251
|
Liu Y, Zhou K, Zhang N, Wei H, Tan YZ, Zhang Z, Carragher B, Potter CS, D'Arcy S, Luger K. FACT caught in the act of manipulating the nucleosome. Nature 2020; 577:426-431. [PMID: 31775157 PMCID: PMC7441595 DOI: 10.1038/s41586-019-1820-0] [Citation(s) in RCA: 151] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 11/07/2019] [Indexed: 01/21/2023]
Abstract
The organization of genomic DNA into nucleosomes profoundly affects all DNA-related processes in eukaryotes. The histone chaperone known as 'facilitates chromatin transcription' (FACT1) (consisting of subunits SPT16 and SSRP1) promotes both disassembly and reassembly of nucleosomes during gene transcription, DNA replication and DNA repair2. However, the mechanism by which FACT causes these opposing outcomes is unknown. Here we report two cryo-electron-microscopic structures of human FACT in complex with partially assembled subnucleosomes, with supporting biochemical and hydrogen-deuterium exchange data. We find that FACT is engaged in extensive interactions with nucleosomal DNA and all histone variants. The large DNA-binding surface on FACT appears to be protected by the carboxy-terminal domains of both of its subunits, and this inhibition is released by interaction with H2A-H2B, allowing FACT-H2A-H2B to dock onto a complex containing DNA and histones H3 and H4 (ref. 3). SPT16 binds nucleosomal DNA and tethers H2A-H2B through its carboxy-terminal domain by acting as a placeholder for DNA. SSRP1 also contributes to DNA binding, and can assume two conformations, depending on whether a second H2A-H2B dimer is present. Our data suggest a compelling mechanism for how FACT maintains chromatin integrity during polymerase passage, by facilitating removal of the H2A-H2B dimer, stabilizing intermediate subnucleosomal states and promoting nucleosome reassembly. Our findings reconcile discrepancies regarding the many roles of FACT and underscore the dynamic interactions between histone chaperones and nucleosomes.
Collapse
Affiliation(s)
- Yang Liu
- Department of Biochemistry, University of Colorado at Boulder, Boulder, CO 80305
| | - Keda Zhou
- Department of Biochemistry, University of Colorado at Boulder, Boulder, CO 80305
| | - Naifu Zhang
- The University of Texas at Dallas, Department of Chemistry and Biochemistry, Dallas, TX 75080
| | - Hui Wei
- National Resource for Automated Molecular Microscopy Simons Electron Microscopy Center, New York Structural Biology Center New York, NY 10027
| | - Yong Zi Tan
- National Resource for Automated Molecular Microscopy Simons Electron Microscopy Center, New York Structural Biology Center New York, NY 10027,Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032
| | - Zhening Zhang
- National Resource for Automated Molecular Microscopy Simons Electron Microscopy Center, New York Structural Biology Center New York, NY 10027,Biochemistry and Molecular Biophysics Dept., Columbia University Medical Center, New York, NY 10032
| | - Bridget Carragher
- National Resource for Automated Molecular Microscopy Simons Electron Microscopy Center, New York Structural Biology Center New York, NY 10027
| | - Clinton S. Potter
- National Resource for Automated Molecular Microscopy Simons Electron Microscopy Center, New York Structural Biology Center New York, NY 10027
| | - Sheena D'Arcy
- The University of Texas at Dallas, Department of Chemistry and Biochemistry, Dallas, TX 75080
| | - Karolin Luger
- Department of Biochemistry, University of Colorado at Boulder, Boulder, CO 80305,Howard Hughes Medical Institute
| |
Collapse
|
252
|
Mao P, Smerdon MJ, Roberts SA, Wyrick JJ. Asymmetric repair of UV damage in nucleosomes imposes a DNA strand polarity on somatic mutations in skin cancer. Genome Res 2019; 30:12-21. [PMID: 31871068 PMCID: PMC6961582 DOI: 10.1101/gr.253146.119] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 12/06/2019] [Indexed: 12/20/2022]
Abstract
Nucleosomes inhibit excision repair of DNA damage caused by ultraviolet (UV) light, and it has been generally assumed that repair inhibition is equivalent on both sides of the nucleosome dyad. Here, we use genome-wide repair data to show that repair of UV damage in nucleosomes is asymmetric. In yeast, nucleosomes inhibit nucleotide excision repair (NER) of the nontranscribed strand (NTS) of genes in an asymmetric manner, with faster repair of UV damage occurring on the 5′ side of the nucleosomal DNA. Analysis of genomic repair data from UV-irradiated human cells indicates that NER activity along the NTS is also elevated on the 5′ side of nucleosomes, consistent with the repair asymmetry observed in yeast nucleosomes. Among intergenic nucleosomes, repair activity is elevated on the 5′ side of both DNA strands. The distribution of somatic mutations in nucleosomes shows the opposite asymmetry in NER-proficient skin cancers, but not in NER-deficient cancers, indicating that asymmetric repair of nucleosomal DNA imposes a strand polarity on UV mutagenesis. Somatic mutations are enriched on the relatively slow-repairing 3′ side of the nucleosomal DNA, particularly at positions where the DNA minor groove faces away from the histone octamer. Asymmetric repair and mutagenesis are likely caused by differential accessibility of the nucleosomal DNA, a consequence of its left-handed wrapping around the histone octamer.
Collapse
Affiliation(s)
- Peng Mao
- School of Molecular Biosciences, Washington State University, Pullman, Washington 99164, USA
| | - Michael J Smerdon
- School of Molecular Biosciences, Washington State University, Pullman, Washington 99164, USA
| | - Steven A Roberts
- School of Molecular Biosciences, Washington State University, Pullman, Washington 99164, USA.,Center for Reproductive Biology, Washington State University, Pullman, Washington 99164, USA
| | - John J Wyrick
- School of Molecular Biosciences, Washington State University, Pullman, Washington 99164, USA.,Center for Reproductive Biology, Washington State University, Pullman, Washington 99164, USA
| |
Collapse
|
253
|
Matsumoto A, Sugiyama M, Li Z, Martel A, Porcar L, Inoue R, Kato D, Osakabe A, Kurumizaka H, Kono H. Structural Studies of Overlapping Dinucleosomes in Solution. Biophys J 2019; 118:2209-2219. [PMID: 31952809 PMCID: PMC7202943 DOI: 10.1016/j.bpj.2019.12.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/17/2019] [Accepted: 12/10/2019] [Indexed: 10/27/2022] Open
Abstract
An overlapping dinucleosome (OLDN) is a structure composed of one hexasome and one octasome and appears to be formed through nucleosome collision promoted by nucleosome remodeling factor(s). In this study, the solution structure of the OLDN was investigated through the integration of small-angle x-ray and neutron scattering (SAXS and SANS, respectively), computer modeling, and molecular dynamics simulations. Starting from the crystal structure, we generated a conformational ensemble based on normal mode analysis and searched for the conformations that reproduced the SAXS and SANS scattering curves well. We found that inclusion of histone tails, which are not observed in the crystal structure, greatly improved model quality. The obtained structural models suggest that OLDNs adopt a variety of conformations stabilized by histone tails situated at the interface between the hexasome and octasome, simultaneously binding to both the hexasomal and octasomal DNA. In addition, our models define a possible direction for the conformational changes or dynamics, which may provide important information that furthers our understanding of the role of chromatin dynamics in gene regulation.
Collapse
Affiliation(s)
- Atsushi Matsumoto
- Institute for Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology, Kizugawa, Japan
| | - Masaaki Sugiyama
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori, Japan.
| | - Zhenhai Li
- Institute for Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology, Kizugawa, Japan
| | | | | | - Rintaro Inoue
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori, Japan
| | - Daiki Kato
- Graduate School of Advanced Science & Engineering, Waseda University, Tokyo, Japan
| | - Akihisa Osakabe
- Graduate School of Advanced Science & Engineering, Waseda University, Tokyo, Japan
| | - Hitoshi Kurumizaka
- Graduate School of Advanced Science & Engineering, Waseda University, Tokyo, Japan; Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan.
| | - Hidetoshi Kono
- Institute for Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology, Kizugawa, Japan.
| |
Collapse
|
254
|
Sharma D, De Falco L, Padavattan S, Rao C, Geifman-Shochat S, Liu CF, Davey CA. PARP1 exhibits enhanced association and catalytic efficiency with γH2A.X-nucleosome. Nat Commun 2019; 10:5751. [PMID: 31848352 PMCID: PMC6917767 DOI: 10.1038/s41467-019-13641-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 11/18/2019] [Indexed: 12/12/2022] Open
Abstract
The poly(ADP-ribose) polymerase, PARP1, plays a key role in maintaining genomic integrity by detecting DNA damage and mediating repair. γH2A.X is the primary histone marker for DNA double-strand breaks and PARP1 localizes to H2A.X-enriched chromatin damage sites, but the basis for this association is not clear. We characterize the kinetics of PARP1 binding to a variety of nucleosomes harbouring DNA double-strand breaks, which reveal that PARP1 associates faster with (γ)H2A.X- versus H2A-nucleosomes, resulting in a higher affinity for the former, which is maximal for γH2A.X-nucleosome that is also the activator eliciting the greatest poly-ADP-ribosylation catalytic efficiency. The enhanced activities with γH2A.X-nucleosome coincide with increased accessibility of the DNA termini resulting from the H2A.X-Ser139 phosphorylation. Indeed, H2A- and (γ)H2A.X-nucleosomes have distinct stability characteristics, which are rationalized by mutational analysis and (γ)H2A.X-nucleosome core crystal structures. This suggests that the γH2A.X epigenetic marker directly facilitates DNA repair by stabilizing PARP1 association and promoting catalysis. The poly(ADP-ribose) polymerases play a key role in maintaining genomic integrity by detecting DNA damage and mediating repair. Here the authors characterize the kinetics of PARP1 binding to a variety of nucleosomes harbouring DNA double-strand breaks.
Collapse
Affiliation(s)
- Deepti Sharma
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Louis De Falco
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Sivaraman Padavattan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore.,Department of Biophysics, National Institute of Mental Health and Neurosciences, Bangalore, 560029, India
| | - Chang Rao
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Susana Geifman-Shochat
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore.,NTU Institute of Structural Biology, Nanyang Technological University, 59 Nanyang Drive, Singapore, 636921, Singapore
| | - Chuan-Fa Liu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore.,NTU Institute of Structural Biology, Nanyang Technological University, 59 Nanyang Drive, Singapore, 636921, Singapore
| | - Curt A Davey
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore. .,NTU Institute of Structural Biology, Nanyang Technological University, 59 Nanyang Drive, Singapore, 636921, Singapore.
| |
Collapse
|
255
|
Blossey R, Schiessel H. Histone mark recognition controls nucleosome translocation via a kinetic proofreading mechanism: Confronting theory and high-throughput experiments. Phys Rev E 2019; 99:060401. [PMID: 31330635 DOI: 10.1103/physreve.99.060401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Indexed: 12/13/2022]
Abstract
Chromatin remodelers are multidomain enzymatic motor complexes that displace nucleosomes along DNA and hence "remodel chromatin structure," i.e., they dynamically reorganize nucleosome positions in both gene activation and gene repression. Recently, experimental insights from structural biology methods and remodeling assays have substantially advanced the understanding of these key chromatin components. Here we confront the kinetic proofreading scenario of chromatin remodeling, which proposes a mechanical link between histone residue modifications and the ATP-dependent action of remodelers, with recent experiments. We show that recent high-throughput data on nucleosome libraries assayed with remodelers from the Imitation Switch family are in accord with our earlier predictions of the kinetic proofreading scenario. We make suggestions for experimentally verifiable predictions of the kinetic proofreading scenarios for remodelers from other families.
Collapse
Affiliation(s)
- Ralf Blossey
- Université de Lille, CNRS, UMR8576 Unité de Glycobiologie Structurale et Fonctionnelle (UGSF), F-59000 Lille, France
| | - Helmut Schiessel
- Institute Lorentz for Theoretical Physics, Leiden University, Niels Bohrweg 2, 2333 CA Leiden, The Netherlands
| |
Collapse
|
256
|
Kinyamu HK, Bennett BD, Bushel PR, Archer TK. Proteasome inhibition creates a chromatin landscape favorable to RNA Pol II processivity. J Biol Chem 2019; 295:1271-1287. [PMID: 31806706 DOI: 10.1074/jbc.ra119.011174] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/02/2019] [Indexed: 11/06/2022] Open
Abstract
Proteasome activity is required for diverse cellular processes, including transcriptional and epigenetic regulation. However, inhibiting proteasome activity can lead to an increase in transcriptional output that is correlated with enriched levels of trimethyl H3K4 and phosphorylated forms of RNA polymerase (Pol) II at the promoter and gene body. Here, we perform gene expression analysis and ChIP followed by sequencing (ChIP-seq) in MCF-7 breast cancer cells treated with the proteasome inhibitor MG132, and we further explore genome-wide effects of proteasome inhibition on the chromatin state and RNA Pol II transcription. Analysis of gene expression programs and chromatin architecture reveals that chemically inhibiting proteasome activity creates a distinct chromatin state, defined by spreading of the H3K4me3 mark into the gene bodies of differentially-expressed genes. The distinct H3K4me3 chromatin profile and hyperacetylated nucleosomes at transcription start sites establish a chromatin landscape that facilitates recruitment of Ser-5- and Ser-2-phosphorylated RNA Pol II. Subsequent transcriptional events result in diverse gene expression changes. Alterations of H3K36me3 levels in the gene body reflect productive RNA Pol II elongation of transcripts of genes that are induced, underscoring the requirement for proteasome activity at multiple phases of the transcriptional cycle. Finally, by integrating genomics data and pathway analysis, we find that the differential effects of proteasome inhibition on the chromatin state modulate genes that are fundamental for cancer cell survival. Together, our results uncover underappreciated downstream effects of proteasome inhibitors that may underlie targeting of distinct chromatin states and key steps of RNA Pol II-mediated transcription in cancer cells.
Collapse
Affiliation(s)
- H Karimi Kinyamu
- Chromatin and Gene Expression Section, Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, North Carolina 27709
| | - Brian D Bennett
- Chromatin and Gene Expression Section, Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, North Carolina 27709.,Integrative Bioinformatics Support Group, Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, North Carolina 27709
| | - Pierre R Bushel
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, North Carolina 27709
| | - Trevor K Archer
- Chromatin and Gene Expression Section, Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, North Carolina 27709
| |
Collapse
|
257
|
Buitrago D, Codó L, Illa R, de Jorge P, Battistini F, Flores O, Bayarri G, Royo R, Del Pino M, Heath S, Hospital A, Gelpí JL, Heath IB, Orozco M. Nucleosome Dynamics: a new tool for the dynamic analysis of nucleosome positioning. Nucleic Acids Res 2019; 47:9511-9523. [PMID: 31504766 PMCID: PMC6765203 DOI: 10.1093/nar/gkz759] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/23/2019] [Accepted: 08/22/2019] [Indexed: 02/03/2023] Open
Abstract
We present Nucleosome Dynamics, a suite of programs integrated into a virtual research environment and created to define nucleosome architecture and dynamics from noisy experimental data. The package allows both the definition of nucleosome architectures and the detection of changes in nucleosomal organization due to changes in cellular conditions. Results are displayed in the context of genomic information thanks to different visualizers and browsers, allowing the user a holistic, multidimensional view of the genome/transcriptome. The package shows good performance for both locating equilibrium nucleosome architecture and nucleosome dynamics and provides abundant useful information in several test cases, where experimental data on nucleosome position (and for some cases expression level) have been collected for cells under different external conditions (cell cycle phase, yeast metabolic cycle progression, changes in nutrients or difference in MNase digestion level). Nucleosome Dynamics is a free software and is provided under several distribution models.
Collapse
Affiliation(s)
- Diana Buitrago
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, Barcelona 08028, Spain
| | - Laia Codó
- Barcelona Supercomputing Center (BSC), Jordi Girona 31, Barcelona 08028. Spain
| | - Ricard Illa
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, Barcelona 08028, Spain
| | - Pau de Jorge
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, Barcelona 08028, Spain
| | - Federica Battistini
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, Barcelona 08028, Spain
| | - Oscar Flores
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, Barcelona 08028, Spain
| | - Genis Bayarri
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, Barcelona 08028, Spain
| | - Romina Royo
- Barcelona Supercomputing Center (BSC), Jordi Girona 31, Barcelona 08028. Spain
| | - Marc Del Pino
- Barcelona Supercomputing Center (BSC), Jordi Girona 31, Barcelona 08028. Spain
| | - Simon Heath
- Centro Nacional de Análisis Genómico (CNAG-CRG), Centre de Regulacio Genómico (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Adam Hospital
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, Barcelona 08028, Spain
| | - Josep Lluís Gelpí
- Barcelona Supercomputing Center (BSC), Jordi Girona 31, Barcelona 08028. Spain.,Departament de Bioquímica i Biomedicina. Facultat de Biologia, Universitat de Barcelona, Avgda Diagonal 647, Barcelona 08028, Spain
| | - Isabelle Brun Heath
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, Barcelona 08028, Spain
| | - Modesto Orozco
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, Barcelona 08028, Spain.,Departament de Bioquímica i Biomedicina. Facultat de Biologia, Universitat de Barcelona, Avgda Diagonal 647, Barcelona 08028, Spain
| |
Collapse
|
258
|
Clarkson CT, Deeks EA, Samarista R, Mamayusupova H, Zhurkin VB, Teif VB. CTCF-dependent chromatin boundaries formed by asymmetric nucleosome arrays with decreased linker length. Nucleic Acids Res 2019; 47:11181-11196. [PMID: 31665434 PMCID: PMC6868436 DOI: 10.1093/nar/gkz908] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/26/2019] [Accepted: 10/02/2019] [Indexed: 11/24/2022] Open
Abstract
The CCCTC-binding factor (CTCF) organises the genome in 3D through DNA loops and in 1D by setting boundaries isolating different chromatin states, but these processes are not well understood. Here we investigate chromatin boundaries in mouse embryonic stem cells, defined by the regions with decreased Nucleosome Repeat Length (NRL) for ∼20 nucleosomes near CTCF sites, affecting up to 10% of the genome. We found that the nucleosome-depleted region (NDR) near CTCF is asymmetrically located >40 nucleotides 5'-upstream from the centre of CTCF motif. The strength of CTCF binding to DNA and the presence of cohesin is correlated with the decrease of NRL near CTCF, and anti-correlated with the level of asymmetry of the nucleosome array. Individual chromatin remodellers have different contributions, with Snf2h having the strongest effect on the NRL decrease near CTCF and Chd4 playing a major role in the symmetry breaking. Upon differentiation, a subset of preserved, common CTCF sites maintains asymmetric nucleosome pattern and small NRL. The sites which lost CTCF upon differentiation are characterized by nucleosome rearrangement 3'-downstream, with unchanged NDR 5'-upstream of CTCF motifs. Boundaries of topologically associated chromatin domains frequently contain several inward-oriented CTCF motifs whose effects, described above, add up synergistically.
Collapse
Affiliation(s)
| | - Emma A Deeks
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK
- Biological Sciences BSc Program, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK
| | - Ralph Samarista
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK
- Wellcome Trust Vacation Student
| | - Hulkar Mamayusupova
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK
| | - Victor B Zhurkin
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Vladimir B Teif
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK
| |
Collapse
|
259
|
Parra-Forero LY, Veloz-Contreras A, Vargas-Marín S, Mojica-Villegas MA, Alfaro-Pedraza E, Urióstegui-Acosta M, Hernández-Ochoa I. Alterations in oocytes and early zygotes following oral exposure to di(2-ethylhexyl) phthalate in young adult female mice. Reprod Toxicol 2019; 90:53-61. [PMID: 31442482 DOI: 10.1016/j.reprotox.2019.08.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/30/2019] [Accepted: 08/16/2019] [Indexed: 11/17/2022]
Abstract
Because di(2-ethylhexyl) phthalate (DEHP) toxicity on ovarian function is incomplete, effects of DEHP oocyte fertilization and the resulting zygotes were investigated. Further, an analysis characterizing the stage of zygote arrest was performed. Female CD1 mice were dosed orally with DEHP (0, 20, 200 and 2000 μg/kg/day) for 30 days. Following an in vivo mating post-dosing, DEHP-treated females exhibited fewer oocytes/zygotes, fewer oocytes displaying the polar body extrusion, fewer 1-cell zygotes having 2-pronuclei, more unfertilized oocytes, and decreased number of zygotes at every stage of development. DEHP induced blastomere fragmentation in zygotes. DNA replication in zygotes directly assessed by the 5-Ethynyl-2'-deoxyuridine (5-EdU) incorporation assay and indirectly by dosing mice with 5-fluorouracil (5-FU) suggested that DEHP inhibits DNA replication. Our data suggest that DEHP at doses found in 'every-day' (200 μg/Kg/day) or occupational (2000 μg/Kg/day) environments induces zygote fragmentation and arrests its development from the 2-cell stage potentially impairing DNA replication.
Collapse
Affiliation(s)
- Lyda Yuliana Parra-Forero
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, Ciudad de México, 07360, Mexico
| | - Arlet Veloz-Contreras
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, Ciudad de México, 07360, Mexico
| | - Shirley Vargas-Marín
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, Ciudad de México, 07360, Mexico
| | - María Angelica Mojica-Villegas
- Laboratorio de Toxicología de la Reproducción-Fertilidad, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas-IPN, Col. San Pedro Zacatenco, Ciudad de México, 2508, Mexico
| | - Elim Alfaro-Pedraza
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, Ciudad de México, 07360, Mexico
| | | | - Isabel Hernández-Ochoa
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, Ciudad de México, 07360, Mexico.
| |
Collapse
|
260
|
Kobayashi W, Kurumizaka H. Structural transition of the nucleosome during chromatin remodeling and transcription. Curr Opin Struct Biol 2019; 59:107-114. [DOI: 10.1016/j.sbi.2019.07.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 07/17/2019] [Accepted: 07/30/2019] [Indexed: 10/26/2022]
|
261
|
Hawkins LJ, Storey KB. Advances and applications of environmental stress adaptation research. Comp Biochem Physiol A Mol Integr Physiol 2019; 240:110623. [PMID: 31778815 DOI: 10.1016/j.cbpa.2019.110623] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/19/2019] [Accepted: 11/21/2019] [Indexed: 02/06/2023]
Abstract
Evolution has produced animals that survive extreme fluctuations in environmental conditions including freezing temperatures, anoxia, desiccating conditions, and prolonged periods without food. For example, the wood frog survives whole-body freezing every winter, arresting all gross physiological functions, but recovers functions upon thawing in the spring. Likewise, many small mammals hibernate for months at a time with minimal metabolic activity, organ perfusion, and movement, yet do not suffer significant muscle atrophy upon arousal. These conditions and the biochemical adaptations employed to deal with them can be viewed as Nature's answer to problems that humans wish to answer, particularly in a biomedical context. This review focuses on recent advances in the field of animal environmental stress adaptation, starting with an emphasis on new areas of research such as epigenetics and microRNA. We then examine new and emerging technologies such as genome editing, novel sequencing applications, and single cell analysis and how these can push us closer to a deeper understanding of biochemical adaptation. Next, evaluate the potential contributions of new high-throughput technologies (e.g. next-generation sequencing, mass spectrometry proteomics) to better understanding the adaptations that support these extreme phenotypes. Concluding, we examine some of the human applications that can be gained from understanding the principles of biochemical adaptation including organ preservation and treatments for conditions such as ischemic stroke and muscle disuse atrophy.
Collapse
Affiliation(s)
- Liam J Hawkins
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| | - Kenneth B Storey
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada.
| |
Collapse
|
262
|
Intercalation of small molecules into DNA in chromatin is primarily controlled by superhelical constraint. PLoS One 2019; 14:e0224936. [PMID: 31747397 PMCID: PMC6867626 DOI: 10.1371/journal.pone.0224936] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 09/30/2019] [Indexed: 12/22/2022] Open
Abstract
The restricted access of regulatory factors to their binding sites on DNA wrapped around the nucleosomes is generally interpreted in terms of molecular shielding exerted by nucleosomal structure and internucleosomal interactions. Binding of proteins to DNA often includes intercalation of hydrophobic amino acids into the DNA. To assess the role of constrained superhelicity in limiting these interactions, we studied the binding of small molecule intercalators to chromatin in close to native conditions by laser scanning cytometry. We demonstrate that the nucleosome-constrained superhelical configuration of DNA is the main barrier to intercalation. As a result, intercalating compounds are virtually excluded from the nucleosome-occupied regions of the chromatin. Binding of intercalators to extranucleosomal regions is limited to a smaller degree, in line with the existence of net supercoiling in the regions comprising linker and nucleosome free DNA. Its relaxation by inducing as few as a single nick per ~50 kb increases intercalation in the entire chromatin loop, demonstrating the possibility for long-distance effects of regulatory potential.
Collapse
|
263
|
Donovan DA, Crandall JG, Banks OGB, Jensvold ZD, Truong V, Dinwiddie D, McKnight LE, McKnight JN. Engineered Chromatin Remodeling Proteins for Precise Nucleosome Positioning. Cell Rep 2019; 29:2520-2535.e4. [PMID: 31747617 PMCID: PMC6884087 DOI: 10.1016/j.celrep.2019.10.046] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 09/26/2019] [Accepted: 10/10/2019] [Indexed: 12/12/2022] Open
Abstract
Regulation of chromatin structure is essential for controlling access of DNA to factors that require association with specific DNA sequences. Here we describe the development and validation of engineered chromatin remodeling proteins (E-ChRPs) for inducing programmable changes in nucleosome positioning by design. We demonstrate that E-ChRPs function both in vitro and in vivo to specifically reposition target nucleosomes and entire nucleosomal arrays. We show that induced, systematic positioning of nucleosomes over yeast Ume6 binding sites leads to Ume6 exclusion, hyperacetylation, and transcriptional induction at target genes. We also show that programmed global loss of nucleosome-free regions at Reb1 targets is generally inhibitory with mildly repressive transcriptional effects. E-ChRPs are compatible with multiple targeting modalities, including the SpyCatcher and dCas9 moieties, resulting in high versatility and enabling diverse future applications. Thus, engineered chromatin remodeling proteins represent a simple and robust means to probe and disrupt DNA-dependent processes in different chromatin contexts.
Collapse
Affiliation(s)
- Drake A Donovan
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | | | - Orion G B Banks
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | - Zena D Jensvold
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | - Vi Truong
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | - Devin Dinwiddie
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | - Laura E McKnight
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | - Jeffrey N McKnight
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA; Department of Biology, University of Oregon, Eugene, OR 97403, USA; Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR 97403, USA.
| |
Collapse
|
264
|
Monteonofrio L, Valente D, Rinaldo C, Soddu S. Extrachromosomal Histone H2B Contributes to the Formation of the Abscission Site for Cell Division. Cells 2019; 8:cells8111391. [PMID: 31694230 PMCID: PMC6912571 DOI: 10.3390/cells8111391] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 10/25/2019] [Accepted: 10/31/2019] [Indexed: 12/13/2022] Open
Abstract
Histones are constitutive components of nucleosomes and key regulators of chromatin structure. We previously observed that an extrachromosomal histone H2B (ecH2B) localizes at the intercellular bridge (ICB) connecting the two daughter cells during cytokinesis independently of DNA and RNA. Here, we show that ecH2B binds and colocalizes with CHMP4B, a key component of the ESCRT-III machinery responsible for abscission, the final step of cell division. Abscission requires the formation of an abscission site at the ICB where the ESCRT-III complex organizes into narrowing cortical helices that drive the physical separation of sibling cells. ecH2B depletion does not prevent membrane cleavage rather results in abscission delay and accumulation of abnormally long and thin ICBs. In the absence of ecH2B, CHMP4B and other components of the fission machinery, such as IST1 and Spastin, are recruited to the ICB and localize at the midbody. However, in the late stage of abscission, these fission factors fail to re-localize at the periphery of the midbody and the abscission site fails to form. These results show that extrachromosomal activity of histone H2B is required in the formation of the abscission site and the proper localization of the fission machinery.
Collapse
Affiliation(s)
- Laura Monteonofrio
- Unit of Cellular Networks and Molecular Therapeutic Targets, IRCCS-Regina Elena National Cancer Institute, 00144 Rome, Italy; (D.V.); (C.R.)
- Correspondence: (L.M.); (S.S.); Tel.: +1-(443)-410-9571 (L.M.); +39-065266-2492 (S.S.)
| | - Davide Valente
- Unit of Cellular Networks and Molecular Therapeutic Targets, IRCCS-Regina Elena National Cancer Institute, 00144 Rome, Italy; (D.V.); (C.R.)
| | - Cinzia Rinaldo
- Unit of Cellular Networks and Molecular Therapeutic Targets, IRCCS-Regina Elena National Cancer Institute, 00144 Rome, Italy; (D.V.); (C.R.)
- Institutes of Molecular Biology and Pathology (IBPM), National Research Council (CNR), c/o Sapienza University, 00185 Rome, Italy
| | - Silvia Soddu
- Unit of Cellular Networks and Molecular Therapeutic Targets, IRCCS-Regina Elena National Cancer Institute, 00144 Rome, Italy; (D.V.); (C.R.)
- Correspondence: (L.M.); (S.S.); Tel.: +1-(443)-410-9571 (L.M.); +39-065266-2492 (S.S.)
| |
Collapse
|
265
|
Beytebiere JR, Greenwell BJ, Sahasrabudhe A, Menet JS. Clock-controlled rhythmic transcription: is the clock enough and how does it work? Transcription 2019; 10:212-221. [PMID: 31595813 DOI: 10.1080/21541264.2019.1673636] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Circadian clocks regulate the rhythmic expression of thousands of genes underlying the daily oscillations of biological functions. Here, we discuss recent findings showing that circadian clock rhythmic transcriptional outputs rely on additional mechanisms than just clock gene DNA binding, which may ultimately contribute to the plasticity of circadian transcriptional programs.
Collapse
Affiliation(s)
- Joshua R Beytebiere
- Department of Biology, Center for Biological Clock Research, Texas A&M University, TX, USA
| | - Ben J Greenwell
- Department of Biology, Center for Biological Clock Research, Texas A&M University, TX, USA.,Program of Genetics, Texas A&M University, College Station, TX, USA
| | - Aishwarya Sahasrabudhe
- Department of Biology, Center for Biological Clock Research, Texas A&M University, TX, USA
| | - Jerome S Menet
- Department of Biology, Center for Biological Clock Research, Texas A&M University, TX, USA.,Program of Genetics, Texas A&M University, College Station, TX, USA
| |
Collapse
|
266
|
Soudet J, Stutz F. Regulation of Gene Expression and Replication Initiation by Non‐Coding Transcription: A Model Based on Reshaping Nucleosome‐Depleted Regions. Bioessays 2019; 41:e1900043. [DOI: 10.1002/bies.201900043] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 08/19/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Julien Soudet
- Department of Cell BiologyUniversity of Geneva 1211 Geneva Switzerland
| | - Françoise Stutz
- Department of Cell BiologyUniversity of Geneva 1211 Geneva Switzerland
| |
Collapse
|
267
|
ZCMM: A Novel Method Using Z-Curve Theory- Based and Position Weight Matrix for Predicting Nucleosome Positioning. Genes (Basel) 2019; 10:genes10100765. [PMID: 31569414 PMCID: PMC6827144 DOI: 10.3390/genes10100765] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 09/25/2019] [Accepted: 09/26/2019] [Indexed: 02/04/2023] Open
Abstract
Nucleosomes are the basic units of eukaryotes. The accurate positioning of nucleosomes plays a significant role in understanding many biological processes such as transcriptional regulation mechanisms and DNA replication and repair. Here, we describe the development of a novel method, termed ZCMM, based on Z-curve theory and position weight matrix (PWM). The ZCMM was trained and tested using the nucleosomal and linker sequences determined by support vector machine (SVM) in Saccharomyces cerevisiae (S. cerevisiae), and experimental results showed that the sensitivity (Sn), specificity (Sp), accuracy (Acc), and Matthews correlation coefficient (MCC) values for ZCMM were 91.40%, 96.56%, 96.75%, and 0.88, respectively, and the average area under the receiver operating characteristic curve (AUC) value was 0.972. A ZCMM predictor was developed to predict nucleosome positioning in Homo sapiens (H. sapiens), Caenorhabditis elegans (C. elegans), and Drosophila melanogaster (D. melanogaster) genomes, and the accuracy (Acc) values were 77.72%, 85.34%, and 93.62%, respectively. The maximum AUC values of the four species were 0.982, 0.861, 0.912 and 0.911, respectively. Another independent dataset for S. cerevisiae was used to predict nucleosome positioning. Compared with the results of Wu's method, it was found that the Sn, Sp, Acc, and MCC of ZCMM results for S. cerevisiae were all higher, reaching 96.72%, 96.54%, 94.10%, and 0.88. Compared with the Guo's method 'iNuc-PseKNC', the results of ZCMM for D. melanogaster were better. Meanwhile, the ZCMM was compared with some experimental data in vitro and in vivo for S. cerevisiae, and the results showed that the nucleosomes predicted by ZCMM were highly consistent with those confirmed by these experiments. Therefore, it was further confirmed that the ZCMM method has good accuracy and reliability in predicting nucleosome positioning.
Collapse
|
268
|
Pérez-Martínez ME, Benet M, Alepuz P, Tordera V. Nut1/Hos1 and Sas2/Rpd3 control the H3 acetylation of two different sets of osmotic stress-induced genes. Epigenetics 2019; 15:251-271. [PMID: 31512982 DOI: 10.1080/15592294.2019.1664229] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Epigenetic information is able to interact with the cellular environment and could be especially useful for reprograming gene expression in response to a physiological perturbation. In fact the genes induced or repressed by osmotic stress undergo significant changes in terms of the levels of various histone modifications, especially in the acetylation levels of histone H3. Exposing yeast to high osmolarity results in the activation of stress-activated protein kinase Hog1, which plays a central role in gene expression control. We evaluated the connection between the presence of Hog1 and changes in histone H3 acetylation in stress-regulated genes. We found a parallel increase in the acetylation of lysines 9 and 14 of H3 in induced genes during stress, which was largely dependent on Hog1 at the genome-wide level. Conversely, we observed that acetylation decreased in repressed genes and was not dependent on Hog1. However, lack of Hog1 sometimes produced different, and even opposite, effects on the induction and acetylation of H3 of each gene. We also found that the acetylation state of lysine 9 of H3 was altered in the strains deficient in Nut1 HAT and Hos1 HDAC in the genes up-regulated during osmotic stress in an Msn2/Msn4-independent manner, while lysine 9 acetylation of H3 varied in the strains deficient in Sas2 HAT and Rpd3 HDAC for the Msn2/Msn4-dependent induced genes. The results presented here show new, unexpected participants in gene regulation processes in response to environmental perturbations.
Collapse
Affiliation(s)
- María E Pérez-Martínez
- Departament de Bioquímica i Biologia Molecular and ERI Biotecmed, Universitat de València, Burjassot, Spain
| | - Marta Benet
- Departament de Bioquímica i Biologia Molecular and ERI Biotecmed, Universitat de València, Burjassot, Spain
| | - Paula Alepuz
- Departament de Bioquímica i Biologia Molecular and ERI Biotecmed, Universitat de València, Burjassot, Spain
| | - Vicente Tordera
- Departament de Bioquímica i Biologia Molecular and ERI Biotecmed, Universitat de València, Burjassot, Spain
| |
Collapse
|
269
|
The nucleosome core particle remembers its position through DNA replication and RNA transcription. Proc Natl Acad Sci U S A 2019; 116:20605-20611. [PMID: 31511420 DOI: 10.1073/pnas.1911943116] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nucleosomes are the fundamental structural unit of chromatin. In addition to stabilizing the DNA polymer, nucleosomes are modified in ways that reflect and affect gene expression in their vicinity. It has long been assumed that nucleosomes can transmit memory of gene expression through their covalent posttranslational modifications. An unproven assumption of this model, which is essential to most models of epigenetic inheritance, is that a nucleosome present at a locus reoccupies the same locus after DNA replication. We tested this assumption by nucleating a synthetic chromatin domain in vivo, in which ∼4 nucleosomes at an arbitrary locus were covalently labeled with biotin. We tracked the fate of labeled nucleosomes through DNA replication, and established that nucleosomes present at a locus remembered their position during DNA replication. The replication-associated histone chaperones Dpb3 and Mcm2 were essential for nucleosome position memory, and in the absence of both Dpb3 and Mcm2 histone chaperone activity, nucleosomes did not remember their position. Using the same approach, we tested the model that transcription results in retrograde transposition of nucleosomes along a transcription unit. We found no evidence of retrograde transposition. Our results suggest that nucleosomes have the capacity to transmit epigenetic memory across mitotic generations with exquisite spatial fidelity.
Collapse
|
270
|
Würtz M, Aumiller D, Gundelwein L, Jung P, Schütz C, Lehmann K, Tóth K, Rohr K. DNA accessibility of chromatosomes quantified by automated image analysis of AFM data. Sci Rep 2019; 9:12788. [PMID: 31484969 PMCID: PMC6726762 DOI: 10.1038/s41598-019-49163-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 08/19/2019] [Indexed: 12/26/2022] Open
Abstract
DNA compaction and accessibility in eukaryotes are governed by nucleosomes and orchestrated through interactions between DNA and DNA-binding proteins. Using QuantAFM, a method for automated image analysis of atomic force microscopy (AFM) data, we performed a detailed statistical analysis of structural properties of mono-nucleosomes. QuantAFM allows fast analysis of AFM images, including image preprocessing, object segmentation, and quantification of different structural parameters to assess DNA accessibility of nucleosomes. A comparison of nucleosomes reconstituted with and without linker histone H1 quantified H1's already described ability of compacting the nucleosome. We further employed nucleosomes bearing two charge-modifying mutations at position R81 and R88 in histone H2A (H2A R81E/R88E) to characterize DNA accessibility under destabilizing conditions. Upon H2A mutation, even in presence of H1, the DNA opening angle at the entry/exit site was increased and the DNA wrapping length around the histone core was reduced. Interestingly, a distinct opening of the less bendable DNA side was observed upon H2A mutation, indicating an enhancement of the intrinsic asymmetry of the Widom-601 nucleosomes. This study validates AFM as a technique to investigate structural parameters of nucleosomes and highlights how the DNA sequence, together with nucleosome modifications, can influence the DNA accessibility.
Collapse
Affiliation(s)
- Martin Würtz
- German Cancer Research Center, Division Biophysics of Macromolecules, Heidelberg, 69120, Germany
- Heidelberg University, BioQuant and IPMB, Biomedical Computer Vision Group, Heidelberg, 69120, Germany
| | - Dennis Aumiller
- Heidelberg University, Institute of Computer Science, Heidelberg, 69120, Germany
| | - Lina Gundelwein
- Heidelberg University, Institute of Computer Science, Heidelberg, 69120, Germany
| | - Philipp Jung
- Heidelberg University, Institute of Computer Science, Heidelberg, 69120, Germany
| | - Christian Schütz
- Heidelberg University, Institute of Computer Science, Heidelberg, 69120, Germany
| | - Kathrin Lehmann
- German Cancer Research Center, Division Biophysics of Macromolecules, Heidelberg, 69120, Germany
- Simon Fraser University, Department of Physics, Burnaby, BC, V5A 1S6, Canada
| | - Katalin Tóth
- German Cancer Research Center, Division Biophysics of Macromolecules, Heidelberg, 69120, Germany
| | - Karl Rohr
- Heidelberg University, BioQuant and IPMB, Biomedical Computer Vision Group, Heidelberg, 69120, Germany.
- German Cancer Research Center, Heidelberg, 69120, Germany.
| |
Collapse
|
271
|
Comoglio F, Simonatto M, Polletti S, Liu X, Smale ST, Barozzi I, Natoli G. Dissection of acute stimulus-inducible nucleosome remodeling in mammalian cells. Genes Dev 2019; 33:1159-1174. [PMID: 31371436 PMCID: PMC6719622 DOI: 10.1101/gad.326348.119] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 07/03/2019] [Indexed: 12/22/2022]
Abstract
Accessibility of the genomic regulatory information is largely controlled by the nucleosome-organizing activity of transcription factors (TFs). While stimulus-induced TFs bind to genomic regions that are maintained accessible by lineage-determining TFs, they also increase accessibility of thousands of cis-regulatory elements. Nucleosome remodeling events underlying such changes and their interplay with basal positioning are unknown. Here, we devised a novel quantitative framework discriminating different types of nucleosome remodeling events in micrococcal nuclease ChIP-seq (chromatin immunoprecipitation [ChIP] combined with high-throughput sequencing) data sets and used it to analyze nucleosome dynamics at stimulus-regulated cis-regulatory elements. At enhancers, remodeling preferentially affected poorly positioned nucleosomes while sparing well-positioned nucleosomes flanking the enhancer core, indicating that inducible TFs do not suffice to overrule basal nucleosomal organization maintained by lineage-determining TFs. Remodeling events appeared to be combinatorially driven by multiple TFs, with distinct TFs showing, however, different remodeling efficiencies. Overall, these data provide a systematic view of the impact of stimulation on nucleosome organization and genome accessibility in mammalian cells.
Collapse
Affiliation(s)
- Federico Comoglio
- Division of Gene Regulation, Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands
- Department of Hematology, University of Cambridge, Cambridge CB2 0XY, United Kingdom
| | - Marta Simonatto
- Humanitas University (Hunimed), Pieve Emanuele, Milano 20090, Italy
| | - Sara Polletti
- Humanitas University (Hunimed), Pieve Emanuele, Milano 20090, Italy
| | - Xin Liu
- Department of Microbiology, Immunology, and Molecular Genetics, University of California at Los Angeles (UCLA), Los Angeles, California 90095, USA
| | - Stephen T Smale
- Department of Microbiology, Immunology, and Molecular Genetics, University of California at Los Angeles (UCLA), Los Angeles, California 90095, USA
| | - Iros Barozzi
- Department of Surgery and Cancer, Imperial College London, London W12 00N, United Kingdom
| | - Gioacchino Natoli
- Humanitas University (Hunimed), Pieve Emanuele, Milano 20090, Italy
- Humanitas Istituto di Ricovero e Cura a Carattere Scientifico, Rozzano, Milano 20089, Italy
| |
Collapse
|
272
|
Chen FX, Smith ER, Shilatifard A. Born to run: control of transcription elongation by RNA polymerase II. Nat Rev Mol Cell Biol 2019; 19:464-478. [PMID: 29740129 DOI: 10.1038/s41580-018-0010-5] [Citation(s) in RCA: 285] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The dynamic regulation of transcription elongation by RNA polymerase II (Pol II) is an integral part of the implementation of gene expression programmes during development. In most metazoans, the majority of transcribed genes exhibit transient pausing of Pol II at promoter-proximal regions, and the release of Pol II into gene bodies is controlled by many regulatory factors that respond to environmental and developmental cues. Misregulation of the elongation stage of transcription is implicated in cancer and other human diseases, suggesting that mechanistic understanding of transcription elongation control is therapeutically relevant. In this Review, we discuss the features, establishment and maintenance of Pol II pausing, the transition into productive elongation, the control of transcription elongation by enhancers and by factors of other cellular processes, such as topoisomerases and poly(ADP-ribose) polymerases (PARPs), and the potential of therapeutic targeting of the elongation stage of transcription by Pol II.
Collapse
Affiliation(s)
- Fei Xavier Chen
- Simpson Querrey Center for Epigenetics and the Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Edwin R Smith
- Simpson Querrey Center for Epigenetics and the Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Ali Shilatifard
- Simpson Querrey Center for Epigenetics and the Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
273
|
Sato S, Arimura Y, Kujirai T, Harada A, Maehara K, Nogami J, Ohkawa Y, Kurumizaka H. Biochemical analysis of nucleosome targeting by Tn5 transposase. Open Biol 2019; 9:190116. [PMID: 31409230 PMCID: PMC6731594 DOI: 10.1098/rsob.190116] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Tn5 transposase is a bacterial enzyme that integrates a DNA fragment into genomic DNA, and is used as a tool for detecting nucleosome-free regions of genomic DNA in eukaryotes. However, in chromatin, the DNA targeting by Tn5 transposase has remained unclear. In the present study, we reconstituted well-positioned 601 dinucleosomes, in which two nucleosomes are connected with a linker DNA, and studied the DNA integration sites in the dinucleosomes by Tn5 transposase in vitro. We found that Tn5 transposase preferentially targets near the entry-exit DNA regions within the nucleosome. Tn5 transposase minimally cleaved the dinucleosome without a linker DNA, indicating that the linker DNA between two nucleosomes is important for the Tn5 transposase activity. In the presence of a 30 base-pair linker DNA, Tn5 transposase targets the middle of the linker DNA, in addition to the entry-exit sites of the nucleosome. Intriguingly, this Tn5-targeting characteristic is conserved in a dinucleosome substrate with a different DNA sequence from the 601 sequence. Therefore, the Tn5-targeting preference in the nucleosomal templates reported here provides important information for the interpretation of Tn5 transposase-based genomics methods, such as ATAC-seq.
Collapse
Affiliation(s)
- Shoko Sato
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Yasuhiro Arimura
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Tomoya Kujirai
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Akihito Harada
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Kazumitsu Maehara
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Jumpei Nogami
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yasuyuki Ohkawa
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Hitoshi Kurumizaka
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| |
Collapse
|
274
|
Kubik S, Bruzzone MJ, Challal D, Dreos R, Mattarocci S, Bucher P, Libri D, Shore D. Opposing chromatin remodelers control transcription initiation frequency and start site selection. Nat Struct Mol Biol 2019; 26:744-754. [PMID: 31384063 DOI: 10.1038/s41594-019-0273-3] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 06/28/2019] [Indexed: 12/31/2022]
Abstract
Precise nucleosome organization at eukaryotic promoters is thought to be generated by multiple chromatin remodeler (CR) enzymes and to affect transcription initiation. Using an integrated analysis of chromatin remodeler binding and nucleosome occupancy following rapid remodeler depletion, we investigated the interplay between these enzymes and their impact on transcription in yeast. We show that many promoters are affected by multiple CRs that operate in concert or in opposition to position the key transcription start site (TSS)-associated +1 nucleosome. We also show that nucleosome movement after CR inactivation usually results from the activity of another CR and that in the absence of any remodeling activity, +1 nucleosomes largely maintain their positions. Finally, we present functional assays suggesting that +1 nucleosome positioning often reflects a trade-off between maximizing RNA polymerase recruitment and minimizing transcription initiation at incorrect sites. Our results provide a detailed picture of fundamental mechanisms linking promoter nucleosome architecture to transcription initiation.
Collapse
Affiliation(s)
- Slawomir Kubik
- Department of Molecular Biology and Institute of Genetics and Genomics of Geneva (iGE3), Geneva, Switzerland
| | - Maria Jessica Bruzzone
- Department of Molecular Biology and Institute of Genetics and Genomics of Geneva (iGE3), Geneva, Switzerland
| | - Drice Challal
- Institut Jacques Monod, CNRS-Université Paris Diderot, Paris, France
| | - René Dreos
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Stefano Mattarocci
- Department of Molecular Biology and Institute of Genetics and Genomics of Geneva (iGE3), Geneva, Switzerland
| | - Philipp Bucher
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Domenico Libri
- Institut Jacques Monod, CNRS-Université Paris Diderot, Paris, France
| | - David Shore
- Department of Molecular Biology and Institute of Genetics and Genomics of Geneva (iGE3), Geneva, Switzerland.
| |
Collapse
|
275
|
Xavier MJ, Roman SD, Aitken RJ, Nixon B. Transgenerational inheritance: how impacts to the epigenetic and genetic information of parents affect offspring health. Hum Reprod Update 2019; 25:518-540. [DOI: 10.1093/humupd/dmz017] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 03/19/2019] [Accepted: 04/04/2019] [Indexed: 12/18/2022] Open
Abstract
Abstract
BACKGROUND
A defining feature of sexual reproduction is the transmission of genomic information from both parents to the offspring. There is now compelling evidence that the inheritance of such genetic information is accompanied by additional epigenetic marks, or stable heritable information that is not accounted for by variations in DNA sequence. The reversible nature of epigenetic marks coupled with multiple rounds of epigenetic reprogramming that erase the majority of existing patterns have made the investigation of this phenomenon challenging. However, continual advances in molecular methods are allowing closer examination of the dynamic alterations to histone composition and DNA methylation patterns that accompany development and, in particular, how these modifications can occur in an individual’s germline and be transmitted to the following generation. While the underlying mechanisms that permit this form of transgenerational inheritance remain unclear, it is increasingly apparent that a combination of genetic and epigenetic modifications plays major roles in determining the phenotypes of individuals and their offspring.
OBJECTIVE AND RATIONALE
Information pertaining to transgenerational inheritance was systematically reviewed focusing primarily on mammalian cells to the exclusion of inheritance in plants, due to inherent differences in the means by which information is transmitted between generations. The effects of environmental factors and biological processes on both epigenetic and genetic information were reviewed to determine their contribution to modulating inheritable phenotypes.
SEARCH METHODS
Articles indexed in PubMed were searched using keywords related to transgenerational inheritance, epigenetic modifications, paternal and maternal inheritable traits and environmental and biological factors influencing transgenerational modifications. We sought to clarify the role of epigenetic reprogramming events during the life cycle of mammals and provide a comprehensive review of how the genomic and epigenomic make-up of progenitors may determine the phenotype of its descendants.
OUTCOMES
We found strong evidence supporting the role of DNA methylation patterns, histone modifications and even non-protein-coding RNA in altering the epigenetic composition of individuals and producing stable epigenetic effects that were transmitted from parents to offspring, in both humans and rodent species. Multiple genomic domains and several histone modification sites were found to resist demethylation and endure genome-wide reprogramming events. Epigenetic modifications integrated into the genome of individuals were shown to modulate gene expression and activity at enhancer and promoter domains, while genetic mutations were shown to alter sequence availability for methylation and histone binding. Fundamentally, alterations to the nuclear composition of the germline in response to environmental factors, ageing, diet and toxicant exposure have the potential to become hereditably transmitted.
WIDER IMPLICATIONS
The environment influences the health and well-being of progeny by working through the germline to introduce spontaneous genetic mutations as well as a variety of epigenetic changes, including alterations in DNA methylation status and the post-translational modification of histones. In evolutionary terms, these changes create the phenotypic diversity that fuels the fires of natural selection. However, rather than being adaptive, such variation may also generate a plethora of pathological disease states ranging from dominant genetic disorders to neurological conditions, including spontaneous schizophrenia and autism.
Collapse
Affiliation(s)
- Miguel João Xavier
- Reproductive Science Group, Faculty of Science, The University of Newcastle, Callaghan, NSW 2308, Australia
- Priority Research Centre for Reproductive Science, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Shaun D Roman
- Reproductive Science Group, Faculty of Science, The University of Newcastle, Callaghan, NSW 2308, Australia
- Priority Research Centre for Reproductive Science, The University of Newcastle, Callaghan, NSW 2308, Australia
- Priority Research Centre for Chemical Biology and Clinical Pharmacology, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - R John Aitken
- Reproductive Science Group, Faculty of Science, The University of Newcastle, Callaghan, NSW 2308, Australia
- Priority Research Centre for Reproductive Science, The University of Newcastle, Callaghan, NSW 2308, Australia
- Faculty of Health and Medicine, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Brett Nixon
- Reproductive Science Group, Faculty of Science, The University of Newcastle, Callaghan, NSW 2308, Australia
- Priority Research Centre for Reproductive Science, The University of Newcastle, Callaghan, NSW 2308, Australia
| |
Collapse
|
276
|
Jia Y, Chng WJ, Zhou J. Super-enhancers: critical roles and therapeutic targets in hematologic malignancies. J Hematol Oncol 2019; 12:77. [PMID: 31311566 PMCID: PMC6636097 DOI: 10.1186/s13045-019-0757-y] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 06/14/2019] [Indexed: 12/11/2022] Open
Abstract
Super-enhancers (SEs) in a broad range of human cell types are large clusters of enhancers with aberrant high levels of transcription factor binding, which are central to drive expression of genes in controlling cell identity and stimulating oncogenic transcription. Cancer cells acquire super-enhancers at oncogene and cancerous phenotype relies on these abnormal transcription propelled by SEs. Furthermore, specific inhibitors targeting SEs assembly and activation have offered potential targets for treating various tumors including hematological malignancies. Here, we first review the identification, functional significance of SEs. Next, we summarize recent findings of SEs and SE-driven gene regulation in normal hematopoiesis and hematologic malignancies. The importance and various modes of SE-mediated MYC oncogene amplification are illustrated. Finally, we highlight the progress of SEs as selective therapeutic targets in basic research and clinical trials. Some open questions regarding functional significance and future directions of targeting SEs in the clinic will be discussed too.
Collapse
Affiliation(s)
- Yunlu Jia
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Centre for Translational Medicine, Singapore, 117599 Republic of Singapore
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016 Zhejiang China
| | - Wee-Joo Chng
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Centre for Translational Medicine, Singapore, 117599 Republic of Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597 Republic of Singapore
- Department of Hematology-Oncology, National University Cancer Institute of Singapore (NCIS), The National University Health System (NUHS), 1E, Kent Ridge Road, Singapore, 119228 Republic of Singapore
| | - Jianbiao Zhou
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Centre for Translational Medicine, Singapore, 117599 Republic of Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597 Republic of Singapore
| |
Collapse
|
277
|
Mayanagi K, Saikusa K, Miyazaki N, Akashi S, Iwasaki K, Nishimura Y, Morikawa K, Tsunaka Y. Structural visualization of key steps in nucleosome reorganization by human FACT. Sci Rep 2019; 9:10183. [PMID: 31308435 PMCID: PMC6629675 DOI: 10.1038/s41598-019-46617-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 07/02/2019] [Indexed: 12/30/2022] Open
Abstract
Facilitates chromatin transcription (FACT) is a histone chaperone, which accomplishes both nucleosome assembly and disassembly. Our combined cryo-electron microscopy (EM) and native mass spectrometry (MS) studies revealed novel key steps of nucleosome reorganization conducted by a Mid domain and its adjacent acidic AID segment of human FACT. We determined three cryo-EM structures of respective octasomes complexed with the Mid-AID and AID regions, and a hexasome alone. We discovered extensive contacts between a FACT region and histones H2A, H2B, and H3, suggesting that FACT is competent to direct functional replacement of a nucleosomal DNA end by its phosphorylated AID segment (pAID). Mutational assays revealed that the aromatic and phosphorylated residues within pAID are essential for octasome binding. The EM structure of the hexasome, generated by the addition of Mid-pAID or pAID, indicated that the dissociation of H2A-H2B dimer causes significant alteration from the canonical path of the nucleosomal DNA.
Collapse
Affiliation(s)
- Kouta Mayanagi
- Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka-shi, Fukuoka, 812-8582, Japan.
| | - Kazumi Saikusa
- Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
- National Metrology Institute of Japan (NMIJ), National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki, 305-8563, Japan
| | - Naoyuki Miyazaki
- Laboratory of Protein Synthesis and Expression, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Satoko Akashi
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Kenji Iwasaki
- Laboratory of Protein Synthesis and Expression, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Life Science Center for Survival Dynamics Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Yoshifumi Nishimura
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Kosuke Morikawa
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University, Yoshida-konoemachi, Sakyo-ku, Kyoto, 606-8501, Japan.
| | - Yasuo Tsunaka
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan.
| |
Collapse
|
278
|
Oldfield AJ, Henriques T, Kumar D, Burkholder AB, Cinghu S, Paulet D, Bennett BD, Yang P, Scruggs BS, Lavender CA, Rivals E, Adelman K, Jothi R. NF-Y controls fidelity of transcription initiation at gene promoters through maintenance of the nucleosome-depleted region. Nat Commun 2019; 10:3072. [PMID: 31296853 PMCID: PMC6624317 DOI: 10.1038/s41467-019-10905-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 05/27/2019] [Indexed: 12/22/2022] Open
Abstract
Faithful transcription initiation is critical for accurate gene expression, yet the mechanisms underlying specific transcription start site (TSS) selection in mammals remain unclear. Here, we show that the histone-fold domain protein NF-Y, a ubiquitously expressed transcription factor, controls the fidelity of transcription initiation at gene promoters in mouse embryonic stem cells. We report that NF-Y maintains the region upstream of TSSs in a nucleosome-depleted state while simultaneously protecting this accessible region against aberrant and/or ectopic transcription initiation. We find that loss of NF-Y binding in mammalian cells disrupts the promoter chromatin landscape, leading to nucleosomal encroachment over the canonical TSS. Importantly, this chromatin rearrangement is accompanied by upstream relocation of the transcription pre-initiation complex and ectopic transcription initiation. Further, this phenomenon generates aberrant extended transcripts that undergo translation, disrupting gene expression profiles. These results suggest NF-Y is a central player in TSS selection in metazoans and highlight the deleterious consequences of inaccurate transcription initiation. The mechanisms underlying specific TSS selection in mammals remain unclear. Here the authors show that the ubiquitously expressed transcription factor NF-Y regulate fidelity of transcription initiation at gene promoters, maintaining the region upstream of TSSs in a nucleosome-depleted state, while protecting this region from ectopic transcription initiation.
Collapse
Affiliation(s)
- Andrew J Oldfield
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, NC, 27709, USA. .,Institute of Human Genetics, CNRS, University of Montpellier, Montpellier, 34396, France.
| | - Telmo Henriques
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, NC, 27709, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Dhirendra Kumar
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, NC, 27709, USA
| | - Adam B Burkholder
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, NC, 27709, USA
| | - Senthilkumar Cinghu
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, NC, 27709, USA
| | - Damien Paulet
- Department of Computer Science, LIRMM, CNRS et Université de Montpellier, Montpellier, 34095, France.,Institut de Biologie Computationnelle (IBC), Université de Montpellier, Montpellier, 34095, France
| | - Brian D Bennett
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, NC, 27709, USA
| | - Pengyi Yang
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, NC, 27709, USA.,Charles Perkins Centre and School of Mathematics and Statistics, University of Sydney, Sydney, NSW 2006, Australia
| | - Benjamin S Scruggs
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, NC, 27709, USA
| | - Christopher A Lavender
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, NC, 27709, USA
| | - Eric Rivals
- Department of Computer Science, LIRMM, CNRS et Université de Montpellier, Montpellier, 34095, France.,Institut de Biologie Computationnelle (IBC), Université de Montpellier, Montpellier, 34095, France
| | - Karen Adelman
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, NC, 27709, USA. .,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA.
| | - Raja Jothi
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, NC, 27709, USA.
| |
Collapse
|
279
|
Chen J, Li E, Lai J. The coupled effect of nucleosome organization on gene transcription level and transcriptional plasticity. Nucleus 2019; 8:605-612. [PMID: 29202635 DOI: 10.1080/19491034.2017.1402152] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Nucleosomes are the fundamental units of eukaryotic chromatin and can modulate the DNA accessibility for transcriptional regulatory elements. Many studies have demonstrated the effect of nucleosome organization on gene transcription level and transcriptional plasticity upon different conditions. Our recent study showed that nucleosome organization also plays an important role in modulating the plasticity of gene transcriptional status in maize. Here, we integrated our findings with previous studies on the role of nucleosome organization in regulation of gene transcription. We highlighted our recent finding that nucleosome organization plays an important role in determining the plasticity of gene transcription, beyond its role in regulating gene transcription level, particularly for intrinsically DNA-encoded nucleosome organization. We also discussed the features of sequence and structure of genes involved in affecting nucleosome organization around genes, as well as the potential mechanisms for overcoming the coupled effect of nucleosome organization on gene transcription level and transcriptional plasticity.
Collapse
Affiliation(s)
- Jian Chen
- a State Key Laboratory of Agrobiotechnology and National Maize Improvement Center , Department of Plant Genetics and Breeding , China Agricultural University , Beijing , P. R. China
| | - En Li
- a State Key Laboratory of Agrobiotechnology and National Maize Improvement Center , Department of Plant Genetics and Breeding , China Agricultural University , Beijing , P. R. China
| | - Jinsheng Lai
- a State Key Laboratory of Agrobiotechnology and National Maize Improvement Center , Department of Plant Genetics and Breeding , China Agricultural University , Beijing , P. R. China
| |
Collapse
|
280
|
Li Y, Ai S, Yu X, Li C, Li X, Yue Y, Wei Y, Li CY, He A. Replication-Independent Histone Turnover Underlines the Epigenetic Homeostasis in Adult Heart. Circ Res 2019; 125:198-208. [PMID: 31104571 DOI: 10.1161/circresaha.118.314366] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
RATIONALE Replication-independent histone turnover has been linked to cis-regulatory chromatin domains in cultured cell lines, but its molecular underpinnings and functional relevance in adult mammalian tissues remain yet to be defined. OBJECTIVE We investigated regulatory functions of replication-independent histone turnover in chromatin states of postmitotic cardiomyocytes from adult mouse heart. METHODS AND RESULTS We used H2B-GFP (histone 2B-green fluorescent protein) fusion protein pulse-and-chase approaches to measure histone turnover rate in mouse cardiomyocytes. Surprisingly, we found that the short histone half-life (≈2 weeks) contrasted dramatically with the long lifetime of cardiomyocytes, and rapid histone turnover regions corresponded to cis-regulatory domains of heart genes. Interestingly, recruitment of chromatin modifiers, including Polycomb EED (embryonic ectoderm development), was positively correlated with histone turnover rate at enhancers. Mechanistically, through directly interacting with and engaging the BAF (BRG1 [Brahma-related gene-1]-associated factor) complex for nucleosome exchange for stereotyped histone modifications from the free histone pool, EED augmented histone turnover to restrain enhancer overactivation. CONCLUSIONS We propose a model in which replication-independent histone turnover reinforces robustness of local chromatin states for adult tissue homeostasis.
Collapse
Affiliation(s)
- Yumei Li
- From the Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, China (Y.L., S.A., C.L., X.L., Y.Y., C.-Y.L., A.H.)
| | - Shanshan Ai
- From the Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, China (Y.L., S.A., C.L., X.L., Y.Y., C.-Y.L., A.H.)
| | - Xianhong Yu
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China (X.Y., A.H.)
| | - Chen Li
- From the Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, China (Y.L., S.A., C.L., X.L., Y.Y., C.-Y.L., A.H.)
| | - Xin Li
- From the Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, China (Y.L., S.A., C.L., X.L., Y.Y., C.-Y.L., A.H.)
| | - Yanzhu Yue
- From the Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, China (Y.L., S.A., C.L., X.L., Y.Y., C.-Y.L., A.H.)
| | - Yusheng Wei
- College of Life Science, Peking University, Beijing, China (Y.W.)
| | - Chuan-Yun Li
- From the Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, China (Y.L., S.A., C.L., X.L., Y.Y., C.-Y.L., A.H.)
| | - Aibin He
- From the Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, China (Y.L., S.A., C.L., X.L., Y.Y., C.-Y.L., A.H.).,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China (X.Y., A.H.)
| |
Collapse
|
281
|
Torres ES, Deal RB. The histone variant H2A.Z and chromatin remodeler BRAHMA act coordinately and antagonistically to regulate transcription and nucleosome dynamics in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 99:144-162. [PMID: 30742338 PMCID: PMC7259472 DOI: 10.1111/tpj.14281] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 11/28/2018] [Accepted: 12/18/2018] [Indexed: 05/17/2023]
Abstract
Plants adapt to environmental changes by regulating transcription and chromatin organization. The histone H2A variant H2A.Z and the SWI2/SNF2 ATPase BRAHMA (BRM) have overlapping roles in positively and negatively regulating environmentally responsive genes in Arabidopsis, but the extent of this overlap was uncharacterized. Both factors have been associated with various changes in nucleosome positioning and stability in different contexts, but their specific roles in transcriptional regulation and chromatin organization need further characterization. We show that H2A.Z and BRM co-localize at thousands of sites, where they interact both cooperatively and antagonistically in transcriptional repression and activation of genes involved in development and responses to environmental stimuli. We identified eight classes of genes that show distinct relationships between H2A.Z and BRM with respect to their roles in transcription. These include activating and silencing transcription both redundantly and antagonistically. We found that H2A.Z contributes to a range of different nucleosome properties, while BRM stabilizes nucleosomes where it binds and destabilizes or repositions flanking nucleosomes. We also found that, at many genes regulated by both BRM and H2A.Z, both factors overlap with binding sites of the light-regulated transcription factor FAR1-Related Sequence 9 (FRS9) and that a subset of these FRS9 binding sites are dependent on H2A.Z and BRM for accessibility. Collectively, we comprehensively characterized the antagonistic and cooperative contributions of H2A.Z and BRM to transcriptional regulation, and illuminated several interrelated roles in chromatin organization. The variability observed in their individual functions implies that both BRM and H2A.Z have more context-dependent roles than previously assumed.
Collapse
Affiliation(s)
- E. Shannon Torres
- Department of Biology, Emory University, Atlanta, GA 30322
- Graduate Program in Genetics and Molecular Biology of the Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA 30322
| | - Roger B. Deal
- Department of Biology, Emory University, Atlanta, GA 30322
| |
Collapse
|
282
|
Singh R, Bassett E, Chakravarti A, Parthun MR. Replication-dependent histone isoforms: a new source of complexity in chromatin structure and function. Nucleic Acids Res 2019; 46:8665-8678. [PMID: 30165676 PMCID: PMC6158624 DOI: 10.1093/nar/gky768] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 08/24/2018] [Indexed: 12/11/2022] Open
Abstract
Replication-dependent histones are expressed in a cell cycle regulated manner and supply the histones necessary to support DNA replication. In mammals, the replication-dependent histones are encoded by a family of genes that are located in several clusters. In humans, these include 16 genes for histone H2A, 22 genes for histone H2B, 14 genes for histone H3, 14 genes for histone H4 and 6 genes for histone H1. While the proteins encoded by these genes are highly similar, they are not identical. For many years, these genes were thought to encode functionally equivalent histone proteins. However, several lines of evidence have emerged that suggest that the replication-dependent histone genes can have specific functions and may constitute a novel layer of chromatin regulation. This Survey and Summary reviews the literature on replication-dependent histone isoforms and discusses potential mechanisms by which the small variations in primary sequence between the isoforms can alter chromatin function. In addition, we summarize the wealth of data implicating altered regulation of histone isoform expression in cancer.
Collapse
Affiliation(s)
- Rajbir Singh
- Department of Radiation Oncology, The Ohio State University, Columbus, OH 43210, USA
| | - Emily Bassett
- Department of Radiation Oncology, The Ohio State University, Columbus, OH 43210, USA
| | - Arnab Chakravarti
- Department of Radiation Oncology, The Ohio State University, Columbus, OH 43210, USA
| | - Mark R Parthun
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
283
|
Wang Y, Wang A, Liu Z, Thurman AL, Powers LS, Zou M, Zhao Y, Hefel A, Li Y, Zabner J, Au KF. Single-molecule long-read sequencing reveals the chromatin basis of gene expression. Genome Res 2019; 29:1329-1342. [PMID: 31201211 PMCID: PMC6673713 DOI: 10.1101/gr.251116.119] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 06/10/2019] [Indexed: 11/25/2022]
Abstract
Genome-wide chromatin accessibility and nucleosome occupancy profiles have been widely investigated, while the long-range dynamics remain poorly studied at the single-cell level. Here, we present a new experimental approach, methyltransferase treatment followed by single-molecule long-read sequencing (MeSMLR-seq), for long-range mapping of nucleosomes and chromatin accessibility at single DNA molecules and thus achieve comprehensive-coverage characterization of the corresponding heterogeneity. MeSMLR-seq offers direct measurements of both nucleosome-occupied and nucleosome-evicted regions on a single DNA molecule, which is challenging for many existing methods. We applied MeSMLR-seq to haploid yeast, where single DNA molecules represent single cells, and thus we could investigate the combinatorics of many (up to 356) nucleosomes at long range in single cells. We illustrated the differential organization principles of nucleosomes surrounding the transcription start site for silent and actively transcribed genes, at the single-cell level and in the long-range scale. The heterogeneous patterns of chromatin status spanning multiple genes were phased. Together with single-cell RNA-seq data, we quantitatively revealed how chromatin accessibility correlated with gene transcription positively in a highly heterogeneous scenario. Moreover, we quantified the openness of promoters and investigated the coupled chromatin changes of adjacent genes at single DNA molecules during transcription reprogramming. In addition, we revealed the coupled changes of chromatin accessibility for two neighboring glucose transporter genes in response to changes in glucose concentration.
Collapse
Affiliation(s)
- Yunhao Wang
- Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio 43210, USA.,Department of Internal Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | - Anqi Wang
- Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio 43210, USA.,Department of Internal Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | - Zujun Liu
- Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio 43210, USA.,Department of Internal Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | - Andrew L Thurman
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | - Linda S Powers
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | - Meng Zou
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | - Yue Zhao
- Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio 43210, USA.,Department of Internal Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | - Adam Hefel
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | - Yunyi Li
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | - Joseph Zabner
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | - Kin Fai Au
- Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio 43210, USA.,Department of Internal Medicine, University of Iowa, Iowa City, Iowa 52242, USA.,Department of Biostatistics, University of Iowa, Iowa City, Iowa 52242, USA
| |
Collapse
|
284
|
Fursova NA, Blackledge NP, Nakayama M, Ito S, Koseki Y, Farcas AM, King HW, Koseki H, Klose RJ. Synergy between Variant PRC1 Complexes Defines Polycomb-Mediated Gene Repression. Mol Cell 2019; 74:1020-1036.e8. [PMID: 31029541 PMCID: PMC6561741 DOI: 10.1016/j.molcel.2019.03.024] [Citation(s) in RCA: 184] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 02/04/2019] [Accepted: 03/21/2019] [Indexed: 01/30/2023]
Abstract
The Polycomb system modifies chromatin and plays an essential role in repressing gene expression to control normal mammalian development. However, the components and mechanisms that define how Polycomb protein complexes achieve this remain enigmatic. Here, we use combinatorial genetic perturbation coupled with quantitative genomics to discover the central determinants of Polycomb-mediated gene repression in mouse embryonic stem cells. We demonstrate that canonical Polycomb repressive complex 1 (PRC1), which mediates higher-order chromatin structures, contributes little to gene repression. Instead, we uncover an unexpectedly high degree of synergy between variant PRC1 complexes, which is fundamental to gene repression. We further demonstrate that variant PRC1 complexes are responsible for distinct pools of H2A monoubiquitylation that are associated with repression of Polycomb target genes and silencing during X chromosome inactivation. Together, these discoveries reveal a new variant PRC1-dependent logic for Polycomb-mediated gene repression.
Collapse
Affiliation(s)
- Nadezda A Fursova
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Neil P Blackledge
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Manabu Nakayama
- Laboratory of Medical Omics Research, Department of Frontier Research and Development, Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba 292-0818, Japan
| | - Shinsuke Ito
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Yoko Koseki
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Anca M Farcas
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Hamish W King
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Haruhiko Koseki
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan; AMED-CREST, Japanese Agency for Medical Research and Development, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Robert J Klose
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| |
Collapse
|
285
|
Challal D, Barucco M, Kubik S, Feuerbach F, Candelli T, Geoffroy H, Benaksas C, Shore D, Libri D. General Regulatory Factors Control the Fidelity of Transcription by Restricting Non-coding and Ectopic Initiation. Mol Cell 2019; 72:955-969.e7. [PMID: 30576657 DOI: 10.1016/j.molcel.2018.11.037] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 10/29/2018] [Accepted: 11/29/2018] [Indexed: 10/27/2022]
Abstract
The fidelity of transcription initiation is essential for accurate gene expression, but the determinants of start site selection are not fully understood. Rap1 and other general regulatory factors (GRFs) control the expression of many genes in yeast. We show that depletion of these factors induces widespread ectopic transcription initiation within promoters. This generates many novel non-coding RNAs and transcript isoforms with diverse stability, drastically altering the coding potential of the transcriptome. Ectopic transcription initiation strongly correlates with altered nucleosome positioning. We provide evidence that Rap1 can suppress ectopic initiation by a "place-holder" mechanism whereby it physically occludes inappropriate sites for pre-initiation complex formation. These results reveal an essential role for GRFs in the fidelity of transcription initiation and in the suppression of pervasive transcription, profoundly redefining current models for their function. They have important implications for the mechanism of transcription initiation and the control of gene expression.
Collapse
Affiliation(s)
- Drice Challal
- Institut Jacques Monod, Centre National de la Recherche Scientifique, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, 75205 Paris, France; Université Paris Saclay, Ecole doctorale Structure et Dynamique des Systèmes Vivants, 91190 Gif sur Yvette, France
| | - Mara Barucco
- Institut Jacques Monod, Centre National de la Recherche Scientifique, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, 75205 Paris, France
| | - Slawomir Kubik
- Department of Molecular Biology and Institute of Genetics and Genomics of Geneva (iGe3), 30 quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
| | - Frank Feuerbach
- Institut Pasteur, Centre National de la Recherche Scientifique, UMR3525 Paris, France
| | - Tito Candelli
- Princess Máxima Center for Pediatric Oncology, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Hélène Geoffroy
- Institut Jacques Monod, Centre National de la Recherche Scientifique, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, 75205 Paris, France
| | - Chaima Benaksas
- Institut Jacques Monod, Centre National de la Recherche Scientifique, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, 75205 Paris, France
| | - David Shore
- Department of Molecular Biology and Institute of Genetics and Genomics of Geneva (iGe3), 30 quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
| | - Domenico Libri
- Institut Jacques Monod, Centre National de la Recherche Scientifique, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, 75205 Paris, France.
| |
Collapse
|
286
|
Goodman JV, Bonni A. Regulation of neuronal connectivity in the mammalian brain by chromatin remodeling. Curr Opin Neurobiol 2019; 59:59-68. [PMID: 31146125 DOI: 10.1016/j.conb.2019.04.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 04/22/2019] [Indexed: 10/26/2022]
Abstract
Precise temporal and spatial control of gene expression is essential for brain development. Besides DNA sequence-specific transcription factors, epigenetic factors play an integral role in the control of gene expression in neurons. Among epigenetic mechanisms, chromatin remodeling enzymes have emerged as essential to the control of neural circuit assembly and function in the brain. Here, we review recent studies on the roles and mechanisms of the chromodomain-helicase-DNA-binding (Chd) family of chromatin remodeling enzymes in the regulation of neuronal morphogenesis and connectivity in the mammalian brain. We explore the field through the lens of Chd3, Chd4, and Chd5 proteins, which incorporate into the nucleosome remodeling and deacetylase (NuRD) complex, and the related proteins Chd7 and Chd8, implicated in the pathogenesis of intellectual disability and autism spectrum disorders. These studies have advanced our understanding of the mechanisms that regulate neuronal connectivity in brain development and neurodevelopmental disorders of cognition.
Collapse
Affiliation(s)
- Jared V Goodman
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA; Medical Scientist Training Program, Washington University School of Medicine, St. Louis, MO, USA
| | - Azad Bonni
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
287
|
Bracken AP, Brien GL, Verrijzer CP. Dangerous liaisons: interplay between SWI/SNF, NuRD, and Polycomb in chromatin regulation and cancer. Genes Dev 2019; 33:936-959. [PMID: 31123059 PMCID: PMC6672049 DOI: 10.1101/gad.326066.119] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In this review, Bracken et al. discuss the functional organization and biochemical activities of remodelers and Polycomb and explore how they work together to control cell differentiation and the maintenance of cell identity. They also discuss how mutations in the genes encoding these various chromatin regulators contribute to oncogenesis by disrupting the chromatin equilibrium. Changes in chromatin structure mediated by ATP-dependent nucleosome remodelers and histone modifying enzymes are integral to the process of gene regulation. Here, we review the roles of the SWI/SNF (switch/sucrose nonfermenting) and NuRD (nucleosome remodeling and deacetylase) and the Polycomb system in chromatin regulation and cancer. First, we discuss the basic molecular mechanism of nucleosome remodeling, and how this controls gene transcription. Next, we provide an overview of the functional organization and biochemical activities of SWI/SNF, NuRD, and Polycomb complexes. We describe how, in metazoans, the balance of these activities is central to the proper regulation of gene expression and cellular identity during development. Whereas SWI/SNF counteracts Polycomb, NuRD facilitates Polycomb repression on chromatin. Finally, we discuss how disruptions of this regulatory equilibrium contribute to oncogenesis, and how new insights into the biological functions of remodelers and Polycombs are opening avenues for therapeutic interventions on a broad range of cancer types.
Collapse
Affiliation(s)
- Adrian P Bracken
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Gerard L Brien
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - C Peter Verrijzer
- Department of Biochemistry, Erasmus University Medical Center, 3000 DR Rotterdam, the Netherlands
| |
Collapse
|
288
|
Beh LY, Debelouchina GT, Clay DM, Thompson RE, Lindblad KA, Hutton ER, Bracht JR, Sebra RP, Muir TW, Landweber LF. Identification of a DNA N6-Adenine Methyltransferase Complex and Its Impact on Chromatin Organization. Cell 2019; 177:1781-1796.e25. [PMID: 31104845 DOI: 10.1016/j.cell.2019.04.028] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/31/2019] [Accepted: 04/12/2019] [Indexed: 11/27/2022]
Abstract
DNA N6-adenine methylation (6mA) has recently been described in diverse eukaryotes, spanning unicellular organisms to metazoa. Here, we report a DNA 6mA methyltransferase complex in ciliates, termed MTA1c. It consists of two MT-A70 proteins and two homeobox-like DNA-binding proteins and specifically methylates dsDNA. Disruption of the catalytic subunit, MTA1, in the ciliate Oxytricha leads to genome-wide loss of 6mA and abolishment of the consensus ApT dimethylated motif. Mutants fail to complete the sexual cycle, which normally coincides with peak MTA1 expression. We investigate the impact of 6mA on nucleosome occupancy in vitro by reconstructing complete, full-length Oxytricha chromosomes harboring 6mA in native or ectopic positions. We show that 6mA directly disfavors nucleosomes in vitro in a local, quantitative manner, independent of DNA sequence. Furthermore, the chromatin remodeler ACF can overcome this effect. Our study identifies a diverged DNA N6-adenine methyltransferase and defines the role of 6mA in chromatin organization.
Collapse
Affiliation(s)
- Leslie Y Beh
- Departments of Biochemistry & Molecular Biophysics and Biological Sciences, Columbia University, New York, NY 10032, USA; Department of Chemistry, Princeton University, Princeton, NJ 08544, USA; Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | | | - Derek M Clay
- Departments of Biochemistry & Molecular Biophysics and Biological Sciences, Columbia University, New York, NY 10032, USA
| | - Robert E Thompson
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Kelsi A Lindblad
- Departments of Biochemistry & Molecular Biophysics and Biological Sciences, Columbia University, New York, NY 10032, USA
| | - Elizabeth R Hutton
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | - John R Bracht
- Department of Biology, American University, Washington, DC 20016, USA
| | - Robert P Sebra
- Icahn Institute and Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Tom W Muir
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA.
| | - Laura F Landweber
- Departments of Biochemistry & Molecular Biophysics and Biological Sciences, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
289
|
Chen Y, Jiang B, Hu Y, Deng N, Zhao B, Li X, Liang Z, Zhang L, Zhang Y. Aptamer functionalized magnetic graphene oxide nanocomposites for highly selective capture of histones. Electrophoresis 2019; 40:2135-2141. [PMID: 30977149 DOI: 10.1002/elps.201900061] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 03/10/2019] [Accepted: 03/14/2019] [Indexed: 11/11/2022]
Abstract
The binding coverage of aptamer was an important restricted factor for aptamer-based affinity enrichment strategy for capturing target molecules. Herein, we designed and prepared aptamer functionalized graphene oxide based nanocomposites (GO/NH2 -NTA/Fe3 O4 /PEI/Au), and the coverage density of aptamer was high to 33.1 nmol/mg. The high aptamer coverage density was contributed to the large surface area of graphene oxide. The successive modification of Nα,Nα-Bis(carboxymethyl)-L-lysine, magnetic nanoparticles, polyethylenimine, and Au nanoparticles ensured the histone purification with fast speed and high purity. Histones could be captured rapidly and specifically from nucleoproteins by our aptamer based purification strategy, while traditional acid-extraction could not specifically enrich histones. Compared with traditional acid-extraction method, rapid and efficient discovery of histones and their post-translational modifications, such as several kinds of methylation at H3.1K9 and H3.1K27, were achieved confidently. It demonstrated that our aptamer functionalized magnetic graphene oxide nanocomposites have a great potential for histone analysis.
Collapse
Affiliation(s)
- Yuanbo Chen
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, P. R. China.,University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Bo Jiang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, P. R. China
| | - Yechen Hu
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, P. R. China.,University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Nan Deng
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, P. R. China.,Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, P. R. China
| | - Baofeng Zhao
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, P. R. China
| | - Xiao Li
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, P. R. China
| | - Zhen Liang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, P. R. China
| | - Lihua Zhang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, P. R. China
| | - Yukui Zhang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, P. R. China
| |
Collapse
|
290
|
Rezapour S, Hosseinzadeh E, Marofi F, Hassanzadeh A. Epigenetic-based therapy for colorectal cancer: Prospect and involved mechanisms. J Cell Physiol 2019; 234:19366-19383. [PMID: 31020647 DOI: 10.1002/jcp.28658] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 03/21/2019] [Accepted: 03/25/2019] [Indexed: 12/15/2022]
Abstract
Epigenetic modifications are heritable variations in gene expression not encoded by the DNA sequence. According to reports, a large number of studies have been performed to characterize epigenetic modification during normal development and also in cancer. Epigenetics can be regarded more widely to contain all of the changes in expression of genes that make by adjusted interactions between the regulatory portions of DNA or messenger RNAs that lead to indirect variation in the DNA sequence. In the last decade, epigenetic modification importance in colorectal cancer (CRC) pathogenesis was demonstrated powerfully. Although developments in CRC therapy have been made in the last years, much work is required as it remains the second leading cause of cancer death. Nowadays, epigenetic programs and genetic change have pivotal roles in the CRC incidence as well as progression. While our knowledge about epigenetic mechanism in CRC is not comprehensive, selective histone modifications and resultant chromatin conformation together with DNA methylation most likely regulate CRC pathogenesis that involved genes expression. Undoubtedly, the advanced understanding of epigenetic-based gene expression regulation in the CRC is essential to make epigenetic drugs for CRC therapy. The major aim of this review is to deliver a summary of valuable results that represent evidence of principle for epigenetic-based therapeutic approaches employment in CRC with a focus on the advantages of epigenetic-based therapy in the inhibition of the CRC metastasis and proliferation.
Collapse
Affiliation(s)
- Saleheh Rezapour
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Hosseinzadeh
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Faroogh Marofi
- Division of Hematology, Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Hassanzadeh
- Division of Hematology, Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
291
|
Biochemical characterization of the placeholder nucleosome for DNA hypomethylation maintenance. Biochem Biophys Rep 2019; 18:100634. [PMID: 31008378 PMCID: PMC6458450 DOI: 10.1016/j.bbrep.2019.100634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 04/02/2019] [Accepted: 04/02/2019] [Indexed: 12/23/2022] Open
Abstract
DNA methylation functions as a prominent epigenetic mark, and its patterns are transmitted to the genomes of offspring. The nucleosome containing the histone H2A.Z variant and histone H3K4 mono-methylation acts as a “placeholder” nucleosome for DNA hypomethylation maintenance in zebrafish embryonic cells. However, the mechanism by which DNA methylation is deterred by the placeholder nucleosome is poorly understood. In the present study, we reconstituted the placeholder nucleosome containing histones H2A.Z and H3 with the Lys4 mono-methylation. The thermal stability assay revealed that the placeholder nucleosome is less stable than the canonical nucleosome. Nuclease susceptibility assays suggested that the nucleosomal DNA ends of the placeholder nucleosome are more accessible than those of the canonical nucleosome. These characteristics of the placeholder nucleosome are quite similar to those of the H2A.Z nucleosome without H3K4 methylation. Importantly, the linker histone H1, which is reportedly involved in the recruitment of DNA methyltransferases, efficiently binds to all of the placeholder, H2A.Z, and canonical nucleosomes. Therefore, the characteristics of the H2A.Z nucleosome are conserved in the placeholder nucleosome without synergistic effects on the H3K4 mono-methylation. The placeholder nucleosome containing H2A.Z and H3K4me1 was reconstituted in vitro. The placeholder nucleosome has similar characteristics to the H2A.Z nucleosome. H3K4me1 may not affect the stability and structure of the placeholder nucleosome.
Collapse
|
292
|
Datta S, Patel M, Patel D, Singh U. Distinct DNA Sequence Preference for Histone Occupancy in Primary and Transformed Cells. Cancer Inform 2019; 18:1176935119843835. [PMID: 31037026 PMCID: PMC6475841 DOI: 10.1177/1176935119843835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 03/24/2019] [Indexed: 11/15/2022] Open
Abstract
Genome-wide occupancy of several histone modifications in various cell types has been studied using chromatin immunoprecipitation (ChIP) sequencing. Histone occupancy depends on DNA sequence features like inter-strand symmetry of base composition and periodic occurrence of TT/AT. However, whether DNA sequence motifs act as an additional effector of histone occupancy is not known. We have analyzed the presence of DNA sequence motifs in publicly available ChIP-sequence datasets for different histone modifications. Our results show that DNA sequence motifs are associated with histone occupancy, some of which are different between primary and transformed cells. The motifs for primary and transformed cells showed different levels of GC-richness and proximity to transcription start sites (TSSs). The TSSs associated with transformed or primary cell-specific motifs showed different levels of TSS flank transcription in primary and transformed cells. Interestingly, TSSs with a motif-linked occupancy of H2AFZ, a component of positioned nucleosomes, showed a distinct pattern of RNA Polymerase II (POLR2A) occupancy and TSS flank transcription in primary and transformed cells. These results indicate that DNA sequence features dictate differential histone occupancy in primary and transformed cells, and the DNA sequence motifs affect transcription through regulation of histone occupancy.
Collapse
Affiliation(s)
| | | | - Divyesh Patel
- HoMeCell Lab, Discipline of Biological Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, India
| | - Umashankar Singh
- HoMeCell Lab, Discipline of Biological Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, India
| |
Collapse
|
293
|
Chakravorty A, Sugden B, Johannsen EC. An Epigenetic Journey: Epstein-Barr Virus Transcribes Chromatinized and Subsequently Unchromatinized Templates during Its Lytic Cycle. J Virol 2019; 93:e02247-18. [PMID: 30700606 PMCID: PMC6450099 DOI: 10.1128/jvi.02247-18] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The Epstein-Barr virus (EBV) lytic phase, like those of all herpesviruses, proceeds via an orderly cascade that integrates DNA replication and gene expression. EBV early genes are expressed independently of viral DNA amplification, and several early gene products facilitate DNA amplification. On the other hand, EBV late genes are defined by their dependence on viral DNA replication for expression. Recently, a set of orthologous genes found in beta- and gammaherpesviruses have been determined to encode a viral preinitiation complex (vPIC) that mediates late gene expression. The EBV vPIC requires an origin of lytic replication in cis, implying that the vPIC mediates transcription from newly replicated DNA. In agreement with this implication, EBV late gene mRNAs localize to replication factories. Notably, these factories exclude canonical histones. In this review, we compare and contrast the mechanisms and epigenetics of EBV early and late gene expression. We summarize recent findings, propose a model explaining the dependence of EBV late gene expression on lytic DNA amplification, and suggest some directions for future study.
Collapse
Affiliation(s)
- Adityarup Chakravorty
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Bill Sugden
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Eric C Johannsen
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
294
|
Zeisel SH. A Conceptual Framework for Studying and Investing in Precision Nutrition. Front Genet 2019; 10:200. [PMID: 30936893 PMCID: PMC6431609 DOI: 10.3389/fgene.2019.00200] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 02/25/2019] [Indexed: 12/15/2022] Open
Abstract
Nutrients and food-derived bioactive molecules must transit complex metabolic pathways, and these pathways vary between people. Metabolic heterogeneity is caused by genetic variation, epigenetic variation, differences in microbiome composition and function, lifestyle differences and by variation in environmental exposures. This review discusses a number of these sources of metabolic heterogeneity and presents some of the research investments that will be needed to make applications of precision nutrition practical.
Collapse
Affiliation(s)
- Steven H Zeisel
- Nutrition Research Institute, The University of North Carolina at Chapel Hill, Kannapolis, NC, United States
| |
Collapse
|
295
|
McCullough LL, Pham TH, Parnell TJ, Connell Z, Chandrasekharan MB, Stillman DJ, Formosa T. Establishment and Maintenance of Chromatin Architecture Are Promoted Independently of Transcription by the Histone Chaperone FACT and H3-K56 Acetylation in Saccharomyces cerevisiae. Genetics 2019; 211:877-892. [PMID: 30679261 PMCID: PMC6404263 DOI: 10.1534/genetics.118.301853] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 01/14/2019] [Indexed: 12/16/2022] Open
Abstract
FACT (FAcilitates Chromatin Transcription/Transactions) is a histone chaperone that can destabilize or assemble nucleosomes. Acetylation of histone H3-K56 weakens a histone-DNA contact that is central to FACT activity, suggesting that this modification could affect FACT functions. We tested this by asking how mutations of H3-K56 and FACT affect nucleosome reorganization activity in vitro, and chromatin integrity and transcript output in vivo Mimics of unacetylated or permanently acetylated H3-K56 had different effects on FACT activity as expected, but the same mutations had surprisingly similar effects on global transcript levels. The results are consistent with emerging models that emphasize FACT's importance in establishing global chromatin architecture prior to transcription, promoting transitions among different states as transcription profiles change, and restoring chromatin integrity after it is disturbed. Optimal FACT activity required the availability of both modified and unmodified states of H3-K56. Perturbing this balance was especially detrimental for maintaining repression of genes with high nucleosome occupancy over their promoters and for blocking antisense transcription at the +1 nucleosome. The results reveal a complex collaboration between H3-K56 modification status and multiple FACT functions, and support roles for nucleosome reorganization by FACT before, during, and after transcription.
Collapse
Affiliation(s)
- Laura L McCullough
- Department of Biochemistry, University of Utah Health Sciences Center, Salt Lake City, Utah 84112
| | - Trang H Pham
- Department of Pathology, University of Utah Health Sciences Center, Salt Lake City, Utah 84112
| | - Timothy J Parnell
- Department of Oncological Sciences, University of Utah Health Sciences Center, Salt Lake City, Utah 84112
| | - Zaily Connell
- Department of Biochemistry, University of Utah Health Sciences Center, Salt Lake City, Utah 84112
| | - Mahesh B Chandrasekharan
- Department of Radiation Oncology, University of Utah Health Sciences Center, Salt Lake City, Utah 84112
| | - David J Stillman
- Department of Pathology, University of Utah Health Sciences Center, Salt Lake City, Utah 84112
| | - Tim Formosa
- Department of Biochemistry, University of Utah Health Sciences Center, Salt Lake City, Utah 84112
| |
Collapse
|
296
|
Lam KC, Chung HR, Semplicio G, Iyer SS, Gaub A, Bhardwaj V, Holz H, Georgiev P, Akhtar A. The NSL complex-mediated nucleosome landscape is required to maintain transcription fidelity and suppression of transcription noise. Genes Dev 2019; 33:452-465. [PMID: 30819819 PMCID: PMC6446542 DOI: 10.1101/gad.321489.118] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 01/11/2019] [Indexed: 11/24/2022]
Abstract
Nucleosomal organization at gene promoters is critical for transcription, with a nucleosome-depleted region (NDR) at transcription start sites (TSSs) being required for transcription initiation. How NDRs and the precise positioning of the +1 nucleosomes are maintained on active genes remains unclear. Here, we report that the Drosophila nonspecific lethal (NSL) complex is necessary to maintain this stereotypical nucleosomal organization at promoters. Upon NSL1 depletion, nucleosomes invade the NDRs at TSSs of NSL-bound genes. NSL complex member NSL3 binds to TATA-less promoters in a sequence-dependent manner. The NSL complex interacts with the NURF chromatin remodeling complex and is necessary and sufficient to recruit NURF to target promoters. Not only is the NSL complex essential for transcription, but it is required for accurate TSS selection for genes with multiple TSSs. Furthermore, loss of the NSL complex leads to an increase in transcriptional noise. Thus, the NSL complex establishes a canonical nucleosomal organization that enables transcription and determines TSS fidelity.
Collapse
Affiliation(s)
- Kin Chung Lam
- Department of Chromatin Regulation, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Ho-Ryun Chung
- Otto-Warburg-Laboratory, Epigenomics, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany.,Institute for Medical Bioinformatics and Biostatistics, Philipps-Universität Marburg, 35037 Marburg, Germany
| | - Giuseppe Semplicio
- Department of Chromatin Regulation, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Shantanu S Iyer
- Department of Chromatin Regulation, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany.,Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, 79108 Freiburg, Germany.,Faculty of Biology, University of Freiburg, 79108 Freiburg, Germany
| | - Aline Gaub
- Department of Chromatin Regulation, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany.,Faculty of Biology, University of Freiburg, 79108 Freiburg, Germany
| | - Vivek Bhardwaj
- Department of Chromatin Regulation, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Herbert Holz
- Department of Chromatin Regulation, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Plamen Georgiev
- Department of Chromatin Regulation, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Asifa Akhtar
- Department of Chromatin Regulation, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| |
Collapse
|
297
|
Kubik S, O'Duibhir E, de Jonge WJ, Mattarocci S, Albert B, Falcone JL, Bruzzone MJ, Holstege FCP, Shore D. Sequence-Directed Action of RSC Remodeler and General Regulatory Factors Modulates +1 Nucleosome Position to Facilitate Transcription. Mol Cell 2019; 71:89-102.e5. [PMID: 29979971 DOI: 10.1016/j.molcel.2018.05.030] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 01/17/2018] [Accepted: 05/24/2018] [Indexed: 12/12/2022]
Abstract
Accessible chromatin is important for RNA polymerase II recruitment and transcription initiation at eukaryotic promoters. We investigated the mechanistic links between promoter DNA sequence, nucleosome positioning, and transcription. Our results indicate that positioning of the transcription start site-associated +1 nucleosome in yeast is critical for efficient TBP binding and is driven by two key factors, the essential chromatin remodeler RSC and a small set of ubiquitous general regulatory factors (GRFs). Our findings indicate that the strength and directionality of RSC action on promoter nucleosomes depends on the arrangement and proximity of two specific DNA motifs. This, together with the effect on nucleosome position observed in double depletion experiments, suggests that, despite their widespread co-localization, RSC and GRFs predominantly act through independent signals to generate accessible chromatin. Our results provide mechanistic insight into how the promoter DNA sequence instructs trans-acting factors to control nucleosome architecture and stimulate transcription initiation.
Collapse
Affiliation(s)
- Slawomir Kubik
- Department of Molecular Biology and Institute of Genetics and Genomics in Geneva (iGE3), 30 quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
| | - Eoghan O'Duibhir
- Molecular Cancer Research, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands
| | - Wim J de Jonge
- Molecular Cancer Research, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands; Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands
| | - Stefano Mattarocci
- Department of Molecular Biology and Institute of Genetics and Genomics in Geneva (iGE3), 30 quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
| | - Benjamin Albert
- Department of Molecular Biology and Institute of Genetics and Genomics in Geneva (iGE3), 30 quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
| | - Jean-Luc Falcone
- Center for Advanced Modeling Sciences, Computer Science Department, University of Geneva, 7 route de Drize, 1227 Carouge, Switzerland
| | - Maria Jessica Bruzzone
- Department of Molecular Biology and Institute of Genetics and Genomics in Geneva (iGE3), 30 quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
| | - Frank C P Holstege
- Molecular Cancer Research, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands; Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands
| | - David Shore
- Department of Molecular Biology and Institute of Genetics and Genomics in Geneva (iGE3), 30 quai Ernest-Ansermet, 1211 Geneva 4, Switzerland.
| |
Collapse
|
298
|
Nishimura M, Nozawa K, Kurumizaka H. Crystallographic analysis of the overlapping dinucleosome as a novel chromatin unit. Biophys Physicobiol 2019; 15:251-254. [PMID: 30713825 PMCID: PMC6353640 DOI: 10.2142/biophysico.15.0_251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 11/18/2018] [Indexed: 12/01/2022] Open
Abstract
Recent evidence has suggested that chromatin is not simply repeats of the canonical nucleosome, called the “octasome”, but may include diverse repertoires of basic structural units. During the transcription process, a nucleosome is repositioned by a chromatin remodeler and collides with a neighboring nucleosome, thus creating an unusual nucleosome substructure termed the “overlapping dinucleosome”. We previously developed a method for the large-scale preparation of the overlapping dinucleosome. This method enabled us to solve the crystal structure of the overlapping dinucleosome, which revealed an unexpected structure composed of an octameric histone core associated with a hexameric histone core lacking one H2A-H2B dimer.
Collapse
Affiliation(s)
- Masahiro Nishimura
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan.,Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Kayo Nozawa
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan.,Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Hitoshi Kurumizaka
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan.,Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 162-8480, Japan
| |
Collapse
|
299
|
Fuse T, Yanagida A, Shimizu M. The Yeast Minichromosome System Consisting of Highly Positioned Nucleosomes in Vivo. Biol Pharm Bull 2019; 42:289-294. [DOI: 10.1248/bpb.b18-00732] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Tomohiro Fuse
- Department of Chemistry, Graduate School of Science and Engineering, Program in Chemistry and Life Science, School of Science and Engineering, Meisei University
| | - Akio Yanagida
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| | - Mitsuhiro Shimizu
- Department of Chemistry, Graduate School of Science and Engineering, Program in Chemistry and Life Science, School of Science and Engineering, Meisei University
| |
Collapse
|
300
|
Kuret T, Burja B, Feichtinger J, Thallinger GG, Frank-Bertoncelj M, Lakota K, Žigon P, Sodin-Semrl S, Čučnik S, Tomšič M, Hočevar A. Gene and miRNA expression in giant cell arteritis-a concise systematic review of significantly modified studies. Clin Rheumatol 2019; 38:307-316. [PMID: 30069799 DOI: 10.1007/s10067-018-4231-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 06/06/2018] [Accepted: 07/23/2018] [Indexed: 12/14/2022]
Abstract
Giant cell arteritis (GCA) is a systemic vasculitis in individuals older than 50 years, characterized by headaches, visual disturbances, painful scalp, jaw claudication, impairment of limb arteries, and systemic inflammation, among other symptoms. GCA diagnosis is confirmed by a positive temporal artery biopsy (TAB) or by imaging modalities. A prominent acute phase response with inflammation is the hallmark of the disease, predominantly targeting large- and medium-sized arteries leading to stenosis or occlusion of arterial lumen. To date, there are no reliable tissue markers specific for GCA. Scarce reports have indicated the importance of epigenetics in GCA. The current systematic review reports significantly changed candidate biomarkers in TABs of GCA patients compared to non-GCA patients using qPCR.
Collapse
Affiliation(s)
- Tadeja Kuret
- Department of Rheumatology, University Medical Centre Ljubljana, Vodnikova cesta 62, 1000, Ljubljana, Slovenia.
| | - Blaž Burja
- Department of Rheumatology, University Medical Centre Ljubljana, Vodnikova cesta 62, 1000, Ljubljana, Slovenia.
| | - Julia Feichtinger
- Institute of Computational Biotechnology, Graz University of Technology, Petersgasse 14, 8010, Graz, Austria
- OMICS Center Graz, BioTechMed Graz, Stiftingtalstraße 24, 8010, Graz, Austria
| | - Gerhard G Thallinger
- Institute of Computational Biotechnology, Graz University of Technology, Petersgasse 14, 8010, Graz, Austria
- OMICS Center Graz, BioTechMed Graz, Stiftingtalstraße 24, 8010, Graz, Austria
| | - Mojca Frank-Bertoncelj
- Department of Rheumatology, Center of Experimental Rheumatology, University Hospital Zurich, Wagistrasse 14, 8952, Schlieren, Switzerland
| | - Katja Lakota
- Department of Rheumatology, University Medical Centre Ljubljana, Vodnikova cesta 62, 1000, Ljubljana, Slovenia
- Faculty of Mathematics, Natural Science and Information Technologies, University of Primorska, Glagoljaška ulica 8, 6000, Koper, Slovenia
| | - Polona Žigon
- Department of Rheumatology, University Medical Centre Ljubljana, Vodnikova cesta 62, 1000, Ljubljana, Slovenia
| | - Snezna Sodin-Semrl
- Department of Rheumatology, University Medical Centre Ljubljana, Vodnikova cesta 62, 1000, Ljubljana, Slovenia.
- Faculty of Mathematics, Natural Science and Information Technologies, University of Primorska, Glagoljaška ulica 8, 6000, Koper, Slovenia.
| | - Saša Čučnik
- Department of Rheumatology, University Medical Centre Ljubljana, Vodnikova cesta 62, 1000, Ljubljana, Slovenia
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia
| | - Matija Tomšič
- Department of Rheumatology, University Medical Centre Ljubljana, Vodnikova cesta 62, 1000, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Korytkova ulica 2, 1000, Ljubljana, Slovenia
| | - Alojzija Hočevar
- Department of Rheumatology, University Medical Centre Ljubljana, Vodnikova cesta 62, 1000, Ljubljana, Slovenia
| |
Collapse
|