251
|
Iron-deficiency anemia from matriptase-2 inactivation is dependent on the presence of functional Bmp6. Blood 2010; 117:647-50. [PMID: 20940420 DOI: 10.1182/blood-2010-07-295147] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Hepcidin is the master regulator of iron homeostasis. In the liver, iron-dependent hepcidin activation is regulated through Bmp6 and its membrane receptor hemojuvelin (Hjv), whereas, in response to iron deficiency, hepcidin repression seems to be controlled by a pathway involving the serine protease matriptase-2 (encoded by Tmprss6). To determine the relationship between Bmp6 and matriptase-2 pathways, Tmprss6(-/-) mice (characterized by increased hepcidin levels and anemia) and Bmp6(-/-) mice (exhibiting severe iron overload because of hepcidin deficiency) were intercrossed. We showed that loss of Bmp6 decreased hepcidin levels; increased hepatic iron; and, importantly, corrected hematologic abnormalities in Tmprss6(-/-) mice. This finding suggests that elevated hepcidin levels in patients with familial iron-refractory, iron-deficiency anemia are the result of excess signaling through the Bmp6/Hjv pathway.
Collapse
|
252
|
Maxson JE, Chen J, Enns CA, Zhang AS. Matriptase-2- and proprotein convertase-cleaved forms of hemojuvelin have different roles in the down-regulation of hepcidin expression. J Biol Chem 2010; 285:39021-8. [PMID: 20937842 DOI: 10.1074/jbc.m110.183160] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Hemojuvelin (HJV) is an important regulator of iron metabolism. Membrane-anchored HJV up-regulates expression of the iron regulatory hormone, hepcidin, through the bone morphogenic protein (BMP) signaling pathway by acting as a BMP co-receptor. HJV can be cleaved by the furin family of proprotein convertases, which releases a soluble form of HJV that suppresses BMP signaling and hepcidin expression by acting as a decoy that competes with membrane HJV for BMP ligands. Recent studies indicate that matriptase-2 binds and degrades HJV, leading to a decrease in cell surface HJV. In the present work, we show that matriptase-2 cleaves HJV at Arg(288), which produces one major soluble form of HJV. This shed form of HJV has decreased ability to bind BMP6 and does not suppress BMP6-induced hepcidin expression. These results suggest that the matriptase-2 and proprotein convertase-cleavage products have different roles in the regulation of hepcidin expression.
Collapse
Affiliation(s)
- Julia E Maxson
- Department of Cell and Developmental Biology, Oregon Health and Science University, Portland, Oregon 97239, USA
| | | | | | | |
Collapse
|
253
|
Camaschella C, Strati P. Recent advances in iron metabolism and related disorders. Intern Emerg Med 2010; 5:393-400. [PMID: 20424932 DOI: 10.1007/s11739-010-0387-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Accepted: 03/26/2010] [Indexed: 02/08/2023]
Abstract
Iron is essential for life, because it is indispensable for several biological reactions such as oxygen transport, DNA synthesis and cell proliferation, but is toxic if present in excess since it causes cellular damage through free radical formation. Either cellular or systemic iron regulation can be disrupted in disorders of iron metabolism. In the past few years, our understanding of iron metabolism and its regulation has dramatically changed. New disorders of iron metabolism have emerged and the role of iron has started to be recognized as a cofactor of other disorders. The study of genetic conditions such as hemochromatosis and iron-refractory-iron-deficiency anemia (IRIDA) has provided crucial insights into the molecular mechanisms controlling iron homeostasis. In the future, these advances may be exploited for a more effective treatment of both genetic and acquired iron disorders.
Collapse
Affiliation(s)
- Clara Camaschella
- Università Vita-Salute e IRCCS San Raffaele, Via Olgettina 60, Milan, Italy.
| | | |
Collapse
|
254
|
Thomas C, Kobold U, Balan S, Roeddiger R, Thomas L. Serum hepcidin-25 may replace the ferritin index in the Thomas plot in assessing iron status in anemic patients. Int J Lab Hematol 2010; 33:187-93. [PMID: 20868446 DOI: 10.1111/j.1751-553x.2010.01265.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Biochemical markers of iron deficiency do not distinguish iron-deficient anemia (IDA) from the anemia of chronic disease (ACD) and the combined state of ACD/IDA. Serum hepcidin-25 might be a marker resolving this problem. We investigated the extent to which serum hepcidin-25 enables the differentiation of the states above in comparison with the ferritin index plot, the so-called Thomas plot [soluble transferrin receptor (sTfR)/log ferritin and the reticulocyte hemoglobin content (CHr)]. METHODS Serum hepcidin-25 was determined in 155 anemic patients who were classified as having latent iron deficiency (latent ID), IDA, ACD, or ACD/IDA using the ferritin index plot (Thomas plot). Hepcidin-25 was determined using an isotope-dilution micro-HPLC-tandem mass spectrometry method. The ability to discriminate among these states based on serum hepcidin-25 alone or in combination with the CHr was evaluated in a receiver operating characteristic curve analysis and a comparison with the recently established ferritin index plot. RESULTS Serum hepcidin-25 correlated with ferritin and the ferritin index. Use of a hepcidin-25 cutoff level of ≤4 nmol/l allowed the differentiation of IDA from ACD and ACD/IDA. Furthermore, the discrimination of ACD/IDA from ACD required combination with CHr in a new plot (hepcidin-25 and the CHr). The hepcidin-25 plot and the ferritin index plot showed a good correspondence in the differentiation of iron states in patients with anemia. CONCLUSION Patients with IDA can be differentiated from ACD and ACD/IDA but not ACD from ACD/IDA based on hepcidin-25 alone. The combination of hepcidin-25 with CHr in the hepcidin-25 plot was useful for the differentiation of the states above.
Collapse
Affiliation(s)
- C Thomas
- Department of Urology, University Hospital, Mainz, Germany.
| | | | | | | | | |
Collapse
|
255
|
|
256
|
Garrick MD. Human iron transporters. GENES AND NUTRITION 2010; 6:45-54. [PMID: 21437029 DOI: 10.1007/s12263-010-0184-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Accepted: 08/24/2010] [Indexed: 01/17/2023]
Abstract
Human iron transporters manage iron carefully because tissues need iron for critical functions, but too much iron increases the risk of reactive oxygen species. Iron acquisition occurs in the duodenum via divalent metal transporter (DMT1) and ferroportin. Iron trafficking depends largely on the transferrin cycle. Nevertheless, non-digestive tissues have a variety of other iron transporters that may render DMT1 modestly redundant, and DMT1 levels exceed those needed for the just-mentioned tasks. This review begins to consider why and also describes advances after 2008 that begin to address this challenge.
Collapse
Affiliation(s)
- Michael D Garrick
- Department of Biochemistry, 140 Farber Hall, SUNY at Buffalo, 3435 Main St., Buffalo, NY 14214 USA
| |
Collapse
|
257
|
Erythropoiesis and iron sulfur cluster biogenesis. Adv Hematol 2010; 2010. [PMID: 20862391 PMCID: PMC2939393 DOI: 10.1155/2010/329394] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Revised: 06/04/2010] [Accepted: 08/02/2010] [Indexed: 11/22/2022] Open
Abstract
Erythropoiesis in animals is a synchronized process of erythroid cell differentiation that depends on successful acquisition of iron. Heme synthesis depends on iron through its dependence on iron sulfur (Fe-S) cluster biogenesis. Here, we review the relationship between Fe-S biogenesis and heme synthesis in erythropoiesis, with emphasis on the proteins, GLRX5, ABCB7, ISCA, and C1orf69. These Fe-S biosynthesis proteins are highly expressed in erythroid tissues, and deficiency of each of these proteins has been shown to cause anemia in zebrafish model. GLRX5 is involved in the production and ABCB7 in the export of an unknown factor that may function as a gauge of mitochondrial iron status, which may indirectly modulate activity of iron regulatory proteins (IRPs). ALAS2, the enzyme catalyzing the first step in heme synthesis, is translationally controlled by IRPs. GLRX5 may also provide Fe-S cofactor for ferrochelatase, the last enzyme in heme synthesis. ISCA and C1orf69 are thought to assemble Fe-S clusters for mitochondrial aconitase and for lipoate synthase, the enzyme producing lipoate for pyruvate dehydrogenase complex (PDC). PDC and aconitase are involved in the production of succinyl-CoA, a substrate for heme biosynthesis. Thus, many steps of heme synthesis depend on Fe-S cluster assembly.
Collapse
|
258
|
Ferroportin and erythroid cells: an update. Adv Hematol 2010; 2010. [PMID: 20827391 PMCID: PMC2935194 DOI: 10.1155/2010/404173] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2009] [Revised: 04/08/2010] [Accepted: 06/23/2010] [Indexed: 12/21/2022] Open
Abstract
In recent years there have been major advances in our knowledge of the regulation of iron metabolism that have had implications for understanding the pathophysiology of some human disorders like beta-thalassemia and other iron overload diseases. However, little is known about the relationship among ineffective erythropoiesis, the role of iron-regulatory genes, and tissue iron distribution in beta-thalassemia. The principal aim of this paper is an update about the role of Ferroportin during human normal and pathological erythroid differentiation. Particular attention will be given to beta-thalassemia and other diseases with iron overload. Recent discoveries indicate that there is a potential for therapeutic intervention in beta-thalassemia by means of manipulating iron metabolism.
Collapse
|
259
|
Mao J, McKean DM, Warrier S, Corbin JG, Niswander L, Zohn IE. The iron exporter ferroportin 1 is essential for development of the mouse embryo, forebrain patterning and neural tube closure. Development 2010; 137:3079-88. [PMID: 20702562 DOI: 10.1242/dev.048744] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Neural tube defects (NTDs) are some of the most common birth defects observed in humans. The incidence of NTDs can be reduced by peri-conceptional folic acid supplementation alone and reduced even further by supplementation with folic acid plus a multivitamin. Here, we present evidence that iron maybe an important nutrient necessary for normal development of the neural tube. Following implantation of the mouse embryo, ferroportin 1 (Fpn1) is essential for the transport of iron from the mother to the fetus and is expressed in the visceral endoderm, yolk sac and placenta. The flatiron (ffe) mutant mouse line harbors a hypomorphic mutation in Fpn1 and we have created an allelic series of Fpn1 mutations that result in graded developmental defects. A null mutation in the Fpn1 gene is embryonic lethal before gastrulation, hypomorphic Fpn1(ffe/ffe) mutants exhibit NTDs consisting of exencephaly, spina bifida and forebrain truncations, while Fpn1(ffe/KI) mutants exhibit even more severe NTDs. We show that Fpn1 is not required in the embryo proper but rather in the extra-embryonic visceral endoderm. Our data indicate that loss of Fpn1 results in abnormal morphogenesis of the anterior visceral endoderm (AVE). Defects in the development of the forebrain in Fpn1 mutants are compounded by defects in multiple signaling centers required for maintenance of the forebrain, including the anterior definitive endoderm (ADE), anterior mesendoderm (AME) and anterior neural ridge (ANR). Finally, we demonstrate that this loss of forebrain maintenance is due in part to the iron deficiency that results from the absence of fully functional Fpn1.
Collapse
Affiliation(s)
- Jinzhe Mao
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC 20010, USA
| | | | | | | | | | | |
Collapse
|
260
|
Abstract
Iron is essential for all life, yet can be dangerous under certain conditions. Iron storage by the 24-subunit protein ferritin renders excess amounts of the metal non-reactive and, consequentially, ferritin is crucial for life. Although the mechanism detailing the storage of iron in ferritin has been well characterized, little is known about the fate of ferritin-stored iron and whether it can be released and reutilized for metabolic use within a single cell. Virtually nothing is known about the use of ferritin-derived iron in non-erythroid cells. We therefore attempted to answer the question of whether iron from ferritin can be used for haem synthesis in the murine macrophage cell line RAW 264.7 cells. Cells treated with ALA (5-aminolaevulinic acid; a precursor of haem synthesis) show increased haem production as determined by enhanced incorporation of transferrin-bound 59Fe into haem. However, the present study shows that, upon the addition of ALA, 59Fe from ferritin cannot be incorporated into haem. Additionally, little 59Fe is liberated from ferritin when haem synthesis is increased upon addition of ALA. In conclusion, ferritin in cultivated macrophages is not a significant source of iron for the cell's own metabolic functions.
Collapse
|
261
|
Genome-wide analysis reveals novel genes essential for heme homeostasis in Caenorhabditis elegans. PLoS Genet 2010; 6:e1001044. [PMID: 20686661 PMCID: PMC2912396 DOI: 10.1371/journal.pgen.1001044] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Accepted: 06/30/2010] [Indexed: 11/23/2022] Open
Abstract
Heme is a cofactor in proteins that function in almost all sub-cellular compartments and in many diverse biological processes. Heme is produced by a conserved biosynthetic pathway that is highly regulated to prevent the accumulation of heme—a cytotoxic, hydrophobic tetrapyrrole. Caenorhabditis elegans and related parasitic nematodes do not synthesize heme, but instead require environmental heme to grow and develop. Heme homeostasis in these auxotrophs is, therefore, regulated in accordance with available dietary heme. We have capitalized on this auxotrophy in C. elegans to study gene expression changes associated with precisely controlled dietary heme concentrations. RNA was isolated from cultures containing 4, 20, or 500 µM heme; derived cDNA probes were hybridized to Affymetrix C. elegans expression arrays. We identified 288 heme-responsive genes (hrgs) that were differentially expressed under these conditions. Of these genes, 42% had putative homologs in humans, while genomes of medically relevant heme auxotrophs revealed homologs for 12% in both Trypanosoma and Leishmania and 24% in parasitic nematodes. Depletion of each of the 288 hrgs by RNA–mediated interference (RNAi) in a transgenic heme-sensor worm strain identified six genes that regulated heme homeostasis. In addition, seven membrane-spanning transporters involved in heme uptake were identified by RNAi knockdown studies using a toxic heme analog. Comparison of genes that were positive in both of the RNAi screens resulted in the identification of three genes in common that were vital for organismal heme homeostasis in C. elegans. Collectively, our results provide a catalog of genes that are essential for metazoan heme homeostasis and demonstrate the power of C. elegans as a genetic animal model to dissect the regulatory circuits which mediate heme trafficking in both vertebrate hosts and their parasites, which depend on environmental heme for survival. Heme is an iron-containing cofactor for proteins involved in many critical cellular processes. However, free heme is toxic to cells, suggesting that heme synthesis, acquisition, and transport is highly regulated. Efforts to understand heme trafficking in multicellular organisms have failed primarily due to the inability to separate the processes of endogenous heme synthesis from heme uptake and transport. Caenorhabditis elegans is unique among model organisms because it cannot synthesize heme but instead eats environmental heme to grow and develop normally. Thus, worms are an ideal genetic animal model to study heme homeostasis. This work identifies a novel list of 288 heme-responsive genes (hrgs) in C. elegans and a number of related genes in humans and medically relevant parasites. Knocking down the function of each of these hrgs reveals roles for several in heme uptake, transport, and detection within the organism. Our study provides insights into metazoan regulation of organismal heme homeostasis. The identification of parasite-specific hrg homologs may permit the selective design and screening of drugs that specifically target heme uptake pathways in parasites without affecting the host. Thus, this work has therapeutic implications for the treatment of human iron deficiency, one of the top ten mortality factors world-wide.
Collapse
|
262
|
Sisay MT, Steinmetzer T, Stirnberg M, Maurer E, Hammami M, Bajorath J, Gütschow M. Identification of the First Low-Molecular-Weight Inhibitors of Matriptase-2. J Med Chem 2010; 53:5523-35. [DOI: 10.1021/jm100183e] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Mihiret Tekeste Sisay
- Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
- Department of Life Science Informatics, B-IT, Limes Program Unit Chemical Biology and Medicinal Chemistry, University of Bonn, Dahlmannstrasse 2, D-53113 Bonn, Germany
| | - Torsten Steinmetzer
- Institute of Pharmaceutical Chemistry, Philipps University Marburg, Marbacher Weg 6, D-35032 Marburg, Germany
| | - Marit Stirnberg
- Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Eva Maurer
- Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Maya Hammami
- Institute of Pharmaceutical Chemistry, Philipps University Marburg, Marbacher Weg 6, D-35032 Marburg, Germany
| | - Jürgen Bajorath
- Department of Life Science Informatics, B-IT, Limes Program Unit Chemical Biology and Medicinal Chemistry, University of Bonn, Dahlmannstrasse 2, D-53113 Bonn, Germany
| | - Michael Gütschow
- Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| |
Collapse
|
263
|
Rooijakkers SHM, Rasmussen SL, McGillivray SM, Bartnikas TB, Mason AB, Friedlander AM, Nizet V. Human transferrin confers serum resistance against Bacillus anthracis. J Biol Chem 2010; 285:27609-13. [PMID: 20615872 DOI: 10.1074/jbc.m110.154930] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The innate immune system in humans consists of both cellular and humoral components that collaborate to eradicate invading bacteria from the body. Here, we discover that the gram-positive bacterium Bacillus anthracis, the causative agent of anthrax, does not grow in human serum. Fractionation of serum by gel filtration chromatography led to the identification of human transferrin as the inhibiting factor. Purified transferrin blocks growth of both the fully virulent encapsulated B. anthracis Ames and the non-encapsulated Sterne strain. Growth inhibition was also observed in serum of wild-type mice but not of hypotransferrinemic mice that only have approximately 1% circulating transferrin levels. We were able to definitely assign the bacteriostatic activity of transferrin to its iron-binding function: neither iron-saturated transferrin nor a recombinant transferrin mutant unable to bind iron could inhibit growth of B. anthracis. Additional iron could restore bacterial growth in human serum. The observation that other important gram-positive pathogens are not inhibited by transferrin suggests they have evolved effective mechanisms to circumvent serum iron deprivation. These findings provide a better understanding of human host defense mechanisms against anthrax and provide a mechanistic basis for the antimicrobial activity of human transferrin.
Collapse
Affiliation(s)
- Suzan H M Rooijakkers
- Department of Pediatrics, University of California, San Diego, La Jolla, California 92093, USA.
| | | | | | | | | | | | | |
Collapse
|
264
|
Affiliation(s)
- V P Choudhry
- Sunflag Pahuja Centre For Blood Disorders, Sunflag Hospital, Faridabad, Haryana, India.
| |
Collapse
|
265
|
Transferrin-iron routing to the cytosol and mitochondria as studied by live and real-time fluorescence. Biochem J 2010; 429:185-93. [PMID: 20408812 DOI: 10.1042/bj20100213] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In the present study we analysed the mechanism of intracellular routing of iron acquired by erythroid cells via receptor-mediated endocytosis of Tf-Fe [Tf (transferrin)-iron]. Using real-time fluorimetry and flow cytometry, in conjunction with targeted fluorescent metal sensors, we monitored concurrently the cytosolic and mitochondrial changes in labile iron evoked by endocytosed Tf-Fe. In K562 human erythroleukaemia cells, most of the Tf-Fe was found to be delivered to the cytosolic labile iron pool by a saturable mechanism [60-120 nM Km (app)] that was quantitatively dependent on: Tf receptor levels, endosomal acidification/reduction for dislodging iron from Tf and ensuing translocation of labile iron into the cytosolic compartment. The parallel ingress of iron to mitochondria was also saturable, but with a relatively lower Km (app) (26-42 nM) and a lower maximal ingress per cell than into the cytosol. The ingress of iron into the mitochondrial labile iron pool was blocked by cytosol-targeted iron chelators, implying that a substantial fraction of Tf-Fe delivered to these organelles passes through the cytosol in non-occluded forms that remain accessible to high-affinity ligands. The present paper is the first report describing intracellular iron routing measured in intact cells in real-time and in quantitative terms, opening the road for also exploring the process in mixed-cell populations of erythroid origin.
Collapse
|
266
|
Ye H, Rouault TA. Human iron-sulfur cluster assembly, cellular iron homeostasis, and disease. Biochemistry 2010; 49:4945-56. [PMID: 20481466 PMCID: PMC2885827 DOI: 10.1021/bi1004798] [Citation(s) in RCA: 186] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Revised: 05/18/2010] [Indexed: 01/19/2023]
Abstract
Iron-sulfur (Fe-S) proteins contain prosthetic groups consisting of two or more iron atoms bridged by sulfur ligands, which facilitate multiple functions, including redox activity, enzymatic function, and maintenance of structural integrity. More than 20 proteins are involved in the biosynthesis of iron-sulfur clusters in eukaryotes. Defective Fe-S cluster synthesis not only affects activities of many iron-sulfur enzymes, such as aconitase and succinate dehydrogenase, but also alters the regulation of cellular iron homeostasis, causing both mitochondrial iron overload and cytosolic iron deficiency. In this work, we review human Fe-S cluster biogenesis and human diseases that are caused by defective Fe-S cluster biogenesis. Fe-S cluster biogenesis takes place essentially in every tissue of humans, and products of human disease genes, including frataxin, GLRX5, ISCU, and ABCB7, have important roles in the process. However, the human diseases, Friedreich ataxia, glutaredoxin 5-deficient sideroblastic anemia, ISCU myopathy, and ABCB7 sideroblastic anemia/ataxia syndrome, affect specific tissues, while sparing others. Here we discuss the phenotypes caused by mutations in these different disease genes, and we compare the underlying pathophysiology and discuss the possible explanations for tissue-specific pathology in these diseases caused by defective Fe-S cluster biogenesis.
Collapse
Affiliation(s)
- Hong Ye
- Molecular Medicine Program, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - Tracey A. Rouault
- Molecular Medicine Program, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
267
|
Sierra-Filardi E, Vega MA, Sánchez-Mateos P, Corbí AL, Puig-Kröger A. Heme Oxygenase-1 expression in M-CSF-polarized M2 macrophages contributes to LPS-induced IL-10 release. Immunobiology 2010; 215:788-95. [PMID: 20580464 DOI: 10.1016/j.imbio.2010.05.020] [Citation(s) in RCA: 163] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Accepted: 05/20/2010] [Indexed: 12/31/2022]
Abstract
The shift between pro-inflammatory (M1) and anti-inflammatory (M2) states of macrophage polarization allows the resolution of inflammatory processes as well as the maintenance of a basal anti-inflammatory environment in tissues continuously exposed to harmless antigens (e.g., lung and gut). To identify markers for the anti-inflammatory state of macrophages, expression profiling was performed on human macrophages polarized by either GM-CSF or M-CSF, which lead to the generation of TNF-alpha and IL-12p40-producing pro-inflammatory macrophages [M1 (GM-CSF)] or IL-10-producing anti-inflammatory macrophages [M2 (M-CSF)] upon exposure to LPS, respectively. A different iron metabolism gene signature was detected in both macrophage types, with the heme regulatory molecules CD163 and Heme Oxygenase-1 (HO-1) being preferentially expressed by M2 (M-CSF) macrophages. M1-polarizing cytokines (GM-CSF, IFNgamma) inhibited, while IL-4 enhanced, the M-CSF-driven HO-1 expression. In agreement with this in vitro data, HO-1 expression in metastatic melanoma was primarily detected in CD163(+) tumor-associated macrophages, which are known to exhibit an M2-skewed polarization phenotype. In contrast to the HO-1 inhibitor tin protoporphyrin (SnPP), the administration of cobalt protoporphyrin (CoPP), a potent inducer of HO-1 resulted in increased LPS-triggered IL-10 release from M2 (M-CSF) macrophages. The data suggests that HO-1 is important for the anti-inflammatory activities of M-CSF-polarized M2 macrophages. Moreover, since M2 (M-CSF) macrophages also express higher levels of the CD163 scavenger receptor, the CD163/HO-1/IL-10 axis appears to contribute to the generation of an immunosuppressive environment within the tumor stroma.
Collapse
|
268
|
Schultz IJ, Chen C, Paw BH, Hamza I. Iron and porphyrin trafficking in heme biogenesis. J Biol Chem 2010; 285:26753-26759. [PMID: 20522548 DOI: 10.1074/jbc.r110.119503] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Iron is an essential element for diverse biological functions. In mammals, the majority of iron is enclosed within a single prosthetic group: heme. In metazoans, heme is synthesized via a highly conserved and coordinated pathway within the mitochondria. However, iron is acquired from the environment and subsequently assimilated into various cellular pathways, including heme synthesis. Both iron and heme are toxic but essential cofactors. How is iron transported from the extracellular milieu to the mitochondria? How are heme and heme intermediates coordinated with iron transport? Although recent studies have answered some questions, several pieces of this intriguing puzzle remain unsolved.
Collapse
Affiliation(s)
- Iman J Schultz
- Department of Medicine, Hematology Division, Brigham and Women's Hospital, and the Hematology-Oncology Division, Department of Medicine, Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts 02115
| | - Caiyong Chen
- Department of Animal and Avian Sciences and Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742
| | - Barry H Paw
- Department of Medicine, Hematology Division, Brigham and Women's Hospital, and the Hematology-Oncology Division, Department of Medicine, Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts 02115.
| | - Iqbal Hamza
- Department of Animal and Avian Sciences and Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742.
| |
Collapse
|
269
|
Morán-Jiménez MJ, Méndez M, Santiago B, Rodríguez-García ME, Moreno-Carralero MI, Sánchez-Lucío AC, Grau M, Enríquez-de-Salamanca R. Hepcidin treatment in Hfe-/- mice diminishes plasma iron without affecting erythropoiesis. Eur J Clin Invest 2010; 40:511-7. [PMID: 20456487 DOI: 10.1111/j.1365-2362.2010.02291.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
BACKGROUND Iron is essential for mammalian metabolism and its cellular concentration is controlled by regulating its acquisition and storage. Haemochromatosis is a condition involving iron overload that is characterised by increased duodenal iron absorption and a progressive accumulation of iron in vital organs. Hepcidin is the main hormone that regulates iron homoestasis and it is secreted by the liver. MATERIALS AND METHODS We have studied how extended hepcidin administration affects the iron load status, plasma and tissue iron concentration, erythropoiesis and the expression of proteins involved on iron homeostasis in haemochromatotic (Hfe(-/-)) and wild-type mice. RESULTS Hepcidin reverted the high plasma iron concentrations in Hfe(-/-) mice to normal values. The high concentration of hepatic iron was not altered in the liver of these Hfe(-/-) mice. Hepcidin administration did not disturb erythropoiesis in either Hfe(-/-) or wild-type mice and likewise, hepcidin did not modify the expression of any protein analysed in the liver, duodenum or spleen of Hfe(-/-) and wild-type mice. These data confirm that hepcidin administration diminishes plasma iron concentrations. CONCLUSION Treatment with sustained doses of hepcidin diminishes plasma iron concentrations in Hfe(-/-) mice.
Collapse
|
270
|
Corna G, Campana L, Pignatti E, Castiglioni A, Tagliafico E, Bosurgi L, Campanella A, Brunelli S, Manfredi AA, Apostoli P, Silvestri L, Camaschella C, Rovere-Querini P. Polarization dictates iron handling by inflammatory and alternatively activated macrophages. Haematologica 2010; 95:1814-22. [PMID: 20511666 DOI: 10.3324/haematol.2010.023879] [Citation(s) in RCA: 233] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Macrophages play a key role in iron homeostasis. In peripheral tissues, they are known to polarize into classically activated (or M1) macrophages and alternatively activated (or M2) macrophages. Little is known on whether the polarization program influences the ability of macrophages to store or recycle iron and the molecular machinery involved in the processes. DESIGN AND METHODS Inflammatory/M1 and alternatively activated/M2 macrophages were propagated in vitro from mouse bone-marrow precursors and polarized in the presence of recombinant interferon-γ or interleukin-4. We characterized and compared their ability to handle radioactive iron, the characteristics of the intracellular iron pools and the expression of molecules involved in internalization, storage and export of the metal. Moreover we verified the influence of iron on the relative ability of polarized macrophages to activate antigen-specific T cells. RESULTS M1 macrophages have low iron regulatory protein 1 and 2 binding activity, express high levels of ferritin H, low levels of transferrin receptor 1 and internalize--albeit with low efficiency -iron only when its extracellular concentration is high. In contrast, M2 macrophages have high iron regulatory protein binding activity, express low levels of ferritin H and high levels of transferrin receptor 1. M2 macrophages have a larger intracellular labile iron pool, effectively take up and spontaneously release iron at low concentrations and have limited storage ability. Iron export correlates with the expression of ferroportin, which is higher in M2 macrophages. M1 and M2 cells activate antigen-specific, MHC class II-restricted T cells. In the absence of the metal, only M1 macrophages are effective. CONCLUSIONS Cytokines that drive macrophage polarization ultimately control iron handling, leading to the differentiation of macrophages into a subset which has a relatively sealed intracellular iron content (M1) or into a subset endowed with the ability to recycle the metal (M2).
Collapse
Affiliation(s)
- Gianfranca Corna
- H San Raffaele Institute, DIBIT-3A1, via Olgettina 58, 20132 Milano, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
271
|
Eisenreich W, Dandekar T, Heesemann J, Goebel W. Carbon metabolism of intracellular bacterial pathogens and possible links to virulence. Nat Rev Microbiol 2010; 8:401-12. [PMID: 20453875 DOI: 10.1038/nrmicro2351] [Citation(s) in RCA: 283] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
New technologies such as high-throughput methods and 13C-isotopologue-profiling analysis are beginning to provide us with insight into the in vivo metabolism of microorganisms, especially in the host cell compartments that are colonized by intracellular bacterial pathogens. In this Review, we discuss the recent progress made in determining the major carbon sources and metabolic pathways used by model intracellular bacterial pathogens that replicate either in the cytosol or in vacuoles of infected host cells. Furthermore, we highlight the possible links between intracellular carbon metabolism and the expression of virulence genes.
Collapse
Affiliation(s)
- Wolfgang Eisenreich
- Lehrstuhl für Biochemie, Technische Universität München, D-85747 Garching, Germany
| | | | | | | |
Collapse
|
272
|
Kim BE, Turski ML, Nose Y, Casad M, Rockman HA, Thiele DJ. Cardiac copper deficiency activates a systemic signaling mechanism that communicates with the copper acquisition and storage organs. Cell Metab 2010; 11:353-63. [PMID: 20444417 PMCID: PMC2901851 DOI: 10.1016/j.cmet.2010.04.003] [Citation(s) in RCA: 127] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2009] [Revised: 02/05/2010] [Accepted: 04/05/2010] [Indexed: 12/15/2022]
Abstract
Copper (Cu) is an essential cofactor for a variety of metabolic functions, and the regulation of systemic Cu metabolism is critical to human health. Dietary Cu is absorbed through the intestine, stored in the liver, and mobilized into the circulation; however, systemic Cu homeostasis is poorly understood. We generated mice with a cardiac-specific knockout of the Ctr1 Cu transporter (Ctr1(hrt/hrt)), resulting in cardiac Cu deficiency and severe cardiomyopathy. Unexpectedly, Ctr1(hrt/hrt) mice exhibited increased serum Cu levels and a concomitant decrease in hepatic Cu stores. Expression of the ATP7A Cu exporter, thought to function predominantly in intestinal Cu acquisition, was strongly increased in liver and intestine of Ctr1(hrt/hrt) mice. These studies identify ATP7A as a candidate for hepatic Cu mobilization in response to peripheral tissue demand, and illuminate a systemic regulation in which the Cu status of the heart is signaled to organs that take up and store Cu.
Collapse
Affiliation(s)
- Byung-Eun Kim
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710
| | - Michelle L. Turski
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710
| | - Yasuhiro Nose
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710
| | - Michelle Casad
- Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710
- Cell Biology, Duke University Medical Center, Durham, North Carolina 27710
| | - Howard A. Rockman
- Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710
- Cell Biology, Duke University Medical Center, Durham, North Carolina 27710
| | - Dennis J. Thiele
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710
- correspondence should be addressed to D.J. Thiele ()
| |
Collapse
|
273
|
A Bacillus anthracis S-layer homology protein that binds heme and mediates heme delivery to IsdC. J Bacteriol 2010; 192:3503-11. [PMID: 20435727 DOI: 10.1128/jb.00054-10] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The sequestration of iron by mammalian hosts represents a significant obstacle to the establishment of a bacterial infection. In response, pathogenic bacteria have evolved mechanisms to acquire iron from host heme. Bacillus anthracis, the causative agent of anthrax, utilizes secreted hemophores to scavenge heme from host hemoglobin, thereby facilitating iron acquisition from extracellular heme pools and delivery to iron-regulated surface determinant (Isd) proteins covalently attached to the cell wall. However, several Gram-positive pathogens, including B. anthracis, contain genes that encode near iron transporter (NEAT) proteins that are genomically distant from the genetically linked Isd locus. NEAT domains are protein modules that partake in several functions related to heme transport, including binding heme and hemoglobin. This finding raises interesting questions concerning the relative role of these NEAT proteins, relative to hemophores and the Isd system, in iron uptake. Here, we present evidence that a B. anthracis S-layer homology (SLH) protein harboring a NEAT domain binds and directionally transfers heme to the Isd system via the cell wall protein IsdC. This finding suggests that the Isd system can receive heme from multiple inputs and may reflect an adaptation of B. anthracis to changing iron reservoirs during an infection. Understanding the mechanism of heme uptake in pathogenic bacteria is important for the development of novel therapeutics to prevent and treat bacterial infections.
Collapse
|
274
|
Paesano R, Berlutti F, Pietropaoli M, Pantanella F, Pacifici E, Goolsbee W, Valenti P. Lactoferrin efficacy versus ferrous sulfate in curing iron deficiency and iron deficiency anemia in pregnant women. Biometals 2010; 23:411-7. [PMID: 20407805 DOI: 10.1007/s10534-010-9335-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Accepted: 03/31/2010] [Indexed: 12/23/2022]
Abstract
Iron deficiency (ID) and iron deficiency anemia (IDA) are the most common iron disorders throughout the world. ID and IDA, particularly caused by increased iron requirements during pregnancy, represent a high risk for preterm delivery, fetal growth retardation, low birth weight, and inferior neonatal health. Oral administration of ferrous sulfate to cure ID and IDA in pregnancy often fails to increase hematological parameters, causes adverse effects and increases inflammation. Recently, we have demonstrated safety and efficacy of oral administration of 30% iron saturated bovine lactoferrin (bLf) in pregnant women suffering from ID and IDA. Oral administration of bLf significantly increases the number of red blood cells, hemoglobin, total serum iron and serum ferritin already after 30 days of the treatment. The increasing of hematological values by bLf is related to the decrease of serum IL-6 and the increase of serum hepcidin, detected as prohepcidin, whereas ferrous sulfate increases IL-6 and fails to increase hematological parameters and prohepcidin. bLf is a more effective and safer alternative than ferrous sulfate for treating ID and IDA in pregnant women.
Collapse
Affiliation(s)
- Rosalba Paesano
- Department of Obstetrician and Gynaecology, Sapienza University of Rome, Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
275
|
Andolfo I, De Falco L, Asci R, Russo R, Colucci S, Gorrese M, Zollo M, Iolascon A. Regulation of divalent metal transporter 1 (DMT1) non-IRE isoform by the microRNA Let-7d in erythroid cells. Haematologica 2010; 95:1244-52. [PMID: 20410187 DOI: 10.3324/haematol.2009.020685] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Divalent metal transporter 1 (DMT1) is a widely expressed metal-iron transporter gene encoding four variant mRNA transcripts, differing for alternative promoter at 5' (DMT1 1A and 1B) and alternative splicing at 3' UTR, differing by a specific sequence either containing or lacking an iron regulatory element (+IRE and -IRE, respectively). DMT1-IRE might be the major DMT1 isoform expressed in erythroid cells, although its regulation pathways are still unknown. DESIGN AND METHODS The microRNA (miRNA) Let-7d (miR-Let-7d) was selected by the analysis of four miRNAs, predicted to target the DMT1-IRE gene in CD34(+) hematopoietic progenitor cells, in K562 and in HEL cells induced to erythroid differentiation. Using a luciferase reporter assay we demonstrated the inhibition of DMT1-IRE by miR-Let-7d in K562 and HEL cells. The function of miR-Let-7d in erythroid cells was evaluated by the flow cytometry analysis of erythroid differentiation markers, by benzidine staining and by iron flame atomic absorption for the evaluation of iron concentration in the endosomes from K562 cells over-expressing miR-Let-7d. RESULTS We show that in erythroid cells, DMT1-IRE expression is under the regulation of miR-Let-7d. DMT1-IRE and miR-Let-7d are inversely correlated with CD34(+) cells, K562 and HEL cells during erythroid differentiation. Moreover, overexpression of miR-Let-7d decreases the expression of DMT1-IRE at the mRNA and protein levels in K562 and HEL cells. MiR-Let-7d impairs erythroid differentiation of K562 cells by accumulation of iron in the endosomes. CONCLUSIONS Overall, these data suggest that miR-Let-7d participates in the finely tuned regulation of iron metabolism by targeting DMT1-IRE isoform in erythroid cells.
Collapse
Affiliation(s)
- Immacolata Andolfo
- CEINGE, Biotecnologie Avanzate, Via, Comunale Margherita 482, 80145 Naples, Italy
| | | | | | | | | | | | | | | |
Collapse
|
276
|
Zhang AS, Gao J, Koeberl DD, Enns CA. The role of hepatocyte hemojuvelin in the regulation of bone morphogenic protein-6 and hepcidin expression in vivo. J Biol Chem 2010; 285:16416-23. [PMID: 20363739 DOI: 10.1074/jbc.m110.109488] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Both hemojuvelin (HJV) and bone morphogenic protein-6 (BMP6) are essential for hepcidin expression. Hepcidin is the key peptide hormone in iron homeostasis, and is secreted predominantly by hepatocytes. HJV expression is detected in hepatocytes, as well as in skeletal and heart muscle. HJV binds BMP6 and increases hepcidin expression presumably by acting as a BMP co-receptor. We characterized the role of hepatocyte HJV in the regulation of BMP6 and hepcidin expression. In HJV-null (Hjv(-/-)) mice that have severe iron overload and marked suppression of hepcidin expression, we detected 4-fold higher hepatic BMP6 mRNA than in wild-type counterparts. These results indicate that Hjv(-/-) mice do not lack BMP6. Furthermore, iron depletion in Hjv(-/-) mice decreased hepatic BMP6 mRNA. Expression of HJV in hepatocytes of Hjv(-/-) mice using an AAV2/8 vector, increased hepatic hepcidin mRNA by 65-fold and phosphorylated Smad1/5/8 in the liver by about 2.5-fold. However, no significant change in BMP6 mRNA was detected in either the liver or the small intestine of these animals. Our results revealed a close correlation of hepatic BMP6 mRNA expression with hepatic iron-loading. Together, our data indicate that the regulation of hepatic BMP6 expression by iron is independent of HJV, and that expression of HJV in hepatocytes plays an essential role in hepcidin expression by potentiating the BMP6-mediated signaling.
Collapse
Affiliation(s)
- An-Sheng Zhang
- Department of Cell and Developmental Biology, Oregon Health & Science University, Portland, Oregon 97239, USA.
| | | | | | | |
Collapse
|
277
|
Paesano R, Berlutti F, Pietropaoli M, Goolsbee W, Pacifici E, Valenti P. Lactoferrin Efficacy versus Ferrous Sulfate in Curing Iron Disorders in Pregnant and Non-Pregnant Women. Int J Immunopathol Pharmacol 2010; 23:577-87. [DOI: 10.1177/039463201002300220] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Iron homeostasis in pregnancy compensates for increased iron requirements and in women of child-bearing age for iron loss in menses. Oral administration of ferrous sulfate, prescribed to cure iron deficiency (ID) and ID anemia (IDA), often fails to increase hematological parameters and causes adverse effects. Recently, we demonstrated safety and efficacy of bovine lactoferrin (bLf) in pregnant women suffering from ID/IDA. Two clinical trials were conducted on pregnant and non-pregnant women of child-bearing age suffering from ID/IDA. In both trials, women received oral administration of bLf 100 mg/twice/day (Arm A), or ferrous sulfate 520 mg/day (Arm B). Hematological parameters, serum IL-6 and prohepcidin were assayed before and after therapy. Unlike ferrous sulfate, bLf increased hematological parameters ( P<0.0001). In pregnant women, bLf decreased serum IL-6 ( P<0.0001), and increased prohepcidin ( P=0.0007). In non-pregnant women bLf did not change the low IL-6 levels while it increased prohepcidin ( P<0.0001). Ferrous sulfate increased IL-6 ( P<0.0001) and decreased prohepcidin ( P=0.093). bLf established iron homeostasis by modulating serum IL-6 and prohepcidin synthesis, whereas ferrous sulfate increased IL-6 and failed to increase hematological parameters and prohepcidin. bLf is a more effective and safer alternative than ferrous sulfate for treating ID and IDA.
Collapse
Affiliation(s)
- R. Paesano
- Department of Obstetrician and Gynecology, Sapienza University of Rome, Italy
- “Fabia Mater” Clinic, Rome, Italy
| | - F. Berlutti
- Department of Public Health Sciences, Sapienza University of Rome, Italy
| | | | | | | | - P. Valenti
- Department of Public Health Sciences, Sapienza University of Rome, Italy
| |
Collapse
|
278
|
Shakoury-Elizeh M, Protchenko O, Berger A, Cox J, Gable K, Dunn TM, Prinz WA, Bard M, Philpott CC. Metabolic response to iron deficiency in Saccharomyces cerevisiae. J Biol Chem 2010; 285:14823-33. [PMID: 20231268 DOI: 10.1074/jbc.m109.091710] [Citation(s) in RCA: 140] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Iron is an essential cofactor for enzymes involved in numerous cellular processes, yet little is known about the impact of iron deficiency on cellular metabolism or iron proteins. Previous studies have focused on changes in transcript and proteins levels in iron-deficient cells, yet these changes may not reflect changes in transport activity or flux through a metabolic pathway. We analyzed the metabolomes and transcriptomes of yeast grown in iron-rich and iron-poor media to determine which biosynthetic processes are altered when iron availability falls. Iron deficiency led to changes in glucose metabolism, amino acid biosynthesis, and lipid biosynthesis that were due to deficiencies in specific iron-dependent enzymes. Iron-sulfur proteins exhibited loss of iron cofactors, yet amino acid synthesis was maintained. Ergosterol and sphingolipid biosynthetic pathways had blocks at points where heme and diiron enzymes function, whereas Ole1, the essential fatty acid desaturase, was resistant to iron depletion. Iron-deficient cells exhibited depletion of most iron enzyme activities, but loss of activity during iron deficiency did not consistently disrupt metabolism. Amino acid homeostasis was robust, but iron deficiency impaired lipid synthesis, altering the properties and functions of cellular membranes.
Collapse
Affiliation(s)
- Minoo Shakoury-Elizeh
- Liver Diseases Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
279
|
Recalcati S, Locati M, Marini A, Santambrogio P, Zaninotto F, De Pizzol M, Zammataro L, Girelli D, Cairo G. Differential regulation of iron homeostasis during human macrophage polarized activation. Eur J Immunol 2010; 40:824-35. [DOI: 10.1002/eji.200939889] [Citation(s) in RCA: 288] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
280
|
Bergamaschi G, Villani L. Serum hepcidin: a novel diagnostic tool in disorders of iron metabolism. Haematologica 2010; 94:1631-3. [PMID: 19996112 DOI: 10.3324/haematol.2009.013615] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
281
|
Chung B, Verdier F, Matak P, Deschemin JC, Mayeux P, Vaulont S. Oncostatin M is a potent inducer of hepcidin, the iron regulatory hormone. FASEB J 2010; 24:2093-103. [PMID: 20124431 DOI: 10.1096/fj.09-152561] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Erythropoietic activity is known to affect iron homeostasis through regulation of the liver iron regulatory hormone hepcidin. To identify new factors secreted by the erythroblasts that could influence hepcidin synthesis, we set up a coculture model. HuH7 hepatoma cells cocultured with primary human erythroblasts or erythroleukemic UT7 cells presented a 20- to 35-fold increase of hepcidin gene expression. This induction was fully blunted in the presence of a neutralizing oncostatin M antibody, demonstrating that this cytokine, belonging to the IL-6 family of cytokines, was responsible for increased levels of hepcidin expression. We further demonstrated that recombinant oncostatin M induced a dramatic transcriptional increase of hepcidin in HuH7 cells through specific activation of the STAT pathway. Hepcidin induction by oncostatin M was also observed in hepatocytes in primary culture and is believed to be cell specific since no induction was found in isolated bone marrow cells, macrophagic, stromal, and lymphoma-derived cell lines, nor in erythroblasts. Finally, we show that oncostatin M administration in vivo increases hepcidin expression and leads to significantly decreased serum iron levels. This work identifies a new potent inducer of hepcidin expression in the liver and supports a role for modulators of oncostatin M signaling pathway in treating iron disorders.
Collapse
Affiliation(s)
- Bomee Chung
- Université Paris Descartes, Centre National de la Recherche Scientifique (UMR 8104), Paris, France
| | | | | | | | | | | |
Collapse
|
282
|
Hansen SL, Trakooljul N, Spears JW, Liu HC. Age and dietary iron affect expression of genes involved in iron acquisition and homeostasis in young pigs. J Nutr 2010; 140:271-7. [PMID: 20018808 DOI: 10.3945/jn.109.112722] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
To investigate the effects of dietary iron (Fe) and age on Fe metabolism, we used 36 weaned barrows in a 2 x 3 design with 2 concentrations of dietary Fe [97 (control) and 797 (high Fe) mg Fe/kg dry matter] and 3 time points of tissue collection (after 21, 42, or 63 d on diets). Pigs were weighed and bled on d 0, 20, 41, and 62. High Fe reduced feed efficiency but did not affect pig weight gain. Blood hemoglobin concentrations and Fe concentrations of liver, intestine, and heart were increased by high dietary Fe on all days. Concentrations of liver and heart Fe increased with age. As determined by quantitative real-time PCR, hepatic expression of hepcidin (HAMP) in pigs given the high-Fe diet was 6.25-fold that of control pigs. In the intestine, relative mRNA levels of ferroportin, divalent metal transporter 1, and transferrin receptor were downregulated by high Fe. Expression of an alternative route of Fe absorption, solute carrier family 39 member 14 (SLC39A14), was downregulated in the intestine of pigs fed high dietary Fe. Additionally, duodenal mRNA level of certain genes including scavenger receptor class A, member 5, and frataxin decreased with age of the animal. Our findings indicate new roles in Fe metabolism for several mineral metabolism-associated genes and that some of these genes, such as SLC39A14, may be regulated in response to dietary Fe in pigs. Additionally, the expression of some genes examined in this study was affected by age, suggesting age dependency of Fe metabolism in pigs.
Collapse
Affiliation(s)
- Stephanie L Hansen
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695-7621, USA
| | | | | | | |
Collapse
|
283
|
Roperto S, Borzacchiello G, Brun R, Costanzo F, Faniello M, Raso C, Rosati A, Russo V, Leonardi L, Saracino D, Turco M, Urraro C, Roperto F. Ferritin Heavy Chain (FHC) is Up-regulated in Papillomavirus-Associated Urothelial Tumours of the Urinary Bladder in Cattle. J Comp Pathol 2010; 142:9-18. [DOI: 10.1016/j.jcpa.2009.05.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Revised: 05/12/2009] [Accepted: 05/29/2009] [Indexed: 10/20/2022]
|
284
|
Synthesis and antiproliferating activity of iron chelators of hydroxyamino-1,3,5-triazine family. Bioorg Med Chem Lett 2010; 20:458-60. [DOI: 10.1016/j.bmcl.2009.11.130] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Revised: 11/24/2009] [Accepted: 11/25/2009] [Indexed: 01/29/2023]
|
285
|
Affiliation(s)
- Craig D Kaplan
- Department of Biochemistry and Biophysics, Texas A&M University, USA
| | | |
Collapse
|
286
|
Koening CL, Mu HH, Van Schelt A, Lo E, Ward DM, Kaplan J, De Domenico I. Hepcidin is elevated in mice injected with Mycoplasma arthritidis. JOURNAL OF INFLAMMATION-LONDON 2009; 6:33. [PMID: 19930711 PMCID: PMC2791099 DOI: 10.1186/1476-9255-6-33] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Accepted: 11/24/2009] [Indexed: 12/21/2022]
Abstract
Mycoplasma arthritidis causes arthritis in specific mouse strains. M. arthritidis mitogen (MAM), a superantigen produced by M. arthritidis, activates T cells by forming a complex between the major histocompatability complex II on antigen presenting cells and the T cell receptor on CD4+ T lymphocytes. The MAM superantigen is also known to interact with Toll-like receptors (TLR) 2 and 4. Hepcidin, an iron regulator protein, is upregulated by TLR4, IL-6, and IL-1. In this study, we evaluated serum hepcidin, transferrin saturation, ferritin, IL-6, IL-1, and hemoglobin levels in M. arthritidis injected C3H/HeJ (TLR2+/+, TLR4-/-) mice and C3H/HeSnJ (TLR2+/+, TLR4+/+) mice over a 21 day period. C3H/HeJ mice have a defective TLR4 and an inability to produce IL-6. We also measured arthritis severity in these mice and the amount of hepcidin transcripts produced by the liver and spleen. C3H/HeJ mice developed a more severe arthritis than that of C3H/HeSnJ mice. Both mice had an increase in serum hepcidin within three days after infection. Hepcidin levels were greater in C3H/HeJ mice despite a nonfunctioning TLR4 and low serum levels of IL-6. Splenic hepcidin production in C3H/HeJ mice was delayed compared to C3H/HeSnJ mice. Unlike C3H/HeSnJ mice, C3H/HeJ mice did not develop a significant rise in serum IL-6 levels but did develop a significant increase in IL-1beta during the first ten days after injection. Both mice had an increase in serum ferritin but a decrease in serum transferrin saturation. In conclusion, serum hepcidin regulation in C3H/HeJ mice does not appear to be solely dependent upon TLR4 or IL-6.
Collapse
Affiliation(s)
- Curry L Koening
- Division of Hematology, Department of Internal Medicine, University of Utah, School of Medicine, 30 North 1900 East, Salt Lake City, 84132, Utah, USA.
| | | | | | | | | | | | | |
Collapse
|
287
|
Fabian M, Solomaha E, Olson JS, Maresso AW. Heme transfer to the bacterial cell envelope occurs via a secreted hemophore in the Gram-positive pathogen Bacillus anthracis. J Biol Chem 2009; 284:32138-46. [PMID: 19759022 PMCID: PMC2797284 DOI: 10.1074/jbc.m109.040915] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Revised: 08/28/2009] [Indexed: 11/06/2022] Open
Abstract
To initiate and sustain an infection in mammals, bacterial pathogens must acquire host iron. However, the host's compartmentalization of large amounts of iron in heme, which is bound primarily by hemoglobin in red blood cells, acts as a barrier to bacterial iron assimilation. Bacillus anthracis, the causative agent of the disease anthrax, secretes two NEAT (near iron transporter) proteins, IsdX1 and IsdX2, which scavenge heme from host hemoglobin and promote growth under low iron conditions. The mechanism of heme transfer from these hemophores to the bacterial cell is not known. We present evidence that the heme-bound form of IsdX1 rapidly and directionally transfers heme to IsdC, a NEAT protein covalently attached to the cell wall, as well as to IsdX2. In both cases, the transfer of heme is mediated by a physical association between the donor and recipient. Unlike Staphylococcus aureus, whose NEAT proteins acquire heme from hemoglobin directly at the bacterial surface, B. anthracis secretes IsdX1 to capture heme in the extracellular milieu and relies on NEAT-NEAT interactions to deliver the bound heme to the envelope via IsdC. Understanding the mechanism of NEAT-mediated iron transport into pathogenic Gram-positive bacteria may provide an avenue for the development of therapeutics to combat infection.
Collapse
Affiliation(s)
- Marian Fabian
- From the Department of Biochemistry & Cell Biology, Rice University, Houston, Texas 77096
| | - Elena Solomaha
- the Biophysics Core Facility, The University of Chicago, Chicago, Illinois 60637, and
| | - John S. Olson
- From the Department of Biochemistry & Cell Biology, Rice University, Houston, Texas 77096
| | - Anthony W. Maresso
- the Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|
288
|
Affiliation(s)
- Siobán B Keel
- Division of Hematology, University of Washington, Seattle, USA
| | | |
Collapse
|
289
|
Girelli D, Pasino M, Goodnough JB, Nemeth E, Guido M, Castagna A, Busti F, Campostrini N, Martinelli N, Vantini I, Corrocher R, Ganz T, Fattovich G. Reduced serum hepcidin levels in patients with chronic hepatitis C. J Hepatol 2009; 51:845-52. [PMID: 19729219 PMCID: PMC2761995 DOI: 10.1016/j.jhep.2009.06.027] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Revised: 06/17/2009] [Accepted: 06/21/2009] [Indexed: 02/06/2023]
Abstract
BACKGROUND/AIMS Patients with chronic hepatitis C (CHC) often have increased liver iron, a condition associated with reduced sustained response to antiviral therapy, more rapid progression to cirrhosis, and development of hepatocellular carcinoma. The hepatic hormone hepcidin is the major regulator of iron metabolism and inhibits iron absorption and recycling from erythrophagocytosis. Hepcidin decrease is a possible pathophysiological mechanism of iron overload in CHC, but studies in humans have been hampered so far by the lack of reliable quantitative assays for the 25-amino acid bioactive peptide in serum (s-hepcidin). METHODS Using a recently validated immunoassay, we measured s-hepcidin levels in 81 untreated CHC patients and 57 controls with rigorous definition of normal iron status. All CHC patients underwent liver biopsy with histological iron score. RESULTS s-hepcidin was significantly lower in CHC patients than in controls (geometric means with 95% confidence intervals: 33.7, 21.5-52.9 versus 90.9, 76.1-108.4 ng/mL, respectively; p<0.001). In CHC patients, s-hepcidin significantly correlated with serum ferritin and histological total iron score, but not with s-interleukin-6. After stratification for ferritin quartiles, s-hepcidin increased significantly across quartiles in both controls and CHC patients (chi for trend, p<0.001). However, in CHC patients, s-hepcidin was significantly lower than in controls for each corresponding quartile (analysis of variance, p<0.001). CONCLUSIONS These results, together with very recent studies in animal and cellular models, indicate that although hepcidin regulation by iron stores is maintained in CHC, the suppression of this hormone by hepatitis C virus is likely an important factor in liver iron accumulation in this condition.
Collapse
Affiliation(s)
- Domenico Girelli
- Department of Clinical and Experimental Medicine, University of Verona, Policlinico G.B. Rossi, Verona, Italy.
| | - Michela Pasino
- Department of Clinical and Experimental Medicine, University of Verona, Policlinico G.B. Rossi, 37134 Verona, Italy,Department of Anesthesiological and Surgical Sciences, University of Verona, Verona, Italy
| | - Julia B. Goodnough
- Department of Medicine and Pathology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Elizabeta Nemeth
- Department of Medicine and Pathology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Maria Guido
- Department of Diagnostic Sciences & Special Therapies, University of Padova, Padova, Italy
| | - Annalisa Castagna
- Department of Clinical and Experimental Medicine, University of Verona, Policlinico G.B. Rossi, 37134 Verona, Italy
| | - Fabiana Busti
- Department of Clinical and Experimental Medicine, University of Verona, Policlinico G.B. Rossi, 37134 Verona, Italy
| | - Natascia Campostrini
- Department of Clinical and Experimental Medicine, University of Verona, Policlinico G.B. Rossi, 37134 Verona, Italy
| | - Nicola Martinelli
- Department of Clinical and Experimental Medicine, University of Verona, Policlinico G.B. Rossi, 37134 Verona, Italy
| | - Italo Vantini
- Department of Biomedical and Surgical Sciences, University of Verona, Verona, Italy
| | - Roberto Corrocher
- Department of Clinical and Experimental Medicine, University of Verona, Policlinico G.B. Rossi, 37134 Verona, Italy
| | - Tomas Ganz
- Department of Medicine and Pathology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Giovanna Fattovich
- Department of Anesthesiological and Surgical Sciences, University of Verona, Verona, Italy
| |
Collapse
|
290
|
Iron metabolism in thalassemia and sickle cell disease. Mediterr J Hematol Infect Dis 2009; 1:e2009006. [PMID: 21415988 PMCID: PMC3033158 DOI: 10.4084/mjhid.2009.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2009] [Accepted: 10/25/2009] [Indexed: 01/19/2023] Open
Abstract
THERE ARE TWO MAIN MECHANISMS BY WHICH IRON OVERLOAD DEVELOPS IN THALASSEMIAS: increased iron absorption due to ineffective erythropoiesis and blood transfusions. In nontransfused patients with severe thalassemia, abnormal dietary iron absorption increases body iron burden between 2 and 5 g per year. If regular transfusions are required, this doubles the rate of iron accumulation leading to earlier massive iron overload and iron-related damage. Iron metabolism largely differs between thalassemias and sickle cell disease, but chronic transfusion therapy partially normalize many of the disparities between the diseases, making iron overload an important issue to be considered in the management of patients with sickle cell disease too. The present review summarizes the actual knowledge on the regulatory pathways of iron homeostasis. In particular, the data presented indicate the inextricably link between erythropoiesis and iron metabolism and the key role of hepcidin in coordinating iron procurement according to erythropoietic requirement. The role of erythropoietin, hypoxia, erythroid-dependent soluble factors and iron in regulating hepcidin transcription are discussed as well as differences and similarities in iron homeostasis between thalassemia syndromes and sickle cell disease.
Collapse
|
291
|
Hansen SL, Trakooljul N, Liu HCS, Hicks JA, Ashwell MS, Spears JW. Proteins involved in iron metabolism in beef cattle are affected by copper deficiency in combination with high dietary manganese, but not by copper deficiency alone. J Anim Sci 2009; 88:275-83. [PMID: 19820055 DOI: 10.2527/jas.2009-1846] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A 493-d study was conducted to determine the impact of a severe, long-term Cu deficiency on Fe metabolism in beef cattle. Twenty-one Angus calves were born to cows receiving one of the following treatments: 1) adequate Cu (+Cu), 2) Cu deficient (-Cu), and 3) Cu deficient plus high Mn (-Cu+Mn). Copper deficiency was induced through the addition of 2 mg of Mo/kg of DM. After weaning, calves remained on the same treatment as their dam through growing (basal diet analyzed 7 mg of Cu/kg of DM) and finishing (analyzed 4 mg of Cu/kg of DM) phases. Plasma Fe concentrations were positively correlated (P < 0.01; r = 0.49) with plasma Cu concentrations. Liver Fe concentrations were greater (P = 0.05) in -Cu vs. +Cu calves and further increased (P = 0.07) in -Cu+Mn vs. -Cu calves. There was a negative relationship (P < 0.01; r = -0.31) between liver Cu and Fe concentrations. This relationship is likely explained by less (P < 0.01) plasma ceruloplasmin activity in -Cu than +Cu calves. As determined by real-time reverse transcription-PCR, relative expression of hepatic hepcidin was significantly downregulated (>1.5 fold) in -Cu compared with +Cu calves (P = 0.03), and expression of hepatic ferroportin tended (P = 0.09) to be downregulated in -Cu vs. +Cu. In the duodenum, ferritin tended to be upregulated in -Cu. vs. +Cu calves (P < 0.06). No significant change (P > 0.2) due to Cu-deficiency was detected at the transcriptional level for either isoform of divalent metal transporter 1 (DMT1 mRNA with or without an iron responsive element; dmt1IRE and dmt1-nonIRE) in liver or intestine. Duodenal expression of hephaestin and ferroportin protein was not affected by dietary treatment (P > 0.20). However, duodenal expression of DMT1 protein was less (P = 0.04) in -Cu+Mn steers vs. -Cu steers. In summary, Cu deficiency alone did affect hepatic gene expression of hepcidin and ferroportin, but did not affect duodenal expression of proteins important in Fe metabolism. However, the addition of 500 mg of Mn/kg of DM to a diet low in Cu reduced duodenal expression of the Fe import protein DMT1.
Collapse
Affiliation(s)
- S L Hansen
- Department of Animal Science, North Carolina State University, Raleigh 27695-7621, USA
| | | | | | | | | | | |
Collapse
|
292
|
Deeg HJ, Spaulding E, Shulman HM. Iron overload, hematopoietic cell transplantation, and graft-versus-host disease. Leuk Lymphoma 2009; 50:1566-72. [PMID: 19863335 PMCID: PMC2887728 DOI: 10.1080/10428190903144659] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Many patients who undergo hematopoietic cell transplantation (HCT) present with anemia and have received red blood cell transfusions before HCT. As a result, iron overload is frequent and appears to be particularly prominent in patients with myelodysplastic syndromes. There is evidence that peritransplant events contribute to further iron accumulation, although the mechanism that disrupts normal iron homeostasis remains to be determined. Recent studies suggest that iron overload, as determined by ferritin levels, a surrogate marker for iron, is a risk factor for increased non-relapse mortality after HCT. Iron overload is associated with an increased rate of infections, in particular with fungal organisms. Furthermore anecdotal data suggest that increased hepatic iron may mimic the clinical picture of (chronic) graft-versus-host-disease (GVHD). Whether excess iron contributes to GVHD and whether iron depletion, be it by phlebotomy or chelation, reduces the post-transplantation complication rate and improves transplant outcome is yet to be determined.
Collapse
Affiliation(s)
- H Joachim Deeg
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109-1024, USA.
| | | | | |
Collapse
|
293
|
Theil EC, Goss DJ. Living with iron (and oxygen): questions and answers about iron homeostasis. Chem Rev 2009; 109:4568-79. [PMID: 19824701 PMCID: PMC2919049 DOI: 10.1021/cr900052g] [Citation(s) in RCA: 178] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Elizabeth C Theil
- CHORI (Children's Hospital Oakland Research Institute), Oakland, California 94609, USA.
| | | |
Collapse
|
294
|
Yu Y, Kalinowski DS, Kovacevic Z, Siafakas AR, Jansson PJ, Stefani C, Lovejoy DB, Sharpe PC, Bernhardt PV, Richardson DR. Thiosemicarbazones from the old to new: iron chelators that are more than just ribonucleotide reductase inhibitors. J Med Chem 2009; 52:5271-94. [PMID: 19601577 DOI: 10.1021/jm900552r] [Citation(s) in RCA: 306] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Yu Yu
- Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales 2006, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
295
|
Are there common biochemical and molecular mechanisms controlling manganism and parkisonism. Neuromolecular Med 2009; 11:281-96. [PMID: 19757210 DOI: 10.1007/s12017-009-8088-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Accepted: 08/25/2009] [Indexed: 02/08/2023]
Abstract
Over the past several decades there has been considerable progress in our basic knowledge as to the mechanisms and factors regulating Mn toxicity. The disorder known as manganism is associated with the preferential accumulation of Mn in the globus pallidus of the basal ganglia which is generally considered to be the major and initial site of injury. Because the area of the CNS comprising the basal ganglia is very complex and dependent on the precise function and balance of several neurotransmitters, it is not surprising that symptoms of manganism often overlap with that of Parkinson's disease. The fact that neurological symptoms and onset of Mn toxicity are quite broad and can vary unpredictably probably reflects specific genetic variance of the physiological and biochemical makeup within the basal ganglia in any individual. Differences in response to Mn overexposure are, thus, likely due to underlying genetic variability which ultimately presents in deviations in both susceptibility as well as the characteristics of the neurological lesions and symptoms expressed. Although chronic exposure to Mn is not the initial causative agent provoking Parkinsonism, there is evidence suggesting that persistent exposure can predispose an individual to acquire dystonic movements associated with Parkinson's disease. As noted in this review, there appears to be common threads between the two disorders, as mutations in the genes, parkin and ATP13A2, associated with early onset of Parkinsonism, may also predispose an individual to develop Mn toxicity. Mutations in both genes appear to effect transport of Mn into the cell. These genetic difference coupled with additional environmental or nutritional factors must also be considered as contributing to the severity and onset of manganism.
Collapse
|
296
|
Grebenchtchikov N, Geurts-Moespot AJ, Kroot JJC, den Heijer M, Tjalsma H, Swinkels DW, Sweep FGJ. High-sensitive radioimmunoassay for human serum hepcidin. Br J Haematol 2009; 146:317-25. [DOI: 10.1111/j.1365-2141.2009.07758.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
297
|
Hansen SL, Trakooljul N, Liu HC, Moeser AJ, Spears JW. Iron transporters are differentially regulated by dietary iron, and modifications are associated with changes in manganese metabolism in young pigs. J Nutr 2009; 139:1474-9. [PMID: 19535423 DOI: 10.3945/jn.109.105866] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
To investigate the effects of dietary iron (Fe) on manganese (Mn) metabolism, 24 weaned pigs (21 d old) were blocked by litter and weight and randomly assigned to the following treatments: 1) no supplemental Fe [low Fe (L-Fe)]; 2) 100 mg supplemental Fe/kg [adequate Fe (A-Fe)]; and 3) 500 mg supplemental Fe/kg [high Fe (H-Fe)]. The basal diet was analyzed to contain 20 mg Fe/kg. Tissues were harvested after 32 d of feeding. Daily gain (least square means +/- SEM) was greater in A-Fe pigs (328.3 +/- 29.9 g/d) than in L-Fe pigs (224.0 +/- 11.2 g/d). Hemoglobin concentrations on d 32 were lower in L-Fe pigs (62 +/- 3.5 g/L) than in A-Fe pigs (128 +/- 5.6 g/L) and did not differ between pigs fed A-Fe and H-Fe (133 +/- 12.0 g/L). Liver Fe increased with increasing dietary Fe. Relative hepatic hepcidin expression was greater in pigs fed A-Fe and H-Fe than in those fed L-Fe. Relative expressions of duodenal divalent metal transporter 1 (DMT1) and solute carrier family 39 member 14 (ZIP14) were increased in L-Fe pigs compared with H-Fe pigs. Liver copper (Cu) was higher in L-Fe (0.56 +/- 0.04 mmol/kg) and H-Fe (0.58 +/- 0.04 mmol/kg) pigs than in A-Fe pigs (0.40 +/- 0.04 mmol/kg). Liver Mn was lower in H-Fe pigs (0.15 +/- 0.01 mmol/kg) than in A-Fe (0.23 +/- 0.02 mmol/kg) or L-Fe pigs (0.20 +/- 0.02 mmol/kg). Duodenal Mn concentrations were greater in L-Fe pigs than in A-Fe or H-Fe pigs. Fe deficiency in pigs increased gene expression of duodenal metal transporters (DMT1 and ZIP14) and supplementation with H-Fe reduced expression of DMT1 and ZIP14, which may have decreased absorption of Mn.
Collapse
Affiliation(s)
- Stephanie L Hansen
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
| | | | | | | | | |
Collapse
|
298
|
Lu Z, Nie G, Li Y, Soe-Lin S, Tao Y, Cao Y, Zhang Z, Liu N, Ponka P, Zhao B. Overexpression of mitochondrial ferritin sensitizes cells to oxidative stress via an iron-mediated mechanism. Antioxid Redox Signal 2009; 11:1791-803. [PMID: 19271990 DOI: 10.1089/ars.2008.2306] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Mitochondrial ferritin (MtFt) is a newly identified H-ferritin-like protein expressed only in mitochondria. Previous studies have shown that its overexpression markedly affects intracellular iron homeostasis and rescues defects caused by frataxin deficiency. To assess how MtFt exerts its function under oxidative stress conditions, MtFt overexpressing cells were treated with tert-butyl-hydroperoxide (tBHP), and the effects of MtFt expression on cell survival and iron homeostasis were examined. We found that MtFt expression was associated with decreased mitochondrial metabolic activity and reduced glutathione levels as well as a concomitant increase in reactive oxygen species levels and apoptosis. Moreover, mechanistic studies demonstrated that tBHP treatment led to a prolonged decrease in cytosolic ferritins levels in MtFt-expressing cells, while ferritin levels recovered to basal levels in control counterparts. tBHP treatment also resulted in elevated transferrin receptors, followed by more iron acquisition in MtFt expressing cells. The high molecular weight desferrioxamine, targeting to lysosomes, as well as the hydrophobic iron chelator salicylaldehyde isonicotinoyl hydrazone significantly attenuated tBHP-induced cell damage. In conclusion, the current study indicates that both the newly acquired iron from the extracellular environment and internal iron redistribution from ferritin degradation may be responsible for the increased sensitivity to oxidative stress in MtFt-expressing cells.
Collapse
Affiliation(s)
- Zhongbing Lu
- State Key Laboratory of Brain and Recognition Laboratory, Institute of Biophysics, Beijing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
299
|
Toll-like receptors mediate induction of hepcidin in mice infected with Borrelia burgdorferi. Blood 2009; 114:1913-8. [PMID: 19587376 DOI: 10.1182/blood-2009-03-209577] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Hepcidin is the major regulator of systemic iron homeostasis in mammals. Hepcidin is produced mainly by the liver and is increased by inflammation, leading to hypoferremia. We measured serum levels of bioactive hepcidin and its effects on serum iron levels in mice infected with Borrelia burgdorferi. Bioactive hepcidin was elevated in the serum of mice resulting in hypoferremia. Infected mice produced hepcidin in both liver and spleen. Both intact and sonicated B burgdorferi induced hepcidin expression in cultured mouse bone marrrow macrophages. Hepcidin production by cultured macrophages represents a primary transcriptional response stimulated by B burgdorferi and not a secondary consequence of cytokine elaboration. Hepcidin expression induced by B burgdorferi was mediated primarily by activation of Toll-like receptor 2.
Collapse
|
300
|
Zhang AS, Yang F, Wang J, Tsukamoto H, Enns CA. Hemojuvelin-neogenin interaction is required for bone morphogenic protein-4-induced hepcidin expression. J Biol Chem 2009; 284:22580-9. [PMID: 19564337 DOI: 10.1074/jbc.m109.027318] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Hemojuvelin (HJV) is a glycosylphosphatidylinositol-linked protein and binds both bone morphogenic proteins (BMPs) and neogenin. Cellular HJV acts as a BMP co-receptor to enhance the transcription of hepcidin, a key iron regulatory hormone secreted predominantly by liver hepatocytes. In this study we characterized the role of neogenin in HJV-regulated hepcidin expression. Both HJV and neogenin were expressed in liver hepatocytes. Knockdown of neogenin decreased BMP4-induced hepcidin mRNA levels by 16-fold in HJV-expressing HepG2 cells but only by about 2-fold in cells transfected with either empty vector or G99V mutant HJV that does not bind BMPs. Further studies indicated that disruption of the HJV-neogenin interaction is responsible for a marked suppression of hepcidin expression. Moreover, in vivo studies showed that hepatic hepcidin mRNA could be significantly suppressed by blocking the interaction of HJV with full-length neogenin with a soluble fragment of neogenin in mice. Together, these results suggest that the HJV-neogenin interaction is required for the BMP-mediated induction of hepcidin expression when HJV is expressed. Combined with our previous studies, our results support that hepatic neogenin possesses two functions, mediation of cellular HJV release, and stimulation of HJV-enhanced hepcidin expression.
Collapse
Affiliation(s)
- An-Sheng Zhang
- Department of Cell and Developmental Biology, Oregon Health and Science University, Portland, Oregon 97239, USA.
| | | | | | | | | |
Collapse
|