251
|
Xie A, Odate S, Chandramouly G, Scully R. H2AX post-translational modifications in the ionizing radiation response and homologous recombination. Cell Cycle 2010; 9:3602-10. [PMID: 20703100 PMCID: PMC2980696 DOI: 10.4161/cc.9.17.12884] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Accepted: 07/01/2010] [Indexed: 12/27/2022] Open
Abstract
Histone H2AX phosphorylation on a C-terminal serine residue to form "γ-H2AX" is a critical early event in the chromatin response to chromosomal DNA double strand breaks in eukaryotes. In mammalian cells, γ-H2AX is formed when H2AX is phosphorylated on serine 139 by ATM or by other DNA damage response kinases. H2AX prevents genomic instability and tumorigenesis, and supports class-switch recombination at immunoglobulin heavy chain loci in mammals. We showed previously that H2AX controls double strand break repair by homologous recombination (HR) between sister chromatids. The HR functions of H2AX are mediated by interaction of γ-H2AX with the chromatin-associated adaptor protein MDC1. H2AX is potentially subject to additional post-translational modifications associated with the DNA damage response and with other chromatin functions. To test this idea, we used mass spectroscopy to identify H2AX residues additional to serine 139 that are post-translationally modified following exposure of cells to ionizing radiation (IR) and identified several new IR-responsive residues of H2AX. We determined the impact of IR-responsive H2AX residues on cellular resistance to IR and on H2AX-dependent HR, and also analyzed the contribution to HR of other known or potential post-translationally modified residues of H2AX. The results suggest that the HR and IR-resistance functions of H2AX are controlled in large part by specific MDC1-interacting residues of H2AX, but that additional H2AX residues modulate these core functions of H2AX.
Collapse
Affiliation(s)
- Anyong Xie
- Department of Medicine, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | | | | | | |
Collapse
|
252
|
Capp JP, Boudsocq F, Bergoglio V, Trouche D, Cazaux C, Blanco L, Hoffmann JS, Canitrot Y. The R438W polymorphism of human DNA polymerase lambda triggers cellular sensitivity to camptothecin by compromising the homologous recombination repair pathway. Carcinogenesis 2010; 31:1742-7. [DOI: 10.1093/carcin/bgq166] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
253
|
Rahal EA, Henricksen LA, Li Y, Williams RS, Tainer JA, Dixon K. ATM regulates Mre11-dependent DNA end-degradation and microhomology-mediated end joining. Cell Cycle 2010; 9:2866-77. [PMID: 20647759 DOI: 10.4161/cc.9.14.12363] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The human disorder ataxia telangiectasia (AT), which is characterized by genetic instability and neurodegeneration, results from mutation of the ataxia telangiectasia mutated (ATM) kinase. The loss of ATM leads to cell cycle checkpoint deficiencies and other DNA damage signaling defects that do not fully explain all pathologies associated with A-T including neuronal loss. In addressing this enigma, we find here that ATM suppresses DNA double-strand break (DSB) repair by microhomology-mediated end joining (MMEJ). We show that ATM repression of DNA end-degradation is dependent on its kinase activities and that Mre11 is the major nuclease behind increased DNA end-degradation and MMEJ repair in A-T. Assessment of MMEJ by an in vivo reporter assay system reveals decreased levels of MMEJ repair in Mre11-knockdown cells and in cells treated with Mre11-nuclease inhibitor mirin. Structure-based modeling of Mre11 dimer engaging DNA ends suggests the 5' ends of a bridged DSB are juxtaposed such that DNA unwinding and 3'-5' exonuclease activities may collaborate to facilitate simultaneous pairing of extended 5' termini and exonucleolytic degradation of the 3' ends in MMEJ. Together our results provide an integrated understanding of ATM and Mre11 in MMEJ: ATM has a critical regulatory function in controlling DNA end-stability and error-prone DSB repair and Mre11 nuclease plays a major role in initiating MMEJ in mammalian cells. These functions of ATM and Mre11 could be particularly important in neuronal cells, which are post-mitotic and therefore depend on mechanisms other than homologous recombination between sister chromatids to repair DSBs.
Collapse
Affiliation(s)
- Elias A Rahal
- Department of Molecular & Cellular Biology, University of Arizona, Tucson, AZ, USA
| | | | | | | | | | | |
Collapse
|
254
|
Abstract
The tumor suppressor, breast cancer susceptibility gene 1 (BRCA1), plays an integral role in the maintenance of genome stability and, in particular, the cellular response to DNA damage. Here, the emerging role of BRCA1 in nonhomologous end-joining-mediated DNA repair following DNA damage will be reviewed, as well as the activation of apoptotic pathways. The control of these functions via DNA damage-induced BRCA1 shuttling will also be discussed, in particular BRCA1 shuttling induced by erlotinib and irradiation. Finally, the potential targeting of BRCA1 shuttling as a novel strategy to sensitize cells to DNA damage will be entertained.
Collapse
Affiliation(s)
- Eddy S Yang
- Department of Radiation Oncology, Vanderbilt Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37232-5671, USA
| | | |
Collapse
|
255
|
Chan SH, Yu AM, McVey M. Dual roles for DNA polymerase theta in alternative end-joining repair of double-strand breaks in Drosophila. PLoS Genet 2010; 6:e1001005. [PMID: 20617203 PMCID: PMC2895639 DOI: 10.1371/journal.pgen.1001005] [Citation(s) in RCA: 204] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Accepted: 05/27/2010] [Indexed: 11/25/2022] Open
Abstract
DNA double-strand breaks are repaired by multiple mechanisms that are roughly grouped into the categories of homology-directed repair and non-homologous end joining. End-joining repair can be further classified as either classical non-homologous end joining, which requires DNA ligase 4, or “alternative” end joining, which does not. Alternative end joining has been associated with genomic deletions and translocations, but its molecular mechanism(s) are largely uncharacterized. Here, we report that Drosophila melanogaster DNA polymerase theta (pol theta), encoded by the mus308 gene and previously implicated in DNA interstrand crosslink repair, plays a crucial role in DNA ligase 4-independent alternative end joining. In the absence of pol theta, end joining is impaired and residual repair often creates large deletions flanking the break site. Analysis of break repair junctions from flies with mus308 separation-of-function alleles suggests that pol theta promotes the use of long microhomologies during alternative end joining and increases the likelihood of complex insertion events. Our results establish pol theta as a key protein in alternative end joining in Drosophila and suggest a potential mechanistic link between alternative end joining and interstrand crosslink repair. DNA double-strand breaks, in which both strands of the DNA double helix are cut, must be recognized and accurately repaired in order to promote cell survival and prevent the accumulation of mutations. However, error-prone repair occasionally occurs, even when accurate repair is possible. We have investigated the genetic requirements of an error-prone break-repair mechanism called alternative end joining. We have previously shown that alternative end joining is frequently used in the fruit fly, Drosophila melanogaster. Here, we demonstrate that a fruit fly protein named DNA polymerase theta is a key player in this inaccurate repair mechanism. Genetic analysis suggests that polymerase theta may be important for two processes associated with alternative end joining: (1) annealing at short, complementary DNA sequences, and (2) DNA synthesis that creates small insertions at break-repair sites. In the absence of polymerase theta, a backup repair mechanism that frequently results in large chromosome deletions is revealed. Because DNA polymerase theta is highly expressed in many types of human cancers, our findings lay the groundwork for further investigations into how polymerase theta is involved in repair processes that may promote the development of cancer.
Collapse
Affiliation(s)
- Sze Ham Chan
- Department of Biology, Tufts University, Medford, Massachusetts, United States of America
| | - Amy Marie Yu
- Department of Biology, Tufts University, Medford, Massachusetts, United States of America
| | - Mitch McVey
- Department of Biology, Tufts University, Medford, Massachusetts, United States of America
- Program in Genetics, Tufts Sackler School of Graduate Biomedical Sciences, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
256
|
Rai R, Zheng H, He H, Luo Y, Multani A, Carpenter PB, Chang S. The function of classical and alternative non-homologous end-joining pathways in the fusion of dysfunctional telomeres. EMBO J 2010; 29:2598-610. [PMID: 20588252 DOI: 10.1038/emboj.2010.142] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Accepted: 06/08/2010] [Indexed: 01/01/2023] Open
Abstract
Repair of DNA double-stranded breaks (DSBs) is crucial for the maintenance of genome stability. DSBs are repaired by either error prone non-homologous end-joining (NHEJ) or error-free homologous recombination. NHEJ precedes either by a classic, Lig4-dependent process (C-NHEJ) or an alternative, Lig4-independent one (A-NHEJ). Dysfunctional telomeres arising either through natural attrition due to telomerase deficiency or by removal of telomere-binding proteins are recognized as DSBs. In this report, we studied which end-joining pathways are required to join dysfunctional telomeres. In agreement with earlier studies, depletion of Trf2 resulted in end-to-end chromosome fusions mediated by the C-NHEJ pathway. In contrast, removal of Tpp1-Pot1a/b initiated robust chromosome fusions that are mediated by A-NHEJ. C-NHEJ is also dispensable for the fusion of naturally shortened telomeres. Our results reveal that telomeres engage distinct DNA repair pathways depending on how they are rendered dysfunctional, and that A-NHEJ is a major pathway to process dysfunctional telomeres.
Collapse
Affiliation(s)
- Rekha Rai
- Department of Genetics, MD Anderson Cancer Center, Houston, TX, USA
| | | | | | | | | | | | | |
Collapse
|
257
|
Identification of rep-associated factors in herpes simplex virus type 1-induced adeno-associated virus type 2 replication compartments. J Virol 2010; 84:8871-87. [PMID: 20573815 DOI: 10.1128/jvi.00725-10] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Adeno-associated virus (AAV) is a human parvovirus that replicates only in cells coinfected with a helper virus, such as adenovirus or herpes simplex virus type 1 (HSV-1). We previously showed that nine HSV-1 factors are able to support AAV rep gene expression and genome replication. To elucidate the strategy of AAV replication in the presence of HSV-1, we undertook a proteomic analysis of cellular and HSV-1 factors associated with Rep proteins and thus potentially recruited within AAV replication compartments (AAV RCs). This study resulted in the identification of approximately 60 cellular proteins, among which factors involved in DNA and RNA metabolism represented the largest functional categories. Validation analyses indicated that the cellular DNA replication enzymes RPA, RFC, and PCNA were recruited within HSV-1-induced AAV RCs. Polymerase delta was not identified but subsequently was shown to colocalize with Rep within AAV RCs even in the presence of the HSV-1 polymerase complex. In addition, we found that AAV replication is associated with the recruitment of components of the Mre11/Rad50/Nbs1 complex, Ku70 and -86, and the mismatch repair proteins MSH2, -3, and -6. Finally, several HSV-1 factors were also found to be associated with Rep, including UL12. We demonstrated for the first time that this protein plays a role during AAV replication by enhancing the resolution of AAV replicative forms and AAV particle production. Altogether, these analyses provide the basis to understand how AAV adapts its replication strategy to the nuclear environment induced by the helper virus.
Collapse
|
258
|
Kobayashi J, Okui M, Asaithamby A, Burma S, Chen B, Tanimoto K, Matsuura S, Komatsu K, Chen DJ. WRN participates in translesion synthesis pathway through interaction with NBS1. Mech Ageing Dev 2010; 131:436-44. [PMID: 20600238 PMCID: PMC2911442 DOI: 10.1016/j.mad.2010.06.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Revised: 06/06/2010] [Accepted: 06/09/2010] [Indexed: 01/23/2023]
Abstract
Werner syndrome (WS), caused by mutation of the WRN gene, is an autosomal recessive disorder associated with premature aging and predisposition to cancer. WRN belongs to the RecQ DNA helicase family, members of which play a role in maintaining genomic stability. Here, we demonstrate that WRN rapidly forms discrete nuclear foci in an NBS1-dependent manner following DNA damage. NBS1 physically interacts with WRN through its FHA domain, which interaction is important for the phosphorylation of WRN. WRN subsequently forms DNA damage-dependent foci during the S phase, but not in the G1 phase. WS cells exhibit an increase in spontaneous focus formation of poleta and Rad18, which are important for translesion synthesis (TLS). WRN also interacts with PCNA in the absence of DNA damage, but DNA damage induces the dissociation of PCNA from WRN, leading to the ubiquitination of PCNA, which is essential for TLS. This dissociation correlates with ATM/NBS1-dependent degradation of WRN. Moreover, WS cells show constitutive ubiquitination of PCNA and interaction between PCNA and Rad18 E3 ligase in the absence of DNA damage. Taken together, these results indicate that WRN participates in the TLS pathway to prevent genomic instability in an ATM/NBS1-dependent manner.
Collapse
Affiliation(s)
- Junya Kobayashi
- Deapartment of Genome Repair Dynamics, Radiation Biology Center, Kyoto University, Kyoto 606-8501, Japan
| | - Michiyo Okui
- Biomedical Engineering Center, Toin University of Yokohama, Yokohama 225-8502, Japan
| | - Aroumougame Asaithamby
- Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390-9187, USA
| | - Sandeep Burma
- Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390-9187, USA
| | - Benjamin Chen
- Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390-9187, USA
| | - Keiji Tanimoto
- Department of Oral and Maxillofacial Radiology, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Shinya Matsuura
- Department of Radiation Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553, Japan
| | - Kenshi Komatsu
- Deapartment of Genome Repair Dynamics, Radiation Biology Center, Kyoto University, Kyoto 606-8501, Japan
| | - David J Chen
- Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390-9187, USA
| |
Collapse
|
259
|
Liu J, Majumdar A, Liu J, Thompson LH, Seidman MM. Sequence conversion by single strand oligonucleotide donors via non-homologous end joining in mammalian cells. J Biol Chem 2010; 285:23198-207. [PMID: 20489199 DOI: 10.1074/jbc.m110.123844] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Double strand breaks (DSBs) can be repaired by homology independent nonhomologous end joining (NHEJ) pathways involving proteins such as Ku70/80, DNAPKcs, Xrcc4/Ligase 4, and the Mre11/Rad50/Nbs1 (MRN) complex. DSBs can also be repaired by homology-dependent pathways (HDR), in which the MRN and CtIP nucleases produce single strand ends that engage homologous sequences either by strand invasion or strand annealing. The entry of ends into HDR pathways underlies protocols for genomic manipulation that combine site-specific DSBs with appropriate informational donors. Most strategies utilize long duplex donors that participate by strand invasion. Work in yeast indicates that single strand oligonucleotide (SSO) donors are also active, over considerable distance, via a single strand annealing pathway. We examined the activity of SSO donors in mammalian cells at DSBs induced either by a restriction nuclease or by a targeted interstrand cross-link. SSO donors were effective immediately adjacent to the break, but activity declined sharply beyond approximately 100 nucleotides. Overexpression of the resection nuclease CtIP increased the frequency of SSO-mediated sequence modulation distal to the break site, but had no effect on the activity of an SSO donor adjacent to the break. Genetic and in vivo competition experiments showed that sequence conversion by SSOs in the immediate vicinity of the break was not by strand invasion or strand annealing pathways. Instead these donors competed for ends that would have otherwise entered NHEJ pathways.
Collapse
Affiliation(s)
- Jia Liu
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA
| | | | | | | | | |
Collapse
|
260
|
Mansour WY, Rhein T, Dahm-Daphi J. The alternative end-joining pathway for repair of DNA double-strand breaks requires PARP1 but is not dependent upon microhomologies. Nucleic Acids Res 2010; 38:6065-77. [PMID: 20483915 PMCID: PMC2952854 DOI: 10.1093/nar/gkq387] [Citation(s) in RCA: 155] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Non-homologous end-joining (NHEJ), the major repair pathway for DNA double-strand breaks (DSB) in mammalian cells, employs a repertoire of core proteins, the recruitment of which to DSB-ends is Ku-dependent. Lack of either of the core components invariably leads to a repair deficiency. There has been evidence that an alternative end-joining operates in the absence of the core components. We used chromosomal reporter substrates to specifically monitor NHEJ of single I-SceI-induced-DSB for detailed comparison of classical and alternative end-joining. We show that rapid repair of both compatible and non-compatible ends require Ku-protein. In the absence of Ku, cells use a slow but efficient repair mode which experiences increasing sequence-loss with time after DSB induction. Chemical inhibition and PARP1-depletion demonstrated that the alternative end-joining in vivo is completely dependent upon functional PARP1. Furthermore, we show that the requirement for PARP1 depends on the absence of Ku but not on DNA-dependent protein kinase (DNA-PKcs). Extensive sequencing of repair junctions revealed that the alternative rejoining does not require long microhomologies. Together, we show that mammalian cells need Ku for rapid and conservative NHEJ. PARP1-dependent alternative route may partially rescue the deficient repair phenotype presumably at the expense of an enhanced mutation rate.
Collapse
Affiliation(s)
- Wael Y Mansour
- Laboratory of Radiobiology & Experimental Radiation Oncology, Department of Radiotherapy and Radiation Oncology, University Medical School Hamburg-Eppendorf, Martinistrasse 52, D-20246 Hamburg, Germany.
| | | | | |
Collapse
|
261
|
Yu AM, McVey M. Synthesis-dependent microhomology-mediated end joining accounts for multiple types of repair junctions. Nucleic Acids Res 2010; 38:5706-17. [PMID: 20460465 PMCID: PMC2943611 DOI: 10.1093/nar/gkq379] [Citation(s) in RCA: 156] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Ku or DNA ligase 4-independent alternative end joining (alt-EJ) repair of DNA double-strand breaks (DSBs) frequently correlates with increased junctional microhomology. However, alt-EJ also produces junctions without microhomology (apparent blunt joins), and the exact role of microhomology in both alt-EJ and classical non-homologous end joining (NHEJ) remains unclear. To better understand the degree to which alt-EJ depends on annealing at pre-existing microhomologies, we examined inaccurate repair of an I-SceI DSB lacking nearby microhomologies of greater than four nucleotides in Drosophila. Lig4 deficiency affected neither frequency nor length of junctional microhomology, but significantly increased insertion frequency. Many insertions appeared to be templated. Based on sequence analysis of repair junctions, we propose a model of synthesis-dependent microhomology-mediated end joining (SD-MMEJ), in which de novo synthesis by an accurate non-processive DNA polymerase creates microhomology. Repair junctions with apparent blunt joins, junctional microhomologies and short indels (deletion with insertion) are often considered to reflect different repair mechanisms. However, a majority of each type had structures consistent with the predictions of our SD-MMEJ model. This suggests that a single underlying mechanism could be responsible for all three repair product types. Genetic analysis indicates that SD-MMEJ is Ku70, Lig4 and Rad51-independent but impaired in mus308 (POLQ) mutants.
Collapse
Affiliation(s)
- Amy Marie Yu
- Department of Biology, Tufts University, Medford, MA 02155, USA
| | | |
Collapse
|
262
|
Bombarde O, Boby C, Gomez D, Frit P, Giraud-Panis MJ, Gilson E, Salles B, Calsou P. TRF2/RAP1 and DNA-PK mediate a double protection against joining at telomeric ends. EMBO J 2010; 29:1573-84. [PMID: 20407424 DOI: 10.1038/emboj.2010.49] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Accepted: 03/04/2010] [Indexed: 11/09/2022] Open
Abstract
DNA-dependent protein kinase (DNA-PK) is a double-strand breaks repair complex, the subunits of which (KU and DNA-PKcs) are paradoxically present at mammalian telomeres. Telomere fusion has been reported in cells lacking these proteins, raising two questions: how is DNA-PK prevented from initiating classical ligase IV (LIG4)-dependent non-homologous end-joining (C-NHEJ) at telomeres and how is the backup end-joining (EJ) activity (B-NHEJ) that operates at telomeres under conditions of C-NHEJ deficiency controlled? To address these questions, we have investigated EJ using plasmid substrates bearing double-stranded telomeric tracks and human cell extracts with variable C-NHEJ or B-NHEJ activity. We found that (1) TRF2/RAP1 prevents C-NHEJ-mediated end fusion at the initial DNA-PK end binding and activation step and (2) DNA-PK counteracts a potent LIG4-independent EJ mechanism. Thus, telomeres are protected against EJ by a lock with two bolts. These results account for observations with mammalian models and underline the importance of alternative non-classical EJ pathways for telomere fusions in cells.
Collapse
Affiliation(s)
- Oriane Bombarde
- Institut de Pharmacologie et de Biologie Structurale, Toulouse, France
| | | | | | | | | | | | | | | |
Collapse
|
263
|
O'Donovan PJ, Livingston DM. BRCA1 and BRCA2: breast/ovarian cancer susceptibility gene products and participants in DNA double-strand break repair. Carcinogenesis 2010; 31:961-7. [PMID: 20400477 DOI: 10.1093/carcin/bgq069] [Citation(s) in RCA: 202] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BRCA1 and BRCA2 are tumor suppressor genes, familial mutations in which account for approximately 5% of breast cancer cases in the USA annually. Germ line mutations in BRCA1 that truncate or inactivate the protein lead to a cumulative risk of breast cancer, by age 70, of up to 80%, whereas the risk of ovarian cancer is 30-40%. For germ line BRCA2 mutations, the breast cancer cumulative risk approaches 50%, whereas for ovarian cancers, it is between 10 and 15%. Both BRCA1 and BRCA2 are involved in maintaining genome integrity at least in part by engaging in DNA repair, cell cycle checkpoint control and even the regulation of key mitotic or cell division steps. Unsurprisingly, the complete loss of function of either protein leads to a dramatic increase in genomic instability. How they function in maintaining genome integrity after the onset of DNA damage will be the focus of this review.
Collapse
Affiliation(s)
- Peter J O'Donovan
- Department of Cancer Biology, Dana-Farber Cancer Institute, 44 Binney Street, Boston, MA 02115, USA
| | | |
Collapse
|
264
|
Abstract
Nonhomologous end-joining (NHEJ) inhibition at telomeres ensures that native chromosome ends do not fuse together. But the occurrence and consequences of rare telomere fusions are not well understood. It is notably unclear whether a telomere fusion could be processed to restore telomere ends. Here we address the behavior of individual dicentrics formed by telomere fusion in the yeast Saccharomyces cerevisiae. Our approach was to first stabilize and amplify fusions between two chromosomes by temporarily inactivating one centromere. Next we analyzed dicentric breakage following centromere reactivation. Unexpectedly, dicentrics often break at the telomere fusions during progression through mitosis, a process that restores the parental chromosomes. This unforeseen result suggests a rescue pathway able to process telomere fusions and to back up NHEJ inhibition at telomeres.
Collapse
Affiliation(s)
- Sabrina Pobiega
- Commissariat à l'Energie Atomique, Direction des Sciences du Vivant, Institut de Radiobiologie Cellulaire et Moléculaire, Service Instabilité Génétique Réparation et Recombinaison, Laboratoire Télmère et Réparation du Chromosome, Fontenay-aux-roses 92260, France
| | | |
Collapse
|
265
|
Bothmer A, Robbiani DF, Feldhahn N, Gazumyan A, Nussenzweig A, Nussenzweig MC. 53BP1 regulates DNA resection and the choice between classical and alternative end joining during class switch recombination. ACTA ACUST UNITED AC 2010; 207:855-65. [PMID: 20368578 PMCID: PMC2856023 DOI: 10.1084/jem.20100244] [Citation(s) in RCA: 229] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Class switch recombination (CSR) diversifies antibodies by joining highly repetitive DNA elements, which are separated by 60–200 kbp. CSR is initiated by activation-induced cytidine deaminase, an enzyme that produces multiple DNA double-strand breaks (DSBs) in switch regions. Switch regions are joined by a mechanism that requires an intact DNA damage response and classical or alternative nonhomologous end joining (A-NHEJ). Among the DNA damage response factors, 53BP1 has the most profound effect on CSR. We explore the role of 53BP1 in intrachromosomal DNA repair using I-SceI to introduce paired DSBs in the IgH locus. We find that the absence of 53BP1 results in an ataxia telangiectasia mutated–dependent increase in DNA end resection and that resected DNA is preferentially repaired by microhomology-mediated A-NHEJ. We propose that 53BP1 favors long-range CSR in part by protecting DNA ends against resection, which prevents A-NHEJ–dependent short-range rejoining of intra–switch region DSBs.
Collapse
Affiliation(s)
- Anne Bothmer
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | | | | | | | | | | |
Collapse
|
266
|
Nussenzweig A, Nussenzweig MC. Origin of chromosomal translocations in lymphoid cancer. Cell 2010; 141:27-38. [PMID: 20371343 PMCID: PMC2874895 DOI: 10.1016/j.cell.2010.03.016] [Citation(s) in RCA: 236] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Revised: 01/13/2010] [Accepted: 03/16/2010] [Indexed: 11/26/2022]
Abstract
Aberrant fusions between heterologous chromosomes are among the most prevalent cytogenetic abnormalities found in cancer cells. Oncogenic chromosomal translocations provide cells with a proliferative or survival advantage. They may either initiate transformation or be acquired secondarily as a result of genomic instability. Here, we highlight recent advances toward understanding the origin of chromosomal translocations in incipient lymphoid cancers and how tumor-suppressive pathways normally limit the frequency of these aberrant recombination events. Deciphering the mechanisms that mediate chromosomal fusions will open new avenues for developing therapeutic strategies aimed at eliminating lesions that lead to the initiation, maintenance, and progression of cancer.
Collapse
Affiliation(s)
- André Nussenzweig
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Michel C. Nussenzweig
- Laboratories of Molecular Immunology, the Rockefeller University and Howard Hughes Medical Institute, New York, New York 10065, USA
| |
Collapse
|
267
|
Rupnik A, Lowndes NF, Grenon M. MRN and the race to the break. Chromosoma 2010; 119:115-35. [PMID: 19862546 DOI: 10.1007/s00412-009-0242-4] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Revised: 09/12/2009] [Accepted: 09/21/2009] [Indexed: 10/20/2022]
Abstract
In all living cells, DNA is constantly threatened by both endogenous and exogenous agents. In order to protect genetic information, all cells have developed a sophisticated network of proteins, which constantly monitor genomic integrity. This network, termed the DNA damage response, senses and signals the presence of DNA damage to effect numerous biological responses, including DNA repair, transient cell cycle arrests ("checkpoints") and apoptosis. The MRN complex (MRX in yeast), composed of Mre11, Rad50 and Nbs1 (Xrs2), is a key component of the immediate early response to DNA damage, involved in a cross-talk between the repair and checkpoint machinery. Using its ability to bind DNA ends, it is ideally placed to sense and signal the presence of double strand breaks and plays an important role in DNA repair and cellular survival. Here, we summarise recent observation on MRN structure, function, regulation and emerging mechanisms by which the MRN nano-machinery protects genomic integrity. Finally, we discuss the biological significance of the unique MRN structure and summarise the emerging sequence of early events of the response to double strand breaks orchestrated by the MRN complex.
Collapse
Affiliation(s)
- Agnieszka Rupnik
- Centre for Chromosome Biology, School of Natural Science, National University of Ireland Galway, University Road, Galway, Ireland
| | | | | |
Collapse
|
268
|
Affiliation(s)
- Michael R. Lieber
- USC Norris Cancer Ctr., University of Southern California, Los Angeles, CA 90089-9176
| |
Collapse
|
269
|
Fattah F, Lee EH, Weisensel N, Wang Y, Lichter N, Hendrickson EA. Ku regulates the non-homologous end joining pathway choice of DNA double-strand break repair in human somatic cells. PLoS Genet 2010; 6:e1000855. [PMID: 20195511 PMCID: PMC2829059 DOI: 10.1371/journal.pgen.1000855] [Citation(s) in RCA: 185] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Accepted: 01/23/2010] [Indexed: 12/20/2022] Open
Abstract
The repair of DNA double-strand breaks (DSBs) is critical for the maintenance of genomic integrity and viability for all organisms. Mammals have evolved at least two genetically discrete ways to mediate DNA DSB repair: homologous recombination (HR) and non-homologous end joining (NHEJ). In mammalian cells, most DSBs are preferentially repaired by NHEJ. Recent work has demonstrated that NHEJ consists of at least two sub-pathways-the main Ku heterodimer-dependent or "classic" NHEJ (C-NHEJ) pathway and an "alternative" NHEJ (A-NHEJ) pathway, which usually generates microhomology-mediated signatures at repair junctions. In our study, recombinant adeno-associated virus knockout vectors were utilized to construct a series of isogenic human somatic cell lines deficient in the core C-NHEJ factors (Ku, DNA-PK(cs), XLF, and LIGIV), and the resulting cell lines were characterized for their ability to carry out DNA DSB repair. The absence of DNA-PK(cs), XLF, or LIGIV resulted in cell lines that were profoundly impaired in DNA DSB repair activity. Unexpectedly, Ku86-null cells showed wild-type levels of DNA DSB repair activity that was dominated by microhomology joining events indicative of A-NHEJ. Importantly, A-NHEJ DNA DSB repair activity could also be efficiently de-repressed in LIGIV-null and DNA-PK(cs)-null cells by subsequently reducing the level of Ku70. These studies demonstrate that in human cells C-NHEJ is the major DNA DSB repair pathway and they show that Ku is the critical C-NHEJ factor that regulates DNA NHEJ DSB pathway choice.
Collapse
Affiliation(s)
- Farjana Fattah
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Eu Han Lee
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Natalie Weisensel
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Yongbao Wang
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Natalie Lichter
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Eric A. Hendrickson
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
270
|
Boboila C, Yan C, Wesemann DR, Jankovic M, Wang JH, Manis J, Nussenzweig A, Nussenzweig M, Alt FW. Alternative end-joining catalyzes class switch recombination in the absence of both Ku70 and DNA ligase 4. J Exp Med 2010; 207:417-27. [PMID: 20142431 PMCID: PMC2822597 DOI: 10.1084/jem.20092449] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Accepted: 01/11/2010] [Indexed: 11/04/2022] Open
Abstract
The classical nonhomologous end-joining (C-NHEJ) DNA double-strand break (DSB) repair pathway employs the Ku70/80 complex (Ku) for DSB recognition and the XRCC4/DNA ligase 4 (Lig4) complex for ligation. During IgH class switch recombination (CSR) in B lymphocytes, switch (S) region DSBs are joined by C-NHEJ to form junctions either with short microhomologies (MHs; "MH-mediated" joins) or no homologies ("direct" joins). In the absence of XRCC4 or Lig4, substantial CSR occurs via "alternative" end-joining (A-EJ) that generates largely MH-mediated joins. Because upstream C-NHEJ components remain in XRCC4- or Lig4-deficient B cells, residual CSR might be catalyzed by C-NHEJ using a different ligase. To address this, we have assayed for CSR in B cells deficient for Ku70, Ku80, or both Ku70 and Lig4. Ku70- or Ku80-deficient B cells have reduced, but still substantial, CSR. Strikingly, B cells deficient for both Ku plus Lig4 undergo CSR similarly to Ku-deficient B cells, firmly demonstrating that an A-EJ pathway distinct from C-NHEJ can catalyze CSR end-joining. Ku-deficient or Ku- plus Lig4-deficient B cells are also biased toward MH-mediated CSR joins; but, in contrast to XRCC4- or Lig4-deficient B cells, generate substantial numbers of direct CSR joins. Our findings suggest that more than one form of A-EJ can function in CSR.
Collapse
Affiliation(s)
- Cristian Boboila
- Department of Genetics and Department of Pathology, Harvard Medical School, Boston, MA 02115
- The Children’s Hospital, Immune Disease Institute, Howard Hughes Medical Institute, Division of Experimental Pathology, Pathology Department, Beth Israel Deaconess Medical Center, Boston, MA 02115
| | - Catherine Yan
- The Children’s Hospital, Immune Disease Institute, Howard Hughes Medical Institute, Division of Experimental Pathology, Pathology Department, Beth Israel Deaconess Medical Center, Boston, MA 02115
| | - Duane R. Wesemann
- Department of Genetics and Department of Pathology, Harvard Medical School, Boston, MA 02115
- The Children’s Hospital, Immune Disease Institute, Howard Hughes Medical Institute, Division of Experimental Pathology, Pathology Department, Beth Israel Deaconess Medical Center, Boston, MA 02115
- Division of Rheumatology, Allergy and Immunology, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115
| | - Mila Jankovic
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065
| | - Jing H. Wang
- Department of Genetics and Department of Pathology, Harvard Medical School, Boston, MA 02115
- The Children’s Hospital, Immune Disease Institute, Howard Hughes Medical Institute, Division of Experimental Pathology, Pathology Department, Beth Israel Deaconess Medical Center, Boston, MA 02115
| | - John Manis
- Department of Genetics and Department of Pathology, Harvard Medical School, Boston, MA 02115
- The Children’s Hospital, Immune Disease Institute, Howard Hughes Medical Institute, Division of Experimental Pathology, Pathology Department, Beth Israel Deaconess Medical Center, Boston, MA 02115
| | - Andre Nussenzweig
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Michel Nussenzweig
- The Children’s Hospital, Immune Disease Institute, Howard Hughes Medical Institute, Division of Experimental Pathology, Pathology Department, Beth Israel Deaconess Medical Center, Boston, MA 02115
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065
| | - Frederick W. Alt
- Department of Genetics and Department of Pathology, Harvard Medical School, Boston, MA 02115
- The Children’s Hospital, Immune Disease Institute, Howard Hughes Medical Institute, Division of Experimental Pathology, Pathology Department, Beth Israel Deaconess Medical Center, Boston, MA 02115
| |
Collapse
|
271
|
Lee JH, Goodarzi AA, Jeggo PA, Paull TT. 53BP1 promotes ATM activity through direct interactions with the MRN complex. EMBO J 2010; 29:574-85. [PMID: 20010693 PMCID: PMC2830698 DOI: 10.1038/emboj.2009.372] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Accepted: 11/11/2009] [Indexed: 12/27/2022] Open
Abstract
The Mre11/Rad50/Nbs1 (MRN) complex has a central function in facilitating activation of the ATM protein kinase at sites of DNA double-strand breaks (DSBs). However, several other factors are also required in human cells for efficient signalling through MRN and ATM, including the tumour suppressor proteins p53-binding protein 1 (53BP1) and BRCA1. In this study, we investigate the functions of these mediator proteins in ATM activation and find that the presence of 53BP1 and BRCA1 can amplify the effects of MRN when interactions between MRN and ATM are compromised. This effect is dependent on a direct interaction between MRN and the tandem breast cancer carboxy-terminal (BRCT) repeats in 53BP1, and is accompanied by hyper-phosphorylation of both Nbs1 and 53BP1. We also find that the BRCT domains of 53BP1 affect the overall structure of 53BP1 multimers and that this structure is important for promoting ATM phosphorylation of substrates as well as for the repair of DNA DSBs in mammalian cells.
Collapse
Affiliation(s)
- Ji-Hoon Lee
- Howard Hughes Medical Institute and the Department of Molecular Genetics and Microbiology, The University of Texas at Austin, Austin, TX, USA
| | - Aaron A Goodarzi
- The Genome Damage and Stability Centre, University of Sussex, East Sussex, UK
| | - Penny A Jeggo
- The Genome Damage and Stability Centre, University of Sussex, East Sussex, UK
| | - Tanya T Paull
- Howard Hughes Medical Institute and the Department of Molecular Genetics and Microbiology, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
272
|
Zhang Y, Gostissa M, Hildebrand DG, Becker MS, Boboila C, Chiarle R, Lewis S, Alt FW. The role of mechanistic factors in promoting chromosomal translocations found in lymphoid and other cancers. Adv Immunol 2010; 106:93-133. [PMID: 20728025 PMCID: PMC3073861 DOI: 10.1016/s0065-2776(10)06004-9] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Recurrent chromosomal abnormalities, especially chromosomal translocations, are strongly associated with certain subtypes of leukemia, lymphoma and solid tumors. The appearance of particular translocations or associated genomic alterations can be important indicators of disease prognosis, and in some cases, certain translocations may indicate appropriate therapy protocols. To date, most of our knowledge about chromosomal translocations has derived from characterization of the highly selected recurrent translocations found in certain cancers. Until recently, mechanisms that promote or suppress chromosomal translocations, in particular, those responsible for their initiation, have not been addressed. For translocations to occur, two distinct chromosomal loci must be broken, brought together (synapsed) and joined. Here, we discuss recent findings on processes and pathways that influence the initiation of chromosomal translocations, including the generation fo DNA double strand breaks (DSBs) by general factors or in the context of the Lymphocyte-specific V(D)J and IgH class-switch recombination processes. We also discuss the role of spatial proximity of DSBs in the interphase nucleus with respect to how DSBs on different chromosomes are justaposed for joining. In addition, we discuss the DNA DSB response and its role in recognizing and tethering chromosomal DSBs to prevent translocations, as well as potential roles of the classical and alternative DSB end-joining pathways in suppressing or promoting translocations. Finally, we discuss the potential roles of long range regulatory elements, such as the 3'IgH enhancer complex, in promoting the expression of certain translocations that are frequent in lymphomas and, thereby, contributing to their frequent appearance in tumors.
Collapse
Affiliation(s)
- Yu Zhang
- Howard Hughes Medical Institute, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | |
Collapse
|
273
|
Stavnezer J, Björkman A, Du L, Cagigi A, Pan-Hammarström Q. Mapping of Switch Recombination Junctions, a Tool for Studying DNA Repair Pathways during Immunoglobulin Class Switching. Adv Immunol 2010; 108:45-109. [DOI: 10.1016/b978-0-12-380995-7.00003-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
274
|
Effect of telomere proximity on telomere position effect, chromosome healing, and sensitivity to DNA double-strand breaks in a human tumor cell line. Mol Cell Biol 2009; 30:578-89. [PMID: 19933847 DOI: 10.1128/mcb.01137-09] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ends of chromosomes, called telomeres, are composed of a DNA repeat sequence and associated proteins, which prevent DNA degradation and chromosome fusion. We have previously used plasmid sequences integrated adjacent to a telomere to demonstrate that mammalian telomeres suppress gene expression, called telomere position effect (TPE). We have also shown that subtelomeric regions are highly sensitive to double-strand breaks, leading to chromosome instability, and that this instability can be prevented by the addition of a new telomere to the break, a process called chromosome healing. We have now targeted the same plasmid sequences to a site 100 kb from a telomere in a human carcinoma cell line to address the effect of telomere proximity on telomere position effect, chromosome healing, and sensitivity to double-strand breaks. The results demonstrate a substantial decrease in TPE 100 kb from the telomere, demonstrating that TPE is very limited in range. Chromosome healing was also diminished 100 kb from the telomere, consistent with our model that chromosome healing serves as a repair process for restoring lost telomeres. Conversely, the region 100 kb from the telomere was highly sensitive to double-strand breaks, demonstrating that the sensitive region is a relatively large target for ionizing radiation-induced chromosome instability.
Collapse
|
275
|
Zhuang J, Jiang G, Willers H, Xia F. Exonuclease function of human Mre11 promotes deletional nonhomologous end joining. J Biol Chem 2009; 284:30565-73. [PMID: 19744924 PMCID: PMC2781611 DOI: 10.1074/jbc.m109.059444] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Revised: 09/09/2009] [Indexed: 11/06/2022] Open
Abstract
DNA double-stranded breaks (DSBs) are lethal if not repaired and are highly mutagenic if misrepaired. Nonhomologous end joining (NHEJ) is one of the major DSB repair pathways and can rejoin the DSB ends either precisely or with mistakes. Recent evidence suggests the existence of two NHEJ subpathways: conservative NHEJ (C-NHEJ), which does not require microhomology and can join ends precisely; and deletional NHEJ (D-NHEJ), which utilizes microhomology to join the ends with small deletions. Little is known about how these NHEJ subpathways are regulated. Mre11 has been implicated in DNA damage response, thus we investigated whether Mre11 function also extended to NHEJ. We utilized an intrachromosomal NHEJ substrate in which DSBs are generated by the I-SceI to address this question. The cohesive ends are fully complementary and were either repaired by C-NHEJ or D-NHEJ with similar efficiency. We found that disruption of Mre11 by RNA interference in human cells led to a 10-fold decrease in the frequency of D-NHEJ compared with cells with functional Mre11. Interestingly, C-NHEJ was not affected by Mre11 status. Expression of wild type but not exonuclease-defective Mre11 mutants was able to rescue D-NHEJ in Mre11-deficient cells. Further mutational analysis suggested that additional mechanisms associated with methylation of Mre11 at the C-terminal glycine-arginine-rich domain contributed to the promotion of D-NHEJ by Mre11. This study provides new insights into the mechanisms by which Mre11 affects the accuracy of DSB end joining specifically through control of the D-NHEJ subpathway, thus illustrating the complexity of the Mre11 role in maintaining genomic stability.
Collapse
Affiliation(s)
- Jing Zhuang
- From the
Departments of Radiation Oncology and Cancer Biology, Vanderbilt University School of Medicine, Vanderbilt Ingram Cancer Center, Nashville, Tennessee 37232-5671 and
| | - Guochun Jiang
- From the
Departments of Radiation Oncology and Cancer Biology, Vanderbilt University School of Medicine, Vanderbilt Ingram Cancer Center, Nashville, Tennessee 37232-5671 and
| | - Henning Willers
- the
Laboratory of Cellular and Molecular Radiation Oncology, Massachusetts General Hospital Cancer Center, Boston, Massachusetts 02114
| | - Fen Xia
- From the
Departments of Radiation Oncology and Cancer Biology, Vanderbilt University School of Medicine, Vanderbilt Ingram Cancer Center, Nashville, Tennessee 37232-5671 and
| |
Collapse
|
276
|
Huen MSY, Chen J. Assembly of checkpoint and repair machineries at DNA damage sites. Trends Biochem Sci 2009; 35:101-8. [PMID: 19875294 DOI: 10.1016/j.tibs.2009.09.001] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Revised: 08/28/2009] [Accepted: 09/02/2009] [Indexed: 12/31/2022]
Abstract
The remarkably coordinated nature of the DNA damage response pathway relies on numerous mechanisms that facilitate the assembly of checkpoint and repair factors at DNA breaks. Post-translational modifications on and around chromatin have critical roles in allowing the timely and sequential assembly of DNA damage responsive elements at the vicinity of DNA breaks. Notably, recent advances in forward genetics and proteomics-based approaches have enabled the identification of novel components within the DNA damage response pathway, providing a more comprehensive picture of the molecular network that assists in the detection and propagation of DNA damage signals.
Collapse
Affiliation(s)
- Michael S Y Huen
- Department of Anatomy, Centre for Cancer Research, University of Hong Kong, L1-59, Laboratory Block, 21 Sassoon Road, Hong Kong SAR
| | | |
Collapse
|
277
|
Bennardo N, Gunn A, Cheng A, Hasty P, Stark JM. Limiting the persistence of a chromosome break diminishes its mutagenic potential. PLoS Genet 2009; 5:e1000683. [PMID: 19834534 PMCID: PMC2752804 DOI: 10.1371/journal.pgen.1000683] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Accepted: 09/15/2009] [Indexed: 01/05/2023] Open
Abstract
To characterize the repair pathways of chromosome double-strand breaks (DSBs), one approach involves monitoring the repair of site-specific DSBs generated by rare-cutting endonucleases, such as I-SceI. Using this method, we first describe the roles of Ercc1, Msh2, Nbs1, Xrcc4, and Brca1 in a set of distinct repair events. Subsequently, we considered that the outcome of such assays could be influenced by the persistent nature of I-SceI-induced DSBs, in that end-joining (EJ) products that restore the I-SceI site are prone to repeated cutting. To address this aspect of repair, we modified I-SceI-induced DSBs by co-expressing I-SceI with a non-processive 3′ exonuclease, Trex2, which we predicted would cause partial degradation of I-SceI 3′ overhangs. We find that Trex2 expression facilitates the formation of I-SceI-resistant EJ products, which reduces the potential for repeated cutting by I-SceI and, hence, limits the persistence of I-SceI-induced DSBs. Using this approach, we find that Trex2 expression causes a significant reduction in the frequency of repair pathways that result in substantial deletion mutations: EJ between distal ends of two tandem DSBs, single-strand annealing, and alternative-NHEJ. In contrast, Trex2 expression does not inhibit homology-directed repair. These results indicate that limiting the persistence of a DSB causes a reduction in the frequency of repair pathways that lead to significant genetic loss. Furthermore, we find that individual genetic factors play distinct roles during repair of non-cohesive DSB ends that are generated via co-expression of I-SceI with Trex2. A deleterious lesion in DNA is a break of both strands, or a chromosome double-strand break (DSB). DSBs can arise during normal cellular metabolism, but are also a consequence of many forms of cancer therapy. If DSBs are not repaired prior to cell division, entire segments of a chromosome can be lost. Several pathways ensure that DSBs are repaired, though some pathways are prone to causing mutations and/or chromosomal rearrangements, each of which can contribute to cancer development. In the first part of this study, we describe the roles of individual genetic factors in distinct repair pathways of DSBs generated by the I-SceI endonuclease. From these studies, we find that some factors can function in multiple repair pathways. In the second part of this study, we present a method for partially degrading the cohesive DSB overhangs that are generated by I-SceI, which we find facilitates repair products that are not prone to being re-cut by the endonuclease. As a consequence, we have limited the persistence of such breaks, which we find causes a reduction in repair pathways that lead to significant genetic loss. As well, we use this method to characterize the role of individual genetic factors during the repair of non-cohesive DSB ends.
Collapse
Affiliation(s)
- Nicole Bennardo
- Department of Cancer Biology, Division of Radiation Biology, Beckman Research Institute of the City of Hope, Duarte, California, USA
| | | | | | | | | |
Collapse
|
278
|
Abstract
Loss of shelterin components TRF2 or POT1a-TPP1 complex from the chromosome end triggers DNA damage response (DDR) and aberrant DNA repair events. In a recent Nature paper, Chang and colleagues reported that the DNA repair protein Mre11 contributes to multiple events at the uncapped telomere, including ataxia telangiectasia-mutated (ATM)-dependent signaling, processing of the telomeric G-tail and homologous recombination (HR).
Collapse
Affiliation(s)
- Yun Wu
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| | | |
Collapse
|
279
|
Abstract
DNA chromosomal DSBs (double-strand breaks) are potentially hazardous DNA lesions, and their accurate repair is essential for the successful maintenance and propagation of genetic information. Two major pathways have evolved to repair DSBs: HR (homologous recombination) and NHEJ (non-homologous end-joining). Depending on the context in which the break is encountered, HR and NHEJ may either compete or co-operate to fix DSBs in eukaryotic cells. Defects in either pathway are strongly associated with human disease, including immunodeficiency and cancer predisposition. Here we review the current knowledge of how NHEJ and HR are controlled in somatic mammalian cells, and discuss the role of the chromatin context in regulating each pathway. We also review evidence for both co-operation and competition between the two pathways.
Collapse
|
280
|
Zha S, Boboila C, Alt FW. Mre11: roles in DNA repair beyond homologous recombination. Nat Struct Mol Biol 2009; 16:798-800. [PMID: 19654615 DOI: 10.1038/nsmb0809-798] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
281
|
Dinkelmann M, Spehalski E, Stoneham T, Buis J, Wu Y, Sekiguchi JM, Ferguson DO. Multiple functions of MRN in end-joining pathways during isotype class switching. Nat Struct Mol Biol 2009; 16:808-13. [PMID: 19633670 PMCID: PMC2721910 DOI: 10.1038/nsmb.1639] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2009] [Accepted: 05/28/2009] [Indexed: 02/08/2023]
Abstract
The Mre11-Rad50-NBS1 (MRN) complex has many roles in response to DNA double-strand breaks, but its functions in repair by nonhomologous end joining (NHEJ) pathways are poorly understood. We have investigated requirements for MRN in class switch recombination (CSR), a programmed DNA rearrangement in B lymphocytes that requires NHEJ. To this end, we have engineered mice that lack the entire MRN complex in B lymphocytes or that possess an intact complex that harbors mutant Mre11 lacking DNA nuclease activities. MRN deficiency confers a strong defect in CSR, affecting both the classic and the alternative NHEJ pathways. In contrast, absence of Mre11 nuclease activities causes a milder phenotype, revealing a separation of function within the complex. We propose a model in which MRN stabilizes distant breaks and processes DNA termini to facilitate repair by both the classical and alternative NHEJ pathways.
Collapse
Affiliation(s)
- Maria Dinkelmann
- Department of Pathology, The University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Elizabeth Spehalski
- Department of Pathology, The University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Trina Stoneham
- Department of Pathology, The University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Jeffrey Buis
- Department of Pathology, The University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Yipin Wu
- Department of Pathology, The University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - JoAnn M. Sekiguchi
- Departments of Internal Medicine and Human Genetics, The University of Michigan, Ann Arbor, MI 48109
| | - David O. Ferguson
- Department of Pathology, The University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
282
|
Rass E, Grabarz A, Plo I, Gautier J, Bertrand P, Lopez BS. Role of Mre11 in chromosomal nonhomologous end joining in mammalian cells. Nat Struct Mol Biol 2009; 16:819-24. [PMID: 19633668 DOI: 10.1038/nsmb.1641] [Citation(s) in RCA: 242] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2009] [Accepted: 06/18/2009] [Indexed: 12/18/2022]
Abstract
Here we have used an intrachromosomal substrate to monitor the end joining of distant ends, which leads to DNA rearrangements in mammalian cells. We show that silencing Mre11 reduces the efficiency of nonhomologous end joining (NHEJ), affecting both the canonical and alternative pathways, partly in a manner that is independent of the ataxia-telangiectasia mutated kinase (ATM). Silencing of Rad50 or CtIP decreases end-joining efficiency in the same pathway as Mre11. In cells defective for Xrcc4, the MRE11-RAD50-NBS1 (MRN) complex inhibitor MIRIN decreases end-joining frequencies, demonstrating a role for MRN in alternative NHEJ. Consistently, MIRIN sensitizes both complemented and NHEJ-defective cells to ionizing radiation. Conversely, overexpression of Mre11 stimulates the resection of single-stranded DNA and increases alternative end joining, through a mechanism that requires Mre11's nuclease activity, but in an ATM-independent manner. These data demonstrate that, in addition to its role in ATM activation, Mre11 can favor alternative NHEJ through its nuclease activity.
Collapse
Affiliation(s)
- Emilie Rass
- Unité mixte de recherche 217, Centre National de la Recherche Scientifique-Commissariat à l'Energie Atomique, Equipe labellisée LA LIGUE 2008, Institut de Radiobiologie Cellulaire et Moléculaire, Fontenay-aux-Roses, France
| | | | | | | | | | | |
Collapse
|