with a model whereby effective targeting of substrates by NEXT entails recognition of elements within the substrate and activation of MTR4 helicase activity.
Collapse
|
253
|
Skamagki M, Zhang C, Ross CA, Ananthanarayanan A, Liu Z, Mu Q, Basu U, Wang J, Zhao R, Li H, Kim K. RNA Exosome Complex-Mediated Control of Redox Status in Pluripotent Stem Cells. Stem Cell Reports 2018; 9:1053-1061. [PMID: 29020613 PMCID: PMC5639470 DOI: 10.1016/j.stemcr.2017.08.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 08/29/2017] [Accepted: 08/30/2017] [Indexed: 12/24/2022] Open
Abstract
The RNA exosome complex targets AU-rich element (ARE)-containing mRNAs in eukaryotic cells. We identified a transcription factor, ZSCAN10, which binds to the promoters of multiple RNA exosome complex subunits in pluripotent stem cells to maintain subunit gene expression. We discovered that induced pluripotent stem cell clones generated from aged tissue donors (A-iPSC) show poor expression of ZSCAN10, leading to poor RNA exosome complex expression, and a subsequent elevation in ARE-containing RNAs, including glutathione peroxidase 2 (Gpx2). Excess GPX2 leads to excess glutathione-mediated reactive oxygen species scavenging activity that blunts the DNA damage response and apoptosis. Expression of ZSCAN10 in A-iPSC recovers RNA exosome gene expression, the DNA damage response, and apoptosis. These findings reveal the central role of ZSCAN10 and the RNA exosome complex in maintaining pluripotent stem cell redox status to support a normal DNA damage response.
Collapse
Affiliation(s)
- Maria Skamagki
- Cancer Biology and Genetics Program, The Center for Cell Engineering, The Center for Stem Cell Biology, Memorial Sloan-Kettering Cancer Center, Sloan-Kettering Institute for Cancer Research, New York, NY 10065, USA; Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, NY 10065, USA
| | - Cheng Zhang
- Department of Molecular Pharmacology & Experimental Therapeutics, Center for Individualized Medicine, Mayo Clinic College of Medicine, Rochester, MN 55902, USA
| | - Christian A Ross
- Department of Molecular Pharmacology & Experimental Therapeutics, Center for Individualized Medicine, Mayo Clinic College of Medicine, Rochester, MN 55902, USA
| | - Aparna Ananthanarayanan
- Cancer Biology and Genetics Program, The Center for Cell Engineering, The Center for Stem Cell Biology, Memorial Sloan-Kettering Cancer Center, Sloan-Kettering Institute for Cancer Research, New York, NY 10065, USA; Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, NY 10065, USA
| | - Zhong Liu
- Department of Biochemistry and Molecular Genetics, Stem Cell Institute, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Quanhua Mu
- Divisions of Life Science, Department of Chemical and Biomedical Engineering, School of Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Uttiya Basu
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Jiguang Wang
- Divisions of Life Science, Department of Chemical and Biomedical Engineering, School of Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Rui Zhao
- Department of Biochemistry and Molecular Genetics, Stem Cell Institute, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Hu Li
- Department of Molecular Pharmacology & Experimental Therapeutics, Center for Individualized Medicine, Mayo Clinic College of Medicine, Rochester, MN 55902, USA.
| | - Kitai Kim
- Cancer Biology and Genetics Program, The Center for Cell Engineering, The Center for Stem Cell Biology, Memorial Sloan-Kettering Cancer Center, Sloan-Kettering Institute for Cancer Research, New York, NY 10065, USA; Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, NY 10065, USA.
| |
Collapse
|
254
|
Mpp6 Incorporation in the Nuclear Exosome Contributes to RNA Channeling through the Mtr4 Helicase. Cell Rep 2018; 20:2279-2286. [PMID: 28877463 PMCID: PMC5603729 DOI: 10.1016/j.celrep.2017.08.033] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 07/27/2017] [Accepted: 08/11/2017] [Indexed: 12/24/2022] Open
Abstract
The RNA-degrading exosome mediates the processing and decay of many cellular transcripts. In the yeast nucleus, the ubiquitous 10-subunit exosome core complex (Exo-9–Rrp44) functions with four conserved cofactors (Rrp6, Rrp47, Mtr4, and Mpp6). Biochemical and structural studies to date have shed insights into the mechanisms of the exosome core and its nuclear cofactors, with the exception of Mpp6. We report the 3.2-Å resolution crystal structure of a S. cerevisiae Exo-9–Mpp6 complex, revealing how linear motifs in the Mpp6 middle domain bind Rrp40 via evolutionary conserved residues. In particular, Mpp6 binds near a tryptophan residue of Rrp40 that is mutated in human patients suffering from pontocerebellar hypoplasia. Using biochemical assays, we show that Mpp6 is required for the ability of Mtr4 to extend the trajectory of an RNA entering the exosome core, suggesting that it promotes the channeling of substrates from the nuclear helicase to the processive RNase. Yeast Mpp6 is stably bound to the nuclear exosome core both in vivo and in vitro The Mpp6 middle domain binds the Rrp40 exosome subunit with conserved interactions Mpp6 enhances the ability of the Mtr4 helicase to channel RNA into the exosome core The pontocerebellar W238R mutation in human EXOSC3 affects the hMPP6-binding site
Collapse
|
255
|
Singh P, Saha U, Paira S, Das B. Nuclear mRNA Surveillance Mechanisms: Function and Links to Human Disease. J Mol Biol 2018; 430:1993-2013. [PMID: 29758258 DOI: 10.1016/j.jmb.2018.05.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 04/30/2018] [Accepted: 05/07/2018] [Indexed: 01/05/2023]
Abstract
Production of export-competent mRNAs involves transcription and a series of dynamic processing and modification events of pre-messenger RNAs in the nucleus. Mutations in the genes encoding the transcription and mRNP processing machinery and the complexities involved in the biogenesis events lead to the formation of aberrant messages. These faulty transcripts are promptly eliminated by the nuclear RNA exosome and its cofactors to safeguard the cells and organisms from genetic catastrophe. Mutations in the components of the core nuclear exosome and its cofactors lead to the tissue-specific dysfunction of exosomal activities, which are linked to diverse human diseases and disorders. In this article, we examine the structure and function of both the yeast and human RNA exosome complex and its cofactors, discuss the nature of the various altered amino acid residues implicated in these diseases with the speculative mechanisms of the mutation-induced disorders and project the frontier and prospective avenues of the future research in this field.
Collapse
Affiliation(s)
- Pragyan Singh
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, India
| | - Upasana Saha
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, India
| | - Sunirmal Paira
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, India
| | - Biswadip Das
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, India.
| |
Collapse
|
256
|
|
257
|
Yewdell WT, Chaudhuri J. A transcriptional serenAID: the role of noncoding RNAs in class switch recombination. Int Immunol 2018; 29:183-196. [PMID: 28535205 DOI: 10.1093/intimm/dxx027] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 05/22/2017] [Indexed: 12/31/2022] Open
Abstract
During an immune response, activated B cells may undergo class switch recombination (CSR), a molecular rearrangement that allows B cells to switch from expressing IgM and IgD to a secondary antibody heavy chain isotype such as IgG, IgA or IgE. Secondary antibody isotypes provide the adaptive immune system with distinct effector functions to optimally combat various pathogens. CSR occurs between repetitive DNA elements within the immunoglobulin heavy chain (Igh) locus, termed switch (S) regions and requires the DNA-modifying enzyme activation-induced cytidine deaminase (AID). AID-mediated DNA deamination within S regions initiates the formation of DNA double-strand breaks, which serve as biochemical beacons for downstream DNA repair pathways that coordinate the ligation of DNA breaks. Myriad factors contribute to optimal AID targeting; however, many of these factors also localize to genomic regions outside of the Igh locus. Thus, a current challenge is to explain the specific targeting of AID to the Igh locus. Recent studies have implicated noncoding RNAs in CSR, suggesting a provocative mechanism that incorporates Igh-specific factors to enable precise AID targeting. Here, we chronologically recount the rich history of noncoding RNAs functioning in CSR to provide a comprehensive context for recent and future discoveries. We present a model for the RNA-guided targeting of AID that attempts to integrate historical and recent findings, and highlight potential caveats. Lastly, we discuss testable hypotheses ripe for current experimentation, and explore promising ideas for future investigations.
Collapse
Affiliation(s)
- William T Yewdell
- Immunology Program, Memorial Sloan Kettering Cancer, New York, NY 10065, USA
| | - Jayanta Chaudhuri
- Immunology Program, Memorial Sloan Kettering Cancer, New York, NY 10065, USA.,Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
| |
Collapse
|
258
|
Gallagher PS, Larkin M, Thillainadesan G, Dhakshnamoorthy J, Balachandran V, Xiao H, Wellman C, Chatterjee R, Wheeler D, Grewal SIS. Iron homeostasis regulates facultative heterochromatin assembly in adaptive genome control. Nat Struct Mol Biol 2018; 25:372-383. [PMID: 29686279 PMCID: PMC5936480 DOI: 10.1038/s41594-018-0056-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 03/09/2018] [Indexed: 01/04/2023]
Abstract
Iron metabolism is critical for sustaining life and maintaining human health. Here, we find that iron homeostasis is linked to facultative heterochromatin assembly and regulation of gene expression during adaptive genome control. We show that the fission yeast Clr4/Suv39h histone methyltransferase is part of a rheostat-like mechanism in which transcriptional upregulation of mRNAs in response to environmental change provides feedback to prevent their uncontrolled expression through heterochromatin assembly. Interestingly, proper iron homeostasis is required, as iron depletion or downregulation of iron transporters causes defects in heterochromatin assembly and unrestrained upregulation of gene expression. Remarkably, an unbiased genetic screen revealed that restoration of iron homeostasis is sufficient to re-establish facultative heterochromatin and proper gene control genome-wide. These results establish a role for iron homeostasis in facultative heterochromatin assembly and reveal a dynamic mechanism for reprogramming the genome in response to environmental changes.
Collapse
Affiliation(s)
- Pamela S Gallagher
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Madeline Larkin
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Gobi Thillainadesan
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jothy Dhakshnamoorthy
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Vanivilasini Balachandran
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Hua Xiao
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Christopher Wellman
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - David Wheeler
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Shiv I S Grewal
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
259
|
Hautbergue GM. RNA Nuclear Export: From Neurological Disorders to Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1007:89-109. [PMID: 28840554 DOI: 10.1007/978-3-319-60733-7_6] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The presence of a nuclear envelope, also known as nuclear membrane, defines the structural framework of all eukaryotic cells by separating the nucleus, which contains the genetic material, from the cytoplasm where the synthesis of proteins takes place. Translation of proteins in Eukaryotes is thus dependent on the active transport of DNA-encoded RNA molecules through pores embedded within the nuclear membrane. Several mechanisms are involved in this process generally referred to as RNA nuclear export or nucleocytoplasmic transport of RNA. The regulated expression of genes requires the nuclear export of protein-coding messenger RNA molecules (mRNAs) as well as non-coding RNAs (ncRNAs) together with proteins and pre-assembled ribosomal subunits. The nuclear export of mRNAs is intrinsically linked to the co-transcriptional processing of nascent transcripts synthesized by the RNA polymerase II. This functional coupling is essential for the survival of cells allowing for timely nuclear export of fully processed transcripts, which could otherwise cause the translation of abnormal proteins such as the polymeric repeat proteins produced in some neurodegenerative diseases. Alterations of the mRNA nuclear export pathways can also lead to genome instability and to various forms of cancer. This chapter will describe the molecular mechanisms driving the nuclear export of RNAs with a particular emphasis on mRNAs. It will also review their known alterations in neurological disorders and cancer, and the recent opportunities they offer for the potential development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Guillaume M Hautbergue
- RNA Biology Laboratory, Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, 385a Glossop Road, Sheffield, S10 2HQ, UK.
| |
Collapse
|
260
|
Contreras X, Salifou K, Sanchez G, Helsmoortel M, Beyne E, Bluy L, Pelletier S, Rousset E, Rouquier S, Kiernan R. Nuclear RNA surveillance complexes silence HIV-1 transcription. PLoS Pathog 2018; 14:e1006950. [PMID: 29554134 PMCID: PMC5875879 DOI: 10.1371/journal.ppat.1006950] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 03/29/2018] [Accepted: 02/26/2018] [Indexed: 12/11/2022] Open
Abstract
Expression from the HIV-1 LTR can be repressed in a small population of cells, which contributes to the latent reservoir. The factors mediating this repression have not been clearly elucidated. We have identified a network of nuclear RNA surveillance factors that act as effectors of HIV-1 silencing. RRP6, MTR4, ZCCHC8 and ZFC3H1 physically associate with the HIV-1 TAR region and repress transcriptional output and recruitment of RNAPII to the LTR. Knock-down of these factors in J-Lat cells increased the number of GFP-positive cells, with a concomitant increase in histone marks associated with transcriptional activation. Loss of these factors increased HIV-1 expression from infected PBMCs and led to reactivation of HIV-1 from latently infected PBMCs. These findings identify a network of novel transcriptional repressors that control HIV-1 expression and which could open new avenues for therapeutic intervention. Following integration into the host genome, HIV-1 expression is silenced in a small population of cells, largely via epigenetic mechanisms that repress LTR-mediated transcription. This repression creates a reservoir of cells that prevent an effective cure. It is unclear how and why integrated HIV-1 becomes transcriptionally silenced. Here, we identify a network of nuclear RNA surveillance factors that repress HIV transcription and whose loss increases virus expression in latently infected J-Lat and PBMCs. These findings advance the understanding of transcriptional repression of HIV-1.
Collapse
Affiliation(s)
- Xavier Contreras
- Institut de Génétique Humaine, CNRS-University of Montpellier UMR9002, Gene Regulation Laboratory, 141 rue de la cardonille, Montpellier, France
- * E-mail: (XC); (RK)
| | - Kader Salifou
- Institut de Génétique Humaine, CNRS-University of Montpellier UMR9002, Gene Regulation Laboratory, 141 rue de la cardonille, Montpellier, France
| | - Gabriel Sanchez
- Institut de Génétique Humaine, CNRS-University of Montpellier UMR9002, Gene Regulation Laboratory, 141 rue de la cardonille, Montpellier, France
| | - Marion Helsmoortel
- Institut de Génétique Humaine, CNRS-University of Montpellier UMR9002, Gene Regulation Laboratory, 141 rue de la cardonille, Montpellier, France
| | - Emmanuelle Beyne
- Institut de Génétique Humaine, CNRS-University of Montpellier UMR9002, Gene Regulation Laboratory, 141 rue de la cardonille, Montpellier, France
| | - Lisa Bluy
- Institut de Génétique Humaine, CNRS-University of Montpellier UMR9002, Gene Regulation Laboratory, 141 rue de la cardonille, Montpellier, France
| | - Stéphane Pelletier
- Institut de Génétique Humaine, CNRS-University of Montpellier UMR9002, Gene Regulation Laboratory, 141 rue de la cardonille, Montpellier, France
| | - Emilie Rousset
- Institut de Génétique Humaine, CNRS-University of Montpellier UMR9002, Gene Regulation Laboratory, 141 rue de la cardonille, Montpellier, France
| | - Sylvie Rouquier
- Institut de Génétique Humaine, CNRS-University of Montpellier UMR9002, Gene Regulation Laboratory, 141 rue de la cardonille, Montpellier, France
| | - Rosemary Kiernan
- Institut de Génétique Humaine, CNRS-University of Montpellier UMR9002, Gene Regulation Laboratory, 141 rue de la cardonille, Montpellier, France
- * E-mail: (XC); (RK)
| |
Collapse
|
261
|
Abstract
The nuclear RNA exosome is an essential and versatile machinery that regulates maturation and degradation of a huge plethora of RNA species. The past two decades have witnessed remarkable progress in understanding the whole picture of its RNA substrates and the structural basis of its functions. In addition to the exosome itself, recent studies focusing on associated co-factors have been elucidating how the exosome is directed towards specific substrates. Moreover, it has been gradually realized that loss-of-function of exosome subunits affect multiple biological processes such as the DNA damage response, R-loop resolution, maintenance of genome integrity, RNA export, translation and cell differentiation. In this review, we summarize the current knowledge of the mechanisms of nuclear exosome-mediated RNA metabolism and discuss their physiological significance.
Collapse
|
262
|
Schuller JM, Falk S, Fromm L, Hurt E, Conti E. Structure of the nuclear exosome captured on a maturing preribosome. Science 2018. [PMID: 29519915 DOI: 10.1126/science.aar5428] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The RNA exosome complex processes and degrades a wide range of transcripts, including ribosomal RNAs (rRNAs). We used cryo-electron microscopy to visualize the yeast nuclear exosome holocomplex captured on a precursor large ribosomal subunit (pre-60S) during 7S-to-5.8S rRNA processing. The cofactors of the nuclear exosome are sandwiched between the ribonuclease core complex (Exo-10) and the remodeled "foot" structure of the pre-60S particle, which harbors the 5.8S rRNA precursor. The exosome-associated helicase Mtr4 recognizes the preribosomal substrate by docking to specific sites on the 25S rRNA, captures the 3' extension of the 5.8S rRNA, and channels it toward Exo-10. The structure elucidates how the exosome forms a structural and functional unit together with its massive pre-60S substrate to process rRNA during ribosome maturation.
Collapse
Affiliation(s)
- Jan Michael Schuller
- Department of Structural Cell Biology, Max Planck Institute (MPI) for Biochemistry, Munich, Germany
| | - Sebastian Falk
- Department of Structural Cell Biology, Max Planck Institute (MPI) for Biochemistry, Munich, Germany
| | - Lisa Fromm
- Biochemistry Centre, University of Heidelberg, Heidelberg, Germany
| | - Ed Hurt
- Biochemistry Centre, University of Heidelberg, Heidelberg, Germany.
| | - Elena Conti
- Department of Structural Cell Biology, Max Planck Institute (MPI) for Biochemistry, Munich, Germany.
| |
Collapse
|
263
|
Bresson S, Tollervey D. Surveillance-ready transcription: nuclear RNA decay as a default fate. Open Biol 2018; 8:170270. [PMID: 29563193 PMCID: PMC5881035 DOI: 10.1098/rsob.170270] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 02/23/2018] [Indexed: 12/21/2022] Open
Abstract
Eukaryotic cells synthesize enormous quantities of RNA from diverse classes, most of which are subject to extensive processing. These processes are inherently error-prone, and cells have evolved robust quality control mechanisms to selectively remove aberrant transcripts. These surveillance pathways monitor all aspects of nuclear RNA biogenesis, and in addition remove nonfunctional transcripts arising from spurious transcription and a host of non-protein-coding RNAs (ncRNAs). Surprisingly, this is largely accomplished with only a handful of RNA decay enzymes. It has, therefore, been unclear how these factors efficiently distinguish between functional RNAs and huge numbers of diverse transcripts that must be degraded. Here we describe how bona fide transcripts are specifically protected, particularly by 5' and 3' modifications. Conversely, a plethora of factors associated with the nascent transcripts all act to recruit the RNA quality control, surveillance and degradation machinery. We conclude that initiating RNAPII is 'surveillance ready', with degradation being a default fate for all transcripts that lack specific protective features. We further postulate that this promiscuity is a key feature that allowed the proliferation of vast numbers of ncRNAs in eukaryotes, including humans.
Collapse
Affiliation(s)
- Stefan Bresson
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - David Tollervey
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, EH9 3BF, UK
| |
Collapse
|
264
|
Krzyszton M, Zakrzewska-Placzek M, Kwasnik A, Dojer N, Karlowski W, Kufel J. Defective XRN3-mediated transcription termination in Arabidopsis affects the expression of protein-coding genes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:1017-1031. [PMID: 29356198 DOI: 10.1111/tpj.13826] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/13/2017] [Accepted: 12/21/2017] [Indexed: 06/07/2023]
Abstract
Arabidopsis thaliana contains two nuclear XRN2/3 5'-3' exonucleases that are homologs of yeast and human Rat1/Xrn2 proteins involved in the processing and degradation of several classes of nuclear RNAs and in transcription termination of RNA polymerase II. Using strand-specific short read sequencing we show that knockdown of XRN3 leads to an altered expression of hundreds of genes and the accumulation of uncapped and polyadenylated read-through transcripts generated by inefficiently terminated Pol II. Our data support the notion that XRN3-mediated changes in the expression of a subset of genes are caused by upstream read-through transcription and these effects are enhanced by RNA-mRNA chimeras generated in xrn3 plants. In turn, read-through transcripts that are antisense to downstream genes may trigger production of siRNA. Our results highlight the importance of XRN3 exoribonuclease in Pol II transcription termination in plants and show that disturbance in this process may significantly alter gene expression.
Collapse
Affiliation(s)
- Michal Krzyszton
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106, Warsaw, Poland
| | - Monika Zakrzewska-Placzek
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106, Warsaw, Poland
| | - Aleksandra Kwasnik
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106, Warsaw, Poland
| | - Norbert Dojer
- Institute of Informatics, Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Banacha 2, 02-097, Warsaw, Poland
| | - Wojciech Karlowski
- Department of Computational Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Umultowska 89, 61-614, Poznan, Poland
| | - Joanna Kufel
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106, Warsaw, Poland
| |
Collapse
|
265
|
Irimie AI, Zimta AA, Ciocan C, Mehterov N, Dudea D, Braicu C, Berindan-Neagoe I. The Unforeseen Non-Coding RNAs in Head and Neck Cancer. Genes (Basel) 2018; 9:genes9030134. [PMID: 29494516 PMCID: PMC5867855 DOI: 10.3390/genes9030134] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 02/21/2018] [Accepted: 02/22/2018] [Indexed: 12/18/2022] Open
Abstract
Previously ignored non-coding RNAs (ncRNAs) have become the subject of many studies. However, there is an imbalance in the amount of consideration that ncRNAs are receiving. Some transcripts such as microRNAs (miRNAs) or small interfering RNAs (siRNAs) have gained much attention, but it is necessary to investigate other “pieces of the RNA puzzle”. These can offer a more complete view over normal and pathological cell behavior. The other ncRNA species are less studied, either due to their recent discovery, such as stable intronic sequence RNA (sisRNA), YRNA, miRNA-offset RNAs (moRNA), telomerase RNA component (TERC), natural antisense transcript (NAT), transcribed ultraconserved regions (T-UCR), and pseudogene transcript, or because they are still largely seen as non-coding transcripts with no relevance to pathogenesis. Moreover, some are still considered housekeeping RNAs, for instance small nucleolar RNAs (snoRNAs) and TERC. Our review summarizes the biogenesis, mechanism of action and potential role of less known ncRNAs in head and neck cancer, with a particular focus on the installment and progress for this particular cancer type.
Collapse
Affiliation(s)
- Alexandra Iulia Irimie
- Department of Prosthetic Dentistry and Dental Materials, Division Dental Propaedeutic, Aesthetic, "IuliuHatieganu" University of Medicine and Pharmacy, Cluj-Napoca, 23 Marinescu Street, 40015 Cluj-Napoca, Romania.
| | - Alina-Andreea Zimta
- MEDFUTURE-Research Center for Advanced Medicine, University of Medicine and Pharmacy Iuliu-Hatieganu, 23 Marinescu Street, 40015 Cluj-Napoca, Romania.
| | - Cristina Ciocan
- MEDFUTURE-Research Center for Advanced Medicine, University of Medicine and Pharmacy Iuliu-Hatieganu, 23 Marinescu Street, 40015 Cluj-Napoca, Romania.
| | - Nikolay Mehterov
- Department of Medical Biology, Medical University Plovdiv, BulVasilAprilov 15-А, Plovdiv 4002, Bulgaria.
- Technological Center for Emergency Medicine, BulVasilAprilov 15-А, Plovdiv 4002, Bulgaria.
| | - Diana Dudea
- Department of Prosthetic Dentistry and Dental Materials, Division Dental Propaedeutic, Aesthetic, "IuliuHatieganu" University of Medicine and Pharmacy, Cluj-Napoca, 23 Marinescu Street, 40015 Cluj-Napoca, Romania.
| | - Cornelia Braicu
- Research Center for Functional Genomics and Translational Medicine, "IuliuHatieganu" University of Medicine and Pharmacy, 23 Marinescu Street, 40015 Cluj-Napoca, Romania.
| | - Ioana Berindan-Neagoe
- MEDFUTURE-Research Center for Advanced Medicine, University of Medicine and Pharmacy Iuliu-Hatieganu, 23 Marinescu Street, 40015 Cluj-Napoca, Romania.
- Research Center for Functional Genomics and Translational Medicine, "IuliuHatieganu" University of Medicine and Pharmacy, 23 Marinescu Street, 40015 Cluj-Napoca, Romania.
- Department of Functional Genomics and Experimental Pathology, The Oncology Institute "Prof. Dr. Ion Chiricuta", Republicii 34 Street, 400015 Cluj-Napoca, Romania.
| |
Collapse
|
266
|
Holdt LM, Kohlmaier A, Teupser D. Molecular roles and function of circular RNAs in eukaryotic cells. Cell Mol Life Sci 2018; 75:1071-1098. [PMID: 29116363 PMCID: PMC5814467 DOI: 10.1007/s00018-017-2688-5] [Citation(s) in RCA: 239] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 09/29/2017] [Accepted: 10/17/2017] [Indexed: 12/27/2022]
Abstract
Protein-coding and noncoding genes in eukaryotes are typically expressed as linear messenger RNAs, with exons arranged colinearly to their genomic order. Recent advances in sequencing and in mapping RNA reads to reference genomes have revealed that thousands of genes express also covalently closed circular RNAs. Many of these circRNAs are stable and contain exons, but are not translated into proteins. Here, we review the emerging understanding that both, circRNAs produced by co- and posttranscriptional head-to-tail "backsplicing" of a downstream splice donor to a more upstream splice acceptor, as well as circRNAs generated from intronic lariats during colinear splicing, may exhibit physiologically relevant regulatory functions in eukaryotes. We describe how circRNAs impact gene expression of their host gene locus by affecting transcriptional initiation and elongation or splicing, and how they partake in controlling the function of other molecules, for example by interacting with microRNAs and proteins. We conclude with an outlook how circRNA dysregulation affects disease, and how the stability of circRNAs might be exploited in biomedical applications.
Collapse
Affiliation(s)
- Lesca M Holdt
- Institute of Laboratory Medicine, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany.
| | - Alexander Kohlmaier
- Institute of Laboratory Medicine, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
- Faculty of Biology, Genetics, LMU Munich, Großhaderner Str. 2-4, 82152, Martinsried, Germany
| | - Daniel Teupser
- Institute of Laboratory Medicine, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| |
Collapse
|
267
|
Clinical and genetic spectrum of AMPD2-related pontocerebellar hypoplasia type 9. Eur J Hum Genet 2018; 26:695-708. [PMID: 29463858 DOI: 10.1038/s41431-018-0098-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 12/28/2017] [Accepted: 01/09/2018] [Indexed: 11/08/2022] Open
Abstract
Pontocerebellar hypoplasia (PCH) represents a group of autosomal-recessive progressive neurodegenerative disorders of prenatal onset. Eleven PCH subtypes are classified according to clinical, neuroimaging and genetic findings. Individuals with PCH type 9 (PCH9) have a unique combination of postnatal microcephaly, hypoplastic cerebellum and pons, and hypoplastic or absent corpus callosum. PCH9 is caused by biallelic variants in AMPD2 encoding adenosine monophosphate deaminase 2; however, a homozygous AMPD2 frameshift variant has recently been reported in two family members with spastic paraplegia type 63 (SPG63). We identified homozygous or compound heterozygous AMPD2 variants in eight PCH-affected individuals from six families. The eight variants likely affect function and comprise one frameshift, one nonsense and six missense variants; seven of which were novel. The main clinical manifestations in the eight new patients and 17 previously reported individuals with biallelic AMPD2 variants were postnatal microcephaly, severe global developmental delay, spasticity, and central visual impairment. Brain imaging data identified hypomyelination, hypoplasia of the cerebellum and pons, atrophy of the cerebral cortex, complete or partial agenesis of the corpus callosum and the "figure 8" shape of the hypoplastic midbrain as consistent features. We broaden the AMPD2-related clinical spectrum by describing one individual without microcephaly and absence of the characteristic "figure 8" shape of the midbrain. The existence of various AMPD2 isoforms with different functions possibly explains the variability in phenotypes associated with AMPD2 variants: variants leaving some of the isoforms intact may cause SPG63, while those affecting all isoforms may result in the severe and early-onset PCH9.
Collapse
|
268
|
Morton DJ, Kuiper EG, Jones SK, Leung SW, Corbett AH, Fasken MB. The RNA exosome and RNA exosome-linked disease. RNA (NEW YORK, N.Y.) 2018; 24:127-142. [PMID: 29093021 PMCID: PMC5769741 DOI: 10.1261/rna.064626.117] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The RNA exosome is an evolutionarily conserved, ribonuclease complex that is critical for both processing and degradation of a variety of RNAs. Cofactors that associate with the RNA exosome likely dictate substrate specificity for this complex. Recently, mutations in genes encoding both structural subunits of the RNA exosome and its cofactors have been linked to human disease. Mutations in the RNA exosome genes EXOSC3 and EXOSC8 cause pontocerebellar hypoplasia type 1b (PCH1b) and type 1c (PCH1c), respectively, which are similar autosomal-recessive, neurodegenerative diseases. Mutations in the RNA exosome gene EXOSC2 cause a distinct syndrome with various tissue-specific phenotypes including retinitis pigmentosa and mild intellectual disability. Mutations in genes that encode RNA exosome cofactors also cause tissue-specific diseases with complex phenotypes. How mutations in these genes give rise to distinct, tissue-specific diseases is not clear. In this review, we discuss the role of the RNA exosome complex and its cofactors in human disease, consider the amino acid changes that have been implicated in disease, and speculate on the mechanisms by which exosome gene mutations could underlie dysfunction and disease.
Collapse
Affiliation(s)
- Derrick J Morton
- Department of Biology, Emory University, NE, Atlanta, Georgia 30322, USA
| | - Emily G Kuiper
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | - Stephanie K Jones
- Department of Biology, Emory University, NE, Atlanta, Georgia 30322, USA
- Genetics and Molecular Biology Graduate Program, Emory University, NE, Atlanta, Georgia 30322, USA
| | - Sara W Leung
- Department of Biology, Emory University, NE, Atlanta, Georgia 30322, USA
| | - Anita H Corbett
- Department of Biology, Emory University, NE, Atlanta, Georgia 30322, USA
| | - Milo B Fasken
- Department of Biology, Emory University, NE, Atlanta, Georgia 30322, USA
| |
Collapse
|
269
|
Chiu AC, Suzuki HI, Wu X, Mahat DB, Kriz AJ, Sharp PA. Transcriptional Pause Sites Delineate Stable Nucleosome-Associated Premature Polyadenylation Suppressed by U1 snRNP. Mol Cell 2018; 69:648-663.e7. [PMID: 29398447 DOI: 10.1016/j.molcel.2018.01.006] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 11/21/2017] [Accepted: 01/04/2018] [Indexed: 12/16/2022]
Abstract
Regulation of RNA polymerase II (Pol II) elongation is a critical step in gene regulation. Here, we report that U1 snRNP recognition and transcription pausing at stable nucleosomes are linked through premature polyadenylation signal (PAS) termination. By generating RNA exosome conditional deletion mouse embryonic stem cells, we identified a large class of polyadenylated short transcripts in the sense direction destabilized by the RNA exosome. These PAS termination events are enriched at the first few stable nucleosomes flanking CpG islands and suppressed by U1 snRNP. Thus, promoter-proximal Pol II pausing consists of two processes: TSS-proximal and +1 stable nucleosome pausing, with PAS termination coinciding with the latter. While pausing factors NELF/DSIF only function in the former step, flavopiridol-sensitive mechanism(s) and Myc modulate both steps. We propose that premature PAS termination near the nucleosome-associated pause site represents a common transcriptional elongation checkpoint regulated by U1 snRNP recognition, nucleosome stability, and Myc activity.
Collapse
Affiliation(s)
- Anthony C Chiu
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Hiroshi I Suzuki
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Xuebing Wu
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Dig B Mahat
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Andrea J Kriz
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Phillip A Sharp
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
270
|
Bresnick EH, Hewitt KJ, Mehta C, Keles S, Paulson RF, Johnson KD. Mechanisms of erythrocyte development and regeneration: implications for regenerative medicine and beyond. Development 2018; 145:dev151423. [PMID: 29321181 PMCID: PMC5825862 DOI: 10.1242/dev.151423] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Hemoglobin-expressing erythrocytes (red blood cells) act as fundamental metabolic regulators by providing oxygen to cells and tissues throughout the body. Whereas the vital requirement for oxygen to support metabolically active cells and tissues is well established, almost nothing is known regarding how erythrocyte development and function impact regeneration. Furthermore, many questions remain unanswered relating to how insults to hematopoietic stem/progenitor cells and erythrocytes can trigger a massive regenerative process termed 'stress erythropoiesis' to produce billions of erythrocytes. Here, we review the cellular and molecular mechanisms governing erythrocyte development and regeneration, and discuss the potential links between these events and other regenerative processes.
Collapse
Affiliation(s)
- Emery H Bresnick
- Department of Cell and Regenerative Biology, UW-Madison Blood Research Program, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Kyle J Hewitt
- Department of Cell and Regenerative Biology, UW-Madison Blood Research Program, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Charu Mehta
- Department of Cell and Regenerative Biology, UW-Madison Blood Research Program, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Sunduz Keles
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Robert F Paulson
- Department of Veterinary and Biomedical Sciences, Center for Molecular Immunology and Infectious Disease, Penn State University, University Park, PA 16802, USA
| | - Kirby D Johnson
- Department of Cell and Regenerative Biology, UW-Madison Blood Research Program, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| |
Collapse
|
271
|
Wang D, Li LK, Dai T, Wang A, Li S. Adult Stem Cells in Vascular Remodeling. Am J Cancer Res 2018; 8:815-829. [PMID: 29344309 PMCID: PMC5771096 DOI: 10.7150/thno.19577] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 10/01/2017] [Indexed: 01/03/2023] Open
Abstract
Understanding the contribution of vascular cells to blood vessel remodeling is critical for the development of new therapeutic approaches to cure cardiovascular diseases (CVDs) and regenerate blood vessels. Recent findings suggest that neointimal formation and atherosclerotic lesions involve not only inflammatory cells, endothelial cells, and smooth muscle cells, but also several types of stem cells or progenitors in arterial walls and the circulation. Some of these stem cells also participate in the remodeling of vascular grafts, microvessel regeneration, and formation of fibrotic tissue around biomaterial implants. Here we review the recent findings on how adult stem cells participate in CVD development and regeneration as well as the current state of clinical trials in the field, which may lead to new approaches for cardiovascular therapies and tissue engineering.
Collapse
|
272
|
Falk S, Tants JN, Basquin J, Thoms M, Hurt E, Sattler M, Conti E. Structural insights into the interaction of the nuclear exosome helicase Mtr4 with the preribosomal protein Nop53. RNA (NEW YORK, N.Y.) 2017; 23:1780-1787. [PMID: 28883156 PMCID: PMC5688999 DOI: 10.1261/rna.062901.117] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Accepted: 09/05/2017] [Indexed: 05/24/2023]
Abstract
The nuclear exosome and the associated RNA helicase Mtr4 participate in the processing of several ribonucleoprotein particles (RNP), including the maturation of the large ribosomal subunit (60S). S. cerevisiae Mtr4 interacts directly with Nop53, a ribosomal biogenesis factor present in late pre-60S particles containing precursors of the 5.8S rRNA. The Mtr4-Nop53 interaction plays a pivotal role in the maturation of the 5.8S rRNA, providing a physical link between the nuclear exosome and the pre-60S RNP. An analogous interaction between Mtr4 and another ribosome biogenesis factor, Utp18, directs the exosome to an earlier preribosomal particle. Nop53 and Utp18 contain a similar Mtr4-binding motif known as the arch-interacting motif (AIM). Here, we report the 3.2 Å resolution crystal structure of S. cerevisiae Mtr4 bound to the interacting region of Nop53, revealing how the KOW domain of the helicase recognizes the AIM sequence of Nop53 with a network of hydrophobic and electrostatic interactions. The AIM-interacting residues are conserved in Mtr4 and are not present in the related cytoplasmic helicase Ski2, rationalizing the specificity and versatility of Mtr4 in the recognition of different AIM-containing proteins. Using nuclear magnetic resonance (NMR), we show that the KOW domain of Mtr4 can simultaneously bind an AIM-containing protein and a structured RNA at adjacent surfaces, suggesting how it can dock onto RNPs. The KOW domains of exosome-associated helicases thus appear to have evolved from the KOW domains of ribosomal proteins and to function as RNP-binding modules in the context of the nuclear exosome.
Collapse
Affiliation(s)
- Sebastian Falk
- Max-Planck-Institute of Biochemistry, Department of Structural Cell Biology, D-82152 Martinsried, Germany
| | - Jan-Niklas Tants
- Center for Integrated Protein Science Munich at Chair of Biomolecular NMR Spectroscopy, Department Chemie, Technische Universität München, 85748 Garching, Germany
- Institute of Structural Biology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Jerôme Basquin
- Max-Planck-Institute of Biochemistry, Department of Structural Cell Biology, D-82152 Martinsried, Germany
| | - Matthias Thoms
- Heidelberg University Biochemistry Center (BZH), INF 328, D-69120 Heidelberg, Germany
| | - Ed Hurt
- Heidelberg University Biochemistry Center (BZH), INF 328, D-69120 Heidelberg, Germany
| | - Michael Sattler
- Center for Integrated Protein Science Munich at Chair of Biomolecular NMR Spectroscopy, Department Chemie, Technische Universität München, 85748 Garching, Germany
- Institute of Structural Biology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Elena Conti
- Max-Planck-Institute of Biochemistry, Department of Structural Cell Biology, D-82152 Martinsried, Germany
| |
Collapse
|
273
|
Fromm L, Falk S, Flemming D, Schuller JM, Thoms M, Conti E, Hurt E. Reconstitution of the complete pathway of ITS2 processing at the pre-ribosome. Nat Commun 2017; 8:1787. [PMID: 29176610 PMCID: PMC5702609 DOI: 10.1038/s41467-017-01786-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 10/12/2017] [Indexed: 01/19/2023] Open
Abstract
Removal of internal transcribed spacer 2 (ITS2) from pre-ribosomal RNA is essential to make functional ribosomes. This complicated processing reaction begins with a single endonucleolytic cleavage followed by exonucleolytic trimming at both new cleavage sites to generate mature 5.8S and 25S rRNA. We reconstituted the 7S→5.8S processing branch within ITS2 using purified exosome and its nuclear cofactors. We find that both Rrp44’s ribonuclease activities are required for initial RNA shortening followed by hand over to the exonuclease Rrp6. During the in vitro reaction, ITS2-associated factors dissociate and the underlying ‘foot’ structure of the pre-60S particle is dismantled. 7S pre-rRNA processing is independent of 5S RNP rotation, but 26S→25S trimming is a precondition for subsequent 7S→5.8S processing. To complete the in vitro assay, we reconstituted the entire cycle of ITS2 removal with a total of 18 purified factors, catalysed by the integrated activities of the two participating RNA-processing machines, the Las1 complex and nuclear exosome. Excision of internal transcribed spacer 2 (ITS2) within eukaryotic pre-ribosomal RNA is essential for ribosome function. Here, the authors reconstitute the entire cycle of ITS2 processing in vitro using purified components, providing insights into the cleavage process and demonstrating that 26S pre-rRNA processing necessarily precedes 7S pre-rRNA processing.
Collapse
Affiliation(s)
- Lisa Fromm
- Biochemie-Zentrum der Universität Heidelberg, Im Neuenheimer Feld 328, Heidelberg, D-69120, Germany
| | - Sebastian Falk
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, D-82152, Martinsried, Germany
| | - Dirk Flemming
- Biochemie-Zentrum der Universität Heidelberg, Im Neuenheimer Feld 328, Heidelberg, D-69120, Germany
| | - Jan Michael Schuller
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, D-82152, Martinsried, Germany
| | - Matthias Thoms
- Biochemie-Zentrum der Universität Heidelberg, Im Neuenheimer Feld 328, Heidelberg, D-69120, Germany
| | - Elena Conti
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, D-82152, Martinsried, Germany
| | - Ed Hurt
- Biochemie-Zentrum der Universität Heidelberg, Im Neuenheimer Feld 328, Heidelberg, D-69120, Germany.
| |
Collapse
|
274
|
The Output of Protein-Coding Genes Shifts to Circular RNAs When the Pre-mRNA Processing Machinery Is Limiting. Mol Cell 2017; 68:940-954.e3. [PMID: 29174924 DOI: 10.1016/j.molcel.2017.10.034] [Citation(s) in RCA: 304] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 07/31/2017] [Accepted: 10/26/2017] [Indexed: 12/21/2022]
Abstract
Many eukaryotic genes generate linear mRNAs and circular RNAs, but it is largely unknown how the ratio of linear to circular RNA is controlled or modulated. Using RNAi screening in Drosophila cells, we identify many core spliceosome and transcription termination factors that control the RNA outputs of reporter and endogenous genes. When spliceosome components were depleted or inhibited pharmacologically, the steady-state levels of circular RNAs increased while expression of their associated linear mRNAs concomitantly decreased. Upon inhibiting RNA polymerase II termination via depletion of the cleavage/polyadenylation machinery, circular RNA levels were similarly increased. This is because readthrough transcripts now extend into downstream genes and are subjected to backsplicing. In total, these results demonstrate that inhibition or slowing of canonical pre-mRNA processing events shifts the steady-state output of protein-coding genes toward circular RNAs. This is in part because nascent RNAs become directed into alternative pathways that lead to circular RNA production.
Collapse
|
275
|
Auboeuf D. Alternative mRNA processing sites decrease genetic variability while increasing functional diversity. Transcription 2017; 9:75-87. [PMID: 29099315 PMCID: PMC5834221 DOI: 10.1080/21541264.2017.1373891] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Recent large-scale RNA sequencing efforts have revealed the extensive diversity of mRNA molecules produced from most eukaryotic coding genes, which arises from the usage of alternative, cryptic or non-canonical splicing and intronic polyadenylation sites. The prevailing view regarding the tremendous diversity of coding gene transcripts is that mRNA processing is a flexible and more-or-less noisy process leading to a diversity of proteins on which natural selection can act depending on protein-mediated cellular functions. However, this concept raises two main questions. First, do alternative mRNA processing pathways have a role other than generating mRNA and protein diversity? Second, is the cellular function of mRNA variants restricted to the biogenesis of functional protein isoforms? Here, I propose that the co-transcriptional use of alternative mRNA processing sites allows first, the resolution of co-transcriptional biophysical constraints that may otherwise result in DNA instability, and second, increases the diversity of cellular functions of mRNAs in a manner that is not restricted to protein synthesis.
Collapse
Affiliation(s)
- Didier Auboeuf
- a Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210, Laboratory of Biology and Modelling of the Cell , 46 Allée d'Italie Site Jacques Monod, Lyon , France
| |
Collapse
|
276
|
Kamel W, Akusjärvi G. An Ago2-associated capped transcriptional start site small RNA suppresses adenovirus DNA replication. RNA (NEW YORK, N.Y.) 2017; 23:1700-1711. [PMID: 28839112 PMCID: PMC5648037 DOI: 10.1261/rna.061291.117] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 08/14/2017] [Indexed: 06/07/2023]
Abstract
Here we show that the adenovirus major late promoter produces a 31-nucleotide transcriptional start site small RNA (MLP-TSS-sRNA) that retains the 7-methylguanosine (m7G)-cap and is incorporated onto Ago2-containing RNA-induced silencing complexes (RISC) in human adenovirus-37 infected cells. RNA polymerase II CLIP (UV-cross linking immunoprecipitation) experiments suggest that the MLP-TSS-sRNA is produced by promoter proximal stalling/termination of RNA polymerase II transcription at the site of the small RNA 3' end. The MLP-TSS-sRNA is highly stable in cells and functionally active, down-regulating complementary targets in a sequence and dose-dependent manner. The MLP-TSS-sRNA is transcribed from the opposite strand to the adenoviral DNA polymerase and preterminal protein mRNAs, two essential viral replication proteins. We show that the MLP-TSS-sRNA act in trans to reduce DNA polymerase and preterminal protein mRNA expression. As a consequence of this, the MLP-TSS-sRNA has an inhibitory effect on the efficiency of viral DNA replication. Collectively, our results suggest that this novel sRNA may serve a regulatory function controlling viral genome replication during a lytic and/or persistent adenovirus infection in its natural host.
Collapse
Affiliation(s)
- Wael Kamel
- Department of Medical Biochemistry and Microbiology, BMC, Uppsala University, SE-751 23 Uppsala, Sweden
| | - Göran Akusjärvi
- Department of Medical Biochemistry and Microbiology, BMC, Uppsala University, SE-751 23 Uppsala, Sweden
| |
Collapse
|
277
|
Mayer A, Churchman LS. A Detailed Protocol for Subcellular RNA Sequencing (subRNA-seq). ACTA ACUST UNITED AC 2017; 120:4.29.1-4.29.18. [PMID: 28967997 DOI: 10.1002/cpmb.44] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In eukaryotic cells, RNAs at various maturation and processing levels are distributed across cellular compartments. The standard approach to determine transcript abundance and identity in vivo is RNA sequencing (RNA-seq). RNA-seq relies on RNA isolation from whole-cell lysates and thus mainly captures fully processed, stable, and more abundant cytoplasmic RNAs over nascent, unstable, and nuclear RNAs. Here, we provide a step-by-step protocol for subcellular RNA-seq (subRNA-seq). subRNA-seq allows the quantitative measurement of RNA polymerase II-generated RNAs from the chromatin, nucleoplasm, and cytoplasm of mammalian cells. This approach relies on cell fractionation prior to RNA isolation and sequencing library preparation. High-throughput sequencing of the subcellular RNAs can then be used to reveal the identity, abundance, and subcellular distribution of transcripts, thus providing insights into RNA processing and maturation. Deep sequencing of the chromatin-associated RNAs further offers the opportunity to study nascent RNAs. Subcellular RNA-seq libraries are obtained within 5 days. © 2017 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Andreas Mayer
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | | |
Collapse
|
278
|
Rohilla KJ, Gagnon KT. RNA biology of disease-associated microsatellite repeat expansions. Acta Neuropathol Commun 2017; 5:63. [PMID: 28851463 PMCID: PMC5574247 DOI: 10.1186/s40478-017-0468-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 08/22/2017] [Indexed: 12/13/2022] Open
Abstract
Microsatellites, or simple tandem repeat sequences, occur naturally in the human genome and have important roles in genome evolution and function. However, the expansion of microsatellites is associated with over two dozen neurological diseases. A common denominator among the majority of these disorders is the expression of expanded tandem repeat-containing RNA, referred to as xtrRNA in this review, which can mediate molecular disease pathology in multiple ways. This review focuses on the potential impact that simple tandem repeat expansions can have on the biology and metabolism of RNA that contain them and underscores important gaps in understanding. Merging the molecular biology of repeat expansion disorders with the current understanding of RNA biology, including splicing, transcription, transport, turnover and translation, will help clarify mechanisms of disease and improve therapeutic development.
Collapse
|
279
|
Jin Y, Eser U, Struhl K, Churchman LS. The Ground State and Evolution of Promoter Region Directionality. Cell 2017; 170:889-898.e10. [PMID: 28803729 DOI: 10.1016/j.cell.2017.07.006] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Revised: 04/06/2017] [Accepted: 07/07/2017] [Indexed: 01/22/2023]
Abstract
Eukaryotic promoter regions are frequently divergently transcribed in vivo, but it is unknown whether the resultant antisense RNAs are a mechanistic by-product of RNA polymerase II (Pol II) transcription or biologically meaningful. Here, we use a functional evolutionary approach that involves nascent transcript mapping in S. cerevisiae strains containing foreign yeast DNA. Promoter regions in foreign environments lose the directionality they have in their native species. Strikingly, fortuitous promoter regions arising in foreign DNA produce equal transcription in both directions, indicating that divergent transcription is a mechanistic feature that does not imply a function for these transcripts. Fortuitous promoter regions arising during evolution promote bidirectional transcription and over time are purged through mutation or retained to enable new functionality. Similarly, human transcription is more bidirectional at newly evolved enhancers and promoter regions. Thus, promoter regions are intrinsically bidirectional and are shaped by evolution to bias transcription toward coding versus non-coding RNAs.
Collapse
Affiliation(s)
- Yi Jin
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Umut Eser
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Kevin Struhl
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
| | | |
Collapse
|
280
|
Touat-Todeschini L, Shichino Y, Dangin M, Thierry-Mieg N, Gilquin B, Hiriart E, Sachidanandam R, Lambert E, Brettschneider J, Reuter M, Kadlec J, Pillai R, Yamashita A, Yamamoto M, Verdel A. Selective termination of lncRNA transcription promotes heterochromatin silencing and cell differentiation. EMBO J 2017; 36:2626-2641. [PMID: 28765164 DOI: 10.15252/embj.201796571] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 06/14/2017] [Accepted: 06/19/2017] [Indexed: 01/01/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) regulating gene expression at the chromatin level are widespread among eukaryotes. However, their functions and the mechanisms by which they act are not fully understood. Here, we identify new fission yeast regulatory lncRNAs that are targeted, at their site of transcription, by the YTH domain of the RNA-binding protein Mmi1 and degraded by the nuclear exosome. We uncover that one of them, nam1, regulates entry into sexual differentiation. Importantly, we demonstrate that Mmi1 binding to this lncRNA not only triggers its degradation but also mediates its transcription termination, thus preventing lncRNA transcription from invading and repressing the downstream gene encoding a mitogen-activated protein kinase kinase kinase (MAPKKK) essential to sexual differentiation. In addition, we show that Mmi1-mediated termination of lncRNA transcription also takes place at pericentromeric regions where it contributes to heterochromatin gene silencing together with RNA interference (RNAi). These findings reveal an important role for selective termination of lncRNA transcription in both euchromatic and heterochromatic lncRNA-based gene silencing processes.
Collapse
Affiliation(s)
- Leila Touat-Todeschini
- Institut for Advanced Biosciences, UMR InsermU1209/CNRS5309/UGA, University of Grenoble Alpes, Grenoble, France
| | - Yuichi Shichino
- Laboratory of Cell Responses, National Institute for Basic Biology, Okazaki, Aichi, Japan
| | - Mathieu Dangin
- Institut for Advanced Biosciences, UMR InsermU1209/CNRS5309/UGA, University of Grenoble Alpes, Grenoble, France
| | - Nicolas Thierry-Mieg
- TIMC-IMAG, University of Grenoble Alpes, Grenoble, France.,CNRS, TIMC-IMAG, UMR CNRS 5525, Grenoble, France
| | - Benoit Gilquin
- CEA, LETI, CLINATEC, MINATEC Campus, University of Grenoble Alpes, Grenoble, France
| | - Edwige Hiriart
- Institut for Advanced Biosciences, UMR InsermU1209/CNRS5309/UGA, University of Grenoble Alpes, Grenoble, France
| | - Ravi Sachidanandam
- Department of Oncological Sciences, Icahn School of Medicine at Sinai, New York, NY, USA
| | - Emeline Lambert
- Institut for Advanced Biosciences, UMR InsermU1209/CNRS5309/UGA, University of Grenoble Alpes, Grenoble, France
| | - Janine Brettschneider
- European Molecular Biology Laboratory, Grenoble Outstation, University of Grenoble Alpes-EMBL-CNRS, Grenoble, France.,Unit for Virus Host-Cell Interactions, University of Grenoble Alpes-EMBL-CNRS, Grenoble, France
| | - Michael Reuter
- European Molecular Biology Laboratory, Grenoble Outstation, University of Grenoble Alpes-EMBL-CNRS, Grenoble, France.,Unit for Virus Host-Cell Interactions, University of Grenoble Alpes-EMBL-CNRS, Grenoble, France
| | - Jan Kadlec
- European Molecular Biology Laboratory, Grenoble Outstation, University of Grenoble Alpes-EMBL-CNRS, Grenoble, France.,Unit for Virus Host-Cell Interactions, University of Grenoble Alpes-EMBL-CNRS, Grenoble, France.,Institut de Biologie Structurale (IBS), CEA, CNRS, Université Grenoble Alpes, Grenoble, France
| | - Ramesh Pillai
- Institut de Biologie Structurale (IBS), CEA, CNRS, Université Grenoble Alpes, Grenoble, France.,Department of Molecular Biology, University of Geneva, Geneva 4, Switzerland
| | - Akira Yamashita
- Laboratory of Cell Responses, National Institute for Basic Biology, Okazaki, Aichi, Japan.,Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi, Japan
| | - Masayuki Yamamoto
- Laboratory of Cell Responses, National Institute for Basic Biology, Okazaki, Aichi, Japan.,Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi, Japan
| | - André Verdel
- Institut for Advanced Biosciences, UMR InsermU1209/CNRS5309/UGA, University of Grenoble Alpes, Grenoble, France
| |
Collapse
|
281
|
Wasmuth EV, Zinder JC, Zattas D, Das M, Lima CD. Structure and reconstitution of yeast Mpp6-nuclear exosome complexes reveals that Mpp6 stimulates RNA decay and recruits the Mtr4 helicase. eLife 2017; 6. [PMID: 28742025 PMCID: PMC5553935 DOI: 10.7554/elife.29062] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 07/21/2017] [Indexed: 11/20/2022] Open
Abstract
Nuclear RNA exosomes catalyze a range of RNA processing and decay activities that are coordinated in part by cofactors, including Mpp6, Rrp47, and the Mtr4 RNA helicase. Mpp6 interacts with the nine-subunit exosome core, while Rrp47 stabilizes the exoribonuclease Rrp6 and recruits Mtr4, but it is less clear if these cofactors work together. Using biochemistry with Saccharomyces cerevisiae proteins, we show that Rrp47 and Mpp6 stimulate exosome-mediated RNA decay, albeit with unique dependencies on elements within the nuclear exosome. Mpp6-exosomes can recruit Mtr4, while Mpp6 and Rrp47 each contribute to Mtr4-dependent RNA decay, with maximal Mtr4-dependent decay observed with both cofactors. The 3.3 Å structure of a twelve-subunit nuclear Mpp6 exosome bound to RNA shows the central region of Mpp6 bound to the exosome core, positioning its Mtr4 recruitment domain next to Rrp6 and the exosome central channel. Genetic analysis reveals interactions that are largely consistent with our model. DOI:http://dx.doi.org/10.7554/eLife.29062.001
Collapse
Affiliation(s)
- Elizabeth V Wasmuth
- Structural Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, United States
| | - John C Zinder
- Structural Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, United States.,Tri-Institutional Training Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Dimitrios Zattas
- Structural Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Mom Das
- Structural Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Christopher D Lima
- Structural Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, United States.,Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, United States
| |
Collapse
|
282
|
Zhang G, Yang P. A novel cell-cell communication mechanism in the nervous system: exosomes. J Neurosci Res 2017; 96:45-52. [DOI: 10.1002/jnr.24113] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 06/12/2017] [Accepted: 06/15/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Guan Zhang
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology; Third Military Medical University; Chongqing 400038 P.R. China
- Cadet Brigade; Third Military Medical University; Chongqing 400038 P.R. China
| | - Ping Yang
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology; Third Military Medical University; Chongqing 400038 P.R. China
| |
Collapse
|
283
|
Oteiza A, Mechti N. FoxO4 negatively controls Tat-mediated HIV-1 transcription through the post-transcriptional suppression of Tat encoding mRNA. J Gen Virol 2017; 98:1864-1878. [PMID: 28699853 DOI: 10.1099/jgv.0.000837] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The connection between the repression of human immunodeficiency virus type 1(HIV-1) transcription and the resting CD4+ T cell state suggests that the host transcription factors involved in the active maintenance of lymphocyte quiescence are likely to repress the viral transactivator, Tat, thereby restricting HIV-1 transcription. In this study, we analysed the interplay between Tat and the forkhead box transcription factors, FoxO1 and FoxO4. We show that FoxO1 and FoxO4 antagonize Tat-mediated transactivation of HIV-1 promoter through the repression of Tat protein expression. No effect was observed on the expression of two HIV-1 accessory proteins, Vif and Vpr. Unexpectedly, we found that FoxO1 and FoxO4 expression causes a strong dose-dependent post-transcriptional suppression of Tat mRNA, indicating that FoxO should effectively inhibit HIV-1 replication by destabilizing Tat mRNA and suppressing Tat-mediated HIV-1 transcription. In accordance with this, we observed that the Tat mRNA half-life is reduced by FoxO4 expression. The physiological relevance of our findings was validated using the J-Lat 10.6 model of latently infected cells. We demonstrated that the overexpression of a constitutively active FoxO4-TM mutant antagonized HIV-1 transcription reactivation in response to T cell activators, such as TNF-α or PMA. Altogether, our findings demonstrate that FoxO factors can control HIV-1 transcription and provide new insights into their potential role during the establishment of HIV-1 latency.
Collapse
Affiliation(s)
- Alexandra Oteiza
- CNRS UMR5235, DIMNP, Université de Montpellier, Bat 24, CC107, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
| | - Nadir Mechti
- CNRS UMR5235, DIMNP, Université de Montpellier, Bat 24, CC107, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
| |
Collapse
|
284
|
Zinder JC, Lima CD. Targeting RNA for processing or destruction by the eukaryotic RNA exosome and its cofactors. Genes Dev 2017; 31:88-100. [PMID: 28202538 PMCID: PMC5322736 DOI: 10.1101/gad.294769.116] [Citation(s) in RCA: 163] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this review, Zinder and Lima highlight recent advances that have illuminated roles for the RNA exosome and its cofactors in specific biological pathways, alongside studies that attempted to dissect these activities through structural and biochemical characterization of nuclear and cytoplasmic RNA exosome complexes. The eukaryotic RNA exosome is an essential and conserved protein complex that can degrade or process RNA substrates in the 3′-to-5′ direction. Since its discovery nearly two decades ago, studies have focused on determining how the exosome, along with associated cofactors, achieves the demanding task of targeting particular RNAs for degradation and/or processing in both the nucleus and cytoplasm. In this review, we highlight recent advances that have illuminated roles for the RNA exosome and its cofactors in specific biological pathways, alongside studies that attempted to dissect these activities through structural and biochemical characterization of nuclear and cytoplasmic RNA exosome complexes.
Collapse
Affiliation(s)
- John C Zinder
- Tri-Institutional Training Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA.,Structural Biology Program, Sloan Kettering Institute, New York, New York, 10065, USA
| | - Christopher D Lima
- Structural Biology Program, Sloan Kettering Institute, New York, New York, 10065, USA.,Howard Hughes Medical Institute, New York, New York, 10065 USA
| |
Collapse
|
285
|
Klingeborn M, Dismuke WM, Bowes Rickman C, Stamer WD. Roles of exosomes in the normal and diseased eye. Prog Retin Eye Res 2017; 59:158-177. [PMID: 28465248 PMCID: PMC5537591 DOI: 10.1016/j.preteyeres.2017.04.004] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 04/28/2017] [Accepted: 04/28/2017] [Indexed: 12/21/2022]
Abstract
Exosomes are nanometer-sized vesicles that are released by cells in a controlled fashion and mediate a plethora of extra- and intercellular activities. Some key functions of exosomes include cell-cell communication, immune modulation, extracellular matrix turnover, stem cell division/differentiation, neovascularization and cellular waste removal. While much is known about their role in cancer, exosome function in the many specialized tissues of the eye is just beginning to undergo rigorous study. Here we review current knowledge of exosome function in the visual system in the context of larger bodies of data from other fields, in both health and disease. Additionally, we discuss recent advances in the exosome field including use of exosomes as a therapeutic vehicle, exosomes as a source of biomarkers for disease, plus current standards for isolation and validation of exosome populations. Finally, we use this foundational information about exosomes in the eye as a platform to identify areas of opportunity for future research studies.
Collapse
Affiliation(s)
- Mikael Klingeborn
- Department of Ophthalmology, Duke Eye Center, Duke University, Durham, NC 27710, USA
| | - W Michael Dismuke
- Department of Ophthalmology, Duke Eye Center, Duke University, Durham, NC 27710, USA
| | - Catherine Bowes Rickman
- Department of Ophthalmology, Duke Eye Center, Duke University, Durham, NC 27710, USA; Department of Cell Biology, Duke University, Durham, NC 27710, USA
| | - W Daniel Stamer
- Department of Ophthalmology, Duke Eye Center, Duke University, Durham, NC 27710, USA; Department of Biomedical Engineering, Duke University, Durham, NC 27710, USA.
| |
Collapse
|
286
|
Abstract
TRanscription and EXport (TREX) is a conserved multisubunit complex essential for embryogenesis, organogenesis and cellular differentiation throughout life. By linking transcription, mRNA processing and export together, it exerts a physiologically vital role in the gene expression pathway. In addition, this complex prevents DNA damage and regulates the cell cycle by ensuring optimal gene expression. As the extent of TREX activity in viral infections, amyotrophic lateral sclerosis and cancer emerges, the need for a greater understanding of TREX function becomes evident. A complete elucidation of the composition, function and interactions of the complex will provide the framework for understanding the molecular basis for a variety of diseases. This review details the known composition of TREX, how it is regulated and its cellular functions with an emphasis on mammalian systems.
Collapse
|
287
|
Beyond proteome diversity: alternative splicing as a regulator of neuronal transcript dynamics. Curr Opin Neurobiol 2017; 45:162-168. [PMID: 28609697 DOI: 10.1016/j.conb.2017.05.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 04/07/2017] [Accepted: 05/14/2017] [Indexed: 12/21/2022]
Abstract
Brain development and function are governed by tightly controlled gene expression programs. Transcriptional repertoires in neurons are highly specific to developmental stage, neuronal cell type and can undergo rapid changes upon neuronal stimulation. Dedicated molecular mechanisms are required to achieve such fine-tuned regulation. In addition to transcriptional programs, post-transcriptional processes and notably alternative splicing substantially contribute to the elaboration of neuronal gene expression. While alternative splicing has been viewed primarily as a means for expanding proteome diversity, it emerges to also be a major regulator of transcript levels and dynamics. In this review we will describe some of the principal alternative splicing-linked mechanisms that control neuronal transcriptomes and discuss their implications for the central nervous system.
Collapse
|
288
|
Meola N, Jensen TH. Targeting the nuclear RNA exosome: Poly(A) binding proteins enter the stage. RNA Biol 2017; 14:820-826. [PMID: 28421898 DOI: 10.1080/15476286.2017.1312227] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Centrally positioned in nuclear RNA metabolism, the exosome deals with virtually all transcript types. This 3'-5' exo- and endo-nucleolytic degradation machine is guided to its RNA targets by adaptor proteins that enable substrate recognition. Recently, the discovery of the 'Poly(A) tail exosome targeting (PAXT)' connection as an exosome adaptor to human nuclear polyadenylated transcripts has relighted the interest of poly(A) binding proteins (PABPs) in both RNA productive and destructive processes.
Collapse
Affiliation(s)
- Nicola Meola
- a Department of Molecular Biology and Genetics , Aarhus University , Aarhus C , Denmark
| | - Torben Heick Jensen
- a Department of Molecular Biology and Genetics , Aarhus University , Aarhus C , Denmark
| |
Collapse
|
289
|
Du W, Zhang K, Zhang S, Wang R, Nie Y, Tao H, Han Z, Liang L, Wang D, Liu J, Liu N, Han Z, Kong D, Zhao Q, Li Z. Enhanced proangiogenic potential of mesenchymal stem cell-derived exosomes stimulated by a nitric oxide releasing polymer. Biomaterials 2017; 133:70-81. [PMID: 28433939 DOI: 10.1016/j.biomaterials.2017.04.030] [Citation(s) in RCA: 172] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 04/13/2017] [Accepted: 04/14/2017] [Indexed: 02/09/2023]
Abstract
Mesenchymal stem cell (MSC)-derived exosomes have been recognized as new candidates for the treatment of degenerative diseases or injury and may provide an alternative to cell-based therapy. However, the compositions in MSC-derived exosomes are highly influenced by the microenvironment in which their original cells reside. Here, we hypothesized that a nitric oxide (NO)-releasing polymer can boost the proangiogenic compositions of exosomes and enhance their proangiogenic capacity. Our results demonstrated that exosomes, released from human placenta-derived MSCs (hP-MSCs) by NO stimulation, augment the angiogenic effects of human umbilical vein endothelial cells (HUVECs) in vitro. Moreover, exosomes released from hP-MSCs by NO stimulation revealed superior angiogenic effects and ameliorated limb function in a murine model of hind limb ischemia. Further analysis demonstrated that increased VEGF and miR-126 levels in exosomes released from hP-MSCs by NO stimulation were identified as a novel mechanism contributing to the increased capacity of these exosomes to promote angiogenic processes. In conclusion, designing specific microenvironments for in vitro stem cell culture, such as those containing bioactive material, will facilitate the development of customized exosomes encapsulating a beneficial composition of stem cells for cell-free therapeutic applications.
Collapse
Affiliation(s)
- Wei Du
- Nankai University School of Medicine, Tianjin, China
| | - Kaiyue Zhang
- Nankai University School of Medicine, Tianjin, China
| | | | - Ran Wang
- Nankai University School of Medicine, Tianjin, China
| | - Yan Nie
- Nankai University School of Medicine, Tianjin, China
| | - Hongyan Tao
- Nankai University School of Medicine, Tianjin, China
| | - Zhibo Han
- Beijing Institute of Health and Stem Cells, Health & Biotech Co., Beijing, China
| | - Lu Liang
- Beijing Institute of Health and Stem Cells, Health & Biotech Co., Beijing, China
| | - Di Wang
- Nankai University School of Medicine, Tianjin, China
| | - Jianfeng Liu
- Tianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China
| | - Na Liu
- Nankai University School of Medicine, Tianjin, China
| | - Zhongchao Han
- Beijing Institute of Health and Stem Cells, Health & Biotech Co., Beijing, China
| | - Deling Kong
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, The College of Life Science, Tianjin, China
| | - Qiang Zhao
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, The College of Life Science, Tianjin, China.
| | - Zongjin Li
- Nankai University School of Medicine, Tianjin, China; State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, The College of Life Science, Tianjin, China.
| |
Collapse
|
290
|
Abstract
The discovery of the GATA binding protein (GATA factor) transcription factor family revolutionized hematology. Studies of GATA proteins have yielded vital contributions to our understanding of how hematopoietic stem and progenitor cells develop from precursors, how progenitors generate red blood cells, how hemoglobin synthesis is regulated, and the molecular underpinnings of nonmalignant and malignant hematologic disorders. This thrilling journey began with mechanistic studies on a β-globin enhancer- and promoter-binding factor, GATA-1, the founding member of the GATA family. This work ushered in the cloning of related proteins, GATA-2-6, with distinct and/or overlapping expression patterns. Herein, we discuss how the hematopoietic GATA factors (GATA-1-3) function via a battery of mechanistic permutations, which can be GATA factor subtype, cell type, and locus specific. Understanding this intriguing protein family requires consideration of how the mechanistic permutations are amalgamated into circuits to orchestrate processes of interest to the hematologist and more broadly.
Collapse
|
291
|
R-Loop Depletion by Over-expressed RNase H1 in Mouse B Cells Increases Activation-Induced Deaminase Access to the Transcribed Strand without Altering Frequency of Isotype Switching. J Mol Biol 2017; 429:3255-3263. [PMID: 28065739 DOI: 10.1016/j.jmb.2016.12.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 12/09/2016] [Accepted: 12/29/2016] [Indexed: 12/31/2022]
Abstract
R-loops, three-strand structures consisting of mRNA hybridized to the complementary DNA and a single-stranded DNA loop, are formed in switch regions on the heavy-chain immunoglobulin locus. To determine if R-loops have a direct effect on any of the steps involved in isotype switching, we generated a transgenic mouse that over-expressed RNase H1, an enzyme that cleaves the RNA of RNA/DNA hybrids in B cells. R-loops in the switch μ region were depleted by 70% in ex vivo activated splenic B cells. Frequencies of isotype switching to IgG1, IgG2b, IgG2c, and IgG3 were the same as C57BL/6 control cells. However, somatic hypermutation was increased specifically on the transcribed strand from μ-γ joins, indicating that R-loops limit activation-induced (cytosine) deaminase access to the transcribed DNA strand. Our data suggest that, in the normal G+C-rich context of mammalian class switch recombination regions, R-loops are obligatory intermediates. Processing of the R-loops is needed to remove RNA allowing activation-induced (cytosine) deaminase to promote somatic hypermutation on both DNA strands to generate double-strand DNA breaks for efficient class switch recombination. One of the two cellular RNases H may assist in this process.
Collapse
|
292
|
Kirkconnell KS, Magnuson B, Paulsen MT, Lu B, Bedi K, Ljungman M. Gene length as a biological timer to establish temporal transcriptional regulation. Cell Cycle 2017; 16:259-270. [PMID: 28055303 DOI: 10.1080/15384101.2016.1234550] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Transcriptional timing is inherently influenced by gene length, thus providing a mechanism for temporal regulation of gene expression. While gene size has been shown to be important for the expression timing of specific genes during early development, whether it plays a role in the timing of other global gene expression programs has not been extensively explored. Here, we investigate the role of gene length during the early transcriptional response of human fibroblasts to serum stimulation. Using the nascent sequencing techniques Bru-seq and BruUV-seq, we identified immediate genome-wide transcriptional changes following serum stimulation that were linked to rapid activation of enhancer elements. We identified 873 significantly induced and 209 significantly repressed genes. Variations in gene size allowed for a large group of genes to be simultaneously activated but produce full-length RNAs at different times. The median length of the group of serum-induced genes was significantly larger than the median length of all expressed genes, housekeeping genes, and serum-repressed genes. These gene length relationships were also observed in corresponding mouse orthologs, suggesting that relative gene size is evolutionarily conserved. The sizes of transcription factor and microRNA genes immediately induced after serum stimulation varied dramatically, setting up a cascade mechanism for temporal expression arising from a single activation event. The retention and expansion of large intronic sequences during evolution have likely played important roles in fine-tuning the temporal expression of target genes in various cellular response programs.
Collapse
Affiliation(s)
- Killeen S Kirkconnell
- a Department of Radiation Oncology , University of Michigan Comprehensive Cancer Center, Translational Oncology Program, and Center for RNA Biomedicine, University of Michigan , Ann Arbor , MI , USA.,b Department of Human Genetics , University of Michigan Medical School , Ann Arbor , MI , USA
| | - Brian Magnuson
- a Department of Radiation Oncology , University of Michigan Comprehensive Cancer Center, Translational Oncology Program, and Center for RNA Biomedicine, University of Michigan , Ann Arbor , MI , USA.,c Department of Environmental Health Sciences , School of Public Health, University of Michigan , Ann Arbor , MI , USA
| | - Michelle T Paulsen
- a Department of Radiation Oncology , University of Michigan Comprehensive Cancer Center, Translational Oncology Program, and Center for RNA Biomedicine, University of Michigan , Ann Arbor , MI , USA
| | - Brian Lu
- a Department of Radiation Oncology , University of Michigan Comprehensive Cancer Center, Translational Oncology Program, and Center for RNA Biomedicine, University of Michigan , Ann Arbor , MI , USA
| | - Karan Bedi
- a Department of Radiation Oncology , University of Michigan Comprehensive Cancer Center, Translational Oncology Program, and Center for RNA Biomedicine, University of Michigan , Ann Arbor , MI , USA
| | - Mats Ljungman
- a Department of Radiation Oncology , University of Michigan Comprehensive Cancer Center, Translational Oncology Program, and Center for RNA Biomedicine, University of Michigan , Ann Arbor , MI , USA.,c Department of Environmental Health Sciences , School of Public Health, University of Michigan , Ann Arbor , MI , USA
| |
Collapse
|
293
|
Domanski M, LaCava J. Affinity Purification of the RNA Degradation Complex, the Exosome, from HEK-293 Cells. Bio Protoc 2017; 7:e2238. [PMID: 28691041 DOI: 10.21769/bioprotoc.2238] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The RNA exosome complex plays a central role in RNA processing and regulated turnover. Present both in cytoplasm and nucleus, the exosome functions through associations with ribonucleases and various adapter proteins (reviewed in [Kilchert et al., 2016]). The following protocol describes an approach to purify RNA exosome complexes from HEK-293 cells, making use of inducible ectopic expression, affinity capture, and rate-zonal centrifugation. The obtained RNA exosomes have been used successfully for proteomic, structural, and enzymatic studies (Domanski et al., 2016).
Collapse
Affiliation(s)
- Michal Domanski
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - John LaCava
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, USA.,Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, USA
| |
Collapse
|
294
|
Domanski M, LaCava J. RNA Degradation Assay Using RNA Exosome Complexes, Affinity-purified from HEK-293 Cells. Bio Protoc 2017; 7:e2239. [PMID: 28670604 DOI: 10.21769/bioprotoc.2239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
The RNA exosome complex plays a central role in RNA processing and regulated turnover. Present both in cytoplasm and nucleus, the exosome functions through associations with ribonucleases and various adapter proteins (reviewed in [Kilchert et al., 2016]). The RNA exosome-associated EXOSC10 protein is a distributive, 3'-5' exoribonuclease. The following protocol describes an approach to monitor the ribonucleolytic activity of affinity-purified EXOSC10-containing RNA exosomes, originating from HEK-293 cells, as reported in (Domanski et al., 2016) and further detailed in the companion bio-protocol to this one (Domanski and LaCava, 2017).
Collapse
Affiliation(s)
- Michal Domanski
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - John LaCava
- Laboratory of Cellular and Structural Biology, the Rockefeller University, New York, USA.,Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, USA
| |
Collapse
|
295
|
Wasmuth EV, Lima CD. The Rrp6 C-terminal domain binds RNA and activates the nuclear RNA exosome. Nucleic Acids Res 2016; 45:846-860. [PMID: 27899565 PMCID: PMC5314766 DOI: 10.1093/nar/gkw1152] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 10/17/2016] [Accepted: 11/03/2016] [Indexed: 12/14/2022] Open
Abstract
The eukaryotic RNA exosome is an essential, multi-subunit complex that catalyzes RNA turnover, maturation, and quality control processes. Its non-catalytic donut-shaped core includes 9 subunits that associate with the 3′ to 5′ exoribonucleases Rrp6, and Rrp44/Dis3, a subunit that also catalyzes endoribonuclease activity. Although recent structures and biochemical studies of RNA bound exosomes from S. cerevisiae revealed that the Exo9 central channel guides RNA to either Rrp6 or Rrp44 using partially overlapping and mutually exclusive paths, several issues related to RNA recruitment remain. Here, we identify activities for the highly basic Rrp6 C-terminal tail that we term the ‘lasso’ because it binds RNA and stimulates ribonuclease activities associated with Rrp44 and Rrp6 within the 11-subunit nuclear exosome. Stimulation is dependent on the Exo9 central channel, and the lasso contributes to degradation and processing activities of exosome substrates in vitro and in vivo. Finally, we present evidence that the Rrp6 lasso may be a conserved feature of the eukaryotic RNA exosome.
Collapse
Affiliation(s)
- Elizabeth V Wasmuth
- Structural Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Christopher D Lima
- Structural Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA .,Howard Hughes Medical Institute, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| |
Collapse
|
296
|
Meola N, Domanski M, Karadoulama E, Chen Y, Gentil C, Pultz D, Vitting-Seerup K, Lykke-Andersen S, Andersen JS, Sandelin A, Jensen TH. Identification of a Nuclear Exosome Decay Pathway for Processed Transcripts. Mol Cell 2016; 64:520-533. [PMID: 27871484 DOI: 10.1016/j.molcel.2016.09.025] [Citation(s) in RCA: 196] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 08/18/2016] [Accepted: 09/20/2016] [Indexed: 12/20/2022]
Abstract
The RNA exosome is fundamental for the degradation of RNA in eukaryotic nuclei. Substrate targeting is facilitated by its co-factor Mtr4p/hMTR4, which links to RNA-binding protein adaptors. One example is the trimeric human nuclear exosome targeting (NEXT) complex, which is composed of hMTR4, the Zn-finger protein ZCCHC8, and the RNA-binding factor RBM7. NEXT primarily targets early and unprocessed transcripts, which demands a rationale for how the nuclear exosome recognizes processed RNAs. Here, we describe the poly(A) tail exosome targeting (PAXT) connection, which comprises the ZFC3H1 Zn-knuckle protein as a central link between hMTR4 and the nuclear poly(A)-binding protein PABPN1. Individual depletion of ZFC3H1 and PABPN1 results in the accumulation of common transcripts that are generally both longer and more extensively polyadenylated than NEXT substrates. Importantly, ZFC3H1/PABPN1 and ZCCHC8/RBM7 contact hMTR4 in a mutually exclusive manner, revealing that the exosome targets nuclear transcripts of different maturation status by substituting its hMTR4-associating adaptors.
Collapse
Affiliation(s)
- Nicola Meola
- Department of Molecular Biology and Genetics, Aarhus University, C.F. Møllers Allé 3, Building 1130, DK-8000 Aarhus C, Denmark
| | - Michal Domanski
- Department of Molecular Biology and Genetics, Aarhus University, C.F. Møllers Allé 3, Building 1130, DK-8000 Aarhus C, Denmark
| | - Evdoxia Karadoulama
- Department of Molecular Biology and Genetics, Aarhus University, C.F. Møllers Allé 3, Building 1130, DK-8000 Aarhus C, Denmark; The Bioinformatics Centre, Department of Biology & Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaloesvej 5, DK-2200 Copenhagen, Denmark
| | - Yun Chen
- The Bioinformatics Centre, Department of Biology & Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaloesvej 5, DK-2200 Copenhagen, Denmark
| | - Coline Gentil
- Department of Molecular Biology and Genetics, Aarhus University, C.F. Møllers Allé 3, Building 1130, DK-8000 Aarhus C, Denmark
| | - Dennis Pultz
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense, Denmark
| | - Kristoffer Vitting-Seerup
- The Bioinformatics Centre, Department of Biology & Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaloesvej 5, DK-2200 Copenhagen, Denmark
| | - Søren Lykke-Andersen
- Department of Molecular Biology and Genetics, Aarhus University, C.F. Møllers Allé 3, Building 1130, DK-8000 Aarhus C, Denmark
| | - Jens S Andersen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense, Denmark
| | - Albin Sandelin
- The Bioinformatics Centre, Department of Biology & Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaloesvej 5, DK-2200 Copenhagen, Denmark
| | - Torben Heick Jensen
- Department of Molecular Biology and Genetics, Aarhus University, C.F. Møllers Allé 3, Building 1130, DK-8000 Aarhus C, Denmark.
| |
Collapse
|
297
|
Sariki SK, Sahu PK, Golla U, Singh V, Azad GK, Tomar RS. Sen1, the homolog of human Senataxin, is critical for cell survival through regulation of redox homeostasis, mitochondrial function, and the TOR pathway inSaccharomyces cerevisiae. FEBS J 2016; 283:4056-4083. [DOI: 10.1111/febs.13917] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 08/30/2016] [Accepted: 10/05/2016] [Indexed: 01/22/2023]
Affiliation(s)
- Santhosh Kumar Sariki
- Laboratory of Chromatin Biology; Department of Biological Sciences; Indian Institute of Science Education and Research; Bhopal India
| | - Pushpendra Kumar Sahu
- Laboratory of Chromatin Biology; Department of Biological Sciences; Indian Institute of Science Education and Research; Bhopal India
| | - Upendarrao Golla
- Laboratory of Chromatin Biology; Department of Biological Sciences; Indian Institute of Science Education and Research; Bhopal India
| | - Vikash Singh
- Laboratory of Chromatin Biology; Department of Biological Sciences; Indian Institute of Science Education and Research; Bhopal India
| | - Gajendra Kumar Azad
- Laboratory of Chromatin Biology; Department of Biological Sciences; Indian Institute of Science Education and Research; Bhopal India
| | - Raghuvir S. Tomar
- Laboratory of Chromatin Biology; Department of Biological Sciences; Indian Institute of Science Education and Research; Bhopal India
| |
Collapse
|
298
|
Maity A, Chaudhuri A, Das B. DRN and TRAMP degrade specific and overlapping aberrant mRNAs formed at various stages of mRNP biogenesis inSaccharomyces cerevisiae. FEMS Yeast Res 2016; 16:fow088. [DOI: 10.1093/femsyr/fow088] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2016] [Indexed: 01/08/2023] Open
|
299
|
Das S, Das B. eIF4G—an integrator of mRNA metabolism? FEMS Yeast Res 2016; 16:fow087. [DOI: 10.1093/femsyr/fow087] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2016] [Indexed: 11/14/2022] Open
|
300
|
Histone H3K9 methylation is dispensable for Caenorhabditis elegans development but suppresses RNA:DNA hybrid-associated repeat instability. Nat Genet 2016; 48:1385-1395. [DOI: 10.1038/ng.3672] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 08/22/2016] [Indexed: 12/14/2022]
|