251
|
Frentzel J, Sorrentino D, Giuriato S. Targeting Autophagy in ALK-Associated Cancers. Cancers (Basel) 2017; 9:E161. [PMID: 29186933 PMCID: PMC5742809 DOI: 10.3390/cancers9120161] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 11/17/2017] [Accepted: 11/23/2017] [Indexed: 12/15/2022] Open
Abstract
Autophagy is an evolutionarily conserved catabolic process, which is used by the cells for cytoplasmic quality control. This process is induced following different kinds of stresses e.g., metabolic, environmental, or therapeutic, and acts, in this framework, as a cell survival mechanism. However, under certain circumstances, autophagy has been associated with cell death. This duality has been extensively reported in solid and hematological cancers, and has been observed during both tumor development and cancer therapy. As autophagy plays a critical role at the crossroads between cell survival and cell death, its involvement and therapeutic modulation (either activation or inhibition) are currently intensively studied in cancer biology, to improve treatments and patient outcomes. Over the last few years, studies have demonstrated the occurrence of autophagy in different Anaplastic Lymphoma Kinase (ALK)-associated cancers, notably ALK-positive anaplastic large cell lymphoma (ALCL), non-small cell lung carcinoma (NSCLC), Neuroblastoma (NB), and Rhabdomyosarcoma (RMS). In this review, we will first briefly describe the autophagic process and how it can lead to opposite outcomes in anti-cancer therapies, and we will then focus on what is currently known regarding autophagy in ALK-associated cancers.
Collapse
Affiliation(s)
- Julie Frentzel
- Merck Serono S.A., Route de Fenil 25, Z.I. B, 1804 Corsier-sur-Vevey, Switzerland.
| | - Domenico Sorrentino
- Inserm, UMR1037, CNRS, ERL5294, Université Toulouse III-Paul Sabatier, CRCT, F-31000 Toulouse, France.
| | - Sylvie Giuriato
- Inserm, UMR1037, CNRS, ERL5294, Université Toulouse III-Paul Sabatier, CRCT, F-31000 Toulouse, France.
- European Research Initiative on ALK-related malignancies (ERIA).
- TRANSAUTOPHAGY: European Network for Multidisciplinary Research and Translation of Autophagy Knowledge, COST Action CA15138.
| |
Collapse
|
252
|
Regulation of the Tumor-Suppressor BECLIN 1 by Distinct Ubiquitination Cascades. Int J Mol Sci 2017; 18:ijms18122541. [PMID: 29186924 PMCID: PMC5751144 DOI: 10.3390/ijms18122541] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 11/22/2017] [Accepted: 11/24/2017] [Indexed: 12/23/2022] Open
Abstract
Autophagy contributes to cellular homeostasis through the degradation of various intracellular targets such as proteins, organelles and microbes. This relates autophagy to various diseases such as infections, neurodegenerative diseases and cancer. A central component of the autophagy machinery is the class III phosphatidylinositol 3-kinase (PI3K-III) complex, which generates the signaling lipid phosphatidylinositol 3-phosphate (PtdIns3P). The catalytic subunit of this complex is the lipid-kinase VPS34, which associates with the membrane-targeting factor VPS15 as well as the multivalent adaptor protein BECLIN 1. A growing list of regulatory proteins binds to BECLIN 1 and modulates the activity of the PI3K-III complex. Here we discuss the regulation of BECLIN 1 by several different types of ubiquitination, resulting in distinct polyubiquitin chain linkages catalyzed by a set of E3 ligases. This contribution is part of the Special Issue “Ubiquitin System”.
Collapse
|
253
|
Bad phosphorylation as a target of inhibition in oncology. Cancer Lett 2017; 415:177-186. [PMID: 29175460 DOI: 10.1016/j.canlet.2017.11.017] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 11/13/2017] [Accepted: 11/17/2017] [Indexed: 12/19/2022]
Abstract
Bcl-2 agonist of cell death (BAD) is a BH3-only member of the Bcl-2 family which possesses important regulatory function in apoptosis. BAD has also been shown to possess many non-apoptotic functions closely linked to cancer including regulation of glycolysis, autophagy, cell cycle progression and immune system development. Interestingly, BAD can be either pro-apoptotic or pro-survival depending on the phosphorylation state of three specific serine residues (human S75, S99 and S118). Expression of BAD and BAD phosphorylation patterns have been shown to influence tumor initiation and progression and play a predictive role in disease prognosis, drug response and chemosensitivity in various cancers. This review aims to summarize the current evidence on the functional role of BAD phosphorylation in human cancer and evaluate the potential utility of modulating BAD phosphorylation in cancer.
Collapse
|
254
|
Mejías-Peña Y, Estébanez B, Rodriguez-Miguelez P, Fernandez-Gonzalo R, Almar M, de Paz JA, González-Gallego J, Cuevas MJ. Impact of resistance training on the autophagy-inflammation-apoptosis crosstalk in elderly subjects. Aging (Albany NY) 2017; 9:408-418. [PMID: 28160545 PMCID: PMC5361672 DOI: 10.18632/aging.101167] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 01/25/2017] [Indexed: 12/13/2022]
Abstract
Aging is associated with a decline in autophagy and a state of low-grade inflammation which further affects apoptosis and autophagy. Importantly, these alterations could reverse with regular physical activity. This study assessed the effects of a resistance exercise training program on autophagy, NLRP3 inflammasome, and apoptosis in peripheral blood mononuclear cells (PBMCs) from old subjects. Twenty-six healthy women and men (age, 69.6±1.5 yr) were randomized to a training (TG) or a control (CG) group. TG performed an 8-week resistance training program, while CG followed their daily routines. Protein expression of beclin-1, Atg12, Atg16 and LAMP-2 increased following the training program, while expression of p62/SQSTM1 and phosphorylation of ULK-1 at Ser757 were significantly lower. Resistance exercise also induced a decrease in NLRP3 expression and in the caspase-1/procaspase-1 ratio. Expression of Bcl-2 and Bcl-xL, as well as the Bad/BcL-2 ratio were reduced, and there was a significant decrease in the protein content of caspase-3. The results obtained seem to indicate that 8-week resistance training stimulates autophagy, prevents NLRP3 inflammasome activation, and reduces apoptosis in PBMCs from elderly subjects. These data could have a significant impact in prevention and rehabilitation programs currently employed in elderly population.
Collapse
Affiliation(s)
| | | | - Paula Rodriguez-Miguelez
- Division of Clinical Translational Science, Georgia Prevention Institute, Department of Pediatrics, Augusta University, Augusta, GA, USA
| | - Rodrigo Fernandez-Gonzalo
- Radiobiology Unit, Laboratory of Molecular and Cellular Biology, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK•CEN), Mol, Belgium
| | - Mar Almar
- Institute of Biomedicine (IBIOMED), University of León, León, Spain
| | - José A de Paz
- Institute of Biomedicine (IBIOMED), University of León, León, Spain
| | | | - María J Cuevas
- Institute of Biomedicine (IBIOMED), University of León, León, Spain
| |
Collapse
|
255
|
Efficacy and Mechanism of Preoperative Simvastatin Therapy on Myocardial Protection after Extracorporeal Circulation. BIOMED RESEARCH INTERNATIONAL 2017; 2017:6082430. [PMID: 29250545 PMCID: PMC5698794 DOI: 10.1155/2017/6082430] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 09/08/2017] [Accepted: 09/26/2017] [Indexed: 02/01/2023]
Abstract
Background Cardiopulmonary bypass (CPB) causes systemic inflammatory response and ischemia-reperfusion (IR) injury. Objective To investigate the effect and mechanism of simvastatin on myocardial injury in cardiac valve surgery with CPB. Methods One hundred thirty patients were randomly assigned to the statin group (n = 65) or control group (n = 65). Simvastatin was administered preoperatively and postoperatively. Duration of intensive care unit stay, duration of assisted ventilation, and left ventricular ejection fraction were recorded. Plasma was analysed for troponin T (cTnT), isoenzyme of creatine kinase (CK-MB), tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6), and interleukin-8 (IL-8). Ultrastructure of the myocardium and autophagosomes were observed. Beclin-1, LC3-II/I, P62, AMPK, and the phosphorylation of AMPK in cardiomyocytes were detected. Results Simvastatin significantly reduced the duration of assisted ventilation (P = 0.030) and ejection fraction was significantly higher in the statin group (P = 0.024). Simvastatin significantly reduced the levels of cTnT, CK-MB, TNF-α, IL-6, and IL-8 (P < 0.05), reduced the expression of LC3-II/LC3-I and Beclin 1, and increased the expression of phosphorylation of AMPK. Simvastatin reduced the generation of autophagosomes and the ultrastructural injuries to myocardium. Conclusion Perioperative statin therapy reduced myocardial injury by regulating myocardial autophagy and activating the phosphorylation of AMPK. The registration number of this study is ChiCTR-TRC-14005164.
Collapse
|
256
|
Abstract
Osteoarthritis is characterized by continuous degeneration of articular cartilage resulting in disability. The death of chondrocytes and the loss of the extracellular matrix are the central peculiarities in cartilage degeneration during osteoarthritis pathogenesis. Autophagy is an essential cellular homeostasis mechanism whereby cellular organelles and macromolecules are recycled to maintain cellular metabolism. Autophagy is reported to be cytoprotective effects for articular cartilage, and osteoarthritis is associated with decreased autophagy. While autophagy is known to be cytoprotective to chondrocytes, its role may vary with differing stages and models of osteoarthritis. Therefore, more in-depth studies on autophagy are needed to determine its impact on cell survival and death in articular cartilage under various in vitro and in vivo conditions. Application of autophagy on osteoarthritis therapeutics will be possible after a profound understanding is established on the role of autophagy in osteoarthritis pathogenesis.
Collapse
Affiliation(s)
- Hyelin Jeon
- a Department of Orthopaedics , Dongguk University Ilsan Hospital , Goyang , Republic of Korea
| | - Gun-Il Im
- a Department of Orthopaedics , Dongguk University Ilsan Hospital , Goyang , Republic of Korea
| |
Collapse
|
257
|
CaMKII-mediated Beclin 1 phosphorylation regulates autophagy that promotes degradation of Id and neuroblastoma cell differentiation. Nat Commun 2017; 8:1159. [PMID: 29079782 PMCID: PMC5660092 DOI: 10.1038/s41467-017-01272-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 09/02/2017] [Indexed: 01/11/2023] Open
Abstract
Autophagy is a degradative pathway that delivers cellular components to the lysosome for degradation. The role of autophagy in cell differentiation is poorly understood. Here we show that CaMKII can directly phosphorylate Beclin 1 at Ser90 to promote K63-linked ubiquitination of Beclin 1 and activation of autophagy. Meanwhile, CaMKII can also promote K63-linked ubiquitination of inhibitor of differentiation 1/2 (Id-1/2) by catalyzing phosphorylation of Id proteins and recruiting TRAF-6. Ubiquitinated Id-1/Id-2 can then bind to p62 and be transported to autolysosomes for degradation. Id degradation promotes the differentiation of neuroblastoma cells and reduces the proportion of stem-like cells. Our study proposes a mechanism by which autophagic degradation of Id proteins can regulate cell differentiation. This suggests that targeting of CaMKII and the regulation of autophagic degradation of Id may be an effective therapeutic strategy to induce cell differentiation in neuroblastoma. Neuroblastoma cell differentiation is regulated by Id proteins. Here, the authors show that CaMKII-mediated phosphorylation of Beclin 1 can activate K63-linked ubiquitination and autophagic degradation of Id proteins uncovering a role for autophagy in cell differentiation.
Collapse
|
258
|
The effect of the JAK2 inhibitor TG101209 against T cell acute lymphoblastic leukemia (T-ALL) is mediated by inhibition of JAK-STAT signaling and activation of the crosstalk between apoptosis and autophagy signaling. Oncotarget 2017; 8:106753-106763. [PMID: 29290986 PMCID: PMC5739771 DOI: 10.18632/oncotarget.22053] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 09/23/2017] [Indexed: 01/15/2023] Open
Abstract
Previous reports have shown that active JAK2 contributes to T cell acute lymphoblastic leukaemia (T-ALL) development and that JAK inhibitors may be a potential treatment for T-ALL. In the current study, the JAK2 inhibitor TG101209 was used to treat T-ALL cell lines and primary T-ALL cells. The effects of TG101209 on T-ALL cells were determined, and the signaling proteins related to cell growth, apoptosis and autophagy were analysed. The results indicated that TG101209 significantly inhibited T-ALL cell proliferation and induced cell apoptosis in a dose-dependent manner. The mechanisms involved the suppression of the JAK2-STAT signaling pathway and activation of apoptosis or autophagy. Additionally, a JAK2 gene copy gain (FISH) and up-regulated JAK2, LC3 and Beclin1 expression (western blotting) were observed in T-ALL samples compared with healthy controls, which implied that JAK2 is a target for T-ALL treatment. TG101209 initiated apoptosis and autophagy in T-ALL cells; therefore, this JAK2 inhibitor may be a potential drug or alternative therapy for T-ALL.
Collapse
|
259
|
FGF2 Attenuates Neural Cell Death via Suppressing Autophagy after Rat Mild Traumatic Brain Injury. Stem Cells Int 2017; 2017:2923182. [PMID: 29181034 PMCID: PMC5664312 DOI: 10.1155/2017/2923182] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 08/26/2017] [Accepted: 09/11/2017] [Indexed: 12/19/2022] Open
Abstract
Traumatic brain injury (TBI) can lead to physical and cognitive deficits, which are caused by the secondary injury process. Effective pharmacotherapies for TBI patients are still lacking. Fibroblast growth factor-2 (FGF2) is an important neurotrophic factor that can stimulate neurogenesis and angiogenesis and has been shown to have neuroprotective effects after brain insults. Previous studies indicated that FGF2's neuroprotective effects might be related to its function of regulating autophagy. The present study investigated FGF2's beneficial effects in the early stage of rat mild TBI and the underlying mechanisms. One hundred and forty-four rats were used for creating controlled cortical impact (CCI) models to simulate the pathological damage after TBI. Our results indicated that pretreatment of FGF2 played a neuroprotective role in the early stage of rat mild TBI through alleviating brain edema, reducing neurological deficits, preventing tissue loss, and increasing the number of surviving neurons in injured cortex and the ipsilateral hippocampus. FGF2 could also protect cells from various forms of death such as apoptosis or necrosis through inhibition of autophagy. Finally, autophagy activator rapamycin could abolish the protective effects of FGF2. This study extended our understanding of FGF2's neuroprotective effects and shed lights on the pharmacological therapy after TBI.
Collapse
|
260
|
Liu W, Wang X, Liu Z, Wang Y, Yin B, Yu P, Duan X, Liao Z, Chen Y, Liu C, Li X, Dai Y, Tao Z. SGK1 inhibition induces autophagy-dependent apoptosis via the mTOR-Foxo3a pathway. Br J Cancer 2017; 117:1139-1153. [PMID: 29017179 PMCID: PMC5674106 DOI: 10.1038/bjc.2017.293] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 07/19/2017] [Accepted: 08/01/2017] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Although inhibition of SGK1 has been shown to delay cancer progression, the underlying mechanisms have not yet been elucidated. METHODS We investigated the cellular responses to GSK650394 treatment and SGK1 silencing (or overexpression) in human prostate cancer (PCa) cell lines and PC3 xenografts by flow cytometry, western blotting, immunofluorescence, transmission electron microscopy and immunohistochemistry. RESULTS In the present study, we demonstrated that SGK1 inhibition, mediated by either GSK650394 or SGK1 shRNA, induced G2/M arrest, apoptosis and autophagy. Furthermore, 3MA-mediated autophagy inhibition attenuated SGK1 inhibition-induced apoptosis, suggesting that induction of autophagy precedes apoptosis. Moreover, ectopic expression of SGK1 significantly attenuated the GSK650394-induced effects. Suppression of mTOR and Foxo3a phosphorylation is critical for blockade of SGK1-induced autophagy and apoptosis, at least partially via pFoxo3a (S253)-LC3 and pFoxo3a (S253)-p27 interactions. Dual inhibition of mTOR and SGK1 enhances autophagy activation and leads to synergistic cytocidal effects in PCa cells. CONCLUSIONS In summary, our findings show that SGK1 inhibition exhibits significant antitumour effects against PCa in vitro and in vivo. This study uncovered a novel mechanism of SGK1 inhibition in PCa, which is mediated, at least in part, by inducing autophagy-dependent apoptosis via the mTOR-Foxo3a pathway.
Collapse
Affiliation(s)
- Weiwei Liu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Xuchu Wang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Zhenping Liu
- Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Yiyun Wang
- Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Binbin Yin
- Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Pan Yu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Xiuzhi Duan
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Zhaoping Liao
- Department of Blood Transfusion, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Yuhua Chen
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Chunhua Liu
- Department of Blood Transfusion, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Xiang Li
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Yibei Dai
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Zhihua Tao
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| |
Collapse
|
261
|
Role of autophagy in oncolytic herpes simplex virus type 1-induced cell death in squamous cell carcinoma cells. Cancer Gene Ther 2017; 24:393-400. [PMID: 28984290 DOI: 10.1038/cgt.2017.33] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Accepted: 08/03/2017] [Indexed: 12/30/2022]
Abstract
Herpes simplex virus type 1 (HSV-1) is one of the most widely studied viruses for oncolytic virotherapy. In squamous cell carcinoma (SCC) cells, the role of autophagy induced by neurovirulence gene-deficient HSV-1s in programmed cell death has not yet been elucidated. The oncolytic HSV-1 strain RH2, which lacks the γ34.5 gene and induces the fusion of human SCC cells, was used. RH2 replicated and induced cell death in SCC cells. RH2 infection was accompanied by the aggregation of microtubule-associated protein 1 light chain 3 (LC3) in the cytoplasm, the conversion of LC3-I to LC3-II and the formation of double-membrane vacuoles containing cell contents. No significant changes were observed in the expression of Bcl-2 or Bax, while a slight decrease was observed in that of Beclin 1. The autophagy inhibitors, 3-methyladenine (3-MA) and bafilomycin A1, did not affect viral replication, but significantly inhibited the cytotoxicity of RH2. The caspase-3 inhibitor z-DEVD-fmk and caspase-1 inhibitor z-YVAD-fmk also reduced the cytotoxicity of RH2. These results demonstrated that γ34.5 gene-deficient HSV-1 RH2 induced autophagic cell death in SCC cells as well as pyroptosis and apoptosis.
Collapse
|
262
|
Gao F, Yang J, Wang D, Li C, Fu Y, Wang H, He W, Zhang J. Mitophagy in Parkinson's Disease: Pathogenic and Therapeutic Implications. Front Neurol 2017; 8:527. [PMID: 29046661 PMCID: PMC5632845 DOI: 10.3389/fneur.2017.00527] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 09/21/2017] [Indexed: 01/25/2023] Open
Abstract
Neurons affected in Parkinson’s disease (PD) experience mitochondrial dysfunction and bioenergetic deficits that occur early and promote the disease-related α-synucleinopathy. Emerging findings suggest that the autophagy-lysosome pathway, which removes damaged mitochondria (mitophagy), is also compromised in PD and results in the accumulation of dysfunctional mitochondria. Studies using genetic-modulated or toxin-induced animal and cellular models as well as postmortem human tissue indicate that impaired mitophagy might be a critical factor in the pathogenesis of synaptic dysfunction and the aggregation of misfolded proteins, which in turn impairs mitochondrial homeostasis. Interventions that stimulate mitophagy to maintain mitochondrial health might, therefore, be used as an approach to delay the neurodegenerative processes in PD.
Collapse
Affiliation(s)
- Fei Gao
- Department of Immunology, Research Center on Pediatric Development and Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing, China
| | - Jia Yang
- Department of Immunology, Research Center on Pediatric Development and Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing, China
| | - Dongdong Wang
- Department of Immunology, Research Center on Pediatric Development and Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing, China
| | - Chao Li
- Department of Immunology, Research Center on Pediatric Development and Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing, China
| | - Yi Fu
- Department of Immunology, Research Center on Pediatric Development and Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing, China
| | - Huaishan Wang
- Department of Immunology, Research Center on Pediatric Development and Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing, China
| | - Wei He
- Department of Immunology, Research Center on Pediatric Development and Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing, China
| | - Jianmin Zhang
- Department of Immunology, Research Center on Pediatric Development and Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing, China
| |
Collapse
|
263
|
Hu Y, Li Z, Wang L, Deng L, Sun J, Jiang X, Zhang Y, Tian L, Wang Y, Bai W. Scandenolone, a natural isoflavone derivative from Cudrania tricuspidata fruit, targets EGFR to induce apoptosis and block autophagy flux in human melanoma cells. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.07.055] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
264
|
Chen G, Zhou D, Li XZ, Jiang Z, Tan C, Wei XY, Ling J, Jing J, Liu F, Li N. A natural chalcone induces apoptosis in lung cancer cells: 3D-QSAR, docking and an in vivo/vitro assay. Sci Rep 2017; 7:10729. [PMID: 28878321 PMCID: PMC5587747 DOI: 10.1038/s41598-017-11369-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 08/23/2017] [Indexed: 12/29/2022] Open
Abstract
This study was to study the antitumor effect of lonchocarpin (34) from traditional herbal medicine Pongamia pinnata (L.) Pierre and to reveal the underlying mechanism. The cytotoxic activities of lonchocarpin were evaluated in 10 lung cancer cell lines and it exhibited 97.5% activity at a dose of 100 μM in the H292 cell line. A field-based quantitative structure-activity relationship (3D-QSAR) study of 37 flavonoids from P. pinnata was also performed, and the results obtained showed that the hydrophobic interaction could be the crucial factor for the antitumor activity of lonchocarpin. Molecular docking studies revealed that lonchocarpin bound stably to the BH3-binding groove of the Bcl-2 protein with hydrophobic interactions with ALA146. Also, lonchocarpin significantly reduced cell proliferation via modulating Bax/Caspase-9/Caspase-3 pathway. An apoptotic test using flow cytometry showed that lonchocarpin produced about 41.1% and 47.9% apoptosis after treatment for 24 h and 48 h, respectively. Moreover, lonchocarpin inhibited tumor growth in S180-bearing mice with an inhibition rate of 57.94, 63.40 and 72.51%, respectively at a dose of 25, 50 and 100 mg/kg. These results suggest that lonchocarpin is a potentially useful natural agent for cancer treatment.
Collapse
Affiliation(s)
- Gang Chen
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China; State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin, China
| | - Di Zhou
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China; State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin, China
| | - Xue-Zheng Li
- Department of Pharmacy, Yanbian University Hospital, Yanji, 133000, China
| | - Zhe Jiang
- Department of Pharmacy, Yanbian University Hospital, Yanji, 133000, China
| | - Chengyu Tan
- College of Marine Technology and Environment, Dalian Ocean University, Dalian, China
| | - Xiu-Yan Wei
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Junhong Ling
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Jing Jing
- College of Marine Technology and Environment, Dalian Ocean University, Dalian, China
| | - Fen Liu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China; State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin, China
| | - Ning Li
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China; State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin, China.
| |
Collapse
|
265
|
Gabellini C, Trisciuoglio D, Del Bufalo D. Non-canonical roles of Bcl-2 and Bcl-xL proteins: relevance of BH4 domain. Carcinogenesis 2017; 38:579-587. [PMID: 28203756 DOI: 10.1093/carcin/bgx016] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 02/14/2017] [Indexed: 02/07/2023] Open
Abstract
Bcl-2 protein family is constituted by multidomain members originally identified as modulators of programmed cell death and whose expression is frequently misbalanced in cancer cells. The lead member Bcl-2 and its homologue Bcl-xL proteins are characterized by the presence of all four conserved BH domain and exert their antiapoptotic role mainly through the involvement of BH1, BH2 and BH3 homology domains, that mediate the interaction with the proapoptotic members of the same Bcl-2 family. The N-terminal BH4 domain of Bcl-2 and Bcl-xL is responsible for the interaction with other proteins that do not belong to Bcl-2 protein family. Beyond a classical role in inhibiting apoptosis, BH4 domain has been characterized as a crucial regulator of other important cellular functions attributed to Bcl-2 and Bcl-xL, including proliferation, autophagy, differentiation, DNA repair, cell migration, tumor progression and angiogenesis. During the last two decades a strong effort has been made to dissect the molecular pathways involved the capability of BH4 domain to regulate the canonical antiapoptotic and the non-canonical activities of Bcl-2 and Bcl-xL, creating the basis for the development of novel anticancer agents targeting this domain. Indeed, recent evidences obtained on in vitro and in vivo model of different cancer histotypes are confirming the promising therapeutic potential of BH4 domain inhibitors supporting their future employment as a novel anticancer strategy.
Collapse
Affiliation(s)
- Chiara Gabellini
- Unit of Cell and Developmental Biology, Department of Biology, University of Pisa, 56127 Pisa, Italy
| | - Daniela Trisciuoglio
- Institute of Molecular Biology and Pathology, National Research Council, 00185 Rome, Italy and.,Preclinical Models and New Therapeutic Agents Unit, Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Donatella Del Bufalo
- Preclinical Models and New Therapeutic Agents Unit, Regina Elena National Cancer Institute, 00144 Rome, Italy
| |
Collapse
|
266
|
Gu YT, Chen J, Meng ZL, Ge WY, Bian YY, Cheng SW, Xing CK, Yao JL, Fu J, Peng L. Research progress on osteoarthritis treatment mechanisms. Biomed Pharmacother 2017; 93:1246-1252. [DOI: 10.1016/j.biopha.2017.07.034] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 07/05/2017] [Accepted: 07/06/2017] [Indexed: 02/07/2023] Open
|
267
|
The effect of miR-30d on apoptosis and autophagy in cultured astrocytes under oxygen-glucose deprivation. Brain Res 2017. [DOI: 10.1016/j.brainres.2017.06.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
268
|
Sassano ML, van Vliet AR, Agostinis P. Mitochondria-Associated Membranes As Networking Platforms and Regulators of Cancer Cell Fate. Front Oncol 2017; 7:174. [PMID: 28868254 PMCID: PMC5563315 DOI: 10.3389/fonc.2017.00174] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 07/31/2017] [Indexed: 01/05/2023] Open
Abstract
The tight cross talk between two essential organelles of the cell, the endoplasmic reticulum (ER) and mitochondria, is spatially and functionally regulated by specific microdomains known as the mitochondria-associated membranes (MAMs). MAMs are hot spots of Ca2+ transfer between the ER and mitochondria, and emerging data indicate their vital role in the regulation of fundamental physiological processes, chief among them mitochondria bioenergetics, proteostasis, cell death, and autophagy. Moreover, and perhaps not surprisingly, it has become clear that signaling events regulated at the ER-mitochondria intersection regulate key processes in oncogenesis and in the response of cancer cells to therapeutics. ER-mitochondria appositions have been shown to dynamically recruit oncogenes and tumor suppressors, modulating their activity and protein complex formation, adapt the bioenergetic demand of cancer cells and to regulate cell death pathways and redox signaling in cancer cells. In this review, we discuss some emerging players of the ER-mitochondria contact sites in mammalian cells, the key processes they regulate and recent evidence highlighting the role of MAMs in shaping cell-autonomous and non-autonomous signals that regulate cancer growth.
Collapse
Affiliation(s)
- Maria Livia Sassano
- Cell Death Research and Therapy (CDRT) Laboratory, Department of Cellular and Molecular Medicine, KU Leuven University of Leuven, Leuven, Belgium
| | - Alexander R. van Vliet
- Cell Death Research and Therapy (CDRT) Laboratory, Department of Cellular and Molecular Medicine, KU Leuven University of Leuven, Leuven, Belgium
| | - Patrizia Agostinis
- Cell Death Research and Therapy (CDRT) Laboratory, Department of Cellular and Molecular Medicine, KU Leuven University of Leuven, Leuven, Belgium
| |
Collapse
|
269
|
Zhou J, Yao W, Li C, Wu W, Li Q, Liu H. Administration of follicle-stimulating hormone induces autophagy via upregulation of HIF-1α in mouse granulosa cells. Cell Death Dis 2017; 8:e3001. [PMID: 28817115 PMCID: PMC5596559 DOI: 10.1038/cddis.2017.371] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 06/25/2017] [Accepted: 07/04/2017] [Indexed: 02/07/2023]
Abstract
Recent studies reported the important role of autophagy in follicular development. However, the underlying molecular mechanisms remain elusive. In this study, we investigated the effect of follicle-stimulating hormone (FSH) on mouse granulosa cells (MGCs). Results indicated that autophagy was induced by FSH, which is known to be the dominant hormone regulating follicular development and granulosa cell (GC) proliferation. The activation of mammalian target of rapamycin (mTOR), a master regulator of autophagy, was inhibited during the process of MGC autophagy. Moreover, MHY1485 (an agonist of mTOR) significantly suppressed autophagy signaling by activating mTOR. The expression of hypoxia-inducible factor 1-alpha (HIF-1α) was increased after FSH treatment. Blocking hypoxia-inducible factor 1-alpha attenuated autophagy signaling. In vitro, CoCl2-induced hypoxia enhanced cell autophagy and affected the expression of beclin1 and BCL2/adenovirus E1B interacting protein 3 (Bnip3) in the presence of FSH. Knockdown of beclin1 and Bnip3 suppressed autophagy signaling in MGCs. Furthermore, our in vivo study demonstrated that the FSH-induced increase in weight was significantly reduced after effectively inhibiting autophagy with chloroquine, which was correlated with incomplete mitophagy process through the PINK1-Parkin pathway, delayed cell cycle, and reduced cell proliferation rate. In addition, chloroquine treatment decreased inhibin alpha subunit, but enhanced the expression of 3 beta-hydroxysteroid dehydrogenase. Blocking autophagy resulted in a significantly lower percentage of antral and preovulatory follicles after FSH stimulation. In conclusion, our results indicate that FSH induces autophagy signaling in MGCs via HIF-1α. In addition, our results provide evidence that autophagy induced by FSH is related to follicle development and atresia.
Collapse
Affiliation(s)
- Jilong Zhou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Wang Yao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Chengyu Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Wangjun Wu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Qifa Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Honglin Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
270
|
Abstract
The kidney requires a large number of mitochondria to remove waste from the blood and regulate fluid and electrolyte balance. Mitochondria provide the energy to drive these important functions and can adapt to different metabolic conditions through a number of signalling pathways (for example, mechanistic target of rapamycin (mTOR) and AMP-activated protein kinase (AMPK) pathways) that activate the transcriptional co-activator peroxisome proliferator-activated receptor-γ co-activator 1α (PGC1α), and by balancing mitochondrial dynamics and energetics to maintain mitochondrial homeostasis. Mitochondrial dysfunction leads to a decrease in ATP production, alterations in cellular functions and structure, and the loss of renal function. Persistent mitochondrial dysfunction has a role in the early stages and progression of renal diseases, such as acute kidney injury (AKI) and diabetic nephropathy, as it disrupts mitochondrial homeostasis and thus normal kidney function. Improving mitochondrial homeostasis and function has the potential to restore renal function, and administering compounds that stimulate mitochondrial biogenesis can restore mitochondrial and renal function in mouse models of AKI and diabetes mellitus. Furthermore, inhibiting the fission protein dynamin 1-like protein (DRP1) might ameliorate ischaemic renal injury by blocking mitochondrial fission.
Collapse
|
271
|
Martin-Rincon M, Morales-Alamo D, Calbet JAL. Exercise-mediated modulation of autophagy in skeletal muscle. Scand J Med Sci Sports 2017; 28:772-781. [PMID: 28685860 DOI: 10.1111/sms.12945] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2017] [Indexed: 12/13/2022]
Abstract
Although exercise exerts multiple beneficial health effects, it may also damage cellular structures. Damaged elements are continuously degraded and its constituents recycled to produce renovated structures through a process called autophagy, which is essential for the adaptation to training. Autophagy is particularly active in skeletal muscle, where it can be evaluated using specific molecular markers of activation (unc-51-like kinase 1 [ULK1] phosphorylation) and specific proteins indicating increased autophagosome content (increased total LC3, LC3-II, LC3-II/LC3-I ratio). Studies in humans are technically limited but have provided evidence suggesting the activation of autophagy in skeletal muscle through AMP-activated protein kinase (AMPK) and its downstream target ULK1. Autophagy activation is more likely when the intensity is elevated and the exercise performed in the fasted state. The autophagy-gene program and autophagosome content are upregulated after ultraendurance running competitions. However, autophagosome content is reduced after endurance exercise at moderate intensities (50% and 70% of VO2 max) for 60-120 minutes. Autophagosome content is decreased within the first few hours after resistance training. The effects of regular endurance and strength training on basal autophagy remain to be established in humans. One study has reported that acute severe hypoxia increases autophagosome content in human skeletal muscle, which is reverted by 20 minutes of low-intensity exercise. Experiments with transgenic mice have shown that autophagy is necessary for skeletal muscle adaptation to training. Little is known on how genetic factors, environment, nutrition, drugs and diseases may interact with exercise to modulate autophagy at rest and during exercise in humans.
Collapse
Affiliation(s)
- M Martin-Rincon
- Research Institute of Biomedical and Health Sciences (IUIBS), Las Palmas de Gran Canaria, Canary Islands, Spain.,Department of Physical Education, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - D Morales-Alamo
- Research Institute of Biomedical and Health Sciences (IUIBS), Las Palmas de Gran Canaria, Canary Islands, Spain.,Department of Physical Education, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - J A L Calbet
- Research Institute of Biomedical and Health Sciences (IUIBS), Las Palmas de Gran Canaria, Canary Islands, Spain.,Department of Physical Education, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| |
Collapse
|
272
|
Gross A, Katz SG. Non-apoptotic functions of BCL-2 family proteins. Cell Death Differ 2017; 24:1348-1358. [PMID: 28234359 PMCID: PMC5520452 DOI: 10.1038/cdd.2017.22] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 01/26/2017] [Accepted: 01/30/2017] [Indexed: 02/06/2023] Open
Abstract
The BCL-2 family proteins are major regulators of the apoptosis process, but the mechanisms by which they regulate this process are only partially understood. It is now well documented that these proteins play additional non-apoptotic roles that are likely to be related to their apoptotic roles and to provide important clues to cracking their mechanisms of action. It seems that these non-apoptotic roles are largely related to the activation of cellular survival pathways designated to maintain or regain cellular survival, but, if unsuccessful, will switch over into a pro-apoptotic mode. These non-apoptotic roles span a wide range of processes that include the regulation of mitochondrial physiology (metabolism, electron transport chain, morphology, permeability transition), endoplasmic reticulum physiology (calcium homeostasis, unfolded protein response (UPR)), nuclear processes (cell cycle, DNA damage response (DDR)), whole-cell metabolism (glucose and lipid), and autophagy. Here we review all these different non-apoptotic roles, make an attempt to link them to the apoptotic roles, and present many open questions for future research directions in this fascinating field.
Collapse
Affiliation(s)
- Atan Gross
- Department of Biological Regulation, Weizmann Institute of Science, 100 Herzel Street, Rehovot, Israel,Department of Biological Regulation, Weizmann Institute of Science, 100 Herzel Street, Rehovot 76100, Israel. Tel: +972 8 9343656; Fax: +972 8 934 4116; E-mail:
| | - Samuel G Katz
- Department of Pathology, Yale University School of Medicine, 310 Cedar Street, Brady Memorial Laboratory 127A, New Haven, CT 06520, USA,Department of Pathology, Yale University School of Medicine, 310 Cedar Street, Brady Memorial Laboratory 127A, New Haven CT 06520, USA. Tel: +203 785 2757; E-mail:
| |
Collapse
|
273
|
Xu S, Wu L, Zhang Q, Feng J, Li S, Li J, Liu T, Mo W, Wang W, Lu X, Yu Q, Chen K, Xia Y, Lu J, Xu L, Zhou Y, Fan X, Guo C. Pretreatment with propylene glycol alginate sodium sulfate ameliorated concanavalin A-induced liver injury by regulating the PI3K/Akt pathway in mice. Life Sci 2017; 185:103-113. [PMID: 28774703 DOI: 10.1016/j.lfs.2017.07.033] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Revised: 07/23/2017] [Accepted: 07/29/2017] [Indexed: 12/17/2022]
Abstract
AIMS Propylene glycol alginate sodium sulfate (PSS), a sulfated polysaccharide possesses anti-inflammatory effects. Here, we investigated the effect of PSS on concanavalin A (Con A)-induced liver injury in mice and examined the underlying mechanisms. MAIN METHODS Balb/C mice were injected intravenously with Con A (25mg/kg) to generate a model of acute liver injury. PSS (25 or 50mg/kg) was injected intraperitoneally 1h before the Con A administration. The levels of serum liver enzymes, inflammatory cytokines, and other marker proteins were determined, and liver injury was assessed histopathologically 2, 8, and 24h after Con A injection. KEY FINDINGS Pretreatment with PSS reduced the levels of serum liver enzymes, inflammatory cytokines such as tumor necrosis factor (TNF)-α and interleukin (IL)-1β, and attenuated histopathological damage in Con A-induced liver injury in mice. The effects of Con A were mediated by apoptosis and autophagy, as indicated by changes in protein and gene expression of related factors after Con A injection. PSS activated the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) pathway and showed a protective function against apoptosis and autophagy. SIGNIFICANCE PSS ameliorated Con A-induced liver injury by downregulating inflammatory cytokines including TNF-α and IL-1β and regulating apoptosis and autophagy via the PI3K/Akt pathway.
Collapse
Affiliation(s)
- Shizan Xu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China; Department of Gastroenterology, Shanghai Tenth Hospital, School of Clinical Medicine of Nanjing Medical University, Shanghai 200072, China
| | - Liwei Wu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Qinghui Zhang
- Department of Clinical Laboratory, Kunshan First People's Hospital Affiliated to Jiangsu University, 215300 Kunshan, JiangSu, China
| | - Jiao Feng
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Sainan Li
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Jingjing Li
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Tong Liu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Wenhui Mo
- Department of Gastroenterology, Minhang Hospital, Fudan University, Shanghai 201100, China
| | - Wenwen Wang
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Xiya Lu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Qiang Yu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China; Department of Gastroenterology, Shanghai Tenth Hospital, School of Clinical Medicine of Nanjing Medical University, Shanghai 200072, China
| | - Kan Chen
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Yujing Xia
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Jie Lu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Ling Xu
- Department of Gastroenterology, Shanghai Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200336, China
| | - Yingqun Zhou
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Xiaoming Fan
- Department of Gastroenterology, Jinshan Hospital of Fudan University, Jinshan, Shanghai 201508, China.
| | - Chuanyong Guo
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.
| |
Collapse
|
274
|
Mcl-1 expression and JNK activation induces a threshold for apoptosis in Bcl-xL-overexpressing hematopoietic cells. Oncotarget 2017; 8:11042-11052. [PMID: 28038464 PMCID: PMC5355244 DOI: 10.18632/oncotarget.14223] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 12/20/2016] [Indexed: 02/05/2023] Open
Abstract
The regulation of Mcl-1 expression is necessary for the induction of cancer cell apoptosis by ABTs such as ABT-737, ABT-263 and ABT-199. However, the reduction in Mcl-1 expression is not sufficient for initiating cell death in hematopoietic cancer cells with high Bcl-xL expression. Here, we demonstrate that 2-deoxyglucose (2-DG) enhanced the effect of ABT-199 to induce cell apoptosis in hematologic malignancies with up-regulated Bcl-xL expression. Our study revealed that 2-DG could decrease glucose-dependent and Akt-independent Mcl-1 expression, which is mediated by the mechanistic target of rapamycin complex 1 (mTORC1) pathway. Moreover, the combination of 2-DG and ABT-199 triggered c-Jun NH2-terminal kinase (JNK) phosphorylation and subsequent Bcl-xL degradation, whereas 2-DG and ABT-199 alone had little effect on JNK activation. Therefore, the combination of 2-DG and ABT-199 initiated cell death through the reduction of Mcl-1 expression and JNK activation. Our study could provide a clinical theoretical basis for the use of ABT-199 in hematologic malignancies with excessive Bcl-xL expression.
Collapse
|
275
|
Sherwood RK, Roy CR. Autophagy Evasion and Endoplasmic Reticulum Subversion: The Yin and Yang of Legionella Intracellular Infection. Annu Rev Microbiol 2017; 70:413-33. [PMID: 27607556 DOI: 10.1146/annurev-micro-102215-095557] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The gram-negative bacterial pathogen Legionella pneumophila creates a novel organelle inside of eukaryotic host cells that supports intracellular replication. The L. pneumophila-containing vacuole evades fusion with lysosomes and interacts intimately with the host endoplasmic reticulum (ER). Although the natural hosts for L. pneumophila are free-living protozoa that reside in freshwater environments, the mechanisms that enable this pathogen to replicate intracellularly also function when mammalian macrophages phagocytose aerosolized bacteria, and infection of humans by L. pneumophila can result in a severe pneumonia called Legionnaires' disease. A bacterial type IVB secretion system called Dot/Icm is essential for intracellular replication of L. pneumophila. The Dot/Icm apparatus delivers over 300 different bacterial proteins into host cells during infection. These bacterial proteins have biochemical activities that target evolutionarily conserved host factors that control membrane transport processes, which results in the formation of the ER-derived vacuole that supports L. pneumophila replication. This review highlights research discoveries that have defined interactions between vacuoles containing L. pneumophila and the host ER. These studies reveal how L. pneumophila creates a vacuole that supports intracellular replication by subverting host proteins that control biogenesis and fusion of early secretory vesicles that exit the ER and host proteins that regulate the shape and dynamics of the ER. In addition to recruiting ER-derived membranes for biogenesis of the vacuole in which L. pneumophila replicates, these studies have revealed that this pathogen has a remarkable ability to interfere with the host's cellular process of autophagy, which is an ancient cell autonomous defense pathway that utilizes ER-derived membranes to target intracellular pathogens for destruction. Thus, this intracellular pathogen has evolved multiple mechanisms to control membrane transport processes that center on the involvement of the host ER.
Collapse
Affiliation(s)
- Racquel Kim Sherwood
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut 06536;
| | - Craig R Roy
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut 06536;
| |
Collapse
|
276
|
Reidick C, Boutouja F, Platta HW. The class III phosphatidylinositol 3-kinase Vps34 in Saccharomyces cerevisiae. Biol Chem 2017; 398:677-685. [PMID: 27935849 DOI: 10.1515/hsz-2016-0288] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 11/14/2016] [Indexed: 12/23/2022]
Abstract
The class III phosphatidylinositol 3-kinase Vps34 (vacuolar protein sorting 34) catalyzes for the formation of the signaling lipid phosphatidylinositol-3-phopsphate, which is a central factor in the regulation of autophagy, endocytic trafficking and vesicular transport. In this article, we discuss the functional role of the lipid kinase Vps34 in Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Christina Reidick
- Biochemie Intrazellulärer Transportprozesse, Ruhr-Universität Bochum, D-44801 Bochum
| | - Fahd Boutouja
- Biochemie Intrazellulärer Transportprozesse, Ruhr-Universität Bochum, D-44801 Bochum
| | - Harald W Platta
- Biochemie Intrazellulärer Transportprozesse, Ruhr-Universität Bochum, D-44801 Bochum
| |
Collapse
|
277
|
Sica V, Bravo-San Pedro JM, Chen G, Mariño G, Lachkar S, Izzo V, Maiuri MC, Niso-Santano M, Kroemer G. Inhibitor of growth protein 4 interacts with Beclin 1 and represses autophagy. Oncotarget 2017; 8:89527-89538. [PMID: 29163768 PMCID: PMC5685689 DOI: 10.18632/oncotarget.19033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 04/17/2017] [Indexed: 12/14/2022] Open
Abstract
Beclin 1 (BECN1) is a multifunctional protein that activates the pro-autophagic class III phosphatidylinositol 3-kinase (PIK3C3, best known as VPS34), yet also interacts with multiple negative regulators. Here we report that BECN1 interacts with inhibitor of growth family member 4 (ING4), a tumor suppressor protein that is best known for its capacity to interact with the tumor suppressor protein p53 (TP53) and the acetyltransferase E1A binding protein p300 (EP300). Removal of TP53 or EP300 did not affect the BECN1/ING4 interaction, which however was lost upon culture of cells in autophagy-inducing, nutrient free conditions. Depletion of ING4 stimulated the enzymatic activity of PIK3C3, as visualized by means of a red fluorescent protein-tagged short peptide (FYVE) that specifically binds to phosphatidylinositol-3-phosphate (PI3P)-containing subcellular vesicles and enhanced autophagy, as indicated by an enhanced lipidation of microtubule-associated proteins 1A/1B light chain 3 beta (LC3B) and the redistribution of a green-fluorescent protein (GFP)-LC3B fusion protein to cytoplasmic puncta. The generation of GFP-LC3B puncta stimulated by ING4 depletion was reduced by simultaneous depletion, or pharmacological inhibition, of PIK3C3/VPS34. In conclusion, ING4 acts as a negative regulator of the lipid kinase activity of the BECN1 complex, and starvation-induced autophagy is accompanied by the dissociation of the ING4/BECN1 interaction.
Collapse
Affiliation(s)
- Valentina Sica
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Equipe 11 labellisée Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,Institut National de la Santé et de la Recherche Médicale, Paris, France.,Université Pierre et Marie Curie, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
| | - José Manuel Bravo-San Pedro
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Equipe 11 labellisée Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,Institut National de la Santé et de la Recherche Médicale, Paris, France.,Université Pierre et Marie Curie, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
| | - Guo Chen
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Equipe 11 labellisée Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,Institut National de la Santé et de la Recherche Médicale, Paris, France.,Université Pierre et Marie Curie, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
| | - Guillermo Mariño
- Institut National de la Santé et de la Recherche Médicale, Paris, France.,Departamento de Biología Fundamental, Instituto de Investigación Sanitaria del Principado de Asturias, Universidad de Oviedo, Spain
| | - Sylvie Lachkar
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Equipe 11 labellisée Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,Institut National de la Santé et de la Recherche Médicale, Paris, France.,Université Pierre et Marie Curie, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
| | - Valentina Izzo
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Equipe 11 labellisée Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,Institut National de la Santé et de la Recherche Médicale, Paris, France.,Université Pierre et Marie Curie, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
| | - Maria Chiara Maiuri
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Equipe 11 labellisée Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,Institut National de la Santé et de la Recherche Médicale, Paris, France.,Université Pierre et Marie Curie, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
| | - Mireia Niso-Santano
- Institut National de la Santé et de la Recherche Médicale, Paris, France.,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Cáceres, Spain.,Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, C.P, Cáceres, Cáceres, Spain
| | - Guido Kroemer
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Equipe 11 labellisée Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,Institut National de la Santé et de la Recherche Médicale, Paris, France.,Université Pierre et Marie Curie, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.,Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
278
|
Sphingosine kinase 2 activates autophagy and protects neurons against ischemic injury through interaction with Bcl-2 via its putative BH3 domain. Cell Death Dis 2017; 8:e2912. [PMID: 28682313 PMCID: PMC5550846 DOI: 10.1038/cddis.2017.289] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 05/26/2017] [Accepted: 05/29/2017] [Indexed: 01/05/2023]
Abstract
Our previous findings suggest that sphingosine kinase 2 (SPK2) mediates ischemic tolerance and autophagy in cerebral preconditioning. The aim of this study was to determine by which mechanism SPK2 activates autophagy in neural cells. In both primary murine cortical neurons and HT22 hippocampal neuronal cells, overexpression of SPK2 increased LC3II and enhanced the autophagy flux. SPK2 overexpression protected cortical neurons against oxygen glucose deprivation (OGD) injury, as evidenced by improvement of neuronal morphology, increased cell viability and reduced lactate dehydrogenase release. The inhibition of autophagy effectively suppressed the neuroprotective effect of SPK2. SPK2 overexpression reduced the co-immunoprecipitation of Beclin-1 and Bcl-2, while Beclin-1 knockdown inhibited SPK2-induced autophagy. Both co-immunoprecipitation and GST pull-down analysis suggest that SPK2 directly interacts with Bcl-2. SPK2 might interact to Bcl-2 in the cytoplasm. Notably, an SPK2 mutant with L219A substitution in its putative BH3 domain was not able to activate autophagy. A Tat peptide fused to an 18-amino acid peptide encompassing the native, but not the L219A mutated BH3 domain of SPK2 activated autophagy in neural cells. The Tat-SPK2 peptide also protected neurons against OGD injury through autophagy activation. These results suggest that SPK2 interacts with Bcl-2 via its BH3 domain, thereby dissociating it from Beclin-1 and activating autophagy. The observation that Tat-SPK2 peptide designed from the BH3 domain of SPK2 activates autophagy and protects neural cells against OGD injury suggest that this structure may provide the basis for a novel class of therapeutic agents against ischemic stroke.
Collapse
|
279
|
Qian HR, Shi ZQ, Zhu HP, Gu LH, Wang XF, Yang Y. Interplay between apoptosis and autophagy in colorectal cancer. Oncotarget 2017; 8:62759-62768. [PMID: 28977986 PMCID: PMC5617546 DOI: 10.18632/oncotarget.18663] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 05/15/2017] [Indexed: 12/15/2022] Open
Abstract
Autophagy and apoptosis are two pivotal mechanisms in mediating cell survival and death. Cross-talk of autophagy and apoptosis has been documented in the tumorigenesis and progression of cancer, while the interplay between the two pathways in colorectal cancer (CRC) has not yet been comprehensively summarized. In this study, we outlined the basis of apoptosis and autophagy machinery firstly, and then reviewed the recent evidence in cellular settings or animal studies regarding the interplay between them in CRC. In addition, several key factors that modulate the cross-talk between autophagy and apoptosis as well as its significance in clinical practice were discussed. Understanding of the interplay between the cell death mechanisms may benefit the translation of CRC treatment from basic research to clinical use.
Collapse
Affiliation(s)
- Hao-Ran Qian
- Department of General Surgery, Institute of Minimally Invasive, Surgery of Zhejiang University, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang, PR China
| | - Zhao-Qi Shi
- Department of General Surgery, Institute of Minimally Invasive, Surgery of Zhejiang University, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang, PR China
| | - He-Pan Zhu
- Department of General Surgery, Institute of Minimally Invasive, Surgery of Zhejiang University, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang, PR China
| | - Li-Hu Gu
- Department of General Surgery, Institute of Minimally Invasive, Surgery of Zhejiang University, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang, PR China
| | - Xian-Fa Wang
- Department of General Surgery, Institute of Minimally Invasive, Surgery of Zhejiang University, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang, PR China
| | - Yi Yang
- Department of Pharmacology, Hangzhou Key Laboratory of Medical Neurobiology, School of Medicine, Hangzhou Normal University, Hangzhou 310036, Zhejiang, PR China
| |
Collapse
|
280
|
Lin YT, Wang HC, Hsu YC, Cho CL, Yang MY, Chien CY. Capsaicin Induces Autophagy and Apoptosis in Human Nasopharyngeal Carcinoma Cells by Downregulating the PI3K/AKT/mTOR Pathway. Int J Mol Sci 2017. [PMID: 28644386 PMCID: PMC5535836 DOI: 10.3390/ijms18071343] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Capsaicin is a potential chemotherapeutic agent for different human cancers. In Southeast China, nasopharyngeal carcinoma (NPC) has the highest incidence of all cancers, but final treatment outcomes are unsatisfactory. However, there is a lack of information regarding the anticancer activity of capsaicin in NPC cells, and its effects on the signaling transduction pathways related to apoptosis and autophagy remain unclear. In the present study, the precise mechanisms by which capsaicin exerts anti-proliferative effects, cell cycle arrest, autophagy and apoptosis were investigated in NPC-TW01 cells. Exposure to capsaicin inhibited cancer cell growth and increased G1 phase cell cycle arrest. Western blotting and quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) were used to measure capsaicin-induced autophagy via involvement of the class III PI3K/Beclin-1/Bcl-2 signaling pathway. Capsaicin induced autophagy by increasing levels of the autophagy markers LC3-II and Atg5, enhancing p62 and Fap-1 degradation and increasing caspase-3 activity to induce apoptosis, suggesting a correlation of blocking the PI3K/Akt/mTOR pathway with the above-mentioned anticancer activities. Taken together, these data confirm that capsaicin inhibited the growth of human NPC cells and induced autophagy, supporting its potential as a therapeutic agent for cancer.
Collapse
Affiliation(s)
- Yu-Tsai Lin
- Department of Otolaryngology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan.
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan City 33302, Taiwan.
- Kaohsiung Chang Gung Head and Neck Oncology Group, Cancer Center, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan.
| | - Hung-Chen Wang
- Department of Neurosurgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan.
| | - Yi-Chiang Hsu
- Graduate Institute of Medical Science and Innovative Research Center of Medicine, College of Health Sciences, Chang Jung Christian University, Tainan 71101, Taiwan.
| | - Chung-Lung Cho
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung 80424, Taiwan.
| | - Ming-Yu Yang
- Department of Otolaryngology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan.
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan City 33302, Taiwan.
| | - Chih-Yen Chien
- Department of Otolaryngology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan.
- Kaohsiung Chang Gung Head and Neck Oncology Group, Cancer Center, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan.
| |
Collapse
|
281
|
Pihán P, Carreras-Sureda A, Hetz C. BCL-2 family: integrating stress responses at the ER to control cell demise. Cell Death Differ 2017. [PMID: 28622296 DOI: 10.1038/cdd.2017.82] [Citation(s) in RCA: 193] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In the last decade, the endoplasmic reticulum (ER) has emerged as a central organelle regulating the core mitochondrial apoptosis pathway. At the ER membrane, a variety of stress signals are integrated toward determining cell fate, involving a complex cross talk between key homeostatic pathways including the unfolded protein response, autophagy, calcium signaling and mitochondrial bioenergetics. In this context, key regulators of cell death of the BCL-2 and TMBIM/BI-1 family of proteins have relevant functions as stress rheostats mediated by the formation of distinct protein complexes that regulate the switch between adaptive and proapoptotic phases under stress. Here, we overview recent advances on our molecular understanding of how the apoptotic machinery integrates stress signals toward cell fate decisions upstream of the mitochondrial gateway of death.
Collapse
Affiliation(s)
- Philippe Pihán
- Faculty of Medicine, Biomedical Neuroscience Institute, University of Chile, Santiago, Chile.,Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile.,Faculty of Medicine, Center for Geroscience, Brain Health and Metabolism, University of Chile, Santiago, Chile
| | - Amado Carreras-Sureda
- Faculty of Medicine, Biomedical Neuroscience Institute, University of Chile, Santiago, Chile.,Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile.,Faculty of Medicine, Center for Geroscience, Brain Health and Metabolism, University of Chile, Santiago, Chile
| | - Claudio Hetz
- Faculty of Medicine, Biomedical Neuroscience Institute, University of Chile, Santiago, Chile.,Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile.,Faculty of Medicine, Center for Geroscience, Brain Health and Metabolism, University of Chile, Santiago, Chile.,Buck Institute for Research on Aging, Novato, CA 94945, USA.,Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston MA 02115, USA
| |
Collapse
|
282
|
Abstract
Autophagy represents a catabolic program involved in the degradation of cellular components via lysosomes. It serves to mitigate cellular stress and to provide metabolic precursors especially upon starvation. Thereby, autophagy can support the survival of cancer cells. In addition, there is now convincing evidence showing that under certain conditions autophagy can also foster cell death. This dual function of autophagy is also relevant upon anticancer treatment, as many chemotherapeutic agents engage autophagy. A better understanding of the molecular mechanisms that are critical for mediating autophagic cell death in cancer cells will be instrumental to selectively interfere with this cellular program in order to increase the cancer cell’s response to cytotoxic drugs. This review illustrates how anticancer drug-induced autophagy is involved in mediating cell death.
Collapse
Affiliation(s)
- Simone Fulda
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University Frankfurt, Frankfurt, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt, Frankfurt, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
283
|
The intricate regulation and complex functions of the Class III phosphoinositide 3-kinase Vps34. Biochem J 2017; 473:2251-71. [PMID: 27470591 DOI: 10.1042/bcj20160170] [Citation(s) in RCA: 171] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 03/30/2016] [Indexed: 11/17/2022]
Abstract
The Class III phosphoinositide 3-kinase Vps34 (vacuolar protein sorting 34) plays important roles in endocytic trafficking, macroautophagy, phagocytosis, cytokinesis and nutrient sensing. Recent studies have provided exciting new insights into the structure and regulation of this lipid kinase, and new cellular functions for Vps34 have emerged. This review critically examines the wealth of new data on this important enzyme, and attempts to integrate these findings with current models of Vps34 signalling.
Collapse
|
284
|
Budini M, Buratti E, Morselli E, Criollo A. Autophagy and Its Impact on Neurodegenerative Diseases: New Roles for TDP-43 and C9orf72. Front Mol Neurosci 2017; 10:170. [PMID: 28611593 PMCID: PMC5447761 DOI: 10.3389/fnmol.2017.00170] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 05/15/2017] [Indexed: 12/12/2022] Open
Abstract
Autophagy is a catabolic mechanism where intracellular material is degraded by vesicular structures called autophagolysosomes. Autophagy is necessary to maintain the normal function of the central nervous system (CNS), avoiding the accumulation of misfolded and aggregated proteins. Consistently, impaired autophagy has been associated with the pathogenesis of various neurodegenerative diseases. The proteins TAR DNA-binding protein-43 (TDP-43), which regulates RNA processing at different levels, and chromosome 9 open reading frame 72 (C9orf72), probably involved in membrane trafficking, are crucial in the development of neurodegenerative diseases such as Amyotrophic lateral sclerosis (ALS) and Frontotemporal Lobar Degeneration (FTLD). Additionally, recent studies have identified a role for these proteins in the control of autophagy. In this manuscript, we review what is known regarding the autophagic mechanism and discuss the involvement of TDP-43 and C9orf72 in autophagy and their impact on neurodegenerative diseases.
Collapse
Affiliation(s)
- Mauricio Budini
- Dentistry Faculty, Institute in Dentistry Sciences, University of ChileSantiago, Chile
| | - Emanuele Buratti
- International Centre for Genetic Engineering and BiotechnologyTrieste, Italy
| | - Eugenia Morselli
- Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de ChileSantiago, Chile
| | - Alfredo Criollo
- Dentistry Faculty, Institute in Dentistry Sciences, University of ChileSantiago, Chile.,Advanced Center for Chronic DiseasesSantiago, Chile
| |
Collapse
|
285
|
Xu G, Wang S, Han S, Xie K, Wang Y, Li J, Liu Y. Plant Bax Inhibitor-1 interacts with ATG6 to regulate autophagy and programmed cell death. Autophagy 2017; 13:1161-1175. [PMID: 28537463 PMCID: PMC5529081 DOI: 10.1080/15548627.2017.1320633] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Autophagy is an evolutionarily conserved catabolic process and is involved in the regulation of programmed cell death during the plant immune response. However, mechanisms regulating autophagy and cell death are incompletely understood. Here, we demonstrate that plant Bax inhibitor-1 (BI-1), a highly conserved cell death regulator, interacts with ATG6, a core autophagy-related protein. Silencing of BI-1 reduced the autophagic activity induced by both N gene-mediated resistance to Tobacco mosaic virus (TMV) and methyl viologen (MV), and enhanced N gene-mediated cell death. In contrast, overexpression of plant BI-1 increased autophagic activity and surprisingly caused autophagy-dependent cell death. These results suggest that plant BI-1 has both prosurvival and prodeath effects in different physiological contexts and both depend on autophagic activity.
Collapse
Affiliation(s)
- Guoyong Xu
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China,Department of Biology, Duke University, Durham, NC, USA
| | - Shanshan Wang
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Shaojie Han
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China,Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, USA
| | - Ke Xie
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China,School of Chemistry and Biological Engineering, University of Science and Technology, Beijing, China
| | - Yan Wang
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jinlin Li
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yule Liu
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China,CONTACT Yule Liu School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
286
|
Feng X, Hou H, Zou Y, Guo L. Defective autophagy is associated with neuronal injury in a mouse model of multiple sclerosis. Bosn J Basic Med Sci 2017; 17:95-103. [PMID: 28086065 DOI: 10.17305/bjbms.2017.1696] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 01/09/2017] [Accepted: 11/15/2016] [Indexed: 01/08/2023] Open
Abstract
Neurodegeneration, along with inflammatory demyelination, is an important component of multiple sclerosis (MS) pathogenesis. Autophagy is known to play a pivotal role in neuronal homeostasis and is implicated in several neurodegenerative disorders. However, whether autophagy is involved in the mechanisms of neuronal damage during MS remains to be investigated. Experimental autoimmune encephalomyelitis (EAE), an in vivo model of MS, was induced in female C57BL/6 mice by immunization with myelin oligodendrocyte glycoprotein p35-55. After that, autophagic flux in the spinal cord of mice was evaluated by detection of LC3-II and Beclin1 protein expressions. EAE mice were then administered with rapamycin and 3-methyladenine (3-MA) for 10 days. Afterward, the changes in LC3-II, Beclin1, and p62 expression, number of infiltrated inflammatory cells, demyelinated lesion area, and neuronal damage, as well as clinical scores, were assessed. Further, apoptotic cell rate and apoptosis-related protein expressions were monitored. We observed an impaired autophagic flux and increased neuronal damage in the spinal cords of EAE mice. We also found that rapamycin, an autophagy inducer, mitigated EAE-induced autophagy decrease, inflammation, demyelination and neuronal injury, as well as the abnormal clinical score. In addition, rapamycin suppressed cell apoptosis, and decreased Bax/Bcl-2 ratio and cleaved caspase-3 expression. Conversely, the effect of autophagy inhibitor 3-MA on EAE mice resulted in completely opposite results. These results indicated that autophagy deficiency, at least in part, contributed to EAE-induced neuronal injury and that pharmacological modulation of autophagy might be a therapeutic strategy for MS.
Collapse
Affiliation(s)
- Xuedan Feng
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.
| | | | | | | |
Collapse
|
287
|
Zhu ML, Lu JX, Pan GP, Ping S, Zhao FR, Qi HT, Yu HY, Jian X, Wan GR, Li P. Traditional Chinese medicine Ka-Sai-Ping suppresses the growths of gastric cancers via induction of autophagy. Oncotarget 2017; 8:95075-95082. [PMID: 29221112 PMCID: PMC5707006 DOI: 10.18632/oncotarget.18041] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 05/10/2017] [Indexed: 11/25/2022] Open
Abstract
Traditional Chinese medication is increasingly used to treat a wide range of human chronic diseases like cardiovascular diseases and cancers. This study was designed to explore whether ka-sai-ping (KSP), a novel traditional Chinese medicine developed by us, prevents gastric cancer growths and to investigate the underlying mechanism. The xenograft model of mouse gastric cancer was established by injecting MFCs into nude mouse subcutaneously. Cell autophagy was assessed by MDC staining. Lysosome and mitochondria were detected by Lyso-Tracker Red and Mito-Traker Green staining. Incubation of cultured mouse gastric cancer cell line MFCs with KSP for 48 hours, concentration-dependently reduced cell survivals and activated autophagy, which were accompanied with damaged lysosomes and mitochondria. In vivo studies indicated that KSP therapy (20 ml/kg/day) for two weeks suppressed the growth of gastric cancer, increased the protein levels of LC3-II, beclin-1, cathepsin L, bcl-2, p53, and capase-3 in tumor tissues from the xenograft model of mouse gastric cancer. Importantly, all these effects induced by KSP were abolished by co-administration of autophagy inhibitor 3-MA. In conclusion, KSP activates cell autophagy to suppress gastric cancer growths. Clinically, KSP is potentially considered as a medicine to treat patients with gastric cancer.
Collapse
Affiliation(s)
- Mo-Li Zhu
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Jun-Xiu Lu
- Department of Histology and Embryology, Xinxiang Medical University, Xinxiang, China
| | - Guo-Pin Pan
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Song Ping
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Fan-Rong Zhao
- San-Quan College of Xinxiang Medical University, Xinxiang, China
| | - Heng-Tian Qi
- Department of Cardiothoracic Surgery, The Third Affiliated Hospital, Xinxiang Medical University, Xinxiang, China
| | - Hai-Ya Yu
- Department of Neurology, The People's Hospital of Xishui County, Huangang, Hubei, China
| | - Xu Jian
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Guang-Rui Wan
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Peng Li
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
288
|
Yu J, Lan L, Lewin SJ, Rogers SA, Roy A, Wu X, Gao P, Karanicolas J, Aubé J, Sun B, Xu L. Identification of novel small molecule Beclin 1 mimetics activating autophagy. Oncotarget 2017; 8:51355-51369. [PMID: 28881653 PMCID: PMC5584254 DOI: 10.18632/oncotarget.17977] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Accepted: 05/06/2017] [Indexed: 01/07/2023] Open
Abstract
Anti-apoptotic proteins Bcl-2 and Bcl-xL could block autophagy by binding to Beclin 1 protein, an essential inducer of autophagy. Compounds mimicking Beclin 1 might be able to disrupt Bcl-xL/2-Beclin 1 interaction, free out Beclin 1, and thus trigger autophagy. In order to identify small molecule Beclin 1 mimetics, a fluorescence polarization-based high-throughput screening of 50,316 compounds was carried out with a Z' score of 0.82 ± 0.05, and an outcome of 58 hits. After the structure analysis, three acridine analogues were unveiled and confirmed using the fluorescence polarization assay and the surface plasmon resonance assay. Moreover, a set of 17 additional acridine analogues was prepared and tested. Compound 7 showed selectivity for Bcl-xL (KD = 6.5 μM) over Bcl-2 (KD = 160 μM) protein, and potent cytotoxicity (nanomolar scale) in PC-3, PC-3a and DU145 prostate cancer cells. Furthermore, induction of autophagy was also demonstrated in PC-3 and PC-3a cells treated with some acridine compounds by LC3 conversion immunoblotting and LC3 fluorescence microscopy. These Beclin 1 mimetics will be invaluable tools for developing novel autophagy inducers, better understanding the roles of autophagy in cancer, and will contribute to cancer therapy.
Collapse
Affiliation(s)
- Jia Yu
- 1 School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210089, China,2 Department of Molecular Biosciences, The University of Kansas, Lawrence, Kansas 66045, USA
| | - Lan Lan
- 2 Department of Molecular Biosciences, The University of Kansas, Lawrence, Kansas 66045, USA
| | - Seth J. Lewin
- 2 Department of Molecular Biosciences, The University of Kansas, Lawrence, Kansas 66045, USA
| | - Steven A. Rogers
- 3 Center of Biomedical Research Excellence, The University of Kansas, Lawrence, Kansas 66045, USA
| | - Anuradha Roy
- 4 High Throughput Screening Laboratory, The University of Kansas, Lawrence, Kansas 66045, USA
| | - Xiaoqing Wu
- 2 Department of Molecular Biosciences, The University of Kansas, Lawrence, Kansas 66045, USA
| | - Philip Gao
- 5 COBRE-PSF Protein Production Group, The University of Kansas, Lawrence, Kansas 66045, USA
| | - John Karanicolas
- 2 Department of Molecular Biosciences, The University of Kansas, Lawrence, Kansas 66045, USA,6 Center for Bioinformatics, The University of Kansas, Lawrence, Kansas 66045, USA
| | - Jeffrey Aubé
- 3 Center of Biomedical Research Excellence, The University of Kansas, Lawrence, Kansas 66045, USA,7 Department of Medicinal Chemistry, The University of Kansas, Lawrence, Kansas 66045, USA
| | - Baiwang Sun
- 1 School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210089, China
| | - Liang Xu
- 2 Department of Molecular Biosciences, The University of Kansas, Lawrence, Kansas 66045, USA
| |
Collapse
|
289
|
RACK1 depletion in the ribosome induces selective translation for non-canonical autophagy. Cell Death Dis 2017; 8:e2800. [PMID: 28518135 PMCID: PMC5520723 DOI: 10.1038/cddis.2017.204] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 03/30/2017] [Accepted: 04/03/2017] [Indexed: 12/25/2022]
Abstract
RACK1, which was first demonstrated as a substrate of PKCβ II, functions as a scaffold protein and associates with the 40S small ribosomal subunit. According to previous reports, ribosomal RACK1 was also suggested to control translation depending on the status in translating ribosome. We here show that RACK1 knockdown induces autophagy independent of upstream canonical factors such as Beclin1, Atg7 and Atg5/12 conjugates. We further report that RACK1 knockdown induces the association of mRNAs of LC3 and Bcl-xL with polysomes, indicating increased translation of these proteins. Therefore, we propose that the RACK1 depletion-induced autophagy is distinct from canonical autophagy. Finally, we confirm that cells expressing mutant RACK1 (RACK1R36D/K38E) defective in ribosome binding showed the same result as RACK1-knockdown cells. Altogether, our data clearly show that the depletion of ribosomal RACK1 alters the capacity of the ribosome to translate specific mRNAs, resulting in selective translation of mRNAs of genes for non-canonical autophagy induction.
Collapse
|
290
|
Lv B, Hua T, Li F, Han J, Fang J, Xu L, Sun C, Zhang Z, Feng Z, Jiang X. Hypoxia-inducible factor 1 α protects mesenchymal stem cells against oxygen-glucose deprivation-induced injury via autophagy induction and PI3K/AKT/mTOR signaling pathway. Am J Transl Res 2017; 9:2492-2499. [PMID: 28559999 PMCID: PMC5446531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 04/18/2017] [Indexed: 06/07/2023]
Abstract
Mesenchymal stem cell (MSC) transplantation is a promising therapeutic strategy for myocardial infarction. The survival rate of the grafted MSCs is limited by the conditions of hypoxia and low nutrient levels. In this study, we investigated the role of hypoxia-inducible factor 1 alpha (Hif-1α) in oxygen-glucose deprivation (OGD)-induced injury in MSCs. Hif-1α was overexpressed or suppressed in MSCs by transfection with a Hif-1α expressing vector or Hif-1α-specific siRNA, respectively. Then MSCs were exposed to OGD, and the changes in cell viability, cell cycle distribution and apoptosis were respectively monitored by MTT assay and flow cytometry. Additionally, expression levels of Beclin1, LC3 I and LC3 II, as well phosphorylation of PI3K, AKT and mTOR were detected by RT-PCR and Western blotting. The results indicated that Hif-1α overexpression improved cell viability, reduced G1 phase cells accumulation, and suppressed apoptosis under OGD condition (P<0.05). Beclin1 expression and the LC3 II/LC3 I ratio were increased by Hif-1α overexpression, and were decreased by Hif-1α knock-down (P<0.05). In addition, PI3K, AKT and mTOR were inactivated by Hif-1α overexpression, and phosphorylated by Hif-1α knock-down (P<0.05). In conclusion, these data suggest that Hif-1α overexpression protects MSCs from OGD-induced injury via a mechanism in which autophagy and PI3K/AKT/mTOR pathway are implicated.
Collapse
Affiliation(s)
- Bingke Lv
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University; The National Key Clinical Specialty; The Engineering Technology Research Center of Education Ministry of China; Guangdong Provincial Key Laboratory on Brain Function Repair and RegenerationGuangzhou 510280, China
| | - Tian Hua
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University; The National Key Clinical Specialty; The Engineering Technology Research Center of Education Ministry of China; Guangdong Provincial Key Laboratory on Brain Function Repair and RegenerationGuangzhou 510280, China
| | - Feng Li
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University; The National Key Clinical Specialty; The Engineering Technology Research Center of Education Ministry of China; Guangdong Provincial Key Laboratory on Brain Function Repair and RegenerationGuangzhou 510280, China
| | - Jianbang Han
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University; The National Key Clinical Specialty; The Engineering Technology Research Center of Education Ministry of China; Guangdong Provincial Key Laboratory on Brain Function Repair and RegenerationGuangzhou 510280, China
| | - Jie Fang
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University; The National Key Clinical Specialty; The Engineering Technology Research Center of Education Ministry of China; Guangdong Provincial Key Laboratory on Brain Function Repair and RegenerationGuangzhou 510280, China
| | - Limin Xu
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University; The National Key Clinical Specialty; The Engineering Technology Research Center of Education Ministry of China; Guangdong Provincial Key Laboratory on Brain Function Repair and RegenerationGuangzhou 510280, China
| | - Chengmei Sun
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University; The National Key Clinical Specialty; The Engineering Technology Research Center of Education Ministry of China; Guangdong Provincial Key Laboratory on Brain Function Repair and RegenerationGuangzhou 510280, China
| | - Zhongfei Zhang
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University; The National Key Clinical Specialty; The Engineering Technology Research Center of Education Ministry of China; Guangdong Provincial Key Laboratory on Brain Function Repair and RegenerationGuangzhou 510280, China
| | - Zhiming Feng
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University; The National Key Clinical Specialty; The Engineering Technology Research Center of Education Ministry of China; Guangdong Provincial Key Laboratory on Brain Function Repair and RegenerationGuangzhou 510280, China
| | - Xiaodan Jiang
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University; The National Key Clinical Specialty; The Engineering Technology Research Center of Education Ministry of China; Guangdong Provincial Key Laboratory on Brain Function Repair and RegenerationGuangzhou 510280, China
| |
Collapse
|
291
|
Li KP, Shanmuganad S, Carroll K, Katz JD, Jordan MB, Hildeman DA. Dying to protect: cell death and the control of T-cell homeostasis. Immunol Rev 2017; 277:21-43. [PMID: 28462527 PMCID: PMC5416827 DOI: 10.1111/imr.12538] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 02/23/2017] [Accepted: 02/26/2017] [Indexed: 02/07/2023]
Abstract
T cells play a critical role in immune responses as they specifically recognize peptide/MHC complexes with their T-cell receptors and initiate adaptive immune responses. While T cells are critical for performing appropriate effector functions and maintaining immune memory, they also can cause autoimmunity or neoplasia if misdirected or dysregulated. Thus, T cells must be tightly regulated from their development onward. Maintenance of appropriate T-cell homeostasis is essential to promote protective immunity and limit autoimmunity and neoplasia. This review will focus on the role of cell death in maintenance of T-cell homeostasis and outline novel therapeutic strategies tailored to manipulate cell death to limit T-cell survival (eg, autoimmunity and transplantation) or enhance T-cell survival (eg, vaccination and immune deficiency).
Collapse
Affiliation(s)
- Kun-Po Li
- Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Sharmila Shanmuganad
- Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Kaitlin Carroll
- Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Jonathan D. Katz
- Division of Immunobiology, Cincinnati, OH 45229, USA
- Division of Endocrinology, Diabetes Research Center, Cincinnati, OH 45229, USA
| | - Michael B. Jordan
- Division of Immunobiology, Cincinnati, OH 45229, USA
- Division of Bone Marrow Transplantation and Immune Deficiency, Department of Pediatrics, Cincinnati Children’s Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | | |
Collapse
|
292
|
Autophagy regulatory molecule, TMEM74, interacts with BIK and inhibits BIK-induced apoptosis. Cell Signal 2017; 36:34-41. [PMID: 28412412 DOI: 10.1016/j.cellsig.2017.04.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 03/20/2017] [Accepted: 04/08/2017] [Indexed: 12/19/2022]
Abstract
TMEM74 (Transmembrane protein 74), a lysosome transmembrane protein, induces cell autophagy. Knockdown of TMEM74 abolished EBSS-induced autophagy. BIK, belonging to BOP (BH3-only protein) protein family, has been reported to induce cell apoptosis. Autophagy and apoptosis, as different pathways regulated by extra- or intra-cellular signals precisely, both play a crucial role in processes of intra-cellular substrates degradation, energy metabolism and cell survival. However, the relationship between autophagy and apoptosis still remains elusive. To elucidate the putative new relationship and further identify the function of TMEM74, we performed the study mainly using co-immunoprecipitation, immunoblotting, fluorescent location and basic cell biologic experimental techniques. In the present study, for the first time, it is demonstrated that autophagy-related protein TMEM74 co-localizes with apoptosis-related protein BIK in subcellular organelles. The data indicated that TMEM74 associates with BIK via TM domains of TMEM74 and BH3 domain of BIK. Further investigations revealed that TMEM74 inhibits BIK-induced apoptosis by interacting with BIK, as evidenced by the results that autophagosome formation inhibitor could not block the inhibition effect completely. On the contrary, knockdown of TMEM74 and the TM domain-deficient mutant led to deprivation of the function. Overall, the results revealed the autophagy modulator TMEM74 interrelates with apoptosis inducer BIK and inhibits its function, which provides a novel crosstalk point between autophagy and apoptosis to enlarge our understanding of the programmed cell death.
Collapse
|
293
|
Messer JS. The cellular autophagy/apoptosis checkpoint during inflammation. Cell Mol Life Sci 2017; 74:1281-1296. [PMID: 27837217 PMCID: PMC11107496 DOI: 10.1007/s00018-016-2403-y] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 10/17/2016] [Accepted: 10/27/2016] [Indexed: 12/22/2022]
Abstract
Cell death is a major determinant of inflammatory disease severity. Whether cells live or die during inflammation largely depends on the relative success of the pro-survival process of autophagy versus the pro-death process of apoptosis. These processes interact and influence each other during inflammation and there is a checkpoint at which cells irrevocably commit to either one pathway or another. This review will discuss the concept of the autophagy/apoptosis checkpoint and its importance during inflammation, the mechanisms of inflammation leading up to the checkpoint, and how the checkpoint is regulated. Understanding these concepts is important since manipulation of the autophagy/apoptosis checkpoint represents a novel opportunity for treatment of inflammatory diseases caused by too much or too little cell death.
Collapse
Affiliation(s)
- Jeannette S Messer
- Department of Medicine, Knapp Center for Biomedical Discovery, University of Chicago, 900 E. 57th Street, 9th Floor, Chicago, IL, 60637, USA.
| |
Collapse
|
294
|
Mathiassen SG, De Zio D, Cecconi F. Autophagy and the Cell Cycle: A Complex Landscape. Front Oncol 2017; 7:51. [PMID: 28409123 PMCID: PMC5374984 DOI: 10.3389/fonc.2017.00051] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 03/10/2017] [Indexed: 12/11/2022] Open
Abstract
Autophagy is a self-degradation pathway, in which cytoplasmic material is sequestered in double-membrane vesicles and delivered to the lysosome for degradation. Under basal conditions, autophagy plays a homeostatic function. However, in response to various stresses, the pathway can be further induced to mediate cytoprotection. Defective autophagy has been linked to a number of human pathologies, including neoplastic transformation, even though autophagy can also sustain the growth of tumor cells in certain contexts. In recent years, a considerable correlation has emerged between autophagy induction and stress-related cell-cycle responses, as well as unexpected roles for autophagy factors and selective autophagic degradation in the process of cell division. These advances have obvious implications for our understanding of the intricate relationship between autophagy and cancer. In this review, we will discuss our current knowledge of the reciprocal regulation connecting the autophagy pathway and cell-cycle progression. Furthermore, key findings involving nonautophagic functions for autophagy-related factors in cell-cycle regulation will be addressed.
Collapse
Affiliation(s)
- Søs Grønbæk Mathiassen
- Cell Stress and Survival Unit, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Daniela De Zio
- Cell Stress and Survival Unit, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Francesco Cecconi
- Cell Stress and Survival Unit, Danish Cancer Society Research Center, Copenhagen, Denmark.,Department of Biology, University of Rome Tor Vergata, Rome, Italy.,Department of Pediatric Hematology and Oncology, Istituto di Ricovero e Cura a Carattere Scientifico Bambino Gesù Children's Hospital, Rome, Italy
| |
Collapse
|
295
|
Zheng S, Han F, Shi Y, Wen L, Han D. Single-Prolonged-Stress-Induced Changes in Autophagy-Related Proteins Beclin-1, LC3, and p62 in the Medial Prefrontal Cortex of Rats with Post-traumatic Stress Disorder. J Mol Neurosci 2017; 62:43-54. [PMID: 28341893 DOI: 10.1007/s12031-017-0909-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 03/08/2017] [Indexed: 12/22/2022]
Abstract
Autophagy, or type II programmed cell death, plays a crucial role in many nervous system diseases. However, few studies have examined the role of autophagy in post-traumatic stress disorder (PTSD), and the mechanisms underlying PTSD are poorly understood. The objective of this research was to explore the expression of three important autophagy-related proteins, Beclin-1, microtubule-associated protein 1 light chain 3 (LC3), and p62/SQSTM1 (p62), in the medial prefrontal cortex (mPFC) of an animal model of PTSD to identify changes in autophagic activity during PTSD pathogenesis. PTSD was induced in rats by exposure to a single-prolonged stress (SPS). The Morris water maze was used to assess cognitive changes in rats from the SPS and control groups. Transmission electron microscopy (TEM) was employed to observe mPFC morphological changes. Immunohistochemistry, immunofluorescence, and Western blotting techniques were used to detect expression of Beclin-1, LC3, and p62 in the mPFC. The Morris water maze test results showed that the escape latency time was increased and that the percent time in the target quadrant was decreased in the SPS group compared with that in the control group. Numerous visible autolysosomes in mPFC neurons were observed using TEM after SPS stimulation. Compared with that in the control group, the expression of Beclin-1 and the LC3-II/I ratio significantly decreased at 1 day, then increased and peaked at 7 days, and slightly decreased at 14 days after SPS stimulation, whereas the converse was found for p62 expression. In conclusion, dysregulation of autophagic activity in the mPFC may play a crucial role in PTSD pathogenesis.
Collapse
Affiliation(s)
- Shilei Zheng
- PTSD Laboratory, Department of Histology and Embryology, Institute of Pathology and Pathophysiology, Basic Medical Sciences College, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, China.,Department of Radiology, First Affiliated Hospital of Jinzhou Medical University, No. 2 fifth Duan, Renmin Street, Jinzhou, Liaoning, 121001, China
| | - Fang Han
- PTSD Laboratory, Department of Histology and Embryology, Institute of Pathology and Pathophysiology, Basic Medical Sciences College, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, China
| | - Yuxiu Shi
- PTSD Laboratory, Department of Histology and Embryology, Institute of Pathology and Pathophysiology, Basic Medical Sciences College, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, China.
| | - Lili Wen
- PTSD Laboratory, Department of Histology and Embryology, Institute of Pathology and Pathophysiology, Basic Medical Sciences College, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, China
| | - Dan Han
- PTSD Laboratory, Department of Histology and Embryology, Institute of Pathology and Pathophysiology, Basic Medical Sciences College, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, China
| |
Collapse
|
296
|
Zhou D, Springer MZ, Xu D, Liu D, Hudmon A, Macleod KF, Meroueh SO. Small molecules inhibit STAT3 activation, autophagy, and cancer cell anchorage-independent growth. Bioorg Med Chem 2017; 25:2995-3005. [PMID: 28438385 DOI: 10.1016/j.bmc.2017.03.048] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 03/18/2017] [Accepted: 03/21/2017] [Indexed: 12/25/2022]
Abstract
Triple-negative breast cancers (TNBCs) lack the signature targets of other breast tumors, such as HER2, estrogen receptor, and progesterone receptor. These aggressive basal-like tumors are driven by a complex array of signaling pathways that are activated by multiple driver mutations. Here we report the discovery of 6 (KIN-281), a small molecule that inhibits multiple kinases including maternal leucine zipper kinase (MELK) and the non-receptor tyrosine kinase bone marrow X-linked (BMX) with single-digit micromolar IC50s. Several derivatives of 6 were synthesized to gain insight into the binding mode of the compound to the ATP binding pocket. Compound 6 was tested for its effect on anchorage-dependent and independent growth of MDA-MB-231 and MDA-MB-468 breast cancer cells. The effect of 6 on BMX prompted us to evaluate its effect on STAT3 phosphorylation and DNA binding. The compound's inhibition of cell growth led to measurements of survivin, Bcl-XL, p21WAF1/CIP1, and cyclin A2 levels. Finally, LC3B-II levels were quantified following treatment of cells with 6 to determine whether the compound affected autophagy, a process that is known to be activated by STAT3. Compound 6 provides a starting point for the development of small molecules with polypharmacology that can suppress TNBC growth and metastasis.
Collapse
Affiliation(s)
- Donghui Zhou
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, United States
| | - Maya Z Springer
- The Ben May Department for Cancer Research, University of Chicago, United States
| | - David Xu
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, United States; Department of BioHealth Informatics, Indiana University School of Informatics and Computing, United States
| | - Degang Liu
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, United States
| | - Andy Hudmon
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, United States
| | - Kay F Macleod
- The Ben May Department for Cancer Research, University of Chicago, United States
| | - Samy O Meroueh
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, United States; Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, United States.
| |
Collapse
|
297
|
Wu Y, Cui L, Zhu E, Zhou W, Wang Q, Wu X, Wu B, Huang Y, Liu HJ. Muscovy duck reovirus σNS protein triggers autophagy enhancing virus replication. Virol J 2017; 14:53. [PMID: 28288679 PMCID: PMC5348909 DOI: 10.1186/s12985-017-0722-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 03/06/2017] [Indexed: 01/20/2023] Open
Abstract
Background Muscovy duck reovirus (MDRV) causes high morbidity and mortality in Muscovy ducklings at 10 days old and can persist in an infected flock until the ducklings of 6 weeks old. It shares common physicochemical properties with avian reovirus (ARV) and differs in coding assignment and pathogenicity. The ARV p17 protein has been shown to trigger autophagy via activation multiple signaling pathways, which benefits virus replication. Since MDRV lacks the p17 protein, whether and how MDRV induces autophagy remains unknown. The aim of this study was to explore whether MDRV induces autophagy and which viral proteins are involved in MDRV-induced autophagy. Methods The autophagosome-like structures in MDRV-infected cells was observed under transmission electron microscopy. MDRV-induced autophagy was examined by analyzing the LC3-II level and phosphorylated form of mammalian target of rapamycin (mTOR) by Western blot assays. The effects of 3-methyladenine, rapamycin, chloroquine on viral yields were measured with quantitative(q) real-time reverse transcription (RT)-polymerase chain reaction (PCR) and 50% tissue culture infective dose (TCID50) assays, respectively. Additionally, to determine which viral protein is responsible for MDRV-induced autophagy, both p10.8- and σNS-encoding genes of MDRV were cloned into the pCI-neo-flag vector and transfected into DF-1 cells for detection of LC3-II. Results The typical double-membrane vesicles containing cytoplasmic inclusions were visible in MDRV-infected immortalized chicken embryo fibroblast (DF-1) cells under transmission electron microscopy. Both primary Muscovy duck embryo fibroblasts (MDEF) and DF-1 cells infected with MDRV exhibited a significant increased levels of LC3-II accompanied with downregulation of phosphorylated form of mTOR, further confirming that MDRV is capable of inducing autophagy. Autophagy could be suppressed by 3-methylademine and induced by rapamycin and chloroquine. Furthermore, we found that σNS induces an increased levels of LC3-II, suggesting that the MDRV σNS protein is one of viral proteins involved in induction of autophagy. Both qRT-PCR and TCID50 assays showed that virus yield was increased in rapamycin treated DF-1 cells following MDRV infection. Conversely, when infected cells were pretreated with chloroquine, virus yield was decreased. Conclusions The MDRV σNS nonstructural protein is responsible for MDRV-induced autophagy and benefits virus replication.
Collapse
Affiliation(s)
- Yijian Wu
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China.,Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health (Fujian Agricultural and Forestry University), Fuzhou, 350002, People's Republic of China
| | - Longping Cui
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China
| | - Erpeng Zhu
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China.,Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health (Fujian Agricultural and Forestry University), Fuzhou, 350002, People's Republic of China
| | - Wuduo Zhou
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China.,Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health (Fujian Agricultural and Forestry University), Fuzhou, 350002, People's Republic of China
| | - Quanxi Wang
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China.,Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health (Fujian Agricultural and Forestry University), Fuzhou, 350002, People's Republic of China
| | - Xiaoping Wu
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China.,Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health (Fujian Agricultural and Forestry University), Fuzhou, 350002, People's Republic of China
| | - Baocheng Wu
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China.,Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health (Fujian Agricultural and Forestry University), Fuzhou, 350002, People's Republic of China
| | - Yifan Huang
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China.,Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health (Fujian Agricultural and Forestry University), Fuzhou, 350002, People's Republic of China
| | - Hung-Jen Liu
- Institute of Molecular Biology, National Chung Hsing University, Taichung, 402, Taiwan. .,Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, 402, Taiwan. .,Agricultural Biotechnology Center, National Chung Hsing University, Taichung, 402, Taiwan.
| |
Collapse
|
298
|
Abstract
PURPOSE OF REVIEW Systemic lupus erythematosus (SLE) confers up to a 50-fold increased risk of cardiovascular disease (CVD), and African Americans with SLE experience accelerated damage accrual and doubled cardiovascular risk when compared to their European American counterparts. RECENT FINDINGS Genome-wide association studies have identified a substantial signal at 22q13, now assigned to variation at apolipoprotein L1 (APOL1), which has associated with progressive nondiabetic nephropathy, cardiovascular disease, and many immune-associated renal diseases, including lupus nephritis. We contend that alterations in crucial APOL1 intracellular pathways may underpin associated disease states based on structure-functional differences between variant and ancestral forms. While ancestral APOL1 may be a key driver of autophagy, nonconserved primary structure changes result in a toxic gain of function with attenuation of autophagy and an unsupervised pore-forming feature. Thus, the divergent intracellular biological pathways of ancestral and variant APOL1 may explain a worsened prognosis as demonstrated in SLE.
Collapse
|
299
|
Das SK, Yuan YF, Li MQ. An Overview on Current Issues and Challenges of Endothelial Progenitor Cell-Based Neovascularization in Patients with Diabetic Foot Ulcer. Cell Reprogram 2017; 19:75-87. [PMID: 28266867 DOI: 10.1089/cell.2016.0050] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Diabetic foot ulcer's impaired wound healing, which leads to the development of chronic non-healing wounds and ultimately amputation, is a major problem worldwide. Although recently endothelial progenitor cell-derived cell therapy has been used as a therapeutic intervention to treat diabetic wounds, thereby promoting neovascularization, the results, however, are not satisfactory. In this article, we have discussed the several steps that are involved in the neovascularization process, which might be impaired during diabetes. In addition, we have also discussed the reported possible interventions to correct these impairments. Thus, we have summarized neovascularization as a process with a coordinated sequence of multiple steps and thus, there is the need of a combined therapeutic approach to achieve better treatment outcomes.
Collapse
Affiliation(s)
- Sushant Kumar Das
- Department of Interventional and Vascular Surgery, Shanghai Tenth People's Hospital, Tongji University , Shanghai, People's Republic of China
| | - Yi Feng Yuan
- Department of Interventional and Vascular Surgery, Shanghai Tenth People's Hospital, Tongji University , Shanghai, People's Republic of China
| | - Mao Quan Li
- Department of Interventional and Vascular Surgery, Shanghai Tenth People's Hospital, Tongji University , Shanghai, People's Republic of China
| |
Collapse
|
300
|
Chu JQ, Jing KP, Gao X, Li P, Huang R, Niu YR, Yan SQ, Kong JC, Yu CY, Shi G, Fan YM, Lee YH, Zhou Y, Quan JH. Toxoplasma gondii induces autophagy and apoptosis in human umbilical cord mesenchymal stem cells via downregulation of Mcl-1. Cell Cycle 2017; 16:477-486. [PMID: 28112581 PMCID: PMC5351927 DOI: 10.1080/15384101.2017.1281484] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 12/16/2016] [Accepted: 01/05/2017] [Indexed: 02/07/2023] Open
Abstract
Autophagy and apoptosis are critical for controlling Toxoplasma gondii (T. gondii) infection. T. gondii infection during pregnancy can damage the fetus and cause birth defects; however, the molecular mechanisms of this process are poorly understood. This study aims to determine the activities of autophagy and apoptosis as well as their regulatory mechanisms during T. gondii infection by using human umbilical cord mesenchymal stem cells (hUC-MSCs) as a model of congenital diseases. LC3B, a hallmark protein of autophagy was incrementally upregulated with the infection duration, whereas p62 was downregulated in T. gondii-infected hUC-MSCs. Concurrent to this result, the invasion of T. gondii into hUC-MSCs increased in a time-dependent manner. The expression levels of Bcl-2 family proteins including Bcl-2, Bcl-xL, Bim, Bax, Bid and Bak were not altered; however, Mcl-1 levels in hUC-MSCs were dramatically decreased upon T. gondii infection. In addition, at 24 h post-infection, cleaved PARP and cleaved caspase-3 protein levels were elevated in hUC-MSCs. Importantly, Mcl-1 overexpression reduced the levels of autophagy- and apoptosis-related proteins in T. gondii-infected hUC-MSCs. Mcl-1 proteins were primarily expressed in the fraction containing mitochondria and strongly interacted with Beclin-1 under normal conditions; however, these interactions were remarkably attenuated by T. gondii infection. These results suggest that mitochondrial Mcl-1 is an essential signaling mediator regulating the activation of autophagy and apoptosis during T. gondii infection.
Collapse
Affiliation(s)
- Jia-Qi Chu
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Laboratory Institute of Minimally Invasive Orthopedic Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Kai-Peng Jing
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xiang Gao
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Peng Li
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Rui Huang
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yan-Ru Niu
- Laboratory Institute of Minimally Invasive Orthopedic Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Shou-Quan Yan
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jun-Chao Kong
- Laboratory Institute of Minimally Invasive Orthopedic Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Cai-Yuan Yu
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Ge Shi
- Department of Dermatology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yi-Ming Fan
- Department of Dermatology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Young-Ha Lee
- Department of Infection Biology, Chungnam National University School of Medicine, Daejeon, Korea
| | - Yu Zhou
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Juan-Hua Quan
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|