251
|
Wardell SJT, Gauthier J, Martin LW, Potvin M, Brockway B, Levesque RC, Lamont IL. Genome evolution drives transcriptomic and phenotypic adaptation in Pseudomonas aeruginosa during 20 years of infection. Microb Genom 2021; 7. [PMID: 34826267 PMCID: PMC8743555 DOI: 10.1099/mgen.0.000681] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The opportunistic pathogen Pseudomonas aeruginosa chronically infects the lungs of patients with cystic fibrosis (CF). During infection the bacteria evolve and adapt to the lung environment. Here we use genomic, transcriptomic and phenotypic approaches to compare multiple isolates of P. aeruginosa collected more than 20 years apart during a chronic infection in a CF patient. Complete genome sequencing of the isolates, using short- and long-read technologies, showed that a genetic bottleneck occurred during infection and was followed by diversification of the bacteria. A 125 kb deletion, an 0.9 Mb inversion and hundreds of smaller mutations occurred during evolution of the bacteria in the lung, with an average rate of 17 mutations per year. Many of the mutated genes are associated with infection or antibiotic resistance. RNA sequencing was used to compare the transcriptomes of an earlier and a later isolate. Substantial reprogramming of the transcriptional network had occurred, affecting multiple genes that contribute to continuing infection. Changes included greatly reduced expression of flagellar machinery and increased expression of genes for nutrient acquisition and biofilm formation, as well as altered expression of a large number of genes of unknown function. Phenotypic studies showed that most later isolates had increased cell adherence and antibiotic resistance, reduced motility, and reduced production of pyoverdine (an iron-scavenging siderophore), consistent with genomic and transcriptomic data. The approach of integrating genomic, transcriptomic and phenotypic analyses reveals, and helps to explain, the plethora of changes that P. aeruginosa undergoes to enable it to adapt to the environment of the CF lung during a chronic infection.
Collapse
Affiliation(s)
| | - Jeff Gauthier
- Institut de biologie intégrative et des Systèmes, Université Laval, Québec, Canada
| | - Lois W Martin
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Marianne Potvin
- Institut de biologie intégrative et des Systèmes, Université Laval, Québec, Canada
| | - Ben Brockway
- Department of Medicine, University of Otago, Dunedin, New Zealand
| | - Roger C Levesque
- Institut de biologie intégrative et des Systèmes, Université Laval, Québec, Canada
| | - Iain L Lamont
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| |
Collapse
|
252
|
Belardinelli JM, Li W, Avanzi C, Angala SK, Lian E, Wiersma CJ, Palčeková Z, Martin KH, Angala B, de Moura VCN, Kerns C, Jones V, Gonzalez-Juarrero M, Davidson RM, Nick JA, Borlee BR, Jackson M. Unique Features of Mycobacterium abscessus Biofilms Formed in Synthetic Cystic Fibrosis Medium. Front Microbiol 2021; 12:743126. [PMID: 34777289 PMCID: PMC8586431 DOI: 10.3389/fmicb.2021.743126] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 09/28/2021] [Indexed: 12/04/2022] Open
Abstract
Characterizing Mycobacterium abscessus complex (MABSC) biofilms under host-relevant conditions is essential to the design of informed therapeutic strategies targeted to this persistent, drug-tolerant, population of extracellular bacilli. Using synthetic cystic fibrosis medium (SCFM) which we previously reported to closely mimic the conditions encountered by MABSC in actual cystic fibrosis (CF) sputum and a new model of biofilm formation, we show that MABSC biofilms formed under these conditions are substantially different from previously reported biofilms grown in standard laboratory media in terms of their composition, gene expression profile and stress response. Extracellular DNA (eDNA), mannose-and glucose-containing glycans and phospholipids, rather than proteins and mycolic acids, were revealed as key extracellular matrix (ECM) constituents holding clusters of bacilli together. None of the environmental cues previously reported to impact biofilm development had any significant effect on SCFM-grown biofilms, most likely reflecting the fact that SCFM is a nutrient-rich environment in which MABSC finds a variety of ways of coping with stresses. Finally, molecular determinants were identified that may represent attractive new targets for the development of adjunct therapeutics targeting MABSC biofilms in persons with CF.
Collapse
Affiliation(s)
- Juan M Belardinelli
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Wei Li
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Charlotte Avanzi
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Shiva K Angala
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Elena Lian
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Crystal J Wiersma
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Zuzana Palčeková
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Kevin H Martin
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Bhanupriya Angala
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Vinicius C N de Moura
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Callan Kerns
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Victoria Jones
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Mercedes Gonzalez-Juarrero
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Rebecca M Davidson
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, United States
| | - Jerry A Nick
- Department of Medicine, National Jewish Health, Denver, CO, United States.,Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Bradley R Borlee
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Mary Jackson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
253
|
Martínez-Alcantar L, Orozco G, Díaz-Pérez AL, Villegas J, Reyes-De la Cruz H, García-Pineda E, Campos-García J. Participation of Acyl-Coenzyme A Synthetase FadD4 of Pseudomonas aeruginosa PAO1 in Acyclic Terpene/Fatty Acid Assimilation and Virulence by Lipid A Modification. Front Microbiol 2021; 12:785112. [PMID: 34867927 PMCID: PMC8637051 DOI: 10.3389/fmicb.2021.785112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 10/19/2021] [Indexed: 12/03/2022] Open
Abstract
The pathogenic bacterium Pseudomonas aeruginosa possesses high metabolic versatility, with its effectiveness to cause infections likely due to its well-regulated genetic content. P. aeruginosa PAO1 has at least six fadD paralogous genes, which have been implicated in fatty acid (FA) degradation and pathogenicity. In this study, we used mutagenesis and a functional approach in P. aeruginosa PAO1 to determine the roles of the fadD4 gene in acyclic terpene (AT) and FA assimilation and on pathogenicity. The results indicate that fadD4 encodes a terpenoyl-CoA synthetase utilized for AT and FA assimilation. Additionally, mutations in fadD paralogs led to the modification of the quorum-sensing las/rhl systems, as well as the content of virulence factors pyocyanin, biofilm, rhamnolipids, lipopolysaccharides (LPS), and polyhydroxyalkanoates. In a Caenorhabditis elegans in vivo pathogenicity model, culture supernatants from the 24-h-grown fadD4 single mutant increased lethality compared to the PAO1 wild-type (WT) strain; however, the double mutants fadD1/fadD2, fadD1/fadD4, and fadD2/fadD4 and single mutant fadD2 increased worm survival. A correlation analysis indicated an interaction between worm death by the PAO1 strain, the fadD4 mutation, and the virulence factor LPS. Fatty acid methyl ester (FAME) analysis of LPS revealed that a proportion of the LPS and FA on lipid A were modified by the fadD4 mutation, suggesting that FadD4 is also involved in the synthesis/degradation and modification of the lipid A component of LPS. LPS isolated from the fadD4 mutant and double mutants fadD1/fadD4 and fadD2/fadD4 showed a differential behavior to induce an increase in body temperature in rats injected with LPS compared to the WT strain or from the fadD1 and fadD2 mutants. In agreement, LPS isolated from the fadD4 mutant and double mutants fadD1/fadD2 and fadD2/fadD4 increased the induction of IL-8 in rat sera, but IL1-β cytokine levels decreased in the double mutants fadD1/fadD2 and fadD1/fadD4. The results indicate that the fadD genes are implicated in the degree of pathogenicity of P. aeruginosa PAO1 induced by LPS-lipid A, suggesting that FadD4 contributes to the removal of acyl-linked FA from LPS, rendering modification in its immunogenic response associated to Toll-like receptor TLR4. The genetic redundancy of fadD is important for bacterial adaptability and pathogenicity over the host.
Collapse
Affiliation(s)
- Lorena Martínez-Alcantar
- Laboratorio de Biotecnología Microbiana, Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| | - Gabriela Orozco
- Laboratorio de Biotecnología Microbiana, Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| | - Alma Laura Díaz-Pérez
- Laboratorio de Biotecnología Microbiana, Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| | - Javier Villegas
- Laboratorio de Interacción Suelo, Planta, Microorganismo, Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| | - Homero Reyes-De la Cruz
- Laboratorio de Control Traduccional, Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| | - Ernesto García-Pineda
- Laboratorio de Bioquímica y Biología Molecular, Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| | - Jesús Campos-García
- Laboratorio de Biotecnología Microbiana, Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| |
Collapse
|
254
|
Nontypeable Haemophilus influenzae infection impedes Pseudomonas aeruginosa colonization and persistence in mouse respiratory tract. Infect Immun 2021; 90:e0056821. [PMID: 34780275 DOI: 10.1128/iai.00568-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Patients with cystic fibrosis (CF) experience lifelong respiratory infections which are a significant cause of morbidity and mortality. These infections are polymicrobial in nature, and the predominant bacterial species undergo a predictable series of changes as patients age. Young patients have populations dominated by opportunists that are typically found within the microbiome of the human nasopharynx, such as nontypeable Haemophilus influenzae (NTHi); these are eventually supplanted and the population within the CF lung is later dominated by pathogens such as Pseudomonas aeruginosa (Pa). In this study, we investigated how initial colonization with NTHi impacts colonization and persistence of Pa in the respiratory tract. Analysis of polymicrobial biofilms in vitro by confocal microscopy revealed that NTHi promoted greater levels of Pa biofilm volume and diffusion. However, sequential respiratory infection of mice with NTHi followed by Pa resulted in significantly lower Pa as compared to infection with Pa alone. Coinfected mice also had reduced airway tissue damage and lower levels of inflammatory cytokines as compared with Pa infected mice. Similar results were observed after instillation of heat-inactivated NTHi bacteria or purified NTHi lipooligosaccharide (LOS) endotoxin prior to Pa introduction. Based on these results, we conclude that NTHi significantly reduces susceptibility to subsequent Pa infection, most likely due to priming of host innate immunity rather than a direct competitive interaction between species. These findings have potential significance with regard to therapeutic management of early life infections in patients with CF.
Collapse
|
255
|
Comparison of Whole Genome Sequencing and Repetitive Element PCR for Multidrug- Resistant Pseudomonas aeruginosa Strain Typing. J Mol Diagn 2021; 24:158-166. [PMID: 34775029 DOI: 10.1016/j.jmoldx.2021.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 10/18/2021] [Accepted: 10/28/2021] [Indexed: 11/23/2022] Open
Abstract
Hospital-acquired infections pose significant costly global challenges to patient care. Rapid and sensitive methods to identify potential outbreaks are integral to infection control measures. Whole genome sequencing (WGS)-based bacterial strain typing provides higher discriminatory power over standard nucleotide banding pattern-based methods like repetitive sequence-based PCR (rep-PCR). However, integration of WGS into clinical epidemiology is limited by the lack of consensus in methodology and data analysis/interpretation. In this study, WGS was performed on 22 multidrug-resistant Pseudomonas aeruginosa (MDR-PA) genomic DNA using the Illumina MiSeq platform. Resulting high quality reads were analyzed for phylogenetic relatedness using whole genome multi-locus sequence typing (wgMLST)-based BIOMÉRIEUX EPISEQ CS (EpiSeq; Durham, NC) and Single Nucleotide Variant PHYLogenomics (SNVPhyl). WGS-based results were compared to conventional MLST and archived rep-PCR results. Rep-PCR identified three independent clonal clusters of MDR-PA. Only one clonal cluster identified by rep-PCR, an endemic strain within the pediatric cystic fibrosis population at Texas Children's Hospital, was concordantly identified using wgMLST (EpiSeq) and SNVPhyl. Results were highly consistent between the three sequence-based analyses (conventional MLST, wgMLST, and SNVPhyl), and these results remained consistent with the addition of 74 MDR-PA genomes. These WGS-based methods provided greater resolution for strain discrimination than rep-PCR or standard MLST classification, and the ease of use of EpiSeq renders it clinically viable for analysis, interpretation, and reporting of WGS-based strain typing.
Collapse
|
256
|
Flores-Vega VR, Vargas-Roldán SY, Lezana-Fernández JL, Lascurain R, Santos-Preciado JI, Rosales-Reyes R. Bacterial Subversion of Autophagy in Cystic Fibrosis. Front Cell Infect Microbiol 2021; 11:760922. [PMID: 34692569 PMCID: PMC8531276 DOI: 10.3389/fcimb.2021.760922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 09/20/2021] [Indexed: 11/13/2022] Open
Abstract
Cystic fibrosis (CF) is a genetic disease affecting more than 70,000 people worldwide. It is caused by a mutation in the cftr gene, a chloride ion transporter localized in the plasma membrane of lung epithelial cells and other organs. The loss of CFTR function alters chloride, bicarbonate, and water transport through the plasma membrane, promoting the production of a thick and sticky mucus in which bacteria including Pseudomonas aeruginosa and Burkholderia cenocepacia can produce chronic infections that eventually decrease the lung function and increase the risk of mortality. Autophagy is a well-conserved lysosomal degradation pathway that mediates pathogen clearance and plays an important role in the control of bacterial infections. In this mini-review, we describe the principal strategies used by P. aeruginosa and B. cenocepacia to survive and avoid microbicidal mechanisms within the autophagic pathway leading to the establishment of chronic inflammatory immune responses that gradually compromise the lung function and the life of CF patients.
Collapse
Affiliation(s)
- Verónica Roxana Flores-Vega
- Unidad de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Escuela de Ciencias de la Salud, Universidad del Valle de México, Campus Coyoacán, Mexico City, Mexico
| | - Silvia Yalid Vargas-Roldán
- Unidad de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional, Mexico City, Mexico
| | - José Luis Lezana-Fernández
- Laboratorio de Fisiología Respiratoria y la Clínica de Fibrosis Quística, Hospital Infantil de México Federico Gómez, Mexico City, Mexico.,Dirección Médica, Asociación Mexicana de Fibrosis Quística, Mexico City, Mexico
| | - Ricardo Lascurain
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - José Ignacio Santos-Preciado
- Unidad de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Roberto Rosales-Reyes
- Unidad de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
257
|
Bocharova YA, Savinova TA, Lyamin AV, Kondratenko OV, Polikarpova SV, Zhilina SV, Fedorova NI, Semykin SY, Chaplin AV, Korostin DO, Mayansky NA, Chebotar IV. Genome features and antibiotic resistance of Pseudomonas aeruginosa strains isolated in patients with cystic fibrosis in the Russian Federation. Klin Lab Diagn 2021; 66:629-634. [PMID: 34665950 DOI: 10.51620/0869-2084-2021-66-10-629-634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Cystic fibrosis (CF) is a common genetic disease, manifested by airway obstruction and chronic respiratory infection. The most prevalent infectious agent in airways of CF patients is Pseudomonas aeruginosa. This study aimed to determine sequence-types, antimicrobial resistance phenotypes and genes defining adaptive antibiotic resistance in P. aeruginosa isolates recovered from CF patients in Russia. In total, 84 P. aeruginosa strains from 64 CF patients were analyzed. Susceptibility to antibiotics was determined by disk diffusion test. Whole-genome sequencing (WGS) was performed on MGISEQ-2000 platform. SPAdes software, Galaxy, ResFinder, PubMLST were used for analysis of WGS data. Examined P. aeruginosa isolates belonged to 53 different sequence-types (STs), including 6 new STs. High-risk epidemic clone ST235 (10%) and clonal CF P. aeruginosa strains ST17, ST242, ST274 (7%) were detected. Non-susceptibility to ticarcillin-clavulanate, cefepime, imipenem was observed in 63%, 12% and 25% of isolates, respectively; to tobramycin - in 24%, to amikacin - in 35%; to ciprofloxacin, levofloxacin - in 35% and 57% of strains, respectively. Multidrug-resistant phenotype was detected in 18% of isolates. In examined strains, genes of beta-lactamases VIM-2 (5 ST235 strains), VEB-1 (two ST2592 strains), GES-1 (1 ST235 strain), PER-1 (1 ST235 strain) were found. Ciprofloxacin-modifying enzyme CrpP gene was detected in 67% of isolates, aminoglycoside-modifying enzymes AAD, ANT, AAC genes - in 7%, 4%, 12% of strains, respectively. P. aeruginosa isolates from CF patients in Russia demonstrate a high clonal diversity, which is similar to other P. aeruginosa infections. The isolates of high-risk clone and clonal CF P. aeruginosa strains are detected.
Collapse
Affiliation(s)
| | - T A Savinova
- Pirogov Russian National Research Medical University
| | | | | | | | | | - N I Fedorova
- Pirogov Russian National Research Medical University
| | - S Yu Semykin
- Pirogov Russian National Research Medical University
| | - A V Chaplin
- Pirogov Russian National Research Medical University
| | - D O Korostin
- Pirogov Russian National Research Medical University
| | - N A Mayansky
- Pirogov Russian National Research Medical University
| | - I V Chebotar
- Pirogov Russian National Research Medical University
| |
Collapse
|
258
|
Abstract
Cystic fibrosis (CF) is a heritable, multiorgan disease that impacts all tissues that normally express cystic fibrosis transmembrane conductance regulator (CFTR) protein. While the importance of the airway microbiota has long been recognized, the intestinal microbiota has only recently been recognized as an important player in both intestinal and lung health outcomes for persons with CF (pwCF). Here, we summarize current literature related to the gut-lung axis in CF, with a particular focus on three key ideas: (i) mechanisms through which microbes influence the gut-lung axis, (ii) drivers of microbiota alterations, and (iii) the potential for intestinal microbiota remediation.
Collapse
Affiliation(s)
- Courtney E. Price
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover New Hampshire, USA
| | - George A. O’Toole
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover New Hampshire, USA
| |
Collapse
|
259
|
Rudra B, Gupta RS. Phylogenomic and comparative genomic analyses of species of the family Pseudomonadaceae: Proposals for the genera Halopseudomonas gen. nov. and Atopomonas gen. nov., merger of the genus Oblitimonas with the genus Thiopseudomonas, and transfer of some misclassified species of the genus Pseudomonas into other genera. Int J Syst Evol Microbiol 2021; 71. [PMID: 34546867 DOI: 10.1099/ijsem.0.005011] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The evolutionary relationships among species of the family Pseudomonadaceae were examined based on 255 available genomes representing >85 % of the species from this family. In a phylogenetic tree based on concatenated sequences of 118 core proteins, most species of the genus Pseudomonas grouped within one large cluster which also included members of the genera Azotobacter and Azomonas. Within this large cluster 18-30 clades/subclades of species of the genus Pseudomonas consisting of between 1 and 36 species, were observed. However, a number of species of the genus Pseudomonas branched outside of this main cluster and were interspersed among other genera of the family Pseudomonadaceae. This included a strongly supported clade (Pertucinogena clade) consisting of 19 mainly halotolerant species. The distinctness of this clade from all other members of the family Pseudomonadaceae is strongly supported by 24 conserved signature indels (CSIs) in diverse proteins that are exclusively found in all members of this clade. Nine uncharacterized members of the genus Pseudomonas also shared these CSIs and they branched within the Pertucinogena clade, indicating their affiliation to this clade. On the basis of the strong evidence supporting the distinctness of the Pertucinogena clade, we are proposing transfer of species from this clade into a novel genus Halopseudomonas gen. nov. Pseudomonas caeni also branches outside of the main cluster and groups reliably with Oblitimonas alkaliphila and Thiopseudomonas denitrificans. Six identified CSIs are uniquely shared by these three species and we are proposing their integration into the emended genus Thiopseudomonas, which has priority over the name Oblitimonas. We are also proposing transfer of the deep-branching Pseudomonas hussainii, for which 22 exclusive CSIs have been identified, into the genus Atopomonas gen. nov. Lastly, we present strong evidence that the species Pseudomonas cissicola and Pseudomonas geniculata are misclassified into the genus Pseudomonas and that they are specifically related to the genera Xanthomonas and Stenotrophomonas, respectively. In addition, we are also reclassifying 'Pseudomonas acidophila' as Paraburkholderia acidicola sp. nov. (Type strain: G-6302=ATCC 31363=BCRC 13035).
Collapse
Affiliation(s)
- Bashudev Rudra
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Radhey S Gupta
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| |
Collapse
|
260
|
Bjarnsholt T, Whiteley M, Rumbaugh KP, Stewart PS, Jensen PØ, Frimodt-Møller N. The importance of understanding the infectious microenvironment. THE LANCET. INFECTIOUS DISEASES 2021; 22:e88-e92. [PMID: 34506737 DOI: 10.1016/s1473-3099(21)00122-5] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 01/25/2021] [Accepted: 02/12/2021] [Indexed: 12/12/2022]
Abstract
Standard doses of antibiotics do not efficiently treat chronic infections of the soft tissue and bone. In this Personal View, we advocate for improving treatment of these infections by taking the infectious microenvironment into account. The infectious microenvironment can cause sensitive bacteria to lose their susceptibility to antibiotics that are effective in standard laboratory susceptibility testing. We propose that bacteria behave substantially different in standard laboratory conditions than they do in actual infections. The infectious microenvironment could impose changes in growth and metabolic activity that result in increased protection against antibiotics. Therefore, we advocate that improved antibiotic treatment of chronic infection is achievable when antibiotics are recommended on the basis of susceptibility testing in relevant in vitro conditions that resemble actual infectious microenvironments. We recommend establishing knowledge of the relevant conditions of the chemical and physical composition of the infectious microenvironment. Recent advances in RNA sequencing, metabolomics, and microscopy have made it possible for the characterisation of the microenvironment of infections and to validate the clinical relevance of in vitro conditions to actual infections.
Collapse
Affiliation(s)
- Thomas Bjarnsholt
- Department of Clinical Microbiology, Copenhagen University Hospital, Copenhagen, Denmark; Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.
| | - Marvin Whiteley
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA; Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA, USA; Emory-Children's Cystic Fibrosis Center, Atlanta, GA, USA
| | - Kendra P Rumbaugh
- Department of Surgery, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Philip S Stewart
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA
| | - Peter Ø Jensen
- Department of Clinical Microbiology, Copenhagen University Hospital, Copenhagen, Denmark; Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Niels Frimodt-Møller
- Department of Clinical Microbiology, Copenhagen University Hospital, Copenhagen, Denmark
| |
Collapse
|
261
|
Pedersen BH, Gurdo N, Johansen HK, Molin S, Nikel PI, La Rosa R. High-throughput dilution-based growth method enables time-resolved exo-metabolomics of Pseudomonas putida and Pseudomonas aeruginosa. Microb Biotechnol 2021; 14:2214-2226. [PMID: 34327837 PMCID: PMC8449672 DOI: 10.1111/1751-7915.13905] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/05/2021] [Accepted: 07/18/2021] [Indexed: 11/29/2022] Open
Abstract
Understanding metabolism is fundamental to access and harness bacterial physiology. In most bacteria, nutrient utilization is hierarchically optimized according to their energetic potential and their availability in the environment to maximise growth rates. Low-throughput methods have been largely used to characterize bacterial metabolic profiles. However, in-depth analysis of large collections of strains across several conditions is challenging since high-throughput approaches are still limited - especially for non-traditional hosts. Here, we developed a high-throughput dilution-resolved cultivation method for metabolic footprinting of Pseudomonas putida and Pseudomonas aeruginosa. This method was benchmarked against a conventional low-throughput time-resolved cultivation approach using either a synthetic culture medium (where a single carbon source is present) for P. putida or a complex nutrient mixture for P. aeruginosa. Dynamic metabolic footprinting, either by sugar quantification or by targeted exo-metabolomic analyses, revealed overlaps between the bacterial metabolic profiles irrespective of the cultivation strategy, suggesting a certain level of robustness and flexibility of the high-throughput dilution-resolved method. Cultivation of P. putida in microtiter plates imposed a metabolic constraint, dependent on oxygen availability, which altered the pattern of secreted metabolites at the level of sugar oxidation. Deep-well plates, however, constituted an optimal cultivation set-up yielding consistent and comparable metabolic profiles across conditions and strains. Altogether, the results illustrate the usefulness of this technological advance for high-throughput analyses of bacterial metabolism for both biotechnological applications and automation purposes.
Collapse
Affiliation(s)
- Bjarke H. Pedersen
- The Novo Nordisk Foundation Center for BiosustainabilityTechnical University of DenmarkKgs. Lyngby2800Denmark
| | - Nicolás Gurdo
- The Novo Nordisk Foundation Center for BiosustainabilityTechnical University of DenmarkKgs. Lyngby2800Denmark
| | - Helle Krogh Johansen
- The Novo Nordisk Foundation Center for BiosustainabilityTechnical University of DenmarkKgs. Lyngby2800Denmark
- Department of Clinical Microbiology, 9301RigshospitaletCopenhagen2100Denmark
- Department of Clinical MedicineFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagen2200Denmark
| | - Søren Molin
- The Novo Nordisk Foundation Center for BiosustainabilityTechnical University of DenmarkKgs. Lyngby2800Denmark
| | - Pablo I. Nikel
- The Novo Nordisk Foundation Center for BiosustainabilityTechnical University of DenmarkKgs. Lyngby2800Denmark
| | - Ruggero La Rosa
- The Novo Nordisk Foundation Center for BiosustainabilityTechnical University of DenmarkKgs. Lyngby2800Denmark
| |
Collapse
|
262
|
Abstract
Microbes are constantly evolving. Laboratory studies of bacterial evolution increase our understanding of evolutionary dynamics, identify adaptive changes, and answer important questions that impact human health. During bacterial infections in humans, however, the evolutionary parameters acting on infecting populations are likely to be much more complex than those that can be tested in the laboratory. Nonetheless, human infections can be thought of as naturally occurring in vivo bacterial evolution experiments, which can teach us about antibiotic resistance, pathogenesis, and transmission. Here, we review recent advances in the study of within-host bacterial evolution during human infection and discuss practical considerations for conducting such studies. We focus on 2 possible outcomes for de novo adaptive mutations, which we have termed "adapt-and-live" and "adapt-and-die." In the adapt-and-live scenario, a mutation is long lived, enabling its transmission on to other individuals, or the establishment of chronic infection. In the adapt-and-die scenario, a mutation is rapidly extinguished, either because it carries a substantial fitness cost, it arises within tissues that block transmission to new hosts, it is outcompeted by more fit clones, or the infection resolves. Adapt-and-die mutations can provide rich information about selection pressures in vivo, yet they can easily elude detection because they are short lived, may be more difficult to sample, or could be maladaptive in the long term. Understanding how bacteria adapt under each of these scenarios can reveal new insights about the basic biology of pathogenic microbes and could aid in the design of new translational approaches to combat bacterial infections.
Collapse
Affiliation(s)
- Matthew J. Culyba
- Department of Medicine, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Center for Evolutionary Biology and Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Daria Van Tyne
- Department of Medicine, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Center for Evolutionary Biology and Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
263
|
O-Specific Antigen-Dependent Surface Hydrophobicity Mediates Aggregate Assembly Type in Pseudomonas aeruginosa. mBio 2021; 12:e0086021. [PMID: 34372703 PMCID: PMC8406328 DOI: 10.1128/mbio.00860-21] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Bacteria live in spatially organized aggregates during chronic infections, where they adapt to the host environment, evade immune responses, and resist therapeutic interventions. Although it is known that environmental factors such as polymers influence bacterial aggregation, it is not clear how bacterial adaptation during chronic infection impacts the formation and spatial organization of aggregates in the presence of polymers. Here, we show that in an in vitro model of cystic fibrosis (CF) containing the polymers extracellular DNA (eDNA) and mucin, O-specific antigen is a major factor determining the formation of two distinct aggregate assembly types of Pseudomonas aeruginosa due to alterations in cell surface hydrophobicity. Our findings suggest that during chronic infection, the interplay between cell surface properties and polymers in the environment may influence the formation and structure of bacterial aggregates, which would shed new light on the fitness costs and benefits of O-antigen production in environments such as CF lungs.
Collapse
|
264
|
Association of Diverse Staphylococcus aureus Populations with Pseudomonas aeruginosa Coinfection and Inflammation in Cystic Fibrosis Airway Infection. mSphere 2021; 6:e0035821. [PMID: 34160233 PMCID: PMC8265651 DOI: 10.1128/msphere.00358-21] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Staphylococcus aureus is one of the most common pathogens isolated from the airways of cystic fibrosis (CF) patients and often persists for extended periods. There is limited knowledge about the diversity of S. aureus in CF. We hypothesized that increased diversity of S. aureus would impact CF lung disease. Therefore, we conducted a 1-year observational prospective study with 14 patients with long-term S. aureus infection. From every sputum, 40 S. aureus isolates were chosen and characterized in terms of phenotypic appearance (size, hemolysis, mucoidy, and pigmentation), important virulence traits such as nuclease activity, biofilm formation, and molecular typing by spa sequence typing. Data about coinfection with Pseudomonas aeruginosa and clinical parameters such as lung function, exacerbation, and inflammatory markers in blood (C-reactive protein [CRP], interleukin 6 [IL-6], and S100A8/9 [calprotectin]) were collected. From 58 visits of 14 patients, 2,319 S. aureus isolates were distinguished into 32 phenotypes (PTs) and 50 spa types. The Simpson diversity index (SDI) was used to calculate the phenotypic and genotypic diversity, revealing a high diversity of PTs ranging from 0.19 to 0.87 among patients, while the diversity of spa types of isolates was less pronounced. The SDI of PTs was positively associated with P. aeruginosa coinfection and inflammatory parameters, with IL-6 being the most sensitive parameter. Also, coinfection with P. aeruginosa was associated with mucoid S. aureus and S. aureus with high nuclease activity. Our analyses showed that in CF patients with long-term S. aureus airway infection, a highly diverse and dynamic S. aureus population was present and associated with P. aeruginosa coinfection and inflammation. IMPORTANCE Staphylococcus aureus can persist for extended periods in the airways of people with cystic fibrosis (CF) in spite of antibiotic therapy and high numbers of neutrophils, which fail to eradicate this pathogen. Therefore, S. aureus needs to adapt to this hostile niche. There is only limited knowledge about the diversity of S. aureus in respiratory specimens. We conducted a 1-year prospective study with 14 patients with long-term S. aureus infection and investigated 40 S. aureus isolates from every sputum in terms of phenotypic appearance, nuclease activity, biofilm formation, and molecular typing. Data about coinfection with Pseudomonas aeruginosa and clinical parameters such as lung function, exacerbation, and inflammatory markers in blood were collected. Thirty-two phenotypes (PTs) and 50 spa types were distinguished. Our analyses revealed that in CF patients with long-term S. aureus airway infection, a highly diverse and dynamic S. aureus population was associated with P. aeruginosa coinfection and inflammation.
Collapse
|
265
|
Phase Variation in HMW1A Controls a Phenotypic Switch in Haemophilus influenzae Associated with Pathoadaptation during Persistent Infection. mBio 2021; 12:e0078921. [PMID: 34154422 PMCID: PMC8262952 DOI: 10.1128/mbio.00789-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Genetic variants arising from within-patient evolution shed light on bacterial adaptation during chronic infection. Contingency loci generate high levels of genetic variation in bacterial genomes, enabling adaptation to the stringent selective pressures exerted by the host. A significant gap in our understanding of phase-variable contingency loci is the extent of their contribution to natural infections. The human-adapted pathogen nontypeable Haemophilus influenzae (NTHi) causes persistent infections, which contribute to underlying disease progression. The phase-variable high-molecular-weight (HMW) adhesins located on the NTHi surface mediate adherence to respiratory epithelial cells and, depending on the allelic variant, can also confer high epithelial invasiveness or hyperinvasion. In this study, we characterize the dynamics of HMW-mediated hyperinvasion in living cells and identify a specific HMW binding domain shared by hyperinvasive NTHi isolates of distinct pathological origins. Moreover, we observed that HMW expression decreased over time by using a longitudinal set of persistent NTHi strains collected from chronic obstructive pulmonary disease (COPD) patients, resulting from increased numbers of simple-sequence repeats (SSRs) downstream of the functional P2hmw1A promoter, which is the one primarily driving HMW expression. Notably, the increased SSR numbers at the hmw1 promoter region also control a phenotypic switch toward lower bacterial intracellular invasion and higher biofilm formation, likely conferring adaptive advantages during chronic airway infection by NTHi. Overall, we reveal novel molecular mechanisms of NTHi pathoadaptation based on within-patient lifestyle switching controlled by phase variation.
Collapse
|
266
|
Role of the SOS Response in the Generation of Antibiotic Resistance In Vivo. Antimicrob Agents Chemother 2021; 65:e0001321. [PMID: 33875437 DOI: 10.1128/aac.00013-21] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The SOS response to DNA damage is a conserved stress response in Gram-negative and Gram-positive bacteria. Although this pathway has been studied for years, its relevance is still not familiar to many working in the fields of clinical antibiotic resistance and stewardship. Under some conditions, the SOS response favors DNA repair and preserves the genetic integrity of the organism. On the other hand, the SOS response also includes induction of error-prone DNA polymerases, which can increase the rate of mutation, called the mutator phenotype or "hypermutation." As a result, mutations can occur in genes conferring antibiotic resistance, increasing the acquisition of resistance to antibiotics. Almost all of the work on the SOS response has been on bacteria exposed to stressors in vitro. In this study, we sought to quantitate the effects of SOS-inducing drugs in vivo, in comparison with the same drugs in vitro. We used a rabbit model of intestinal infection with enteropathogenic Escherichia coli strain E22. SOS-inducing drugs triggered the mutator phenotype response in vivo as well as in vitro. Exposure of E. coli strain E22 to ciprofloxacin or zidovudine, both of which induce the SOS response in vitro, resulted in increased antibiotic resistance to 3 antibiotics: rifampin, minocycline, and fosfomycin. Zinc was able to inhibit the SOS-induced emergence of antibiotic resistance in vivo, as previously observed in vitro. Our findings may have relevance in reducing the emergence of resistance to new antimicrobial drugs.
Collapse
|
267
|
Compensatory evolution of Pseudomonas aeruginosa's slow growth phenotype suggests mechanisms of adaptation in cystic fibrosis. Nat Commun 2021; 12:3186. [PMID: 34045458 PMCID: PMC8160344 DOI: 10.1038/s41467-021-23451-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 04/27/2021] [Indexed: 02/04/2023] Open
Abstract
Long-term infection of the airways of cystic fibrosis patients with Pseudomonas aeruginosa is often accompanied by a reduction in bacterial growth rate. This reduction has been hypothesised to increase within-patient fitness and overall persistence of the pathogen. Here, we apply adaptive laboratory evolution to revert the slow growth phenotype of P. aeruginosa clinical strains back to a high growth rate. We identify several evolutionary trajectories and mechanisms leading to fast growth caused by transcriptional and mutational changes, which depend on the stage of adaptation of the strain. Return to high growth rate increases antibiotic susceptibility, which is only partially dependent on reversion of mutations or changes in the transcriptional profile of genes known to be linked to antibiotic resistance. We propose that similar mechanisms and evolutionary trajectories, in reverse direction, may be involved in pathogen adaptation and the establishment of chronic infections in the antibiotic-treated airways of cystic fibrosis patients.
Collapse
|
268
|
Le Sénéchal C, Puges M, Barthe C, Costaglioli P, Tokarski C, Buré C, Vilain S. Analysis of the Phospholipid Profile of the Collection Strain PAO1 and Clinical Isolates of Pseudomonas aeruginosa in Relation to Their Attachment Capacity. Int J Mol Sci 2021; 22:ijms22084003. [PMID: 33924531 PMCID: PMC8068974 DOI: 10.3390/ijms22084003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/07/2021] [Accepted: 04/11/2021] [Indexed: 11/24/2022] Open
Abstract
Bacteria form multicellular and resistant structures named biofilms. Biofilm formation starts with the attachment phase, and the molecular actors involved in this phase, except adhesins, are poorly characterized. There is growing evidence that phospholipids are more than simple structural bricks. They are involved in bacterial adaptive physiology, but little is known about their role in biofilm formation. Here, we report a mass spectrometry analysis of the phospholipid (PL) profile of several strains of Pseudomonas aeruginosa isolated from cystic fibrosis patients. The aim of our study was to evaluate a possible link between the PL profile of a strain and its attachment phenotype. Our results showed that PL profile is strongly strain-dependent. The PL profile of P. aeruginosa PAO1, a collection strain, was different from those of 10 clinical isolates characterized either by a very low or a very high attachment capacity. We observed also that the clinical strain’s PL profiles varied even more importantly between isolates. By comparing groups of strains having similar attachment capacities, we identified one PL, PE 18:1-18:1, as a potential molecular actor involved in attachment, the first step in biofilm formation. This PL represents a possible target in the fight against biofilms.
Collapse
Affiliation(s)
- Caroline Le Sénéchal
- CNRS, Bordeaux INP, CBMN, University Bordeaux, UMR 5248, F-33600 Pessac, France; (C.L.S.); (C.B.); (P.C.); (C.T.); (C.B.)
| | - Mathilde Puges
- Infectious and Tropical Diseases Department, CHU of Bordeaux, F-33000 Bordeaux, France;
| | - Christophe Barthe
- CNRS, Bordeaux INP, CBMN, University Bordeaux, UMR 5248, F-33600 Pessac, France; (C.L.S.); (C.B.); (P.C.); (C.T.); (C.B.)
| | - Patricia Costaglioli
- CNRS, Bordeaux INP, CBMN, University Bordeaux, UMR 5248, F-33600 Pessac, France; (C.L.S.); (C.B.); (P.C.); (C.T.); (C.B.)
| | - Caroline Tokarski
- CNRS, Bordeaux INP, CBMN, University Bordeaux, UMR 5248, F-33600 Pessac, France; (C.L.S.); (C.B.); (P.C.); (C.T.); (C.B.)
| | - Corinne Buré
- CNRS, Bordeaux INP, CBMN, University Bordeaux, UMR 5248, F-33600 Pessac, France; (C.L.S.); (C.B.); (P.C.); (C.T.); (C.B.)
| | - Sébastien Vilain
- CNRS, Bordeaux INP, CBMN, University Bordeaux, UMR 5248, F-33600 Pessac, France; (C.L.S.); (C.B.); (P.C.); (C.T.); (C.B.)
- Correspondence:
| |
Collapse
|
269
|
Jurado-Martín I, Sainz-Mejías M, McClean S. Pseudomonas aeruginosa: An Audacious Pathogen with an Adaptable Arsenal of Virulence Factors. Int J Mol Sci 2021; 22:3128. [PMID: 33803907 PMCID: PMC8003266 DOI: 10.3390/ijms22063128] [Citation(s) in RCA: 314] [Impact Index Per Article: 78.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/16/2021] [Accepted: 03/16/2021] [Indexed: 12/13/2022] Open
Abstract
Pseudomonas aeruginosa is a dominant pathogen in people with cystic fibrosis (CF) contributing to morbidity and mortality. Its tremendous ability to adapt greatly facilitates its capacity to cause chronic infections. The adaptability and flexibility of the pathogen are afforded by the extensive number of virulence factors it has at its disposal, providing P. aeruginosa with the facility to tailor its response against the different stressors in the environment. A deep understanding of these virulence mechanisms is crucial for the design of therapeutic strategies and vaccines against this multi-resistant pathogen. Therefore, this review describes the main virulence factors of P. aeruginosa and the adaptations it undergoes to persist in hostile environments such as the CF respiratory tract. The very large P. aeruginosa genome (5 to 7 MB) contributes considerably to its adaptive capacity; consequently, genomic studies have provided significant insights into elucidating P. aeruginosa evolution and its interactions with the host throughout the course of infection.
Collapse
Affiliation(s)
| | | | - Siobhán McClean
- School of Biomolecular and Biomedical Sciences, University College Dublin, Belfield, Dublin 4 D04 V1W8, Ireland; (I.J.-M.); (M.S.-M.)
| |
Collapse
|
270
|
Baquero F, Coque TM, Galán JC, Martinez JL. The Origin of Niches and Species in the Bacterial World. Front Microbiol 2021; 12:657986. [PMID: 33815348 PMCID: PMC8010147 DOI: 10.3389/fmicb.2021.657986] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 02/23/2021] [Indexed: 12/15/2022] Open
Abstract
Niches are spaces for the biological units of selection, from cells to complex communities. In a broad sense, "species" are biological units of individuation. Niches do not exist without individual organisms, and every organism has a niche. We use "niche" in the Hutchinsonian sense as an abstraction of a multidimensional environmental space characterized by a variety of conditions, both biotic and abiotic, whose quantitative ranges determine the positive or negative growth rates of the microbial individual, typically a species, but also parts of the communities of species contained in this space. Microbial organisms ("species") constantly diversify, and such diversification (radiation) depends on the possibility of opening up unexploited or insufficiently exploited niches. Niche exploitation frequently implies "niche construction," as the colonized niche evolves with time, giving rise to new potential subniches, thereby influencing the selection of a series of new variants in the progeny. The evolution of niches and organisms is the result of reciprocal interacting processes that form a single unified process. Centrifugal microbial diversification expands the limits of the species' niches while a centripetal or cohesive process occurs simultaneously, mediated by horizontal gene transfers and recombinatorial events, condensing all of the information recovered during the diversifying specialization into "novel organisms" (possible future species), thereby creating a more complex niche, where the selfishness of the new organism(s) establishes a "homeostatic power" limiting the niche's variation. Once the niche's full carrying capacity has been reached, reproductive isolation occurs, as no foreign organisms can outcompete the established population/community, thereby facilitating speciation. In the case of individualization-speciation of the microbiota, its contribution to the animal' gut structure is a type of "niche construction," the result of crosstalk between the niche (host) and microorganism(s). Lastly, there is a parallelism between the hierarchy of niches and that of microbial individuals. The increasing anthropogenic effects on the biosphere (such as globalization) might reduce the diversity of niches and bacterial individuals, with the potential emergence of highly transmissible multispecialists (which are eventually deleterious) resulting from the homogenization of the microbiosphere, a possibility that should be explored and prevented.
Collapse
Affiliation(s)
- Fernando Baquero
- Division of Biology and Evolution of Microorganisms, Department of Microbiology, Ramón y Cajal Institute for Health Research (IRYCIS), Ramón y Cajal University Hospital, Madrid, Spain
| | - Teresa M Coque
- Division of Biology and Evolution of Microorganisms, Department of Microbiology, Ramón y Cajal Institute for Health Research (IRYCIS), Ramón y Cajal University Hospital, Madrid, Spain
| | - Juan Carlos Galán
- Division of Biology and Evolution of Microorganisms, Department of Microbiology, Ramón y Cajal Institute for Health Research (IRYCIS), Ramón y Cajal University Hospital, Madrid, Spain
| | | |
Collapse
|
271
|
Moore MP, Lamont IL, Williams D, Paterson S, Kukavica-Ibrulj I, Tucker NP, Kenna DTD, Turton JF, Jeukens J, Freschi L, Wee BA, Loman NJ, Holden S, Manzoor S, Hawkey P, Southern KW, Walshaw MJ, Levesque RC, Fothergill JL, Winstanley C. Transmission, adaptation and geographical spread of the Pseudomonas aeruginosa Liverpool epidemic strain. Microb Genom 2021; 7:mgen000511. [PMID: 33720817 PMCID: PMC8190615 DOI: 10.1099/mgen.0.000511] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 12/21/2020] [Indexed: 12/18/2022] Open
Abstract
The Liverpool epidemic strain (LES) is an important transmissible clonal lineage of Pseudomonas aeruginosa that chronically infects the lungs of people with cystic fibrosis (CF). Previous studies have focused on the genomics of the LES in a limited number of isolates, mostly from one CF centre in the UK, and from studies highlighting identification of the LES in Canada. Here we significantly extend the current LES genome database by genome sequencing 91 isolates from multiple CF centres across the UK, and we describe the comparative genomics of this large collection of LES isolates from the UK and Canada. Phylogenetic analysis revealed that the 145 LES genomes analysed formed a distinct clonal lineage when compared with the wider P. aeruginosa population. Notably, the isolates formed two clades: one associated with isolates from Canada, and the other associated with UK isolates. Further analysis of the UK LES isolates revealed clustering by clinic geography. Where isolates clustered closely together, the association was often supported by clinical data linking isolates or patients. When compared with the earliest known isolate, LESB58 (from 1988), many UK LES isolates shared common loss-of-function mutations, such as in genes gltR and fleR. Other loss-of-function mutations identified in previous studies as common adaptations during CF chronic lung infections were also identified in multiple LES isolates. Analysis of the LES accessory genome (including genomic islands and prophages) revealed variations in the carriage of large genomic regions, with some evidence for shared genomic island/prophage complement according to clinic location. Our study reveals divergence and adaptation during the spread of the LES, within the UK and between continents.
Collapse
Affiliation(s)
- Matthew P. Moore
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
- Present address: Nuffield Department of Health, University of Oxford, UK
| | - Iain L. Lamont
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - David Williams
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Steve Paterson
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Irena Kukavica-Ibrulj
- Institute for Integrative and Systems Biology, Université Laval, Quebec City, QC, Canada
| | - Nicholas P. Tucker
- Strathclyde Institute of Pharmacy & Biomedical Sciences. University of Strathclyde, Glasgow, UK
| | | | - Jane F. Turton
- National Infection Service, Public Health England, London, UK
| | - Julie Jeukens
- Institute for Integrative and Systems Biology, Université Laval, Quebec City, QC, Canada
| | - Luca Freschi
- Institute for Integrative and Systems Biology, Université Laval, Quebec City, QC, Canada
- Present address: Harvard Medical School, Boston, MA, USA
| | - Bryan A. Wee
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
- Present address: Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Nicholas J. Loman
- Institute for Microbiology & Infection, University of Birmingham, Birmingham, UK
| | - Stephen Holden
- Nottingham University Hospitals NHS Trust, Nottingham, UK
- Present address: MSD Research Laboratories, Two Pancras Square, London, UK
| | - Susan Manzoor
- University Hospitals Birmingham, Heartlands Hospital, Bordesley Green East, Birmingham, UK
| | - Peter Hawkey
- Institute for Microbiology & Infection, University of Birmingham, Birmingham, UK
- Present address: University of Birmingham Microbiome Treatment Centre, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | | | | | - Roger C. Levesque
- Institute for Integrative and Systems Biology, Université Laval, Quebec City, QC, Canada
| | - Joanne L. Fothergill
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - Craig Winstanley
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| |
Collapse
|
272
|
Cigana C, Castandet J, Sprynski N, Melessike M, Beyria L, Ranucci S, Alcalá-Franco B, Rossi A, Bragonzi A, Zalacain M, Everett M. Pseudomonas aeruginosa Elastase Contributes to the Establishment of Chronic Lung Colonization and Modulates the Immune Response in a Murine Model. Front Microbiol 2021; 11:620819. [PMID: 33510733 PMCID: PMC7836092 DOI: 10.3389/fmicb.2020.620819] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/14/2020] [Indexed: 12/12/2022] Open
Abstract
Chronic infection by Pseudomonas aeruginosa in cystic fibrosis (CF) patients is a major contributor to progressive lung damage and is poorly treated by available antibiotic therapy. An alternative approach to the development of additional antibiotic treatments is to identify complementary therapies which target bacterial virulence factors necessary for the establishment and/or maintenance of the chronic infection. The P. aeruginosa elastase (LasB) has been suggested as an attractive anti-virulence target due to its extracellular location, its harmful degradative effects on host tissues and the immune system, and the potential to inhibit its activity using small molecule inhibitors. However, while the relevance of LasB in acute P. aeruginosa infection has been demonstrated, it is still unclear whether this elastase might also play a role in the early phase of chronic lung colonization. By analyzing clinical P. aeruginosa clonal isolates from a CF patient, we found that the isolate RP45, collected in the early phase of persistence, produces large amounts of active LasB, while its clonal variant RP73, collected after years of colonization, does not produce it. When a mouse model of persistent pneumonia was used, deletion of the lasB gene in RP45 resulted in a significant reduction in mean bacterial numbers and incidence of chronic lung colonization at Day 7 post-challenge compared to those mice infected with wild-type (wt) RP45. Furthermore, deletion of lasB in strain RP45 also resulted in an increase in immunomodulators associated with innate and adaptive immune responses in infected animals. In contrast, deletion of the lasB gene in RP73 did not affect the establishment of chronic infection. Overall, these results indicate that LasB contributes to the adaptation of P. aeruginosa to a persistent lifestyle. In addition, these findings support pharmacological inhibition of LasB as a potentially useful therapeutic intervention for P. aeruginosa-infected CF patients prior to the establishment of a chronic infection.
Collapse
Affiliation(s)
- Cristina Cigana
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | | | - Medede Melessike
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Serena Ranucci
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Nurix Therapeutics, San Francisco, CA, United States
| | - Beatriz Alcalá-Franco
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alice Rossi
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessandra Bragonzi
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | | |
Collapse
|