251
|
Genetic diagnosis of X-linked dominant Hypophosphatemic Rickets in a cohort study: tubular reabsorption of phosphate and 1,25(OH)2D serum levels are associated with PHEX mutation type. BMC MEDICAL GENETICS 2011; 12:116. [PMID: 21902834 PMCID: PMC3189111 DOI: 10.1186/1471-2350-12-116] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Accepted: 09/08/2011] [Indexed: 12/16/2022]
Abstract
Background Genetic Hypophosphatemic Rickets (HR) is a group of diseases characterized by renal phosphate wasting with inappropriately low or normal 1,25-dihydroxyvitamin D3 (1,25(OH)2D) serum levels. The most common form of HR is X-linked dominant HR (XLHR) which is caused by inactivating mutations in the PHEX gene. The purpose of this study was to perform genetic diagnosis in a cohort of patients with clinical diagnosis of HR, to perform genotype-phenotype correlations of those patients and to compare our data with other HR cohort studies. Methods Forty three affected individuals from 36 non related families were analyzed. For the genetic analysis, the PHEX gene was sequenced in all of the patients and in 13 cases the study was complemented by mRNA sequencing and Multiple Ligation Probe Assay. For the genotype-phenotype correlation study, the clinical and biochemical phenotype of the patients was compared with the type of mutation, which was grouped into clearly deleterious or likely causative, using the Mann-Whitney and Fisher's exact test. Results Mutations in the PHEX gene were identified in all the patients thus confirming an XLHR. Thirty four different mutations were found distributed throughout the gene with higher density at the 3' end. The majority of the mutations were novel (69.4%), most of them resulted in a truncated PHEX protein (83.3%) and were family specific (88.9%). Tubular reabsorption of phosphate (TRP) and 1,25(OH)2D serum levels were significantly lower in patients carrying clearly deleterious mutations than in patients carrying likely causative ones (61.39 ± 19.76 vs. 80.14 ± 8.80%, p = 0.028 and 40.93 ± 30.73 vs. 78.46 ± 36.27 pg/ml, p = 0.013). Conclusions PHEX gene mutations were found in all the HR cases analyzed, which was in contrast with other cohort studies. Patients with clearly deleterious PHEX mutations had lower TRP and 1,25(OH)2D levels suggesting that the PHEX type of mutation might predict the XLHR phenotype severity.
Collapse
|
252
|
Roux-Buisson N, Rendu J, Denjoy I, Guicheney P, Goldenberg A, David N, Faivre L, Barthez O, Danieli GA, Marty I, Lunardi J, Fauré J. Functional analysis reveals splicing mutations of the CASQ2 gene in patients with CPVT: implication for genetic counselling and clinical management. Hum Mutat 2011; 32:995-9. [PMID: 21618644 DOI: 10.1002/humu.21537] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Accepted: 05/04/2011] [Indexed: 12/13/2022]
Abstract
Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a rare and severe arrhythmogenic disorder. Although usually transmitted in a recessive form, few cases of dominant mutations have been reported. Thirteen mutations in the CASQ2 gene have been reported so far in association with CPVT. We performed molecular analysis of the CASQ2 gene in 43 probands with CPVT and identified eight mutations in five patients. Six mutations were novel: one was a single nucleotide deletion, three affected consensus splice sites, and two had unknown consequences: the c.939 + 5G>C and the synonymous c.381C>T variations. We demonstrated that these two variations affected CASQ2 splicing using a splicing minigene assay. These data increased significantly the number of CASQ2 mutations described in association with CPVT, revealed the high prevalence of splicing and truncating mutations in this gene and brought new insight regarding the dominant inheritance of the disease. Moreover, our report of the first splicing abnormalities in CASQ2 caused by intronic mutation or synonymous change underlines the absolute necessity to perform extensive molecular analysis for genetic diagnosis and counseling of CPVT.
Collapse
Affiliation(s)
- Nathalie Roux-Buisson
- Laboratoire de Biochimie et Génétique Moléculaire, Centre Hospitalier Universitaire de Grenoble, Grenoble, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
253
|
Yin J, Brocher J, Fischer U, Winkler C. Mutant Prpf31 causes pre-mRNA splicing defects and rod photoreceptor cell degeneration in a zebrafish model for Retinitis pigmentosa. Mol Neurodegener 2011; 6:56. [PMID: 21801444 PMCID: PMC3158551 DOI: 10.1186/1750-1326-6-56] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Accepted: 07/30/2011] [Indexed: 11/21/2022] Open
Abstract
Background Retinitis pigmentosa (RP) is an inherited eye disease characterized by the progressive degeneration of rod photoreceptor cells. Mutations in pre-mRNA splicing factors including PRPF31 have been identified as cause for RP, raising the question how mutations in general factors lead to tissue specific defects. Results We have recently shown that the zebrafish serves as an excellent model allowing the recapitulation of key events of RP. Here we use this model to investigate two pathogenic mutations in PRPF31, SP117 and AD5, causing the autosomal dominant form of RP. We show that SP117 leads to an unstable protein that is mislocalized to the rod cytoplasm. Importantly, its overexpression does not result in photoreceptor degeneration suggesting haploinsufficiency as the underlying cause in human RP patients carrying SP117. In contrast, overexpression of AD5 results in embryonic lethality, which can be rescued by wild-type Prpf31. Transgenic retina-specific expression of AD5 reveals that stable AD5 protein is initially localized in the nucleus but later found in the cytoplasm concurrent with progressing rod outer segment degeneration and apoptosis. Importantly, we show for the first time in vivo that retinal transcripts are wrongly spliced in adult transgenic retinas expressing AD5 and exhibiting increased apoptosis in rod photoreceptors. Conclusion Our data suggest that distinct mutations in Prpf31 can lead to photoreceptor degeneration through different mechanisms, by haploinsufficiency or dominant-negative effects. Analyzing the AD5 effects in our animal model in vivo, our data imply that aberrant splicing of distinct retinal transcripts contributes to the observed retina defects.
Collapse
Affiliation(s)
- Jun Yin
- Department of Biological Sciences; National University of Singapore; 117543, Singapore.
| | | | | | | |
Collapse
|
254
|
Neu-Yilik G, Amthor B, Gehring NH, Bahri S, Paidassi H, Hentze MW, Kulozik AE. Mechanism of escape from nonsense-mediated mRNA decay of human beta-globin transcripts with nonsense mutations in the first exon. RNA (NEW YORK, N.Y.) 2011; 17:843-854. [PMID: 21389146 PMCID: PMC3078734 DOI: 10.1261/rna.2401811] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Accepted: 01/31/2011] [Indexed: 05/30/2023]
Abstract
The degradation of nonsense-mutated β-globin mRNA by nonsense-mediated mRNA decay (NMD) limits the synthesis of C-terminally truncated dominant negative β-globin chains and thus protects the majority of heterozygotes from symptomatic β-thalassemia. β-globin mRNAs with nonsense mutations in the first exon are known to bypass NMD, although current mechanistic models predict that such mutations should activate NMD. A systematic analysis of this enigma reveals that (1) β-globin exon 1 is bisected by a sharp border that separates NMD-activating from NMD-bypassing nonsense mutations and (2) the ability to bypass NMD depends on the ability to reinitiate translation at a downstream start codon. The data presented here thus reconcile the current mechanistic understanding of NMD with the observed failure of a class of nonsense mutations to activate this important mRNA quality-control pathway. Furthermore, our data uncover a reason why the position of a nonsense mutation alone does not suffice to predict the fate of the affected mRNA and its effect on protein expression.
Collapse
Affiliation(s)
- Gabriele Neu-Yilik
- Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
255
|
Ghedira ES, Dupin-Deguine D, Duffilot D, Lemetayer N, Faubert E, Pissard S. A Second Observation of the Rare Frameshift Mutation in the β-Globin Gene: Codon 46 (+A) (Hbb:c.138_139insA). Hemoglobin 2011; 35:157-61. [DOI: 10.3109/03630269.2011.557460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
256
|
Abstract
In eukaryotes, mRNAs harbouring PTCs (premature translation-termination codons) are recognized and eliminated by NMD (nonsense-mediated mRNA decay). In addition to its quality-control function, NMD constitutes a translation-dependent post-transcriptional pathway to regulate the expression levels of physiological mRNAs. In contrast with PTC recognition, little is known about the mechanisms that trigger the rapid degradation of mammalian nonsense mRNA. Studies have shown that mammalian NMD targets can be degraded via both an SMG6 (where SMG is suppressor of morphological defects on genitalia)-dependent endonucleolytic pathway and a deadenylation and decapping-dependent exonucleolytic pathway, with the possible involvement of SMG5 and SMG7. In contrast, Drosophila melanogaster NMD is confined to the former and Saccharomyces cerevisiae NMD to the latter decay pathway. Consistent with this conclusion, mammals possess both SMG6 and SMG7, whereas D. melanogaster lacks an SMG7 homologue and yeast have no SMG6 equivalent. In the present paper, we review what is known about the degradation of PTC-containing mRNAs so far, paying particular attention to the properties of the NMD-specific factors SMG5-SMG7 and to what is known about the mechanism of degrading mRNAs after they have been committed to the NMD pathway.
Collapse
|
257
|
Schilter KF, Schneider A, Bardakjian T, Soucy JF, Tyler RC, Reis LM, Semina EV. OTX2 microphthalmia syndrome: four novel mutations and delineation of a phenotype. Clin Genet 2011; 79:158-68. [PMID: 20486942 DOI: 10.1111/j.1399-0004.2010.01450.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The OTX2 homeobox-containing transcription factor gene was shown to play a key role in the development of head structures in vertebrates. In humans, OTX2 mutations result in anophthalmia/microphthalmia (A/M) often associated with systemic anomalies. We screened 52 unrelated individuals affected with A/M and identified disease-causing variants in four families (8%), a higher frequency than previously reported. All four mutations are predicted to result in truncation of normal OTX2 protein sequence, consistent with previously reported mechanisms; three changes occurred de novo and one mutation was inherited from an affected parent. Four of the five OTX2-positive patients in our study displayed additional systemic findings, including two novel features, Wolf-Parkinson-White syndrome and an anteriorly placed anus. Analysis of the phenotypic features of OTX2-positive A/M patients in this study and those previously reported suggests the presence of pituitary anomalies and lack of genitourinary and gastrointestinal manifestations as potential distinguishing characteristics from SOX2 anophthalmia syndrome. Interestingly, pituitary anomalies seem to be more strongly associated with mutations that occur in the second half of OTX2, after the homeodomain and SGQFTP motif. OTX2 patients also show a high rate of inherited mutations (35%), often from mildly or unaffected parents, emphasizing the importance of careful parental examination/testing.
Collapse
Affiliation(s)
- K F Schilter
- Department of Pediatrics and Children's Research Institute, Medical College of Wisconsin and Children's Hospital of Wisconsin, Milwaukee, WI 53226-0509, USA
| | | | | | | | | | | | | |
Collapse
|
258
|
Peixeiro I, Silva AL, Romão L. Control of human beta-globin mRNA stability and its impact on beta-thalassemia phenotype. Haematologica 2011; 96:905-13. [PMID: 21357703 DOI: 10.3324/haematol.2010.039206] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Messenger RNA (mRNA) stability is a critical determinant that affects gene expression. Many pathways have evolved to modulate mRNA stability in response to developmental, physiological and/or environmental stimuli. Eukaryotic mRNAs have a considerable range of half-lives, from as short as a few minutes to as long as several days. Human globin mRNAs constitute an example of highly stable mRNAs. However, a wide variety of naturally occurring mutations that result in the clinical syndrome of thalassemia can trigger accelerated mRNA decay thus controlling mRNA quality prior to translation. Distinct surveillance mechanisms have been described as being targeted for specific defective globin mRNAs. Here, we review mRNA stability mechanisms implicated in the control of β-globin gene expression and the surveillance pathways that prevent translation of aberrant β-globin mRNAs. In addition, we emphasize the importance of these pathways in modulating the severity of the β-thalassemia phenotype.
Collapse
Affiliation(s)
- Isabel Peixeiro
- Departamento de Genética, Instituto Nacional de Saúde Dr. Ricardo Jorge, Av. Padre Cruz, 1649-016 Lisboa, Portugal
| | | | | |
Collapse
|
259
|
BMP4 loss-of-function mutations in developmental eye disorders including SHORT syndrome. Hum Genet 2011; 130:495-504. [PMID: 21340693 PMCID: PMC3178759 DOI: 10.1007/s00439-011-0968-y] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 02/09/2011] [Indexed: 11/06/2022]
Abstract
BMP4 loss-of-function mutations and deletions have been shown to be associated with ocular, digital, and brain anomalies, but due to the paucity of these reports, the full phenotypic spectrum of human BMP4 mutations is not clear. We screened 133 patients with a variety of ocular disorders for BMP4 coding region mutations or genomic deletions. BMP4 deletions were detected in two patients: a patient affected with SHORT syndrome and a patient with anterior segment anomalies along with craniofacial dysmorphism and cognitive impairment. In addition to this, three intragenic BMP4 mutations were identified. A patient with anophthalmia, microphthalmia with sclerocornea, right-sided diaphragmatic hernia, and hydrocephalus was found to have a c.592C>T (p.R198X) nonsense mutation in BMP4. A frameshift mutation, c.171dupC (p.E58RfsX17), was identified in two half-siblings with anophthalmia/microphthalmia, discordant developmental delay/postaxial polydactyly, and poor growth as well as their unaffected mother; one affected sibling carried an additional BMP4 mutation in the second allele, c.362A>G (p.H121R). This is the first report indicating a role for BMP4 in SHORT syndrome, Axenfeld–Rieger malformation, growth delay, macrocephaly, and diaphragmatic hernia. These results significantly expand the number of reported loss-of-function mutations, further support the critical role of BMP4 in ocular development, and provide additional evidence of variable expression/non-penetrance of BMP4 mutations.
Collapse
|
260
|
Jenkins D, Baynam G, De Catte L, Elcioglu N, Gabbett MT, Hudgins L, Hurst JA, Jehee FS, Oley C, Wilkie AOM. Carpenter syndrome: extended RAB23 mutation spectrum and analysis of nonsense-mediated mRNA decay. Hum Mutat 2011; 32:E2069-78. [PMID: 21412941 PMCID: PMC3429868 DOI: 10.1002/humu.21457] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2010] [Accepted: 12/23/2010] [Indexed: 11/11/2022]
Abstract
Carpenter syndrome, a rare autosomal recessive disorder characterized by a combination of craniosynostosis, polysyndactyly, obesity, and other congenital malformations, is caused by mutations in RAB23, encoding a member of the Rab-family of small GTPases. In 15 out of 16 families previously reported, the disease was caused by homozygosity for truncating mutations, and currently only a single missense mutation has been identified in a compound heterozygote. Here, we describe a further 8 independent families comprising 10 affected individuals with Carpenter syndrome, who were positive for mutations in RAB23. We report the first homozygous missense mutation and in-frame deletion, highlighting key residues for RAB23 function, as well as the first splice-site mutation. Multi-suture craniosynostosis and polysyndactyly have been present in all patients described to date, and abnormal external genitalia have been universal in boys. High birth weight was not evident in the current group of patients, but further evidence for laterality defects is reported. No genotype-phenotype correlations are apparent. We provide experimental evidence that transcripts encoding truncating mutations are subject to nonsense-mediated decay, and that this plays an important role in the pathogenesis of many RAB23 mutations. These observations refine the phenotypic spectrum of Carpenter syndrome and offer new insights into molecular pathogenesis. © 2011 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Dagan Jenkins
- Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
261
|
Naing BT, Watanabe A, Shimada T. A novel mutation screening system for Ehlers-Danlos Syndrome, vascular type by high-resolution melting curve analysis in combination with small amplicon genotyping using genomic DNA. Biochem Biophys Res Commun 2011; 405:368-72. [PMID: 21219851 DOI: 10.1016/j.bbrc.2011.01.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Accepted: 01/04/2011] [Indexed: 11/27/2022]
Abstract
Ehlers-Danlos syndrome, vascular type (vEDS) (MIM #130050) is an autosomal dominant disorder caused by type III procollagen gene (COL3A1) mutations. Most COL3A1 mutations are detected by using total RNA from patient-derived fibroblasts, which requires an invasive skin biopsy. High-resolution melting curve analysis (hrMCA) has recently been developed as a post-PCR mutation scanning method which enables simple, rapid, cost-effective, and highly sensitive mutation screening of large genes. We established a hrMCA method to screen for COL3A1 mutations using genomic DNA. PCR primers pairs for COL3A1 (52 amplicons) were designed to cover all coding regions of the 52 exons, including the splicing sites. We used 15 DNA samples (8 validation samples and 7 samples of clinically suspected vEDS patients) in this study. The eight known COL3A1 mutations in validation samples were all successfully detected by the hrMCA. In addition, we identified five novel COL3A1 mutations, including one deletion (c.2187delA) and one nonsense mutation (c.2992C>T) that could not be determined by the conventional total RNA method. Furthermore, we established a small amplicon genotyping (SAG) method for detecting three high frequency coding-region SNPs (rs1800255:G>A, rs1801184:T>C, and rs2271683:A>G) in COL3A1 to differentiate mutations before sequencing. The use of hrMCA in combination with SAG from genomic DNA enables rapid detection of COL3A1 mutations with high efficiency and specificity. A better understanding of the genotype-phenotype correlation in COL3A1 using this method will lead to improve in diagnosis and treatment.
Collapse
Affiliation(s)
- Banyar Than Naing
- Department of Biochemistry and Molecular Biology, Nippon Medical School, and Division of Clinical Genetics, Nippon Medical School Hospital, Tokyo, Japan
| | | | | |
Collapse
|
262
|
Nissen PH, Nordwall M, Hoffmann-Lücke E, Sorensen BS, Nexo E. Transcobalamin deficiency caused by compound heterozygosity for two novel mutations in the TCN2 gene: a study of two affected siblings, their brother, and their parents. J Inherit Metab Dis 2010; 33 Suppl 3:S269-74. [PMID: 20607612 DOI: 10.1007/s10545-010-9145-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Revised: 05/19/2010] [Accepted: 06/01/2010] [Indexed: 11/28/2022]
Abstract
Transcobalamin (TC) deficiency (OMIM# 275350) is a rare, autosomal recessive disorder that presents in early infancy with a broad spectrum of symptoms, including failure to thrive, megaloblastic anemia, immunological deficiency, and neurological symptoms. Here we report a study of a family (parents and three children) with two children suffering from TC deficiency caused by two different mutations in the TCN2 gene. Initially, molecular genetic analysis of genomic DNA revealed a heterozygous mutation in the +1 position of exon 7 (c.1106+1 G > A) in the father and all three children. Bioinformatic analysis indicates that this mutation causes exon skipping, and further experiments supported this hypothesis and suggested that the mutant allele undergoes nonsense-mediated messenger RNA (mRNA) decay. We did not identify further mutations in genomic DNA that could explain TC deficiency in the two children. However, further efforts using complementary DNA (cDNA) derived from RNA from blood leukocytes identified a large deletion removing the entire exon 8, resulting in a frameshift and a premature stop codon (p.E371fsX372) in the mother and the two affected children. Our data indicate that if exon-by-exon DNA sequencing of genomic DNA does not uncover mutations corresponding to the phenotype, a systematic search for other mutations should be initiated by sequencing cDNA or using semiquantitative methods to detect large deletions in TCN2.
Collapse
Affiliation(s)
- Peter H Nissen
- Department of Clinical Biochemistry, AS, Aarhus University Hospital, Norrebrogade 44, DK 8000 Aarhus C, Denmark
| | | | | | | | | |
Collapse
|
263
|
Gong Q, Stump MR, Zhou Z. Inhibition of nonsense-mediated mRNA decay by antisense morpholino oligonucleotides restores functional expression of hERG nonsense and frameshift mutations in long-QT syndrome. J Mol Cell Cardiol 2010; 50:223-9. [PMID: 21035456 DOI: 10.1016/j.yjmcc.2010.10.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Accepted: 10/19/2010] [Indexed: 10/18/2022]
Abstract
Mutations in the human ether-a-go-go-related gene (hERG) cause long-QT syndrome type 2 (LQT2). We previously described a homozygous LQT2 nonsense mutation Q1070X in which the mutant mRNA is degraded by nonsense-mediated mRNA decay (NMD) leading to a severe clinical phenotype. The degradation of the Q1070X transcript precludes the expression of truncated but functional mutant channels. In the present study, we tested the hypothesis that inhibition of NMD can restore functional expression of LQT2 mutations that are targeted by NMD. We showed that inhibition of NMD by RNA interference-mediated knockdown of UPF1 increased Q1070X mutant channel protein expression and hERG current amplitude. More importantly, we found that specific inhibition of downstream intron splicing by antisense morpholino oligonucleotides prevented NMD of the Q1070X mutant mRNA and restored the expression of functional Q1070X mutant channels. The restoration of functional expression by antisense morpholino oligonucleotides was also observed in LQT2 frameshift mutations. Our findings suggest that inhibition of NMD by antisense morpholino oligonucleotides may be a potential therapeutic approach for some LQT2 patients carrying nonsense and frameshift mutations.
Collapse
Affiliation(s)
- Qiuming Gong
- Division of Cardiovascular Medicine, Department of Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | | | | |
Collapse
|
264
|
Abstract
NMD (nonsense-mediated mRNA decay) belongs to the best-studied mRNA surveillance systems of the cell, limiting the synthesis of truncated and potentially harmful proteins on the one hand and playing an initially unexpected role in the regulation of global gene expression on the other hand. In the present review, we briefly discuss the factors involved in NMD, the different models proposed for the recognition of PTCs (premature termination codons), the diverse physiological roles of NMD, the involvement of this surveillance pathway in disease and the current strategies for medical treatment of PTC-related diseases.
Collapse
|
265
|
Haremaki T, Sridharan J, Dvora S, Weinstein DC. Regulation of vertebrate embryogenesis by the exon junction complex core component Eif4a3. Dev Dyn 2010; 239:1977-87. [PMID: 20549732 DOI: 10.1002/dvdy.22330] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The establishment and maintenance of cellular identity are ultimately dependent upon the accurate regulation of gene expression, the process by which genetic information is used to synthesize functional gene products. The post-transcriptional, pre-translational regulation of RNA constitutes RNA processing, which plays a prominent role in the modulation of gene expression in differentiated animal cells. The multi-protein Exon Junction Complex (EJC) serves as a critical signaling hub within the network that underlies many RNA processing events. Here, we identify a requirement for the EJC during early vertebrate embryogenesis. Knockdown of the EJC component Eukaryotic initiation factor 4a3 (Eif4a3) in embryos of the frog Xenopus laevis results in full-body paralysis, with defects in sensory neuron, pigment cell, and cardiac development; similar phenotypes are seen following knockdown of other "core" EJC protein constituents. Our studies point to an essential role for the EJC in the development of neural plate border derivatives.
Collapse
Affiliation(s)
- Tomomi Haremaki
- Biology Department, Queens College of the City University of New York, 65-30 Kissena Boulevard, Flushing, NY 11367, USA
| | | | | | | |
Collapse
|
266
|
Manoli I, Golas G, Westbroek W, Vilboux T, Markello TC, Introne W, Maynard D, Pederson B, Tsilou E, Jordan MB, Hart PS, White JG, Gahl WA, Huizing M. Chediak-Higashi syndrome with early developmental delay resulting from paternal heterodisomy of chromosome 1. Am J Med Genet A 2010; 152A:1474-83. [PMID: 20503323 DOI: 10.1002/ajmg.a.33389] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Chediak-Higashi syndrome (CHS) is a rare autosomal recessive disease characterized by variable oculocutaneous albinism, immunodeficiency, mild bleeding diathesis, and an accelerated lymphoproliferative state. Abnormal lysosome-related organelle membrane function leads to the accumulation of large intracellular vesicles in several cell types, including granulocytes, melanocytes, and platelets. This report describes a severe case of CHS resulting from paternal heterodisomy of chromosome 1, causing homozygosity for the most distal nonsense mutation (p.E3668X, exon 50) reported to date in the LYST/CHS1 gene. The mutation is located in the WD40 region of the CHS1 protein. The patient's fibroblasts expressed no detectable CHS1. Besides manifesting the classical CHS findings, the patient exhibited hypotonia and global developmental delays, raising concerns about other effects of heterodisomy. An interstitial 747 kb duplication on 6q14.2-6q14.3 was identified in the propositus and paternal samples by comparative genomic hybridization. SNP genotyping revealed no additional whole chromosome or segmental isodisomic regions or other dosage variations near the crossover breakpoints on chromosome 1. Unmasking of a separate autosomal recessive cause of developmental delay, or an additive effect of the paternal heterodisomy, could underlie the severity of the phenotype in this patient.
Collapse
Affiliation(s)
- Irini Manoli
- Section on Human Biochemical Genetics, Medical Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, Maryland, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
267
|
Castellsagué E, González S, Guinó E, Stevens KN, Borràs E, Raymond VM, Lázaro C, Blanco I, Gruber SB, Capellá G. Allele-specific expression of APC in adenomatous polyposis families. Gastroenterology 2010; 139:439-47, 447.e1. [PMID: 20434453 PMCID: PMC2910837 DOI: 10.1053/j.gastro.2010.04.047] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Revised: 03/24/2010] [Accepted: 04/21/2010] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS Germline mutations in the APC gene cause of most cases of familial adenomatous polyposis (FAP) and a lesser proportion of attenuated FAP (AFAP). Systematic analysis of APC at the RNA level could provide insight into the pathogenicity of identified mutations and the molecular basis of FAP/AFAP in families without identifiable mutations. Here, we analyzed the prevalence of imbalances in the allelic expression of APC in polyposis families with germline mutations in the gene and without detectable mutations in APC and/or MUTYH. METHODS Allele-specific expression (ASE) was determined by single nucleotide primer extension using an exon 11 polymorphism as an allele-specific marker. In total, 52 APC-mutation-positive (36 families) and 24 APC/MUTYH-mutation-negative (23 families) informative patients were analyzed. Seventy-six controls also were included. RESULTS Of the APC-mutation-positive families, most of those in whom the mutation was located before the last exon of the gene (12 of 14) had ASE imbalance, which is consistent with a mechanism of nonsense-mediated decay. Of the APC/MUTYH-mutation-negative families, 2 (9%) had ASE imbalance, which might cause the disease. Normal allele expression was restored shortly after lymphocytes were cultured with puromycin, supporting a 'nonsense-mediated' hypothesis. CONCLUSIONS ASE analysis might be used to determine the pathogenesis of some cases of FAP and AFAP in which APC mutations are not found. ASE also might be used to prioritize the order in which different areas of APC are tested. RNA-level studies are important for the molecular diagnosis of FAP.
Collapse
Affiliation(s)
- Ester Castellsagué
- Translational Research Laboratory, IDIBELL-Institut Català d’Oncologia, Barcelona 08907, Spain
| | - Sara González
- Translational Research Laboratory, IDIBELL-Institut Català d’Oncologia, Barcelona 08907, Spain
| | - Elisabet Guinó
- Bioinformatics and Biostatistics Unit, Department of Epidemiology, IDIBELL-Institut Català d’Oncologia, Barcelona 08907, Spain
| | - Kristen N. Stevens
- Department of Epidemiology, University of Michigan, Ann Arbor MI 48109, Michigan, USA
| | - Ester Borràs
- Translational Research Laboratory, IDIBELL-Institut Català d’Oncologia, Barcelona 08907, Spain
| | - Victoria M. Raymond
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor MI 48109, Michigan, USA
| | - Conxi Lázaro
- Translational Research Laboratory, IDIBELL-Institut Català d’Oncologia, Barcelona 08907, Spain
| | - Ignacio Blanco
- Cancer Genetic Counseling Program, IDIBELL-Institut Català d’Oncologia, Barcelona, Spain
| | - Stephen B. Gruber
- Department of Internal Medicine, Epidemiology, and Human Genetics, Division of Molecular Medicine and Genetics, University of Michigan, Ann Arbor MI 48109, Michigan, USA
| | - Gabriel Capellá
- Translational Research Laboratory, IDIBELL-Institut Català d’Oncologia, Barcelona 08907, Spain
| |
Collapse
|
268
|
Seoighe C, Gehring C. Heritability in the efficiency of nonsense-mediated mRNA decay in humans. PLoS One 2010; 5:e11657. [PMID: 20657766 PMCID: PMC2908117 DOI: 10.1371/journal.pone.0011657] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Accepted: 06/22/2010] [Indexed: 01/28/2023] Open
Abstract
Background In eukaryotes mRNA transcripts of protein-coding genes in which an intron has been retained in the coding region normally result in premature stop codons and are therefore degraded through the nonsense-mediated mRNA decay (NMD) pathway. There is evidence in the form of selective pressure for in-frame stop codons in introns and a depletion of length three introns that this is an important and conserved quality-control mechanism. Yet recent reports have revealed that the efficiency of NMD varies across tissues and between individuals, with important clinical consequences. Principal Findings Using previously published Affymetrix exon microarray data from cell lines genotyped as part of the International HapMap project, we investigated whether there are heritable, inter-individual differences in the abundance of intron-containing transcripts, potentially reflecting differences in the efficiency of NMD. We identified intronic probesets using EST data and report evidence of heritability in the extent of intron expression in 56 HapMap trios. We also used a genome-wide association approach to identify genetic markers associated with intron expression. Among the top candidates was a SNP in the DCP1A gene, which forms part of the decapping complex, involved in NMD. Conclusions While we caution that some of the apparent inter-individual difference in intron expression may be attributable to different handling or treatments of cell lines, we hypothesize that there is significant polymorphism in the process of NMD, resulting in heritable differences in the abundance of intronic mRNA. Part of this phenotype is likely to be due to a polymorphism in a decapping enzyme on human chromosome 3.
Collapse
Affiliation(s)
- Cathal Seoighe
- School of Mathematics, Statistics and Applied Mathematics, National University of Ireland Galway, Galway, Ireland.
| | | |
Collapse
|
269
|
Johri S, Dunnington GH, Vnencak-Jones CL. A novel BMPR2 mutation associated with pulmonary arterial hypertension in an octogenarian. Lung 2010; 188:349-52. [PMID: 20496075 PMCID: PMC2899024 DOI: 10.1007/s00408-010-9242-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Accepted: 04/19/2010] [Indexed: 12/24/2022]
Abstract
We describe the case of an 83-year-old man with a family history of pulmonary hypertension (PH) who presented with severe pulmonary arterial hypertension (PAH) and later tested positive for a novel bone morphogenetic protein receptor 2 (BMPR2) gene mutation. To our knowledge, this may be the oldest reported patient with PAH in whom a BMPR2 mutation was initially identified.
Collapse
Affiliation(s)
- Shilpa Johri
- Pulmonary Associates of Richmond, 1603 Santa Rosa Road, Suite 101, Richmond, VA 23229, USA.
| | | | | |
Collapse
|
270
|
Nicholson P, Yepiskoposyan H, Metze S, Zamudio Orozco R, Kleinschmidt N, Mühlemann O. Nonsense-mediated mRNA decay in human cells: mechanistic insights, functions beyond quality control and the double-life of NMD factors. Cell Mol Life Sci 2010; 67:677-700. [PMID: 19859661 PMCID: PMC11115722 DOI: 10.1007/s00018-009-0177-1] [Citation(s) in RCA: 251] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2009] [Revised: 09/16/2009] [Accepted: 10/06/2009] [Indexed: 12/16/2022]
Abstract
Nonsense-mediated decay is well known by the lucid definition of being a RNA surveillance mechanism that ensures the speedy degradation of mRNAs containing premature translation termination codons. However, as we review here, NMD is far from being a simple quality control mechanism; it also regulates the stability of many wild-type transcripts. We summarise the abundance of research that has characterised each of the NMD factors and present a unified model for the recognition of NMD substrates. The contentious issue of how and where NMD occurs is also discussed, particularly with regard to P-bodies and SMG6-driven endonucleolytic degradation. In recent years, the discovery of additional functions played by several of the NMD factors has further complicated the picture. Therefore, we also review the reported roles of UPF1, SMG1 and SMG6 in other cellular processes.
Collapse
Affiliation(s)
- Pamela Nicholson
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012, Bern, Switzerland
| | - Hasmik Yepiskoposyan
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012, Bern, Switzerland
| | - Stefanie Metze
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012, Bern, Switzerland
| | - Rodolfo Zamudio Orozco
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012, Bern, Switzerland
| | - Nicole Kleinschmidt
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012, Bern, Switzerland
| | - Oliver Mühlemann
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012, Bern, Switzerland
| |
Collapse
|
271
|
Takano K, Lyons M, Moyes C, Jones J, Schwartz CE. Two percent of patients suspected of having Angelman syndrome have TCF4 mutations. Clin Genet 2010; 78:282-8. [PMID: 20184619 DOI: 10.1111/j.1399-0004.2010.01380.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The TCF4 gene encodes a basic helix-loop-helix (bHLH) transcription factor which belongs to the family of E-proteins. E-proteins form homo- and heterodimers with other members of the HLH family and bind to the common DNA sequence called E-box. Haploinsufficiency of the TCF4 gene has been found to be associated with the Pitt-Hopkins syndrome (PTHS). PTHS is characterized by severe mental retardation, a wide mouth plus other distinctive facial features (fleshy lips, beaked nose, broad nasal bridge) and breathing abnormalities. Because of some phenotypical overlap with Angelman syndrome (AS), it has been suggested that PTHS be considered in its differential diagnosis. To explore this possibility, we screened 86 patients who were suspected of having AS. All the patients were negative for UBE3A testing, and 53 were known to be negative for methylation analysis. We identified two TCF4 mutations in this cohort. The p.S384Tfsx7 mutation lacks the bHLH domain. The p.R582P mutation lies within the bHLH domain in which seven other missense mutations have been reported. Both mutations most likely affect the critical function of the bHLH domain of the TCF4 protein. In summary, we found two TCF4 mutations in 86 patients (2%) suspected to have AS. Screening for mutations in this gene should be considered in patients who present with findings of AS but who have been negative for methylation and UBE3A testing.
Collapse
Affiliation(s)
- K Takano
- Greenwood Genetic Center, Greenwood, SC 29646, USA
| | | | | | | | | |
Collapse
|
272
|
Pampols T. Inherited metabolic rare disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 686:397-431. [PMID: 20824458 DOI: 10.1007/978-90-481-9485-8_23] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Inherited metabolic disorders (IMD) represent a vast, diverse and heterogeneous collection of around 700 genetic diseases. They are caused by rare mutations that affect the function of individual proteins and are a significant cause of morbidity and mortality, especially in childhood. Difficulties in ascertaining cases and the increasing number of new disorders have hampered efforts to accumulate exhaustive epidemiological data. Nonetheless, recent studies quote the cumulative incidence of IMDs at around 1 in 800 live births. To understand the epidemiology of IMD we will consider in this chapter two types of epidemiological approaches. The first type, or the Analytical approaches, includes the function of genetic factors in the natural history and clinical variability of the disease, as well as the role of epigenetic, stochastic and environmental factors. The second type, or the Descriptive approaches, comprises methods of case ascertainment through the diagnosis of symptomatic patients and population screening, mainly newborn and carrier screening, as well as measures of disease frequency and resources for disease control and prevention (primary, secondary and tertiary).
Collapse
Affiliation(s)
- Teresa Pampols
- Institut de Bioquímica Clínica, Servei de Bioquímica i Genètica Molecular, Hospital Clínic de Barcelona and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain.
| |
Collapse
|
273
|
Palumbo V, Segat L, Padovan L, Amoroso A, Trimarco B, Izzo R, Lembo G, Regitz-Zagrosek V, Knoll R, Brancaccio M, Tarone G, Crovella S. Melusin gene (ITGB1BP2) nucleotide variations study in hypertensive and cardiopathic patients. BMC MEDICAL GENETICS 2009; 10:140. [PMID: 20017903 PMCID: PMC2803168 DOI: 10.1186/1471-2350-10-140] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Accepted: 12/17/2009] [Indexed: 11/10/2022]
Abstract
BACKGROUND Melusin is a muscle specific signaling protein, required for compensatory hypertrophy response in pressure-overloaded heart. The role of Melusin in heart function has been established both by loss and gain of function experiments in murine models. With the aim of verifying the hypothesis of a potential role of the Melusin encoding gene, ITGB1BP2, in the modification of the clinical phenotype of human cardiomyopathies, we screened the ITGB1BP2 gene looking for genetic variations possibly associated to the pathological phenotype in three selected groups of patients affected by hypertension and dilated or hypertrophic cardiomyopathy METHODS We analyzed ITGB1BP2 by direct sequencing of the 11 coding exons and intron flanking sequences in 928 subjects, including 656 hypertensive or cardiopathic patients and 272 healthy individuals. RESULTS Only three nucleotide variations were found in patients of three distinct families: a C>T missense substitution at position 37 of exon 1 causing an amino acid change from His-13 to Tyr in the protein primary sequence, a duplication (IVS6+12_18dupTTTTGAG) near the 5'donor splice site of intron 6, and a silent 843C>T substitution in exon 11. CONCLUSIONS The three variations of the ITGB1BP2 gene have been detected in families of patients affected either by hypertension or primary hypertrophic cardiomyopathy; however, a clear genotype/phenotype correlation was not evident. Preliminary functional results and bioinformatic analysis seem to exclude a role for IVS6+12_18dupTTTTGAG and 843C>T in affecting splicing mechanism.Our analysis revealed an extremely low number of variations in the ITGB1BP2 gene in nearly 1000 hypertensive/cardiopathic and healthy individuals, thus suggesting a high degree of conservation of the melusin gene within the populations analyzed.
Collapse
Affiliation(s)
- Valeria Palumbo
- Dipartimento di Genetica Biologia e Biochimica, Università di Torino, via Santena 19, Torino 10126, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
274
|
Magyar I, Colman D, Arnold E, Baumgartner D, Bottani A, Fokstuen S, Addor MC, Berger W, Carrel T, Steinmann B, Mátyás G. Quantitative sequence analysis of FBN1 premature termination codons provides evidence for incomplete NMD in leukocytes. Hum Mutat 2009; 30:1355-64. [PMID: 19618372 DOI: 10.1002/humu.21058] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
We improved, evaluated, and used Sanger sequencing for quantification of single nucleotide polymorphism (SNP) variants in transcripts and gDNA samples. This improved assay resulted in highly reproducible relative allele frequencies (e.g., for a heterozygous gDNA 50.0+/-1.4%, and for a missense mutation-bearing transcript 46.9+/-3.7%) with a lower detection limit of 3-9%. It provided excellent accuracy and linear correlation between expected and observed relative allele frequencies. This sequencing assay, which can also be used for the quantification of copy number variations (CNVs), methylations, mosaicisms, and DNA pools, enabled us to analyze transcripts of the FBN1 gene in fibroblasts and blood samples of patients with suspected Marfan syndrome not only qualitatively but also quantitatively. We report a total of 18 novel and 19 known FBN1 sequence variants leading to a premature termination codon (PTC), 26 of which we analyzed by quantitative sequencing both at gDNA and cDNA levels. The relative amounts of PTC-containing FBN1 transcripts in fresh and PAXgene-stabilized blood samples were significantly higher (33.0+/-3.9% to 80.0+/-7.2%) than those detected in affected fibroblasts with inhibition of nonsense-mediated mRNA decay (NMD) (11.0+/-2.1% to 25.0+/-1.8%), whereas in fibroblasts without NMD inhibition no mutant alleles could be detected. These results provide evidence for incomplete NMD in leukocytes and have particular importance for RNA-based analyses not only in FBN1 but also in other genes.
Collapse
Affiliation(s)
- István Magyar
- Division of Medical Molecular Genetics and Gene Diagnostics, Institute of Medical Genetics, University of Zurich, Zurich, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
275
|
Salvatori F, Breveglieri G, Zuccato C, Finotti A, Bianchi N, Borgatti M, Feriotto G, Destro F, Canella A, Brognara E, Lampronti I, Breda L, Rivella S, Gambari R. Production of beta-globin and adult hemoglobin following G418 treatment of erythroid precursor cells from homozygous beta(0)39 thalassemia patients. Am J Hematol 2009; 84:720-8. [PMID: 19810011 PMCID: PMC3572903 DOI: 10.1002/ajh.21539] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In several types of thalassemia (including beta(0)39-thalassemia), stop codon mutations lead to premature translation termination and to mRNA destabilization through nonsense-mediated decay. Drugs (for instance aminoglycosides) can be designed to suppress premature termination, inducing a ribosomal readthrough. These findings have introduced new hopes for the development of a pharmacologic approach to the cure of this disease. However, the effects of aminoglycosides on globin mRNA carrying beta-thalassemia stop mutations have not yet been investigated. In this study, we have used a lentiviral construct containing the beta(0)39-thalassemia globin gene under control of the beta-globin promoter and a LCR cassette. We demonstrated by fluorescence-activated cell sorting (FACS) analysis the production of beta-globin by K562 cell clones expressing the beta(0)39-thalassemia globin gene and treated with G418. More importantly, after FACS and high-performance liquid chromatography (HPLC) analyses, erythroid precursor cells from beta(0)39-thalassemia patients were demonstrated to be able to produce beta-globin and adult hemoglobin after treatment with G418. This study strongly suggests that ribosomal readthrough should be considered a strategy for developing experimental strategies for the treatment of beta(0)-thalassemia caused by stop codon mutations. Am. J. Hematol., 2009. (c) 2009 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Francesca Salvatori
- BioPharmaNet, Department of Biochemistry and Molecular Biology, Ferrara University, Ferrara, Italy
| | - Giulia Breveglieri
- BioPharmaNet, Department of Biochemistry and Molecular Biology, Ferrara University, Ferrara, Italy
| | - Cristina Zuccato
- Laboratory for the Development of Pharmacological and Pharmacogenomic Therapy of Thalassaemia, Biotechnology Center, Ferrara University, Ferrara, Italy
| | - Alessia Finotti
- Laboratory for the Development of Pharmacological and Pharmacogenomic Therapy of Thalassaemia, Biotechnology Center, Ferrara University, Ferrara, Italy
| | - Nicoletta Bianchi
- Laboratory for the Development of Pharmacological and Pharmacogenomic Therapy of Thalassaemia, Biotechnology Center, Ferrara University, Ferrara, Italy
| | - Monica Borgatti
- Laboratory for the Development of Pharmacological and Pharmacogenomic Therapy of Thalassaemia, Biotechnology Center, Ferrara University, Ferrara, Italy
| | - Giordana Feriotto
- Laboratory for the Development of Pharmacological and Pharmacogenomic Therapy of Thalassaemia, Biotechnology Center, Ferrara University, Ferrara, Italy
| | - Federica Destro
- BioPharmaNet, Department of Biochemistry and Molecular Biology, Ferrara University, Ferrara, Italy
| | - Alessandro Canella
- BioPharmaNet, Department of Biochemistry and Molecular Biology, Ferrara University, Ferrara, Italy
| | - Eleonora Brognara
- Laboratory for the Development of Pharmacological and Pharmacogenomic Therapy of Thalassaemia, Biotechnology Center, Ferrara University, Ferrara, Italy
| | - Ilaria Lampronti
- Laboratory for the Development of Pharmacological and Pharmacogenomic Therapy of Thalassaemia, Biotechnology Center, Ferrara University, Ferrara, Italy
| | - Laura Breda
- Department of Pediatric and Hematology-Oncology, Weill Medical College of Cornell University, New York, New York
| | - Stefano Rivella
- Department of Pediatric and Hematology-Oncology, Weill Medical College of Cornell University, New York, New York
| | - Roberto Gambari
- BioPharmaNet, Department of Biochemistry and Molecular Biology, Ferrara University, Ferrara, Italy
- Laboratory for the Development of Pharmacological and Pharmacogenomic Therapy of Thalassaemia, Biotechnology Center, Ferrara University, Ferrara, Italy
| |
Collapse
|
276
|
Austin ED, Phillips JA, Cogan JD, Hamid R, Yu C, Stanton KC, Phillips CA, Wheeler LA, Robbins IM, Newman JH, Loyd JE. Truncating and missense BMPR2 mutations differentially affect the severity of heritable pulmonary arterial hypertension. Respir Res 2009; 10:87. [PMID: 19785764 PMCID: PMC2762975 DOI: 10.1186/1465-9921-10-87] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Accepted: 09/28/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Autosomal dominant inheritance of germline mutations in the bone morphogenetic protein receptor type 2 (BMPR2) gene are a major risk factor for pulmonary arterial hypertension (PAH). While previous studies demonstrated a difference in severity between BMPR2 mutation carriers and noncarriers, it is likely disease severity is not equal among BMPR2 mutations. We hypothesized that patients with missense BMPR2 mutations have more severe disease than those with truncating mutations. METHODS Testing for BMPR2 mutations was performed in 169 patients with PAH (125 with a family history of PAH and 44 with sporadic disease). Of the 106 patients with a detectable BMPR2 mutation, lymphocytes were available in 96 to functionally assess the nonsense-mediated decay pathway of RNA surveillance. Phenotypic characteristics were compared between BMPR2 mutation carriers and noncarriers, as well as between those carriers with a missense versus truncating mutation. RESULTS While there was a statistically significant difference in age at diagnosis between carriers and noncarriers, subgroup analysis revealed this to be the case only for females. Among carriers, there was no difference in age at diagnosis, death, or survival according to exonic location of the BMPR2 mutation. However, patients with missense mutations had statistically significant younger ages at diagnosis and death, as well as shorter survival from diagnosis to death or lung transplantation than those with truncating mutations. Consistent with this data, the majority of missense mutations were penetrant prior to age 36 years, while the majority of truncating mutations were penetrant after age 36 years. CONCLUSION In this cohort, BMPR2 mutation carriers have more severe PAH disease than noncarriers, but this is only the case for females. Among carriers, patients with missense mutations that escape nonsense-mediated decay have more severe disease than those with truncating mutations. These findings suggest that treatment and prevention strategies directed specifically at BMPR2 pathway defects may need to vary according to the type of mutation.
Collapse
Affiliation(s)
- Eric D Austin
- Department of Pediatrics, Vanderbilt University, Medical Center, Nashville, TN, USA
| | - John A Phillips
- Department of Pediatrics, Vanderbilt University, Medical Center, Nashville, TN, USA
| | - Joy D Cogan
- Department of Pediatrics, Vanderbilt University, Medical Center, Nashville, TN, USA
| | - Rizwan Hamid
- Department of Pediatrics, Vanderbilt University, Medical Center, Nashville, TN, USA
| | - Chang Yu
- Department of Biostatistics, Vanderbilt University, Medical Center, Nashville, TN, USA
| | - Krista C Stanton
- Department of Pediatrics, Vanderbilt University, Medical Center, Nashville, TN, USA
| | - Charles A Phillips
- Department of Pediatrics, Vanderbilt University, Medical Center, Nashville, TN, USA
| | - Lisa A Wheeler
- Department of Medicine, Vanderbilt University, Medical Center, Nashville, TN, USA
| | - Ivan M Robbins
- Department of Medicine, Vanderbilt University, Medical Center, Nashville, TN, USA
| | - John H Newman
- Department of Medicine, Vanderbilt University, Medical Center, Nashville, TN, USA
| | - James E Loyd
- Department of Medicine, Vanderbilt University, Medical Center, Nashville, TN, USA
| |
Collapse
|
277
|
High resolution transcriptome maps for wild-type and nonsense-mediated decay-defective Caenorhabditis elegans. Genome Biol 2009; 10:R101. [PMID: 19778439 PMCID: PMC2768976 DOI: 10.1186/gb-2009-10-9-r101] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Revised: 08/11/2009] [Accepted: 09/24/2009] [Indexed: 11/12/2022] Open
Abstract
The high-resolution transcriptome of wild-type and nonsense-mediated decay (NMD) defective C. elegans during development reveals insights into the NMD pathway and it’s role in development. Background While many genome sequences are complete, transcriptomes are less well characterized. We used both genome-scale tiling arrays and massively parallel sequencing to map the Caenorhabditis elegans transcriptome across development. We utilized this framework to identify transcriptome changes in animals lacking the nonsense-mediated decay (NMD) pathway. Results We find that while the majority of detectable transcripts map to known gene structures, >5% of transcribed regions fall outside current gene annotations. We show that >40% of these are novel exons. Using both technologies to assess isoform complexity, we estimate that >17% of genes change isoform across development. Next we examined how the transcriptome is perturbed in animals lacking NMD. NMD prevents expression of truncated proteins by degrading transcripts containing premature termination codons. We find that approximately 20% of genes produce transcripts that appear to be NMD targets. While most of these arise from splicing errors, NMD targets are enriched for transcripts containing open reading frames upstream of the predicted translational start (uORFs). We identify a relationship between the Kozak consensus surrounding the true start codon and the degree to which uORF-containing transcripts are targeted by NMD and speculate that translational efficiency may be coupled to transcript turnover via the NMD pathway for some transcripts. Conclusions We generated a high-resolution transcriptome map for C. elegans and used it to identify endogenous targets of NMD. We find that these transcripts arise principally through splicing errors, strengthening the prevailing view that splicing and NMD are highly interlinked processes.
Collapse
|
278
|
Frischknecht H, Dutly F, Walker L, Nakamura-Garrett LM, Eng B, Waye JS. Three New β-Thalassemia Mutations with Varying Degrees of Severity. Hemoglobin 2009; 33:220-5. [DOI: 10.1080/03630260903089060] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
279
|
Grandemange S, Soler S, Touitou I. Expression of the familial Mediterranean fever gene is regulated by nonsense-mediated decay. Hum Mol Genet 2009; 18:4746-55. [PMID: 19755381 DOI: 10.1093/hmg/ddp437] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Mutations in the MEditerranean FeVer (MEFV) gene are responsible for familial Mediterranean fever (FMF), a recessively inherited auto-inflammatory disease. Cases of dominant inheritance and phenotype-genotype heterogeneity have been reported; however, the underlying molecular mechanism is not currently understood. The FMF protein named pyrin or marenostrin (P/M) is thought to be involved in regulating innate immunity but its function remains subject to controversy. Recent studies postulate that a defect in MEFV expression regulation may play a role in FMF physiopathology. Our group, along with others, has identified several alternatively spliced MEFV transcripts in leukocytes. Since alternative splicing and nonsense-mediated decay (NMD) pathways are usually coupled in the post-transcriptional regulation of gene expression, we hypothesized that NMD could contribute to the regulation of the MEFV gene. To address this issue, we examined the effect of indirect and direct inhibition of NMD on expression of the MEFV transcripts in THP1, monocyte and neutrophil cells. We showed that MEFV is the first auto-inflammatory gene regulated by NMD in both a cell- and transcript-specific manner. These results and preliminary western-blot analyses suggest the possible translation of alternatively spliced MEFV transcripts into several P/M variants according to cell type and inflammatory state. Our results introduce the novel hypothesis that variation of NMD efficiency could play an important role in FMF physiopathology as a potent phenotypic modifier.
Collapse
Affiliation(s)
- Sylvie Grandemange
- Génétique des Maladies Auto-Inflammatoires, Institut de Génétique Humaine, CNRS-UPR1142, Montpellier, France
| | | | | |
Collapse
|
280
|
Clausmeyer S, Hesse V, Clemens PC, Engelbach M, Kreuzer M, Becker-Rose P, Spital H, Schulze E, Raue F. Mutational analysis of the PHEX gene: novel point mutations and detection of large deletions by MLPA in patients with X-linked hypophosphatemic rickets. Calcif Tissue Int 2009; 85:211-20. [PMID: 19513579 DOI: 10.1007/s00223-009-9260-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Accepted: 04/30/2009] [Indexed: 12/22/2022]
Abstract
X-Linked hypophosphatemic rickets (HYP, XLH) is a disorder of phosphate homeostasis, characterized by renal phosphate wasting and hypophosphatemia, with normal to low 1,25-dihydroxy vitamin D3 serum levels. The purpose of our study was the detection of inactivating mutations in the PHEX gene, the key enzyme in the pathogenesis of XLH. The 16 patients, representing eight families, presented with suspected XLH from biochemical and clinical evidence. All 16 were referred for mutational analysis of the PHEX gene. We detected three novel disease-causing mutations, C59S, Q394X, and W602, for which a loss of function can be predicted. A G28S variation, found in two healthy probands, may be a rare polymorphism. Another mutation, A363 V, is localized on the same allele as the C59S mutation, thus its functional consequences cannot be proven. Furthermore, we detected a deletion of three nucleotides in exon 15 which resulted in the loss of amino acid threonine 535. Heterozygosity of this mutation in a male patient without any chromosomal aberrations suggests its presence as a mosaic. Novel large deletions were detected using multiplex ligation-dependent probe amplification (MLPA) analysis. Two of these deletions, loss of exon 22 alone or exons 21 and 22 together, may result in the translation of a C-terminal truncated protein. Two large deletions comprise exons 1-9 and exons 4-20, respectively, and presumably result in a nonfunctional protein. We conclude that molecular genetic analysis confirms the clinical diagnosis of XLH and should include sequence analysis as well as the search for large deletions, which is facilitated by MLPA.
Collapse
Affiliation(s)
- S Clausmeyer
- Endocrine Practice Prof. Raue, Heidelberg, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
281
|
Savas S, Geraci J, Jurisica I, Liu G. A comprehensive catalogue of functional genetic variations in the EGFR pathway: protein-protein interaction analysis reveals novel genes and polymorphisms important for cancer research. Int J Cancer 2009; 125:1257-65. [PMID: 19499547 DOI: 10.1002/ijc.24535] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The EGFR pathway is a critical signaling pathway deregulated in many solid tumors. In addition to the initiation and progression of cancer, the EGFR pathway is also implicated in variable treatment responses and prognoses. Genetic variation in the form of Single Nucleotide Polymorphisms (SNPs) can affect the function/expression of the EGFR pathway genes. Here, we applied a systematic and comprehensive approach utilizing diverse public databases and in silico analysis tools to select putative functional genetic variations from 244 genes involved in the EGFR pathway. Our data comprises 649 SNPs. Three hundred sixty SNPs are predicted to have biological consequences (functional SNPs). These SNPs can be directly used in further studies to test their association with risk, treatment response and prognosis in cancer. To systematically cover the EGFR pathway, we also performed a network-based analysis to further select putative functional SNPs from the genes whose protein products physically interact with the EGFR pathway proteins. We utilized protein-protein interaction information and focused on 14 proteins that have a high degree of connectivity (interacting with > or = 10 proteins) with the EGFR pathway genes identified to have functional SNPs (f-EGFR genes). Two of these proteins (FYN and LCK) had interactions with 17 of the f-EGFR genes, yet both lacked any putative functional SNP. However, our analysis indicated the presence of potentially functional SNPs in 9 other highly interactive proteins. The genes and their SNPs identified in the network-based analysis represent potential candidates for gene-gene and SNP-SNP interaction studies in cancer research.
Collapse
Affiliation(s)
- Sevtap Savas
- Division of Applied Molecular Oncology, Department of Medical Biophysics, Ontario Cancer Institute, Toronto, Ontario, Canada.
| | | | | | | |
Collapse
|
282
|
Lins S, Kim R, Krüger L, Chrzanowska KH, Seemanova E, Digweed M. Clinical variability and expression of the NBN c.657del5 allele in Nijmegen Breakage Syndrome. Gene 2009; 447:12-7. [PMID: 19635536 DOI: 10.1016/j.gene.2009.07.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Revised: 06/18/2009] [Accepted: 07/20/2009] [Indexed: 01/13/2023]
Abstract
Patients affected by the autosomal recessive Nijmegen Breakage Syndrome (NBS [MIM 251260]) have possibly the highest risk for developing a malignancy of all the chromosomal instability syndromes. This reflects the profound disturbance to genomic integrity and cellular homeostasis that is caused by the mutation of the essential mammalian gene, NBN. Whilst null-mutation of Nbn is lethal in the mouse, NBS patients survive due to the fact that the common human founder mutation, found in over 90% of patients, is in fact hypomorphic and leads, by alternative translation, to varying amounts of a partially functional carboxy-terminal protein fragment, p70-nibrin. The expression level of p70-nibrin correlates with cancer incidence amongst patients. Using real-time PCR we have now found that the variation in p70-nibrin expression cannot be attributed to differences in mRNA quantity and that nonsense-mediated mRNA decay is not responsible for the observed variation. We discuss an alternative explanation for p70-nibrin expression variation.
Collapse
Affiliation(s)
- Stephan Lins
- Institut für Humangenetik, Charité - Universitätsmedizin Berlin, Campus Virchow Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
283
|
Austin ED, Loyd JE, Phillips JA. Genetics of pulmonary arterial hypertension. Semin Respir Crit Care Med 2009; 30:386-98. [PMID: 19634078 DOI: 10.1055/s-0029-1233308] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Tremendous progress has been made in understanding the genetics of hereditable pulmonary arterial hypertension (HPAH) since its description in the 1950s. Germline mutations in the gene coding bone morphogenetic receptor type 2 ( BMPR2) are detectable in the majority of cases of HPAH, and in a small proportion of cases of idiopathic pulmonary arterial hypertension (IPAH). HPAH is an autosomal dominant disease characterized by reduced penetrance, variable expressivity, female predominance, and genetic anticipation. These characteristics suggest that endogenous and exogenous factors modify disease expression and areas of emphasis for future investigation. The variable clinical expression makes genetic counseling complex because the majority of carriers of a BMPR2 mutation will not be diagnosed with the disease. This issue will become increasingly important, as clinical testing for BMPR2 mutations is now available for the evaluation of patients and family members with HPAH and IPAH.
Collapse
Affiliation(s)
- Eric D Austin
- Department of Pediatrics, Division of Pulmonary, Allergy, and Immunology Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-2578, USA
| | | | | |
Collapse
|
284
|
Holla ØL, Kulseth MA, Berge KE, Leren TP, Ranheim T. Nonsense‐mediated decay of human LDL receptor mRNA. Scandinavian Journal of Clinical and Laboratory Investigation 2009; 69:409-17. [DOI: 10.1080/00365510802707163] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Øystein Lunde Holla
- Department of Medical Genetics, Rikshospitalet University Hospital, Oslo, Norway
| | - Mari Ann Kulseth
- Department of Medical Genetics, Rikshospitalet University Hospital, Oslo, Norway
| | - Knut Erik Berge
- Department of Medical Genetics, Rikshospitalet University Hospital, Oslo, Norway
| | - Trond Paul Leren
- Department of Medical Genetics, Rikshospitalet University Hospital, Oslo, Norway
| | - Trine Ranheim
- Department of Medical Genetics, Rikshospitalet University Hospital, Oslo, Norway
| |
Collapse
|
285
|
Eng B, Walker L, Waye JS. α+-Thalassemia Trait Caused by a Nonsense Mutation in the α2-Globin Gene: Codon 54 (CAG>TAG). Hemoglobin 2009; 33:72-4. [DOI: 10.1080/03630260802625980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
286
|
Joly P, Pégourié B, Courby S, Barro C, Besson G, Cohen L, Garcia C, Francina A. Two New α-Thalassemia Point Mutations that are Undetectable by Biochemical Techniques. Hemoglobin 2009; 32:411-7. [DOI: 10.1080/03630260802173791] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
287
|
|
288
|
Plancke A, Holder-Espinasse M, Rigau V, Manouvrier S, Claustres M, Khau Van Kien P. Homozygosity for a null allele of COL3A1 results in recessive Ehlers-Danlos syndrome. Eur J Hum Genet 2009; 17:1411-6. [PMID: 19455184 DOI: 10.1038/ejhg.2009.76] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
So far, mutations in the human COL3A1 gene have been associated with the predominantly inherited Ehlers-Danlos syndrome (EDS), vascular type. Genotype-phenotype correlation perspectives collapsed, as haploinsufficiency, which was long suggested to confer a milder or unrecognized phenotype, was reported in four patients with a phenotype similar to that of vascular EDS. Here, we study a case of recessive EDS in a young consanguineous girl of healthy parents. She fulfilled the vascular EDS criteria for laboratory testing. Total sequencing of COL3A1 cDNA identified a homozygous nucleotide duplication (c.479dupT) resulting in a premature termination codon (p.Lys161GlnfsX45). Studies in genomic DNA showed that this mutation was inherited from each parent. The expression analysis (RT-PCR, quantitative-PCR, immunohistochemistry, WB) showed strong mRNA decay and an absence of type III collagen in the proband. The expected COL3A1 haploinsufficiency in her healthy ascendants did not lead to the manifestations of vascular EDS. This case provides evidence of a stochastic effect of COL3A1 haploinsufficiency in humans, which could be explained by the relation between nonsense-mediated mRNA decay efficiency and the resulting dominant-negative effect depending on the position of the mutation and/or modifying factors. It opens up new perspectives for the understanding of COL3A1 genotype-phenotype correlations, which is required while considering targeted therapy.
Collapse
|
289
|
Zhang Z, Xin D, Wang P, Zhou L, Hu L, Kong X, Hurst LD. Noisy splicing, more than expression regulation, explains why some exons are subject to nonsense-mediated mRNA decay. BMC Biol 2009; 7:23. [PMID: 19442261 PMCID: PMC2697156 DOI: 10.1186/1741-7007-7-23] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Accepted: 05/14/2009] [Indexed: 01/23/2023] Open
Abstract
Background Nonsense-mediated decay is a mechanism that degrades mRNAs with a premature termination codon. That some exons have premature termination codons at fixation is paradoxical: why make a transcript if it is only to be destroyed? One model supposes that splicing is inherently noisy and spurious transcripts are common. The evolution of a premature termination codon in a regularly made unwanted transcript can be a means to prevent costly translation. Alternatively, nonsense-mediated decay can be regulated under certain conditions so the presence of a premature termination codon can be a means to up-regulate transcripts needed when nonsense-mediated decay is suppressed. Results To resolve this issue we examined the properties of putative nonsense-mediated decay targets in humans and mice. We started with a well-annotated set of protein coding genes and found that 2 to 4% of genes are probably subject to nonsense-mediated decay, and that the premature termination codon reflects neither rare mutations nor sequencing artefacts. Several lines of evidence suggested that the noisy splicing model has considerable relevance: 1) exons that are uniquely found in nonsense-mediated decay transcripts (nonsense-mediated decay-specific exons) tend to be newly created; 2) have low-inclusion level; 3) tend not to be a multiple of three long; 4) belong to genes with multiple splice isoforms more often than expected; and 5) these genes are not obviously enriched for any functional class nor conserved as nonsense-mediated decay candidates in other species. However, nonsense-mediated decay-specific exons for which distant orthologous exons can be found tend to have been under purifying selection, consistent with the regulation model. Conclusion We conclude that for recently evolved exons the noisy splicing model is the better explanation of their properties, while for ancient exons the nonsense-mediated decay regulated gene expression is a viable explanation.
Collapse
Affiliation(s)
- Zhenguo Zhang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS) & Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, PR China.
| | | | | | | | | | | | | |
Collapse
|
290
|
Lourenço D, Brauner R, Lin L, De Perdigo A, Weryha G, Muresan M, Boudjenah R, Guerra-Junior G, Maciel-Guerra AT, Achermann JC, McElreavey K, Bashamboo A. Mutations in NR5A1 associated with ovarian insufficiency. N Engl J Med 2009; 360:1200-10. [PMID: 19246354 PMCID: PMC2778147 DOI: 10.1056/nejmoa0806228] [Citation(s) in RCA: 247] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND The genetic causes of nonsyndromic ovarian insufficiency are largely unknown. A nuclear receptor, NR5A1 (also called steroidogenic factor 1), is a key transcriptional regulator of genes involved in the hypothalamic-pituitary-steroidogenic axis. Mutation of NR5A1 causes 46,XY disorders of sex development, with or without adrenal failure, but growing experimental evidence from studies in mice suggests a key role for this factor in ovarian development and function as well. METHODS To test the hypothesis that mutations in NR5A1 cause disorders of ovarian development and function, we sequenced NR5A1 in four families with histories of both 46,XY disorders of sex development and 46,XX primary ovarian insufficiency and in 25 subjects with sporadic ovarian insufficiency. None of the affected subjects had clinical signs of adrenal insufficiency. RESULTS Members of each of the four families and 2 of the 25 subjects with isolated ovarian insufficiency carried mutations in the NR5A1 gene. In-frame deletions and frameshift and missense mutations were detected. Functional studies indicated that these mutations substantially impaired NR5A1 transactivational activity. Mutations were associated with a range of ovarian anomalies, including 46,XX gonadal dysgenesis and 46,XX primary ovarian insufficiency. We did not observe these mutations in more than 700 control alleles. CONCLUSIONS NR5A1 mutations are associated with 46,XX primary ovarian insufficiency and 46,XY disorders of sex development.
Collapse
Affiliation(s)
- Diana Lourenço
- Human Developmental Genetics, Institut Pasteur, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
291
|
Hayashi M, Arima H, Ozaki N, Morishita Y, Hiroi M, Ozaki N, Nagasaki H, Kinoshita N, Ueda M, Shiota A, Oiso Y. Progressive polyuria without vasopressin neuron loss in a mouse model for familial neurohypophysial diabetes insipidus. Am J Physiol Regul Integr Comp Physiol 2009; 296:R1641-9. [PMID: 19297548 DOI: 10.1152/ajpregu.00034.2009] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Familial neurohypophysial diabetes insipidus (FNDI), an autosomal dominant disorder, is mostly caused by mutations in the gene of neurophysin II (NPII), the carrier protein of arginine vasopressin (AVP). Previous studies suggest that loss of AVP neurons might be the cause of polyuria in FNDI. Here we analyzed knockin mice expressing mutant NPII that causes FNDI in humans. The heterozygous mice manifested progressive polyuria as do patients with FNDI. Immunohistochemical analyses revealed that inclusion bodies that were not immunostained with antibodies for mutant NPII, normal NPII, or AVP were present in the AVP cells in the supraoptic nucleus (SON), and that the size of inclusion bodies gradually increased in parallel with the increases in urine volume. Electron microscopic analyses showed that aggregates existed in the endoplasmic reticulum (ER) as well as in the nucleus of AVP neurons in 1-mo-old heterozygous mice. At 12 mo, dilated ER filled with aggregates occupied the cytoplasm of AVP cells, while few aggregates were found in the nucleus. Analyses with in situ hybridization revealed that expression of AVP mRNA was significantly decreased in the SON in the heterozygous mice compared with that in wild-type mice. Counting cells expressing AVP mRNA in the SON indicated that polyuria had progressed substantially in the absence of neuronal loss. These data suggest that cell death is not the primary cause of polyuria in FNDI, and that the aggregates accumulated in the ER might be involved in the dysfunction of AVP neurons that lead to the progressive polyuria.
Collapse
Affiliation(s)
- Masayuki Hayashi
- Department of Endocrinology and Diabetes, Field of Internal Medicine, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya 466-8550, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
292
|
Wang H, den Hollander AI, Moayedi Y, Abulimiti A, Li Y, Collin RW, Hoyng CB, Lopez I, Bray M, Lewis RA, Lupski JR, Mardon G, Koenekoop RK, Chen R, Koenekoop RK, Chen R. Mutations in SPATA7 cause Leber congenital amaurosis and juvenile retinitis pigmentosa. Am J Hum Genet 2009; 84:380-7. [PMID: 19268277 DOI: 10.1016/j.ajhg.2009.02.005] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Revised: 02/04/2009] [Accepted: 02/06/2009] [Indexed: 11/25/2022] Open
Abstract
Leber congenital amaurosis (LCA) and juvenile retinitis pigmentosa (RP) are the most common hereditary causes of visual impairment in infants and children. Using homozygosity mapping, we narrowed down the critical region of the LCA3 locus to 3.8 Mb between markers D14S1022 and D14S1005. By direct Sanger sequencing of all genes within this region, we found a homozygous nonsense mutation in the SPATA7 gene in Saudi Arabian family KKESH-060. Three other loss-of-function mutations were subsequently discovered in patients with LCA or juvenile RP from distinct populations. Furthermore, we determined that Spata7 is expressed in the mature mouse retina. Our findings reveal another human visual-disease gene that causes LCA and juvenile RP.
Collapse
|
293
|
|
294
|
Genetic diseases of connective tissues: cellular and extracellular effects of ECM mutations. Nat Rev Genet 2009; 10:173-83. [PMID: 19204719 DOI: 10.1038/nrg2520] [Citation(s) in RCA: 243] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Tissue-specific extracellular matrices (ECMs) are crucial for normal development and tissue function, and mutations in ECM genes result in a wide range of serious inherited connective tissue disorders. Mutations cause ECM dysfunction by combinations of two mechanisms. First, secretion of the mutated ECM components can be reduced by mutations affecting synthesis or by structural mutations causing cellular retention and/or degradation. Second, secretion of mutant protein can disturb crucial ECM interactions, structure and stability. Moreover, recent experiments suggest that endoplasmic reticulum (ER) stress, caused by mutant misfolded ECM proteins, contributes to the molecular pathology. Targeting ER stress might offer a new therapeutic strategy.
Collapse
|
295
|
Ben-Shachar S, Khajavi M, Withers MA, Shaw CA, van Bokhoven H, Brunner HG, Lupski JR. Dominant versus recessive traits conveyed by allelic mutations - to what extent is nonsense-mediated decay involved? Clin Genet 2009; 75:394-400. [PMID: 19236432 DOI: 10.1111/j.1399-0004.2008.01114.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Mutations in ROR2, encoding a receptor tyrosine kinase, can cause autosomal recessive Robinow syndrome (RRS), a severe skeletal dysplasia with limb shortening, brachydactyly, and a dysmorphic facial appearance. Other mutations in ROR2 result in the autosomal dominant disease, brachydactyly type B (BDB1). No functional mechanisms have been delineated to effectively explain the association between mutations and different modes of inheritance causing different phenotypes. BDB1-causing mutations in ROR2 result from heterozygous premature termination codons (PTCs) in downstream exons and the conveyed phenotype segregates as an autosomal dominant trait, whereas heterozygous missense mutations and PTCs in upstream exons result in carrier status for RRS. Given that the distribution of PTC mutations revealed a correlation between the phenotype and the mode of inheritance conveyed, we investigated the potential role for the nonsense-mediated decay (NMD) pathway in the abrogation of possible aberrant effects of selected mutant alleles. Our experiments show that triggering or escaping NMD may cause different phenotypes with a distinct mode of inheritance. We generalize these findings to other disease-associated genes by examining PTC mutation distribution correlation with conveyed phenotype and inheritance patterns. Indeed, NMD may explain distinct phenotypes and different inheritance patterns conveyed by allelic truncating mutations enabling better genotype-phenotype correlations in several other disorders.
Collapse
Affiliation(s)
- S Ben-Shachar
- Department of Molecular and Human Genetic, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
296
|
Hamdan FF, Gauthier J, Spiegelman D, Noreau A, Yang Y, Pellerin S, Dobrzeniecka S, Côté M, Perreau-Linck E, Carmant L, D'Anjou G, Fombonne E, Addington AM, Rapoport JL, Delisi LE, Krebs MO, Mouaffak F, Joober R, Mottron L, Drapeau P, Marineau C, Lafrenière RG, Lacaille JC, Rouleau GA, Michaud JL. Mutations in SYNGAP1 in autosomal nonsyndromic mental retardation. N Engl J Med 2009; 360:599-605. [PMID: 19196676 PMCID: PMC2925262 DOI: 10.1056/nejmoa0805392] [Citation(s) in RCA: 246] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Although autosomal forms of nonsyndromic mental retardation account for the majority of cases of mental retardation, the genes that are involved remain largely unknown. We sequenced the autosomal gene SYNGAP1, which encodes a ras GTPase-activating protein that is critical for cognition and synapse function, in 94 patients with nonsyndromic mental retardation. We identified de novo truncating mutations (K138X, R579X, and L813RfsX22) in three of these patients. In contrast, we observed no de novo or truncating mutations in SYNGAP1 in samples from 142 subjects with autism spectrum disorders, 143 subjects with schizophrenia, and 190 control subjects. These results indicate that SYNGAP1 disruption is a cause of autosomal dominant nonsyndromic mental retardation.
Collapse
Affiliation(s)
- Fadi F Hamdan
- Centre Hospitalier Universitaire Sainte-Justine Research Center, Centre of Excellence in Neuromics, Université de Montréal, QC, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
297
|
Lin YJ, Wan L, Wu JY, Sheu JJC, Lin CW, Lan YC, Lai CH, Hung CH, Tsai Y, Tsai CH, Lin TH, Lin JG, Hsueh KC, Huang YM, Chang JS, Tsai FJ. HLA-E gene polymorphism associated with susceptibility to Kawasaki disease and formation of coronary artery aneurysms. ARTHRITIS AND RHEUMATISM 2009; 60:604-10. [PMID: 19180512 DOI: 10.1002/art.24261] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Kawasaki disease (KD) is a pediatric systemic vasculitis of unknown cause for which a genetic influence is supposed. The purpose of this study was to identify possible genetic variants in the major histocompatibility complex (MHC) region that are associated with KD and the development of coronary artery aneurysms (CAAs) in a Taiwanese population. METHODS The 168 genetic variants covering the MHC locus were analyzed in an association study of a Taiwanese cohort of 93 KD patients and 680 unrelated healthy children matched for sex and age with the study patients. RESULTS Eleven single-nucleotide polymorphisms (SNPs) were associated with the occurrence of KD. The SNP located at the 3'-untranslated region of HLA-E (rs2844724) was highly associated (P < 1 x 10(-7)). In addition, the frequency of the C allele was higher in KD patients without CAAs than in controls (P < 0.001) due to a significantly increased frequency of the CC and CT genotypes. Plasma levels of soluble HLA-E were significantly higher in KD patients than in controls regardless of the presence of CAAs. Furthermore, there was a trend toward higher plasma levels of soluble HLA-E in KD patients with the CT and TT genotypes of the HLA-E gene polymorphism. CONCLUSION Our results suggest that the HLA-E gene polymorphism may play a role in the pathogenesis of KD.
Collapse
Affiliation(s)
- Y-J Lin
- China Medical University Hospital, China Medical University, and Asia University, Taichung, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
298
|
Baldridge D, Schwarze U, Morello R, Lennington J, Bertin TK, Pace JM, Pepin MG, Weis M, Eyre DR, Walsh J, Lambert D, Green A, Robinson H, Michelson M, Houge G, Lindman C, Martin J, Ward J, Lemyre E, Mitchell JJ, Krakow D, Rimoin DL, Cohn DH, Byers PH, Lee B. CRTAP and LEPRE1 mutations in recessive osteogenesis imperfecta. Hum Mutat 2009; 29:1435-42. [PMID: 18566967 DOI: 10.1002/humu.20799] [Citation(s) in RCA: 159] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Autosomal dominant osteogenesis imperfecta (OI) is caused by mutations in the genes (COL1A1 or COL1A2) encoding the chains of type I collagen. Recently, dysregulation of hydroxylation of a single proline residue at position 986 of both the triple-helical domains of type I collagen alpha1(I) and type II collagen alpha1(II) chains has been implicated in the pathogenesis of recessive forms of OI. Two proteins, cartilage-associated protein (CRTAP) and prolyl-3-hydroxylase-1 (P3H1, encoded by the LEPRE1 gene) form a complex that performs the hydroxylation and brings the prolyl cis-trans isomerase cyclophilin-B (CYPB) to the unfolded collagen. In our screen of 78 subjects diagnosed with OI type II or III, we identified three probands with mutations in CRTAP and 16 with mutations in LEPRE1. The latter group includes a mutation in patients from the Irish Traveller population, a genetically isolated community with increased incidence of OI. The clinical features resulting from CRTAP or LEPRE1 loss of function mutations were difficult to distinguish at birth. Infants in both groups had multiple fractures, decreased bone modeling (affecting especially the femurs), and extremely low bone mineral density. Interestingly, "popcorn" epiphyses may reflect underlying cartilaginous and bone dysplasia in this form of OI. These results expand the range of CRTAP/LEPRE1 mutations that result in recessive OI and emphasize the importance of distinguishing recurrence of severe OI of recessive inheritance from those that result from parental germline mosaicism for COL1A1 or COL1A2 mutations.
Collapse
Affiliation(s)
- Dustin Baldridge
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
299
|
Zetoune AB, Fontanière S, Magnin D, Anczuków O, Buisson M, Zhang CX, Mazoyer S. Comparison of nonsense-mediated mRNA decay efficiency in various murine tissues. BMC Genet 2008; 9:83. [PMID: 19061508 PMCID: PMC2607305 DOI: 10.1186/1471-2156-9-83] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Accepted: 12/05/2008] [Indexed: 11/26/2022] Open
Abstract
Background The Nonsense-Mediated mRNA Decay (NMD) pathway detects and degrades mRNAs containing premature termination codons, thereby preventing the accumulation of potentially detrimental truncated proteins. Intertissue variation in the efficiency of this mechanism has been suggested, which could have important implications for the understanding of genotype-phenotype correlations in various genetic disorders. However, compelling evidence in favour of this hypothesis is lacking. Here, we have explored this question by measuring the ratio of mutant versus wild-type Men1 transcripts in thirteen tissues from mice carrying a heterozygous truncating mutation in the ubiquitously expressed Men1 gene. Results Significant differences were found between two groups of tissues. The first group, which includes testis, ovary, brain and heart, displays a strong decrease of the nonsense transcript (average ratio of 18% of mutant versus wild-type Men1 transcripts, identical to the value measured in murine embryonic fibroblasts). The second group, comprising lung, intestine and thymus, shows much less pronounced NMD (average ratio of 35%). Importantly, the extent of degradation by NMD does not correlate with the expression level of eleven genes encoding proteins involved in NMD or with the expression level of the Men1 gene. Conclusion Mouse models are an attractive option to evaluate the efficiency of NMD in multiple mammalian tissues and organs, given that it is much easier to obtain these from a mouse than from a single individual carrying a germline truncating mutation. In this study, we have uncovered in the thirteen different murine tissues that we examined up to a two-fold difference in NMD efficiency.
Collapse
Affiliation(s)
- Almoutassem B Zetoune
- Laboratoire de Génétique Moléculaire, Signalisation et Cancer UMR5201 CNRS, Equipe Labellisée par Ligue Nationale contre Cance, Université Lyon 1, Université de Lyon, Faculté de Médecine, Lyon, France.
| | | | | | | | | | | | | |
Collapse
|
300
|
Niedrist D, Joncourt F, Mátyás G, Müller A. Severe phenotype with cis-acting heterozygous PMP22 mutations. Clin Genet 2008; 75:286-9. [PMID: 19067730 DOI: 10.1111/j.1399-0004.2008.01120.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report on a 20-year-old male with severe Charcot-Marie-Tooth (CMT) disease and a de novo deletion (c.281delG, p.G94AfsX17) on the paternal PMP22 allele harboring c.353C>T (p.T118M). RNA-based sequence analysis confirmed the absence of nonsense-mediated decay and the presence of the mutant transcripts in Epstein-Barr virus-transformed lymphoblastoid cells of our patient. His clinical findings included early onset of polyneuropathy, loss of muscle mass with distal pareses, hammer toes, and progressive scoliosis. There was no neuropsychological alteration. Our results suggest that the deletion c.281delG alone is responsible for the severe CMT phenotype. To the best of our knowledge, this is the second report on a proven paternal origin of a de novo single-base mutation in the PMP22 gene.
Collapse
Affiliation(s)
- D Niedrist
- Institute of Medical Genetics, University of Zurich, Schwerzenbach, Switzerland.
| | | | | | | |
Collapse
|