251
|
Applications of comparative evolution to human disease genetics. Curr Opin Genet Dev 2015; 35:16-24. [PMID: 26338499 DOI: 10.1016/j.gde.2015.08.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 08/11/2015] [Accepted: 08/12/2015] [Indexed: 12/15/2022]
Abstract
Direct comparison of human diseases with model phenotypes allows exploration of key areas of human biology which are often inaccessible for practical or ethical reasons. We review recent developments in comparative evolutionary approaches for finding models for genetic disease, including high-throughput generation of gene/phenotype relationship data, the linking of orthologous genes and phenotypes across species, and statistical methods for linking human diseases to model phenotypes.
Collapse
|
252
|
Jiang P, Ludwig MZ, Kreitman M, Reinitz J. Natural variation of the expression pattern of the segmentation gene even-skipped in melanogaster. Dev Biol 2015; 405:173-81. [PMID: 26129990 PMCID: PMC4529771 DOI: 10.1016/j.ydbio.2015.06.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 06/23/2015] [Accepted: 06/24/2015] [Indexed: 11/28/2022]
Abstract
The evolution of canalized traits is a central question in evolutionary biology. Natural variation in highly conserved traits can provide clues about their evolutionary potential. Here we investigate natural variation in a conserved trait-even-skipped (eve) expression at the cellular blastoderm stage of embryonic development in Drosophila melanogaster. Expression of the pair-rule gene eve was quantitatively measured in three inbred lines derived from a natural population of D. melanogaster. One line showed marked differences in the spacing, amplitude and timing of formation of the characteristic seven-striped pattern over a 50-min period prior to the onset of gastrulation. Stripe 5 amplitude and the width of the interstripe between stripes 4 and 5 were both reduced in this line, while the interstripe distance between stripes 3 and 4 was increased. Engrailed expression in stage 10 embryos revealed a statistically significant increase in the length of parasegment 6 and a decrease in the length of parasegments 8 and 9. These changes are larger than those previously reported between D. melanogaster and D. pseudoobscura, two species that are thought to have diverged from a common ancestor over 25 million years ago. This line harbors a rare 448 bp deletion in the first intron of knirps (kni). This finding suggested that reduced Kni levels caused the deviant eve expression, and indeed we observed lower levels of Kni protein at early cycle 14A in L2 compared to the other two lines. A second of the three lines displayed an approximately 20% greater level of expression for all seven eve stripes. The three lines are each viable and fertile, and none display a segmentation defect as adults, suggesting that early-acting variation in eve expression is ameliorated by developmental buffering mechanisms acting later in development. Canalization of the segmentation pathway may reduce the fitness consequences of genetic variation, thus allowing the persistence of mutations with unexpectedly strong gene expression phenotypes.
Collapse
Affiliation(s)
- Pengyao Jiang
- Department of Ecology & Evolution, University of Chicago, IL 60637, USA.
| | - Michael Z Ludwig
- Department of Ecology & Evolution, University of Chicago, IL 60637, USA; Institute for Genomics & Systems Biology, Chicago, IL 60637, USA
| | - Martin Kreitman
- Department of Ecology & Evolution, University of Chicago, IL 60637, USA; Institute for Genomics & Systems Biology, Chicago, IL 60637, USA
| | - John Reinitz
- Department of Ecology & Evolution, University of Chicago, IL 60637, USA; Institute for Genomics & Systems Biology, Chicago, IL 60637, USA; Department of Statistics, University of Chicago, IL 60637, USA; Department of Molecular Genetics and Cell Biology, University of Chicago, IL 60637, USA
| |
Collapse
|
253
|
Mayer MG, Sommer RJ. Nematode orphan genes are adopted by conserved regulatory networks and find a home in ecology. WORM 2015; 4:e1082029. [PMID: 27123366 PMCID: PMC4826153 DOI: 10.1080/21624054.2015.1082029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 08/06/2015] [Indexed: 11/26/2022]
Abstract
Nematode dauer formation represents an essential survival and dispersal strategy and is one of a few ecologically relevant traits that can be studied in laboratory approaches. Under harsh environmental conditions, the nematode model organisms Caenorhabditis elegans and Pristionchus pacificus arrest their development and induce the formation of stress-resistant dauer larvae in response to dauer pheromones, representing a key example of phenotypic plasticity. Previous studies have indicated that in P. pacificus, many wild isolates show cross-preference of dauer pheromones and compete for access to a limited food source. When investigating the genetic mechanisms underlying this intraspecific competition, we recently discovered that the orphan gene dauerless (dau-1) controls dauer formation by copy number variation. Our results show that dau-1 acts in parallel to or downstream of steroid hormone signaling but upstream of the nuclear hormone receptor daf-12, suggesting that DAU-1 represents a novel inhibitor of DAF-12. Phylogenetic analysis reveals that the observed copy number variation is part of a complex series of gene duplication events that occurred over short evolutionary time scales. Here, we comment on the incorporation of novel or fast-evolving genes into conserved genetic networks as a common principle for the evolution of phenotypic plasticity and intraspecific competition. We discuss the possibility that orphan genes might often function in the regulation and execution of ecologically relevant traits. Given that only few ecological processes can be studied in model organisms, the function of such genes might often go unnoticed, explaining the large number of uncharacterized genes in model system genomes.
Collapse
Affiliation(s)
- Melanie G Mayer
- Max Planck Institute for Developmental Biology ; Tübingen, Germany
| | - Ralf J Sommer
- Max Planck Institute for Developmental Biology ; Tübingen, Germany
| |
Collapse
|
254
|
Paaby AB, White AG, Riccardi DD, Gunsalus KC, Piano F, Rockman MV. Wild worm embryogenesis harbors ubiquitous polygenic modifier variation. eLife 2015; 4. [PMID: 26297805 PMCID: PMC4569889 DOI: 10.7554/elife.09178] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 08/21/2015] [Indexed: 12/28/2022] Open
Abstract
Embryogenesis is an essential and stereotypic process that nevertheless evolves
among species. Its essentiality may favor the accumulation of cryptic genetic
variation (CGV) that has no effect in the wild-type but that enhances or
suppresses the effects of rare disruptions to gene function. Here, we adapted a
classical modifier screen to interrogate the alleles segregating in natural
populations of Caenorhabditis elegans: we induced gene
knockdowns and used quantitative genetic methodology to examine how segregating
variants modify the penetrance of embryonic lethality. Each perturbation
revealed CGV, indicating that wild-type genomes harbor myriad genetic modifiers
that may have little effect individually but which in aggregate can dramatically
influence penetrance. Phenotypes were mediated by many modifiers, indicating
high polygenicity, but the alleles tend to act very specifically, indicating low
pleiotropy. Our findings demonstrate the extent of conditional functionality in
complex trait architecture. DOI:http://dx.doi.org/10.7554/eLife.09178.001 Individuals of the same species have similar, but generally not identical, DNA
sequences. This ‘genetic variation’ is due to random changes in the DNA—known as
mutations—that occur among individuals. These mutations may be passed on to
these individuals' offspring, who in turn pass them on to their descendants.
Some of these mutations may have a positive or negative effect on the ability of
the organisms to survive and reproduce, but others may have no effect at
all. The process by which an embryo forms (which is called embryogenesis) follows a
precisely controlled series of events. Within the same species, there is genetic
variation in the DNA that programs embryogenesis, but it is not clear what
effect this variation has on how the embryo develops. Here, Paaby et al. adapted
a genetics technique called a ‘modifier screen’ to study how genetic variation
affects the development of a roundworm known as Caenorhabditis
elegans. The experiments show that populations of worms harbor a lot of genetic variation
that affects how they tolerate the loss of an important gene. One by one, Paaby
et al. interrupted the activity of specific genes that embryos need in order to
develop. How this affected the embryo, and whether or not it was able to
survive, was due in large part to the naturally-occurring genetic variation in
other genes in these worms. Paaby et al.'s findings serve as a reminder that the effect of a mutation depends
on other DNA sequences in the organism. In humans, for example, a gene that
causes a genetic disease may produce severe symptoms in one patient but mild
symptoms in another. Future experiments will reveal the details of how genetic
variation affects embryogenesis, which may also provide new insights into how
complex processes in animals evolve over time. DOI:http://dx.doi.org/10.7554/eLife.09178.002
Collapse
Affiliation(s)
- Annalise B Paaby
- Department of Biology and Center for Genomics and Systems Biology, New York University, New York, United States
| | - Amelia G White
- Department of Biology and Center for Genomics and Systems Biology, New York University, New York, United States
| | - David D Riccardi
- Department of Biology and Center for Genomics and Systems Biology, New York University, New York, United States
| | - Kristin C Gunsalus
- Department of Biology and Center for Genomics and Systems Biology, New York University, New York, United States
| | - Fabio Piano
- Department of Biology and Center for Genomics and Systems Biology, New York University, New York, United States
| | - Matthew V Rockman
- Department of Biology and Center for Genomics and Systems Biology, New York University, New York, United States
| |
Collapse
|
255
|
Lindtke D, Buerkle CA. The genetic architecture of hybrid incompatibilities and their effect on barriers to introgression in secondary contact. Evolution 2015; 69:1987-2004. [DOI: 10.1111/evo.12725] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Accepted: 07/08/2015] [Indexed: 12/30/2022]
Affiliation(s)
- Dorothea Lindtke
- Department of Botany and Program in Ecology; University of Wyoming; Laramie Wyoming 82071
- Department of Animal and Plant Sciences; University of Sheffield; Sheffield S10 2TN United Kingdom
| | - C. Alex Buerkle
- Department of Botany and Program in Ecology; University of Wyoming; Laramie Wyoming 82071
| |
Collapse
|
256
|
Moczek AP, Sears KE, Stollewerk A, Wittkopp PJ, Diggle P, Dworkin I, Ledon-Rettig C, Matus DQ, Roth S, Abouheif E, Brown FD, Chiu CH, Cohen CS, Tomaso AWD, Gilbert SF, Hall B, Love AC, Lyons DC, Sanger TJ, Smith J, Specht C, Vallejo-Marin M, Extavour CG. The significance and scope of evolutionary developmental biology: a vision for the 21st century. Evol Dev 2015; 17:198-219. [PMID: 25963198 DOI: 10.1111/ede.12125] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Evolutionary developmental biology (evo-devo) has undergone dramatic transformations since its emergence as a distinct discipline. This paper aims to highlight the scope, power, and future promise of evo-devo to transform and unify diverse aspects of biology. We articulate key questions at the core of eleven biological disciplines-from Evolution, Development, Paleontology, and Neurobiology to Cellular and Molecular Biology, Quantitative Genetics, Human Diseases, Ecology, Agriculture and Science Education, and lastly, Evolutionary Developmental Biology itself-and discuss why evo-devo is uniquely situated to substantially improve our ability to find meaningful answers to these fundamental questions. We posit that the tools, concepts, and ways of thinking developed by evo-devo have profound potential to advance, integrate, and unify biological sciences as well as inform policy decisions and illuminate science education. We look to the next generation of evolutionary developmental biologists to help shape this process as we confront the scientific challenges of the 21st century.
Collapse
Affiliation(s)
- Armin P Moczek
- Department of Biology, Indiana University, 915 East 3rd Street, Bloomington, IN 47405, USA
| | - Karen E Sears
- School of Integrative Biology and Institute for Genomic Biology, University of Illinois, 505 South Goodwin Avenue, Urbana, IL, 61801, USA
| | - Angelika Stollewerk
- School of Biological and Chemical Sciences, Queen Mary, University of London, Mile End Road, London, E1 4NS, UK
| | - Patricia J Wittkopp
- Department of Ecology and Evolutionary Biology, Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Pamela Diggle
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, 06269, USA
| | - Ian Dworkin
- Department of Biology, McMaster University, 1280 Main St. West Hamilton, Ontario, L8S 4K1, Canada
| | - Cristina Ledon-Rettig
- Department of Biology, Indiana University, 915 East 3rd Street, Bloomington, IN 47405, USA
| | - David Q Matus
- Department of Biochemistry and Cell Biology, Stony Brook University, 412 Life Sciences Building, Stony Brook, NY, 11794-5215, USA
| | - Siegfried Roth
- University of Cologne, Institute of Developmental Biology, Biocenter, Zülpicher Straße 47b, D-50674, Cologne, Germany
| | - Ehab Abouheif
- Department of Biology, McGill University, 1205 Avenue Docteur Penfield, Montréal Québec, H3A 1B1, Canada
| | - Federico D Brown
- Departamento de Zoologia, Instituto Biociências, Universidade de São Paulo, Rua do Matão, Travessa 14, no. 101, 05508-090, São Paulo, Brazil
| | - Chi-Hua Chiu
- Department of Biological Sciences, Kent State University, OH, USA
| | - C Sarah Cohen
- Biology Department, Romberg Tiburon Center for Environmental Studies, San Francisco State University, 3150 Paradise Drive, Tiburon, CA, 94920, USA
| | | | - Scott F Gilbert
- Department of Biology, Swarthmore College, Swarthmore, Pennsylvania 19081, USA and Biotechnology Institute, University of Helsinki, 00014, Helsinki, Finland
| | - Brian Hall
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, CA, B3H 4R2, USA
| | - Alan C Love
- Department of Philosophy, Minnesota Center for Philosophy of Science, University of Minnesota, USA
| | - Deirdre C Lyons
- Department of Biology, Duke University, Box 90338, Durham, NC, 27708, USA
| | - Thomas J Sanger
- Department of Molecular Genetics and Microbiology, University of Florida, P.O. Box 103610, Gainesville, FL, 32610, USA
| | - Joel Smith
- Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA, 02543, USA
| | - Chelsea Specht
- Plant and Microbial Biology, Department of Integrative Biology, University and Jepson Herbaria, University of California, Berkeley, CA, USA
| | - Mario Vallejo-Marin
- Biological and Environmental Sciences, University of Stirling, FK9 4LA, Scotland, UK
| | - Cassandra G Extavour
- Department of Organismic and Evolutionary Biology, Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, BioLabs 4103, Cambridge, MA, 02138, USA
| |
Collapse
|
257
|
Bundus JD, Alaei R, Cutter AD. Gametic selection, developmental trajectories, and extrinsic heterogeneity in Haldane's rule. Evolution 2015; 69:2005-17. [PMID: 26102479 DOI: 10.1111/evo.12708] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 06/01/2015] [Indexed: 12/31/2022]
Abstract
Deciphering the genetic and developmental causes of the disproportionate rarity, inviability, and sterility of hybrid males, Haldane's rule, is important for understanding the evolution of reproductive isolation between species. Moreover, extrinsic and prezygotic factors can contribute to the magnitude of intrinsic isolation experienced between species with partial reproductive compatibility. Here, we use the nematodes Caenorhabditis briggsae and C. nigoni to quantify the sensitivity of hybrid male viability to extrinsic temperature and developmental timing, and test for a role of mito-nuclear incompatibility as a genetic cause. We demonstrate that hybrid male inviability manifests almost entirely as embryonic, not larval, arrest and is maximal at the lowest rearing temperatures, indicating an intrinsic-by-extrinsic interaction to hybrid inviability. Crosses using mitochondrial substitution strains that have reciprocally introgressed mitochondrial and nuclear genomes show that mito-nuclear incompatibility is not a dominant contributor to postzygotic isolation and does not drive Haldane's rule in this system. Crosses also reveal that competitive superiority of X-bearing sperm provides a novel means by which postmating prezygotic factors exacerbate the rarity of hybrid males. These findings highlight the important roles of gametic, developmental, and extrinsic factors in modulating the manifestation of Haldane's rule.
Collapse
Affiliation(s)
- Joanna D Bundus
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada, M5S 3B2
| | - Ravin Alaei
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada, M5S 3B2
| | - Asher D Cutter
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada, M5S 3B2.
| |
Collapse
|
258
|
Armstrong AF, Lessios HA. The evolution of larval developmental mode: insights from hybrids between species with obligately and facultatively planktotrophic larvae. Evol Dev 2015; 17:278-88. [PMID: 26172861 DOI: 10.1111/ede.12133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Life history characteristics play a pervasive role in the ecology and evolution of species. Transitions between feeding and non-feeding larval development have occurred many times in both terrestrial and marine phyla, however we lack a comprehensive understanding of how such shifts occur. The sea biscuits Clypeaster rosaceus and Clypeaster subdepressus employ different life history strategies (facultatively feeding larvae and obligately feeding larvae, respectively) but can hybridize. In this study, we examined the development of hybrid larvae between these two species in order to investigate the inheritance of larval developmental mode. Our results show that both reciprocal hybrid crosses developed via the feeding mode of their maternal species. However, as feeding larvae can obtain both energy and hormones from algal food, we tested how hormones alone affected development by setting up a treatment where we added exogenous thyroid hormone, but no food. In this treatment the offspring of all four crosses (two homospecific and two heterospecific crosses) were able to metamorphose without algal food. Therefore we hypothesize that although hybrid developmental mode was inherited from the maternal species, this result was not solely due to energetic constraints of egg size.
Collapse
Affiliation(s)
- Anne Frances Armstrong
- University of California, Davis Center for Population Biology, One Shields Avenue, Davis, CA 95616, USA
| | | |
Collapse
|
259
|
Faunes M, Francisco Botelho J, Ahumada Galleguillos P, Mpodozis J. On the hodological criterion for homology. Front Neurosci 2015; 9:223. [PMID: 26157357 PMCID: PMC4477164 DOI: 10.3389/fnins.2015.00223] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Accepted: 06/08/2015] [Indexed: 11/13/2022] Open
Abstract
Owen's pre-evolutionary definition of a homolog as “the same organ in different animals under every variety of form and function” and its redefinition after Darwin as “the same trait in different lineages due to common ancestry” entail the same heuristic problem: how to establish “sameness.”Although different criteria for homology often conflict, there is currently a generalized acceptance of gene expression as the best criterion. This gene-centered view of homology results from a reductionist and preformationist concept of living beings. Here, we adopt an alternative organismic-epigenetic viewpoint, and conceive living beings as systems whose identity is given by the dynamic interactions between their components at their multiple levels of composition. We posit that there cannot be an absolute homology criterion, and instead, homology should be inferred from comparisons at the levels and developmental stages where the delimitation of the compared trait lies. In this line, we argue that neural connectivity, i.e., the hodological criterion, should prevail in the determination of homologies between brain supra-cellular structures, such as the vertebrate pallium.
Collapse
Affiliation(s)
- Macarena Faunes
- Department of Anatomy, Faculty of Medical and Health Sciences, University of Auckland Auckland, New Zealand
| | - João Francisco Botelho
- Department of Anatomy, Faculty of Medical and Health Sciences, University of Auckland Auckland, New Zealand ; Grupo Fritz Müller-Desterro de Estudos em Filosofia e História da Biologia, Departamento de Filosofia, Universidade Federal de Santa Catarina Florianópolis, Brasil
| | - Patricio Ahumada Galleguillos
- Programa de Anatomía y Biología del Desarrollo, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile Santiago, Chile
| | - Jorge Mpodozis
- Laboratorio de Neurobiología y Biología del Conocer, Departamento de Biología, Facultad de Ciencias, Universidad de Chile Santiago, Chile
| |
Collapse
|
260
|
Anderson DW, McKeown AN, Thornton JW. Intermolecular epistasis shaped the function and evolution of an ancient transcription factor and its DNA binding sites. eLife 2015; 4:e07864. [PMID: 26076233 PMCID: PMC4500092 DOI: 10.7554/elife.07864] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 06/13/2015] [Indexed: 02/07/2023] Open
Abstract
Complexes of specifically interacting molecules, such as transcription factor proteins (TFs) and the DNA response elements (REs) they recognize, control most biological processes, but little is known concerning the functional and evolutionary effects of epistatic interactions across molecular interfaces. We experimentally characterized all combinations of genotypes in the joint protein-DNA sequence space defined by an historical transition in TF-RE specificity that occurred some 500 million years ago in the DNA-binding domain of an ancient steroid hormone receptor. We found that rampant epistasis within and between the two molecules was essential to specific TF-RE recognition and to the evolution of a novel TF-RE complex with unique derived specificity. Permissive and restrictive epistatic mutations across the TF-RE interface opened and closed potential evolutionary paths accessible by the other, making the evolution of each molecule contingent on its partner's history and allowing a molecular complex with novel specificity to evolve.
Collapse
Affiliation(s)
- Dave W Anderson
- Institute of Ecology and Evolution, University of Oregon, Eugene, United States
| | - Alesia N McKeown
- Institute of Ecology and Evolution, University of Oregon, Eugene, United States
| | - Joseph W Thornton
- Department of Ecology and Evolution, University of Chicago, Chicago, United States
| |
Collapse
|
261
|
Gordon KL, Arthur RK, Ruvinsky I. Phylum-Level Conservation of Regulatory Information in Nematodes despite Extensive Non-coding Sequence Divergence. PLoS Genet 2015; 11:e1005268. [PMID: 26020930 PMCID: PMC4447282 DOI: 10.1371/journal.pgen.1005268] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 05/09/2015] [Indexed: 11/28/2022] Open
Abstract
Gene regulatory information guides development and shapes the course of evolution. To test conservation of gene regulation within the phylum Nematoda, we compared the functions of putative cis-regulatory sequences of four sets of orthologs (unc-47, unc-25, mec-3 and elt-2) from distantly-related nematode species. These species, Caenorhabditis elegans, its congeneric C. briggsae, and three parasitic species Meloidogyne hapla, Brugia malayi, and Trichinella spiralis, represent four of the five major clades in the phylum Nematoda. Despite the great phylogenetic distances sampled and the extensive sequence divergence of nematode genomes, all but one of the regulatory elements we tested are able to drive at least a subset of the expected gene expression patterns. We show that functionally conserved cis-regulatory elements have no more extended sequence similarity to their C. elegans orthologs than would be expected by chance, but they do harbor motifs that are important for proper expression of the C. elegans genes. These motifs are too short to be distinguished from the background level of sequence similarity, and while identical in sequence they are not conserved in orientation or position. Functional tests reveal that some of these motifs contribute to proper expression. Our results suggest that conserved regulatory circuitry can persist despite considerable turnover within cis elements. To explore the phylogenetic limits of conservation of cis-regulatory elements, we used transgenesis to test the functions of enhancers of four genes from several species spanning the phylum Nematoda. While we found a striking degree of functional conservation among the examined cis elements, their DNA sequences lacked apparent conservation with the C. elegans orthologs. In fact, sequence similarity between C. elegans and the distantly related nematodes was no greater than would be expected by chance. Short motifs, similar to known regulatory sequences in C. elegans, can be detected in most of the cis elements. When tested, some of these sites appear to mediate regulatory function. However, they seem to have originated through motif turnover, rather than to have been preserved from a common ancestor. Our results suggest that gene regulatory networks are broadly conserved in the phylum Nematoda, but this conservation persists despite substantial reorganization of regulatory elements and could not be detected using naïve comparisons of sequence similarity.
Collapse
Affiliation(s)
- Kacy L. Gordon
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, Illinois, United States of America
- * E-mail: (KLG); (IR)
| | - Robert K. Arthur
- Department of Ecology and Evolution, The University of Chicago, Chicago, Illinois, United States of America
| | - Ilya Ruvinsky
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, Illinois, United States of America
- Department of Ecology and Evolution, The University of Chicago, Chicago, Illinois, United States of America
- * E-mail: (KLG); (IR)
| |
Collapse
|
262
|
Sefton EM, Piekarski N, Hanken J. Dual embryonic origin and patterning of the pharyngeal skeleton in the axolotl (
Ambystoma mexicanum
). Evol Dev 2015; 17:175-84. [DOI: 10.1111/ede.12124] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Elizabeth M. Sefton
- Department of Organismic and Evolutionary Biology and Museum of Comparative ZoologyHarvard University26 Oxford StreetCambridgeMA02138USA
| | - Nadine Piekarski
- Department of Organismic and Evolutionary Biology and Museum of Comparative ZoologyHarvard University26 Oxford StreetCambridgeMA02138USA
| | - James Hanken
- Department of Organismic and Evolutionary Biology and Museum of Comparative ZoologyHarvard University26 Oxford StreetCambridgeMA02138USA
| |
Collapse
|
263
|
Developmental genetic bases behind the independent origin of the tympanic membrane in mammals and diapsids. Nat Commun 2015; 6:6853. [PMID: 25902370 PMCID: PMC4423235 DOI: 10.1038/ncomms7853] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Accepted: 03/05/2015] [Indexed: 01/12/2023] Open
Abstract
The amniote middle ear is a classical example of the evolutionary novelty. Although paleontological evidence supports the view that mammals and diapsids (modern reptiles and birds) independently acquired the middle ear after divergence from their common ancestor, the developmental bases of these transformations remain unknown. Here we show that lower-to-upper jaw transformation induced by inactivation of the Endothelin1-Dlx5/6 cascade involving Goosecoid results in loss of the tympanic membrane in mouse, but causes duplication of the tympanic membrane in chicken. Detailed anatomical analysis indicates that the relative positions of the primary jaw joint and first pharyngeal pouch led to the coupling of tympanic membrane formation with the lower jaw in mammals, but with the upper jaw in diapsids. We propose that differences in connection and release by various pharyngeal skeletal elements resulted in structural diversity, leading to the acquisition of the tympanic membrane in two distinct manners during amniote evolution. The evolution of the amniote middle ear remains unclear. Here, the authors show that inactivation of the Edn1-Dlx5/6 cascade during development results in loss of the tympanic membrane in mouse and duplication in chicken, which suggests independent evolution of the tympanic membrane in different amniotes.
Collapse
|
264
|
Biewer M, Schlesinger F, Hasselmann M. The evolutionary dynamics of major regulators for sexual development among Hymenoptera species. Front Genet 2015; 6:124. [PMID: 25914717 PMCID: PMC4392698 DOI: 10.3389/fgene.2015.00124] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 03/16/2015] [Indexed: 11/28/2022] Open
Abstract
All hymenopteran species, such as bees, wasps and ants, are characterized by the common principle of haplodiploid sex determination in which haploid males arise from unfertilized eggs and females from fertilized eggs. The underlying molecular mechanism has been studied in detail in the western honey bee Apis mellifera, in which the gene complementary sex determiner (csd) acts as primary signal of the sex determining pathway, initiating female development by csd-heterozygotes. Csd arose from gene duplication of the feminizer (fem) gene, a transformer (tra) ortholog, and mediates in conjunction with transformer2 (tra2) sex-specific splicing of fem. Comparative molecular analyses identified fem/tra and its downstream target doublesex (dsx) as conserved unit within the sex determining pathway of holometabolous insects. In this study, we aim to examine evolutionary differences among these key regulators. Our main hypothesis is that sex determining key regulators in Hymenoptera species show signs of coevolution within single phylogenetic lineages. We take advantage of several newly sequenced genomes of bee species to test this hypothesis using bioinformatic approaches. We found evidences that duplications of fem are restricted to certain bee lineages and notable amino acid differences of tra2 between Apis and non-Apis species propose structural changes in Tra2 protein affecting co-regulatory function on target genes. These findings may help to gain deeper insights into the ancestral mode of hymenopteran sex determination and support the common view of the remarkable evolutionary flexibility in this regulatory pathway.
Collapse
Affiliation(s)
- Matthias Biewer
- Population Genetics of Social Insects, Institute of Genetics, University of Cologne Cologne, Germany ; Livestock Population Genomics Group, Institute of Animal Science, University of Hohenheim Stuttgart, Germany
| | - Francisca Schlesinger
- Population Genetics of Social Insects, Institute of Genetics, University of Cologne Cologne, Germany ; Institute of Bee Research Hohen Neuendorf, Germany
| | - Martin Hasselmann
- Population Genetics of Social Insects, Institute of Genetics, University of Cologne Cologne, Germany ; Livestock Population Genomics Group, Institute of Animal Science, University of Hohenheim Stuttgart, Germany
| |
Collapse
|
265
|
Wotton KR, Jiménez-Guri E, Jaeger J. Maternal co-ordinate gene regulation and axis polarity in the scuttle fly Megaselia abdita. PLoS Genet 2015; 11:e1005042. [PMID: 25757102 PMCID: PMC4355411 DOI: 10.1371/journal.pgen.1005042] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 01/30/2015] [Indexed: 02/01/2023] Open
Abstract
Axis specification and segment determination in dipteran insects are an excellent model system for comparative analyses of gene network evolution. Antero-posterior polarity of the embryo is established through systems of maternal morphogen gradients. In Drosophila melanogaster, the anterior system acts through opposing gradients of Bicoid (Bcd) and Caudal (Cad), while the posterior system involves Nanos (Nos) and Hunchback (Hb) protein. These systems act redundantly. Both Bcd and Hb need to be eliminated to cause a complete loss of polarity resulting in mirror-duplicated abdomens, so-called bicaudal phenotypes. In contrast, knock-down of bcd alone is sufficient to induce double abdomens in non-drosophilid cyclorrhaphan dipterans such as the hoverfly Episyrphus balteatus or the scuttle fly Megaselia abdita. We investigate conserved and divergent aspects of axis specification in the cyclorrhaphan lineage through a detailed study of the establishment and regulatory effect of maternal gradients in M. abdita. Our results show that the function of the anterior maternal system is highly conserved in this species, despite the loss of maternal cad expression. In contrast, hb does not activate gap genes in this species. The absence of this activatory role provides a precise genetic explanation for the loss of polarity upon bcd knock-down in M. abdita, and suggests a general scenario in which the posterior maternal system is increasingly replaced by the anterior one during the evolution of the cyclorrhaphan dipteran lineage. The basic head-to-tail polarity of an animal is established very early in development. In dipteran insects (flies, midges, and mosquitoes), polarity is established with the help of so-called morphogen gradients. Morphogens are regulatory proteins that are distributed as a concentration gradient, often involving diffusion from a localised source. This graded distribution then leads to the concentration-dependent activation of different target genes along the embryo’s axis. We examine this process, which differs to a surprising extent between dipteran species, in the scuttle fly Megaselia abdita, and compare our results to the model organism Drosophila melanogaster. In this way, we not only gain insights into how the mechanisms that establish polarity function differently in different species, but also how the system has evolved since these two flies shared a common ancestor. Specifically, we pin down the main difference between Drosophila and Megaselia in the altered function of the maternal Hunchback morphogen gradient, which activates target genes in the former, but not the latter species, where it has been completely replaced by the Bicoid morphogen during evolution.
Collapse
Affiliation(s)
- Karl R. Wotton
- EMBL/CRG Research Unit in Systems Biology, Centre for Genomic Regulation (CRG), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- * E-mail: (KW); (JJ)
| | - Eva Jiménez-Guri
- EMBL/CRG Research Unit in Systems Biology, Centre for Genomic Regulation (CRG), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Johannes Jaeger
- EMBL/CRG Research Unit in Systems Biology, Centre for Genomic Regulation (CRG), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- * E-mail: (KW); (JJ)
| |
Collapse
|
266
|
O’Malley MA, Soyer OS, Siegal ML. A Philosophical Perspective on Evolutionary Systems Biology. BIOLOGICAL THEORY 2015; 10:6-17. [PMID: 26085823 PMCID: PMC4465572 DOI: 10.1007/s13752-015-0202-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Evolutionary systems biology (ESB) is an emerging hybrid approach that integrates methods, models, and data from evolutionary and systems biology. Drawing on themes that arose at a cross-disciplinary meeting on ESB in 2013, we discuss in detail some of the explanatory friction that arises in the interaction between evolutionary and systems biology. These tensions appear because of different modeling approaches, diverse explanatory aims and strategies, and divergent views about the scope of the evolutionary synthesis. We locate these discussions in the context of long-running philosophical deliberations on explanation, modeling, and theoretical synthesis. We show how many of the issues central to ESB's progress can be understood as general philosophical problems. The benefits of addressing these philosophical issues feed back into philosophy too, because ESB provides excellent examples of scientific practice for the development of philosophy of science and philosophy of biology.
Collapse
Affiliation(s)
| | - Orkun S. Soyer
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Mark L. Siegal
- Department of Biology, Center for Genomics and Systems, Biology, New York University, New York, NY, USA
| |
Collapse
|
267
|
Niklas KJ, Bondos SE, Dunker AK, Newman SA. Rethinking gene regulatory networks in light of alternative splicing, intrinsically disordered protein domains, and post-translational modifications. Front Cell Dev Biol 2015; 3:8. [PMID: 25767796 PMCID: PMC4341551 DOI: 10.3389/fcell.2015.00008] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 01/26/2015] [Indexed: 11/16/2022] Open
Abstract
Models for genetic regulation and cell fate specification characteristically assume that gene regulatory networks (GRNs) are essentially deterministic and exhibit multiple stable states specifying alternative, but pre-figured cell fates. Mounting evidence shows, however, that most eukaryotic precursor RNAs undergo alternative splicing (AS) and that the majority of transcription factors contain intrinsically disordered protein (IDP) domains whose functionalities are context dependent as well as subject to post-translational modification (PTM). Consequently, many transcription factors do not have fixed cis-acting regulatory targets, and developmental determination by GRNs alone is untenable. Modeling these phenomena requires a multi-scale approach to explain how GRNs operationally interact with the intra- and intercellular environments. Evidence shows that AS, IDP, and PTM complicate gene expression and act synergistically to facilitate and promote time- and cell-specific protein modifications involved in cell signaling and cell fate specification and thereby disrupt a strict deterministic GRN-phenotype mapping. The combined effects of AS, IDP, and PTM give proteomes physiological plasticity, adaptive responsiveness, and developmental versatility without inefficiently expanding genome size. They also help us understand how protein functionalities can undergo major evolutionary changes by buffering mutational consequences.
Collapse
Affiliation(s)
- Karl J Niklas
- Plant Biology Section, School of Integrative Plant Science, Cornell University Ithaca, NY, USA
| | - Sarah E Bondos
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center College Station, TX, USA
| | - A Keith Dunker
- Center for Computational Biology and Bioinformatics, School of Medicine, Indiana University Indianapolis, IN, USA
| | - Stuart A Newman
- Department of Cell Biology and Anatomy, New York Medical College Valhalla, NY, USA
| |
Collapse
|
268
|
Jaeger J, Laubichler M, Callebaut W. The Comet Cometh: Evolving Developmental Systems. ACTA ACUST UNITED AC 2015; 10:36-49. [PMID: 25798078 PMCID: PMC4357653 DOI: 10.1007/s13752-015-0203-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Accepted: 01/27/2015] [Indexed: 01/08/2023]
Abstract
In a recent opinion piece, Denis Duboule has claimed that the increasing shift towards systems biology is driving evolutionary and developmental biology apart, and that a true reunification of these two disciplines within the framework of evolutionary developmental biology (EvoDevo) may easily take another 100 years. He identifies methodological, epistemological, and social differences as causes for this supposed separation. Our article provides a contrasting view. We argue that Duboule’s prediction is based on a one-sided understanding of systems biology as a science that is only interested in functional, not evolutionary, aspects of biological processes. Instead, we propose a research program for an evolutionary systems biology, which is based on local exploration of the configuration space in evolving developmental systems. We call this approach—which is based on reverse engineering, simulation, and mathematical analysis—the natural history of configuration space. We discuss a number of illustrative examples that demonstrate the past success of local exploration, as opposed to global mapping, in different biological contexts. We argue that this pragmatic mode of inquiry can be extended and applied to the mathematical analysis of the developmental repertoire and evolutionary potential of evolving developmental mechanisms and that evolutionary systems biology so conceived provides a pragmatic epistemological framework for the EvoDevo synthesis.
Collapse
Affiliation(s)
- Johannes Jaeger
- EMBL/CRG Research Unit in Systems Biology, Centre for Genomic Regulation (CRG), Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- Wissenschaftskolleg zu Berlin, Berlin, Germany
| | - Manfred Laubichler
- School of Life Sciences, Arizona State University, Tempe, AZ USA
- Santa Fe Institute, Santa Fe, NM USA
- Marine Biological Laboratory, Woods Hole, MA USA
- Max Planck Institute for the History of Science, Berlin, Germany
- The KLI Institute, Klosterneuburg, Austria
| | | |
Collapse
|
269
|
Sharanya D, Fillis CJ, Kim J, Zitnik EM, Ward KA, Gallagher ME, Chamberlin HM, Gupta BP. Mutations in Caenorhabditis briggsae identify new genes important for limiting the response to EGF signaling during vulval development. Evol Dev 2015; 17:34-48. [PMID: 25627712 DOI: 10.1111/ede.12105] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Studies of vulval development in the nematode C. elegans have identified many genes that are involved in cell division and differentiation processes. Some of these encode components of conserved signal transduction pathways mediated by EGF, Notch, and Wnt. To understand how developmental mechanisms change during evolution, we are doing a comparative analysis of vulva formation in C. briggsae, a species that is closely related to C. elegans. Here, we report 14 mutations in 7 Multivulva (Muv) genes in C. briggsae that inhibit inappropriate division of vulval precursors. We have developed a new efficient and cost-effective gene mapping method to localize Muv mutations to small genetic intervals on chromosomes, thus facilitating cloning and functional studies. We demonstrate the utility of our method by determining molecular identities of three of the Muv genes that include orthologs of Cel-lin-1 (ETS) and Cel-lin-31 (Winged-Helix) of the EGF-Ras pathway and Cel-pry-1 (Axin), of the Wnt pathway. The remaining four genes reside in regions that lack orthologs of known C. elegans Muv genes. Inhibitor studies demonstrate that the Muv phenotype of all four new genes is dependent on the activity of the EGF pathway kinase, MEK. One of these, Cbr-lin(gu167), shows modest increase in the expression of Cbr-lin-3/EGF compared to wild type. These results argue that while Cbr-lin(gu167) may act upstream of Cbr-lin-3/EGF, the other three genes influence the EGF pathway downstream or in parallel to Cbr-lin-3. Overall, our findings demonstrate that the genetic program underlying a conserved developmental process includes both conserved and divergent functional contributions.
Collapse
Affiliation(s)
- Devika Sharanya
- Department of Biology, McMaster University, Hamilton, ON, Canada
| | | | | | | | | | | | | | | |
Collapse
|
270
|
Corse E, Tarkan AS, Emiroğlu Ö, Imsiridou A, Minos G, Lorenzoni M, Vilizzi L, Aboim MA. Covariation of trophic and habitat-related traits in chondrostoms (Cyprinidae): implications for repeated and diversifying evolutionary processes. J Zool (1987) 2015. [DOI: 10.1111/jzo.12212] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- E. Corse
- Aix-Marseille Université; CNRS; IRD; IMBE-UMR 7263; Equipe Evolution Génome Environnement; Centre St-Charles; Université Avignon; Marseille France
| | - A. S. Tarkan
- Faculty of Fisheries; Muğla Sıtkı Koçman University; Muğla Turkey
| | - Ö. Emiroğlu
- Department of Hydrobiology; Faculty of Science; Eskişehir Osmangazi University; Eskişehir Turkey
| | - A. Imsiridou
- Department of Aquaculture & Fisheries Technology; Alexander Technological Educational Institute of Thessaloniki; Nea Moudania Greece
| | - G. Minos
- Department of Aquaculture & Fisheries Technology; Alexander Technological Educational Institute of Thessaloniki; Nea Moudania Greece
| | - M. Lorenzoni
- Dipartimento di Biologia Cellulare e Ambientale; Universitá degli Studi di Perugia; Perugia Italy
| | - L. Vilizzi
- Faculty of Fisheries; Muğla Sıtkı Koçman University; Muğla Turkey
| | - M. A. Aboim
- Centro de Biologia Ambiental and Centro de Oceanografia; Faculdade de Ciencias; Universidade de Lisboa; Lisboa Portugal
| |
Collapse
|
271
|
Schlosser G. Vertebrate cranial placodes as evolutionary innovations--the ancestor's tale. Curr Top Dev Biol 2015; 111:235-300. [PMID: 25662263 DOI: 10.1016/bs.ctdb.2014.11.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Evolutionary innovations often arise by tinkering with preexisting components building new regulatory networks by the rewiring of old parts. The cranial placodes of vertebrates, ectodermal thickenings that give rise to many of the cranial sense organs (ear, nose, lateral line) and ganglia, originated as such novel structures, when vertebrate ancestors elaborated their head in support of a more active and exploratory life style. This review addresses the question of how cranial placodes evolved by tinkering with ectodermal patterning mechanisms and sensory and neurosecretory cell types that have their own evolutionary history. With phylogenetic relationships among the major branches of metazoans now relatively well established, a comparative approach is used to infer, which structures evolved in which lineages and allows us to trace the origin of placodes and their components back from ancestor to ancestor. Some of the core networks of ectodermal patterning and sensory and neurosecretory differentiation were already established in the common ancestor of cnidarians and bilaterians and were greatly elaborated in the bilaterian ancestor (with BMP- and Wnt-dependent patterning of dorsoventral and anteroposterior ectoderm and multiple neurosecretory and sensory cell types). Rostral and caudal protoplacodal domains, giving rise to some neurosecretory and sensory cells, were then established in the ectoderm of the chordate and tunicate-vertebrate ancestor, respectively. However, proper cranial placodes as clusters of proliferating progenitors producing high-density arrays of neurosecretory and sensory cells only evolved and diversified in the ancestors of vertebrates.
Collapse
Affiliation(s)
- Gerhard Schlosser
- School of Natural Sciences & Regenerative Medicine Institute (REMEDI), National University of Ireland, Galway, Ireland.
| |
Collapse
|
272
|
Hirasawa T, Kuratani S. Evolution of the vertebrate skeleton: morphology, embryology, and development. ZOOLOGICAL LETTERS 2015; 1:2. [PMID: 26605047 PMCID: PMC4604106 DOI: 10.1186/s40851-014-0007-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 02/19/2014] [Indexed: 05/08/2023]
Abstract
Two major skeletal systems-the endoskeleton and exoskeleton-are recognized in vertebrate evolution. Here, we propose that these two systems are distinguished primarily by their relative positions, not by differences in embryonic histogenesis or cell lineage of origin. Comparative embryologic analyses have shown that both types of skeleton have changed their mode of histogenesis during evolution. Although exoskeletons were thought to arise exclusively from the neural crest, recent experiments in teleosts have shown that exoskeletons in the trunk are mesodermal in origin. The enameloid and dentine-coated postcranial exoskeleton seen in many vertebrates does not appear to represent an ancestral condition, as previously hypothesized, but rather a derived condition, in which the enameloid and dentine tissues became accreted to bones. Recent data from placoderm fossils are compatible with this scenario. In contrast, the skull contains neural crest-derived bones in its rostral part. Recent developmental studies suggest that the boundary between neural crest- and mesoderm-derived bones may not be consistent throughout evolution. Rather, the relative positions of bony elements may be conserved, and homologies of bony elements have been retained, with opportunistic changes in the mechanisms and cell lineages of development.
Collapse
Affiliation(s)
- Tatsuya Hirasawa
- Evolutionary Morphology Laboratory, RIKEN, 2-2-3 Minatojima-minami, Chuo-ku, Kobe, Hyogo 650-0047 Japan
| | - Shigeru Kuratani
- Evolutionary Morphology Laboratory, RIKEN, 2-2-3 Minatojima-minami, Chuo-ku, Kobe, Hyogo 650-0047 Japan
| |
Collapse
|
273
|
Wotton KR, Jiménez-Guri E, Crombach A, Janssens H, Alcaine-Colet A, Lemke S, Schmidt-Ott U, Jaeger J. Quantitative system drift compensates for altered maternal inputs to the gap gene network of the scuttle fly Megaselia abdita. eLife 2015; 4:e04785. [PMID: 25560971 PMCID: PMC4337606 DOI: 10.7554/elife.04785] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 01/02/2015] [Indexed: 12/20/2022] Open
Abstract
The segmentation gene network in insects can produce equivalent phenotypic outputs despite differences in upstream regulatory inputs between species. We investigate the mechanistic basis of this phenomenon through a systems-level analysis of the gap gene network in the scuttle fly Megaselia abdita (Phoridae). It combines quantification of gene expression at high spatio-temporal resolution with systematic knock-downs by RNA interference (RNAi). Initiation and dynamics of gap gene expression differ markedly between M. abdita and Drosophila melanogaster, while the output of the system converges to equivalent patterns at the end of the blastoderm stage. Although the qualitative structure of the gap gene network is conserved, there are differences in the strength of regulatory interactions between species. We term such network rewiring 'quantitative system drift'. It provides a mechanistic explanation for the developmental hourglass model in the dipteran lineage. Quantitative system drift is likely to be a widespread mechanism for developmental evolution.
Collapse
Affiliation(s)
- Karl R Wotton
- European Molecular Biology Laboratory, CRG Systems Biology Research Unit, Centre for Genomic Regulation, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Eva Jiménez-Guri
- European Molecular Biology Laboratory, CRG Systems Biology Research Unit, Centre for Genomic Regulation, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Anton Crombach
- European Molecular Biology Laboratory, CRG Systems Biology Research Unit, Centre for Genomic Regulation, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Hilde Janssens
- European Molecular Biology Laboratory, CRG Systems Biology Research Unit, Centre for Genomic Regulation, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Anna Alcaine-Colet
- European Molecular Biology Laboratory, CRG Systems Biology Research Unit, Centre for Genomic Regulation, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- Universitat de Barcelona, Barcelona, Spain
| | - Steffen Lemke
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, United States
| | - Urs Schmidt-Ott
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, United States
| | - Johannes Jaeger
- European Molecular Biology Laboratory, CRG Systems Biology Research Unit, Centre for Genomic Regulation, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
274
|
Evolutionary meandering of intermolecular interactions along the drift barrier. Proc Natl Acad Sci U S A 2014; 112:E30-8. [PMID: 25535374 DOI: 10.1073/pnas.1421641112] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Many cellular functions depend on highly specific intermolecular interactions, for example transcription factors and their DNA binding sites, microRNAs and their RNA binding sites, the interfaces between heterodimeric protein molecules, the stems in RNA molecules, and kinases and their response regulators in signal-transduction systems. Despite the need for complementarity between interacting partners, such pairwise systems seem to be capable of high levels of evolutionary divergence, even when subject to strong selection. Such behavior is a consequence of the diminishing advantages of increasing binding affinity between partners, the multiplicity of evolutionary pathways between selectively equivalent alternatives, and the stochastic nature of evolutionary processes. Because mutation pressure toward reduced affinity conflicts with selective pressure for greater interaction, situations can arise in which the expected distribution of the degree of matching between interacting partners is bimodal, even in the face of constant selection. Although biomolecules with larger numbers of interacting partners are subject to increased levels of evolutionary conservation, their more numerous partners need not converge on a single sequence motif or be increasingly constrained in more complex systems. These results suggest that most phylogenetic differences in the sequences of binding interfaces are not the result of adaptive fine tuning but a simple consequence of random genetic drift.
Collapse
|
275
|
Beadell AV, Haag ES. Evolutionary Dynamics of GLD-1-mRNA complexes in Caenorhabditis nematodes. Genome Biol Evol 2014; 7:314-35. [PMID: 25502909 PMCID: PMC4316625 DOI: 10.1093/gbe/evu272] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2014] [Indexed: 12/17/2022] Open
Abstract
Given the large number of RNA-binding proteins and regulatory RNAs within genomes, posttranscriptional regulation may be an underappreciated aspect of cis-regulatory evolution. Here, we focus on nematode germ cells, which are known to rely heavily upon translational control to regulate meiosis and gametogenesis. GLD-1 belongs to the STAR-domain family of RNA-binding proteins, conserved throughout eukaryotes, and functions in Caenorhabditis elegans as a germline-specific translational repressor. A phylogenetic analysis across opisthokonts shows that GLD-1 is most closely related to Drosophila How and deuterostome Quaking, both implicated in alternative splicing. We identify messenger RNAs associated with C. briggsae GLD-1 on a genome-wide scale and provide evidence that many participate in aspects of germline development. By comparing our results with published C. elegans GLD-1 targets, we detect nearly 100 that are conserved between the two species. We also detected several hundred Cbr-GLD-1 targets whose homologs have not been reported to be associated with C. elegans GLD-1 in either of two independent studies. Low expression in C. elegans may explain the failure to detect most of them, but a highly expressed subset are strong candidates for Cbr-GLD-1-specific targets. We examine GLD-1-binding motifs among targets conserved in C. elegans and C. briggsae and find that most, but not all, display evidence of shared ancestral binding sites. Our work illustrates both the conservative and the dynamic character of evolution at the posttranslational level of gene regulation, even between congeners.
Collapse
Affiliation(s)
- Alana V Beadell
- Program in Behavior, Evolution, Ecology, and Systematics, University of Maryland, College Park Present address: Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL
| | - Eric S Haag
- Program in Behavior, Evolution, Ecology, and Systematics, University of Maryland, College Park Department of Biology, University of Maryland, College Park
| |
Collapse
|
276
|
Evolutionary innovation and conservation in the embryonic derivation of the vertebrate skull. Nat Commun 2014; 5:5661. [PMID: 25434971 PMCID: PMC4251486 DOI: 10.1038/ncomms6661] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Accepted: 10/24/2014] [Indexed: 01/07/2023] Open
Abstract
Development of the vertebrate skull has been studied intensively for more than 150 years, yet many essential features remain unresolved. One such feature is the extent to which embryonic derivation of individual bones is evolutionarily conserved or labile. We perform long-term fate mapping using GFP-transgenic axolotl and Xenopus laevis to document the contribution of individual cranial neural crest streams to the osteocranium in these amphibians. Here we show that the axolotl pattern is strikingly similar to that in amniotes; it likely represents the ancestral condition for tetrapods. Unexpectedly, the pattern in Xenopus is much different; it may constitute a unique condition that evolved after anurans diverged from other amphibians. Such changes reveal an unappreciated relation between life history evolution and cranial development and exemplify ‘developmental system drift’, in which interspecific divergence in developmental processes that underlie homologous characters occurs with little or no concomitant change in the adult phenotype. It is unclear whether the embryonic origin of skull bones is evolutionarily conserved. Here, the authors show that the pattern of cranial development of the Mexican axolotl is similar to that reported for other vertebrates, but the pattern in the African clawed frog, another amphibian, is unique.
Collapse
|
277
|
Abstract
Tracking the evolution of thermostability in resurrected ancestors of a heat-tolerant extremophile protein and its less heat tolerant Escherichia coli homologue shows how thermostability has probably explored different mechanisms of protein stabilization over evolutionary time. Proteins from thermophiles are generally more thermostable than their mesophilic homologs, but little is known about the evolutionary process driving these differences. Here we attempt to understand how the diverse thermostabilities of bacterial ribonuclease H1 (RNH) proteins evolved. RNH proteins from Thermus thermophilus (ttRNH) and Escherichia coli (ecRNH) share similar structures but differ in melting temperature (Tm) by 20°C. ttRNH's greater stability is caused in part by the presence of residual structure in the unfolded state, which results in a low heat capacity of unfolding (ΔCp) relative to ecRNH. We first characterized RNH proteins from a variety of extant bacteria and found that Tm correlates with the species' growth temperatures, consistent with environmental selection for stability. We then used ancestral sequence reconstruction to statistically infer evolutionary intermediates along lineages leading to ecRNH and ttRNH from their common ancestor, which existed approximately 3 billion years ago. Finally, we synthesized and experimentally characterized these intermediates. The shared ancestor has a melting temperature between those of ttRNH and ecRNH; the Tms of intermediate ancestors along the ttRNH lineage increased gradually over time, while the ecRNH lineage exhibited an abrupt drop in Tm followed by relatively little change. To determine whether the underlying mechanisms for thermostability correlate with the changes in Tm, we measured the thermodynamic basis for stabilization—ΔCp and other thermodynamic parameters—for each of the ancestors. We observed that, while the Tm changes smoothly, the mechanistic basis for stability fluctuates over evolutionary time. Thus, even while overall stability appears to be strongly driven by selection, the proteins explored a wide variety of mechanisms of stabilization, a phenomenon we call “thermodynamic system drift.” This suggests that even on lineages with strong selection to increase stability, proteins have wide latitude to explore sequence space, generating biophysical diversity and potentially opening new evolutionary pathways. The biophysical properties of proteins must adjust to accommodate environmental temperatures because of the narrow range over which any given protein sequence can remain folded and functional. We compared the evolution of homologous bacterial enzymes (ribonucleases H1) from two lineages: one from Escherichia coli, which live at moderate temperatures, the other from Thermus thermophilus, which live at extremely high temperatures. Our aim was to investigate how these structurally homologous proteins can have such different thermostabilities, unfolding at temperatures that are 20°C apart. We used bioinformatics to reconstruct the sequences of ancestral proteins along each lineage, synthesized the proteins in the lab, and experimentally traced the evolution of ribonuclease H1 stability. While thermostability appears to have been strongly shaped by selection, the biophysical mechanisms used to tune protein stability appear to have varied throughout evolutionary history; this suggests that proteins have wide latitude to explore different mechanisms of stabilization, generating biophysical diversity and opening up new evolutionary pathways.
Collapse
|
278
|
Siegal ML, Leu JY. On the Nature and Evolutionary Impact of Phenotypic Robustness Mechanisms. ANNUAL REVIEW OF ECOLOGY, EVOLUTION, AND SYSTEMATICS 2014; 45:496-517. [PMID: 26034410 PMCID: PMC4448758 DOI: 10.1146/annurev-ecolsys-120213-091705] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Biologists have long observed that physiological and developmental processes are insensitive, or robust, to many genetic and environmental perturbations. A complete understanding of the evolutionary causes and consequences of this robustness is lacking. Recent progress has been made in uncovering the regulatory mechanisms that underlie environmental robustness in particular. Less is known about robustness to the effects of mutations, and indeed the evolution of mutational robustness remains a controversial topic. The controversy has spread to related topics, in particular the evolutionary relevance of cryptic genetic variation. This review aims to synthesize current understanding of robustness mechanisms and to cut through the controversy by shedding light on what is and is not known about mutational robustness. Some studies have confused mutational robustness with non-additive interactions between mutations (epistasis). We conclude that a profitable way forward is to focus investigations (and rhetoric) less on mutational robustness and more on epistasis.
Collapse
Affiliation(s)
- Mark L Siegal
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York 10003;
| | - Jun-Yi Leu
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei, Taiwan 11529;
| |
Collapse
|
279
|
Hybrid incompatibility despite pleiotropic constraint in a sequence-based bioenergetic model of transcription factor binding. Genetics 2014; 198:1645-54. [PMID: 25313130 DOI: 10.1534/genetics.114.171397] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Hybrid incompatibility can result from gene misregulation produced by divergence in trans-acting regulatory factors and their cis-regulatory targets. However, change in trans-acting factors may be constrained by pleiotropy, which would in turn limit the evolution of incompatibility. We employed a mechanistically explicit bioenergetic model of gene expression wherein parameter combinations (number of transcription factor molecules, energetic properties of binding to the regulatory site, and genomic background size) determine the shape of the genotype-phenotype (G-P) map, and interacting allelic variants of mutable cis and trans sites determine the phenotype along that map. Misregulation occurs when the phenotype differs from its optimal value. We simulated a pleiotropic regulatory pathway involving a positively selected and a conserved trait regulated by a shared transcription factor (TF), with two populations evolving in parallel. Pleiotropic constraints shifted evolution in the positively selected trait to its cis-regulatory locus. We nevertheless found that the TF genotypes often evolved, accompanied by compensatory evolution in the conserved trait, and both traits contributed to hybrid misregulation. Compensatory evolution resulted in "developmental system drift," whereby the regulatory basis of the conserved phenotype changed although the phenotype itself did not. Pleiotropic constraints became stronger and in some cases prohibitive when the bioenergetic properties of the molecular interaction produced a G-P map that was too steep. Likewise, compensatory evolution slowed and hybrid misregulation was not evident when the G-P map was too shallow. A broad pleiotropic "sweet spot" nevertheless existed where evolutionary constraints were moderate to weak, permitting substantial hybrid misregulation in both traits. None of these pleiotropic constraints manifested when the TF contained nonrecombining domains independently regulating the respective traits.
Collapse
|
280
|
Hofmann HA, Beery AK, Blumstein DT, Couzin ID, Earley RL, Hayes LD, Hurd PL, Lacey EA, Phelps SM, Solomon NG, Taborsky M, Young LJ, Rubenstein DR. An evolutionary framework for studying mechanisms of social behavior. Trends Ecol Evol 2014; 29:581-9. [DOI: 10.1016/j.tree.2014.07.008] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Revised: 07/13/2014] [Accepted: 07/14/2014] [Indexed: 12/31/2022]
|
281
|
Stolfi A, Lowe EK, Racioppi C, Ristoratore F, Brown CT, Swalla BJ, Christiaen L. Divergent mechanisms regulate conserved cardiopharyngeal development and gene expression in distantly related ascidians. eLife 2014; 3:e03728. [PMID: 25209999 PMCID: PMC4356046 DOI: 10.7554/elife.03728] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 09/05/2014] [Indexed: 12/13/2022] Open
Abstract
Ascidians present a striking dichotomy between conserved phenotypes and divergent genomes: embryonic cell lineages and gene expression patterns are conserved between distantly related species. Much research has focused on Ciona or Halocynthia spp. but development in other ascidians remains poorly characterized. In this study, we surveyed the multipotent myogenic B7.5 lineage in Molgula spp. Comparisons to the homologous lineage in Ciona revealed identical cell division and fate specification events that result in segregation of larval, cardiac, and pharyngeal muscle progenitors. Moreover, the expression patterns of key regulators are conserved, but cross-species transgenic assays uncovered incompatibility, or ‘unintelligibility’, of orthologous cis-regulatory sequences between Molgula and Ciona. These sequences drive identical expression patterns that are not recapitulated in cross-species assays. We show that this unintelligibility is likely due to changes in both cis- and trans-acting elements, hinting at widespread and frequent turnover of regulatory mechanisms underlying otherwise conserved aspects of ascidian embryogenesis. DOI:http://dx.doi.org/10.7554/eLife.03728.001 When two species have features that look similar, this may be because the features arise by the same processes during development. Other features may look similar yet develop by different mechanisms. ‘Developmental system drift’ refers to the process where a physical feature remains unaltered during evolution, but the underlying pathway that controls its development is changed. However, to date, there have been only a few experimental studies that support this idea. Ascidians—also commonly known as sea squirts—are vase-like marine creatures, which start off as tadpole-like larvae that swim around until they find a place to settle down and attach themselves. Once attached, the sea squirts lose the ability to swim and start feeding, typically by filtering material out of the seawater. Sea squirts and their close relatives are the invertebrates (animals without backbones) that are most closely related to all vertebrates (animals with backbones), including humans. Furthermore, although different species of sea squirt have almost identical embryos, their genomes are very different. Stolfi et al. have now studied whether developmental system drift may have occurred during the evolution of ascidians, by analyzing different species of sea squirt named Molgula and Ciona. Stolfi et al. compared the genomes of Molgula and Ciona and studied the expression of genes in the cells that give rise to the heart and the muscles of the head. As an embryo develops, specific genes are switched on or off, and these patterns of gene activation were broadly identical in the two species of sea squirt examined. Enhancers are sequences of DNA that control when and how a gene is switched on. Given the similarities between the development of heart and head muscle cells in the different sea squirts, Stolfi et al. looked to see if the mechanisms of gene expression, and therefore the enhancers, were also conserved. Unexpectedly, this was not the case. When enhancers from Molgula were introduced into Ciona (and vice versa), these sequences were unable to switch on gene expression—thus enhancers from one sea squirt species could not function in the other. Stolfi et al. conclude that the developmental systems may have drifted considerably during evolution of the sea squirts, in spite of their nearly identical embryos. This reinforces the view that different paths can lead to the formation of similar physical features. DOI:http://dx.doi.org/10.7554/eLife.03728.002
Collapse
Affiliation(s)
- Alberto Stolfi
- Center for Developmental Genetics, Department of Biology, New York University, New York, United States
| | - Elijah K Lowe
- Department of Computer Science and Engineering, Michigan State University, East Lansing, United States
| | - Claudia Racioppi
- Cellular and Developmental Biology Laboratory, Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - Filomena Ristoratore
- Cellular and Developmental Biology Laboratory, Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - C Titus Brown
- Department of Computer Science and Engineering, Michigan State University, East Lansing, United States
| | - Billie J Swalla
- Department of Biology, University of Washington, Seattle, United States
| | - Lionel Christiaen
- Center for Developmental Genetics, Department of Biology, New York University, New York, United States
| |
Collapse
|
282
|
Hybrid incompatibility arises in a sequence-based bioenergetic model of transcription factor binding. Genetics 2014; 198:1155-66. [PMID: 25173845 DOI: 10.1534/genetics.114.168112] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Postzygotic isolation between incipient species results from the accumulation of incompatibilities that arise as a consequence of genetic divergence. When phenotypes are determined by regulatory interactions, hybrid incompatibility can evolve even as a consequence of parallel adaptation in parental populations because interacting genes can produce the same phenotype through incompatible allelic combinations. We explore the evolutionary conditions that promote and constrain hybrid incompatibility in regulatory networks using a bioenergetic model (combining thermodynamics and kinetics) of transcriptional regulation, considering the bioenergetic basis of molecular interactions between transcription factors (TFs) and their binding sites. The bioenergetic parameters consider the free energy of formation of the bond between the TF and its binding site and the availability of TFs in the intracellular environment. Together these determine fractional occupancy of the TF on the promoter site, the degree of subsequent gene expression and in diploids, and the degree of dominance among allelic interactions. This results in a sigmoid genotype-phenotype map and fitness landscape, with the details of the shape determining the degree of bioenergetic evolutionary constraint on hybrid incompatibility. Using individual-based simulations, we subjected two allopatric populations to parallel directional or stabilizing selection. Misregulation of hybrid gene expression occurred under either type of selection, although it evolved faster under directional selection. Under directional selection, the extent of hybrid incompatibility increased with the slope of the genotype-phenotype map near the derived parental expression level. Under stabilizing selection, hybrid incompatibility arose from compensatory mutations and was greater when the bioenergetic properties of the interaction caused the space of nearly neutral genotypes around the stable expression level to be wide. F2's showed higher hybrid incompatibility than F1's to the extent that the bioenergetic properties favored dominant regulatory interactions. The present model is a mechanistically explicit case of the Bateson-Dobzhansky-Muller model, connecting environmental selective pressure to hybrid incompatibility through the molecular mechanism of regulatory divergence. The bioenergetic parameters that determine expression represent measurable properties of transcriptional regulation, providing a predictive framework for empirical studies of how phenotypic evolution results in epistatic incompatibility at the molecular level in hybrids.
Collapse
|
283
|
|
284
|
Barrière A, Ruvinsky I. Pervasive divergence of transcriptional gene regulation in Caenorhabditis nematodes. PLoS Genet 2014; 10:e1004435. [PMID: 24968346 PMCID: PMC4072541 DOI: 10.1371/journal.pgen.1004435] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 04/28/2014] [Indexed: 12/18/2022] Open
Abstract
Because there is considerable variation in gene expression even between closely related species, it is clear that gene regulatory mechanisms evolve relatively rapidly. Because primary sequence conservation is an unreliable proxy for functional conservation of cis-regulatory elements, their assessment must be carried out in vivo. We conducted a survey of cis-regulatory conservation between C. elegans and closely related species C. briggsae, C. remanei, C. brenneri, and C. japonica. We tested enhancers of eight genes from these species by introducing them into C. elegans and analyzing the expression patterns they drove. Our results support several notable conclusions. Most exogenous cis elements direct expression in the same cells as their C. elegans orthologs, confirming gross conservation of regulatory mechanisms. However, the majority of exogenous elements, when placed in C. elegans, also directed expression in cells outside endogenous patterns, suggesting functional divergence. Recurrent ectopic expression of different promoters in the same C. elegans cells may reflect biases in the directions in which expression patterns can evolve due to shared regulatory logic of coexpressed genes. The fact that, despite differences between individual genes, several patterns repeatedly emerged from our survey, encourages us to think that general rules governing regulatory evolution may exist and be discoverable.
Collapse
Affiliation(s)
- Antoine Barrière
- Department of Ecology and Evolution and Institute for Genomics and Systems Biology, The University of Chicago, Chicago, Illinois, United States of America
- * E-mail: (AB); (IR)
| | - Ilya Ruvinsky
- Department of Ecology and Evolution and Institute for Genomics and Systems Biology, The University of Chicago, Chicago, Illinois, United States of America
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, Illinois, United States of America
- * E-mail: (AB); (IR)
| |
Collapse
|
285
|
Gibbs DC, Donohue K. Gene duplication and the environmental regulation of physiology and development. Ecol Evol 2014; 4:2202-16. [PMID: 25360261 PMCID: PMC4201434 DOI: 10.1002/ece3.1099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 04/07/2014] [Indexed: 11/08/2022] Open
Abstract
When different life stages have different environmental tolerances, development needs to be regulated so that each life stage experiences environmental conditions that are suitable for it, if fitness is to be maintained. Restricting the timing of developmental transitions to occur under specific combinations of environmental conditions is therefore adaptively important. However, impeding development can itself incur demographic and fitness costs. How do organisms regulate development and physiological processes so that they occur under the broadest range of permissive conditions? Gene duplication offers one solution: Multiple genes contribute to the same downstream process, but do so under distinct combinations of environmental conditions. We present a simple model to examine how environmental sensitivities of genes and how gene duplication influence the distribution of environmental conditions under which an end process will proceed. The model shows that the duplication of genes that retain their downstream function but diverge in environmental sensitivities can allow an end process to proceed under more than one distinct combination of environmental conditions. The outcomes depend on how upstream genes regulate downstream components, which genes in the pathway have diversified in their sensitivities, and the structure of the pathway.
Collapse
Affiliation(s)
- David C Gibbs
- Department of Biology, Duke University Box 90338, Durham, North Carolina, 27708
| | - Kathleen Donohue
- Department of Biology, Duke University Box 90338, Durham, North Carolina, 27708
| |
Collapse
|
286
|
Schiffer PH, Nsah NA, Grotehusmann H, Kroiher M, Loer C, Schierenberg E. Developmental variations among Panagrolaimid nematodes indicate developmental system drift within a small taxonomic unit. Dev Genes Evol 2014; 224:183-8. [PMID: 24849338 DOI: 10.1007/s00427-014-0471-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 04/29/2014] [Indexed: 01/26/2023]
Abstract
Comparative studies of nematode embryogenesis among different clades revealed considerable variations. However, to what extent developmental differences exist between closely related species has mostly remained nebulous. Here, we explore the correlation between phylogenetic neighborhood and developmental variation in a restricted and morphologically particularly uniform taxonomic group (Panagrolaimidae) to determine to what extent (1) morphological and developmental characters go along with molecular data and thus can serve as diagnostic tools for the definition of kinship and (2) developmental system drift (DSD; modifications of developmental patterns without corresponding morphological changes) can be found within a small taxonomic unit. Our molecular approaches firmly support subdivision of Panagrolaimid nematodes into two monophyletic groups. These can be discriminated by distinct peculiarities in early embryonic cell lineages and a mirror-image expression pattern of the gene skn-1. This suggests major changes in the logic of cell specification and the action of DSD in the studied representatives of the two neighboring nematode taxa.
Collapse
Affiliation(s)
- Philipp H Schiffer
- Zoological Institute, Cologne Biocenter, University of Cologne, Cologne, Germany,
| | | | | | | | | | | |
Collapse
|
287
|
Turley K, Frost SR. The ontogeny of talo-crural appositional articular morphology among catarrhine taxa: Adult shape reflects substrate use. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2014; 154:447-58. [DOI: 10.1002/ajpa.22528] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 04/29/2014] [Indexed: 12/16/2022]
Affiliation(s)
- Kevin Turley
- Department of Anthropology; University of Oregon; Eugene OR 97403-1218
| | - Stephen R. Frost
- Department of Anthropology; University of Oregon; Eugene OR 97403-1218
| |
Collapse
|
288
|
Naturally occurring deletions of hunchback binding sites in the even-skipped stripe 3+7 enhancer. PLoS One 2014; 9:e91924. [PMID: 24786295 PMCID: PMC4006794 DOI: 10.1371/journal.pone.0091924] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 02/18/2014] [Indexed: 11/23/2022] Open
Abstract
Changes in regulatory DNA contribute to phenotypic differences within and between taxa. Comparative studies show that many transcription factor binding sites (TFBS) are conserved between species whereas functional studies reveal that some mutations segregating within species alter TFBS function. Consistently, in this analysis of 13 regulatory elements in Drosophila melanogaster populations, single base and insertion/deletion polymorphism are rare in characterized regulatory elements. Experimentally defined TFBS are nearly devoid of segregating mutations and, as has been shown before, are quite conserved. For instance 8 of 11 Hunchback binding sites in the stripe 3+7 enhancer of even-skipped are conserved between D. melanogaster and Drosophila virilis. Oddly, we found a 72 bp deletion that removes one of these binding sites (Hb8), segregating within D. melanogaster. Furthermore, a 45 bp deletion polymorphism in the spacer between the stripe 3+7 and stripe 2 enhancers, removes another predicted Hunchback site. These two deletions are separated by ∼250 bp, sit on distinct haplotypes, and segregate at appreciable frequency. The Hb8Δ is at 5 to 35% frequency in the new world, but also shows cosmopolitan distribution. There is depletion of sequence variation on the Hb8Δ-carrying haplotype. Quantitative genetic tests indicate that Hb8Δ affects developmental time, but not viability of offspring. The Eve expression pattern differs between inbred lines, but the stripe 3 and 7 boundaries seem unaffected by Hb8Δ. The data reveal segregating variation in regulatory elements, which may reflect evolutionary turnover of characterized TFBS due to drift or co-evolution.
Collapse
|
289
|
MicroRNA buffering and altered variance of gene expression in response to Salmonella infection. PLoS One 2014; 9:e94352. [PMID: 24718561 PMCID: PMC3981782 DOI: 10.1371/journal.pone.0094352] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 03/13/2014] [Indexed: 11/20/2022] Open
Abstract
One potential role of miRNAs is to buffer variation in gene expression, although conflicting results have been reported. To investigate the buffering role of miRNAs in response to Salmonella infection in pigs, we sequenced miRNA and mRNA in whole blood from 15 pig samples before and after Salmonella challenge. By analyzing inter-individual variation in gene expression patterns, we found that for moderately and lowly expressed genes, putative miRNA targets showed significantly lower expression variance compared with non-miRNA-targets. Expression variance between highly expressed miRNA targets and non-miRNA-targets was not significantly different. Further, miRNA targets demonstrated significantly reduced variance after challenge whereas non-miRNA-targets did not. RNA binding proteins (RBPs) are significantly enriched among the miRNA targets with dramatically reduced variance of expression after Salmonella challenge. Moreover, we found evidence that targets of young (less-conserved) miRNAs showed lower expression variance compared with targets of old (evolutionarily conserved) miRNAs. These findings point to the importance of a buffering effect of miRNAs for relatively lowly expressed genes, and suggest that the reduced expression variation of RBPs may play an important role in response to Salmonella infection.
Collapse
|
290
|
Abstract
Cryptic genetic variation (CGV) is invisible under normal conditions, but it can fuel evolution when circumstances change. In theory, CGV can represent a massive cache of adaptive potential or a pool of deleterious alleles that are in need of constant suppression. CGV emerges from both neutral and selective processes, and it may inform about how human populations respond to change. CGV facilitates adaptation in experimental settings, but does it have an important role in the real world? Here, we review the empirical support for widespread CGV in natural populations, including its potential role in emerging human diseases and the growing evidence of its contribution to evolution.
Collapse
Affiliation(s)
- Annalise B Paaby
- Department of Biology, and Center for Genomics and Systems Biology, New York University, 12 Waverly Place, New York 10003, USA
| | - Matthew V Rockman
- Department of Biology, and Center for Genomics and Systems Biology, New York University, 12 Waverly Place, New York 10003, USA
| |
Collapse
|
291
|
Swain Lenz D, Riles L, Fay JC. Heterochronic meiotic misexpression in an interspecific yeast hybrid. Mol Biol Evol 2014; 31:1333-42. [PMID: 24608322 DOI: 10.1093/molbev/msu098] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Regulatory changes rapidly accumulate between species, and interspecific hybrids often misexpress genes. Hybrid misexpression, expression levels outside the range of both parental species, can result from cis- and trans-acting regulatory changes that interact abnormally in hybrids. Thus, misexpressed genes may contribute to hybrid sterility. However, in the context of a whole organism, misexpression may not result directly from cis-trans interactions but rather indirectly from differences between hybrid and parental abundance of cell types. Here we eliminate the confounding effects of cell types by examining gene expression in a sterile interspecific yeast hybrid during meiosis. We investigated gene expression of the yeasts Saccharomyces cerevisiae, S. paradoxus, and their hybrid at multiple meiotic stages. Although the hybrid and parents exhibit similar changes in expression levels across meiosis, the hybrid meiotic program occurs earlier than either parent. The timing change produces a heterochronic pattern of misexpression during midmeiosis. Coincident with the timing of misexpression, we find a transition from predominantly trans-acting to cis-acting expression divergence and an increase in the number of opposing cis-trans changes. However, we find no direct relationship between opposing cis-trans changes and misexpression. Contrary to the notion that cis-trans interactions cause misexpression, a heterochronic shift in the normal meiotic gene expression program produces patterns of misexpression in an yeast hybrid. Our results imply that temporal dynamics of single cell types is important to understanding hybrid misexpression and its relationship to cis-trans interactions.
Collapse
Affiliation(s)
| | - Linda Riles
- Department of Genetics, Washington University
| | - Justin C Fay
- Department of Genetics, Washington UniversityCenter for Genome Sciences and Systems Biology, Washington University
| |
Collapse
|
292
|
Coolon JD, McManus CJ, Stevenson KR, Graveley BR, Wittkopp PJ. Tempo and mode of regulatory evolution in Drosophila. Genome Res 2014; 24:797-808. [PMID: 24567308 PMCID: PMC4009609 DOI: 10.1101/gr.163014.113] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Genetic changes affecting gene expression contribute to phenotypic divergence; thus, understanding how regulatory networks controlling gene expression change over time is critical for understanding evolution. Prior studies of expression differences within and between species have identified properties of regulatory divergence, but technical and biological differences among these studies make it difficult to assess the generality of these properties or to understand how regulatory changes accumulate with divergence time. Here, we address these issues by comparing gene expression among strains and species of Drosophila with a range of divergence times and use F1 hybrids to examine inheritance patterns and disentangle cis- and trans-regulatory changes. We find that the fixation of compensatory changes has caused the regulation of gene expression to diverge more rapidly than gene expression itself. Specifically, we observed that the proportion of genes with evidence of cis-regulatory divergence has increased more rapidly with divergence time than the proportion of genes with evidence of expression differences. Surprisingly, the amount of expression divergence explained by cis-regulatory changes did not increase steadily with divergence time, as was previously proposed. Rather, one species (Drosophila sechellia) showed an excess of cis-regulatory divergence that we argue most likely resulted from positive selection in this lineage. Taken together, this work reveals not only the rate at which gene expression evolves, but also the molecular and evolutionary mechanisms responsible for this evolution.
Collapse
Affiliation(s)
- Joseph D Coolon
- University of Michigan, Department of Ecology and Evolutionary Biology, Ann Arbor, Michigan 48109, USA
| | | | | | | | | |
Collapse
|
293
|
Affiliation(s)
- Eric S. Haag
- Department of Biology, University of Maryland, College Park, Maryland, United States of America
- * E-mail:
| |
Collapse
|
294
|
Verster AJ, Ramani AK, McKay SJ, Fraser AG. Comparative RNAi screens in C. elegans and C. briggsae reveal the impact of developmental system drift on gene function. PLoS Genet 2014; 10:e1004077. [PMID: 24516395 PMCID: PMC3916228 DOI: 10.1371/journal.pgen.1004077] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 11/18/2013] [Indexed: 01/27/2023] Open
Abstract
Although two related species may have extremely similar phenotypes, the genetic networks underpinning this conserved biology may have diverged substantially since they last shared a common ancestor. This is termed Developmental System Drift (DSD) and reflects the plasticity of genetic networks. One consequence of DSD is that some orthologous genes will have evolved different in vivo functions in two such phenotypically similar, related species and will therefore have different loss of function phenotypes. Here we report an RNAi screen in C. elegans and C. briggsae to identify such cases. We screened 1333 genes in both species and identified 91 orthologues that have different RNAi phenotypes. Intriguingly, we find that recently evolved genes of unknown function have the fastest evolving in vivo functions and, in several cases, we identify the molecular events driving these changes. We thus find that DSD has a major impact on the evolution of gene function and we anticipate that the C. briggsae RNAi library reported here will drive future studies on comparative functional genomics screens in these nematodes.
Collapse
Affiliation(s)
- Adrian J. Verster
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Arun K. Ramani
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Sheldon J. McKay
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Andrew G. Fraser
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
295
|
Patthey C, Schlosser G, Shimeld SM. The evolutionary history of vertebrate cranial placodes--I: cell type evolution. Dev Biol 2014; 389:82-97. [PMID: 24495912 DOI: 10.1016/j.ydbio.2014.01.017] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 01/21/2014] [Accepted: 01/24/2014] [Indexed: 10/25/2022]
Abstract
Vertebrate cranial placodes are crucial contributors to the vertebrate cranial sensory apparatus. Their evolutionary origin has attracted much attention from evolutionary and developmental biologists, yielding speculation and hypotheses concerning their putative homologues in other lineages and the developmental and genetic innovations that might have underlain their origin and diversification. In this article we first briefly review our current understanding of placode development and the cell types and structures they form. We next summarise previous hypotheses of placode evolution, discussing their strengths and caveats, before considering the evolutionary history of the various cell types that develop from placodes. In an accompanying review, we also further consider the evolution of ectodermal patterning. Drawing on data from vertebrates, tunicates, amphioxus, other bilaterians and cnidarians, we build these strands into a scenario of placode evolutionary history and of the genes, cells and developmental processes that underlie placode evolution and development.
Collapse
Affiliation(s)
- Cedric Patthey
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK.
| | - Gerhard Schlosser
- Zoology, School of Natural Sciences & Regenerative Medicine Institute (REMEDI), National University of Ireland, Galway, University Road, Galway, Ireland
| | - Sebastian M Shimeld
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| |
Collapse
|
296
|
Wessinger CA, Rausher MD. PREDICTABILITY AND IRREVERSIBILITY OF GENETIC CHANGES ASSOCIATED WITH FLOWER COLOR EVOLUTION INPENSTEMON BARBATUS. Evolution 2014; 68:1058-70. [DOI: 10.1111/evo.12340] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 12/06/2013] [Indexed: 12/27/2022]
Affiliation(s)
| | - Mark D. Rausher
- Department of Biology; Duke University; Box 90338 Durham North Carolina 27708
| |
Collapse
|
297
|
|
298
|
Schiffer PH, Kroiher M, Kraus C, Koutsovoulos GD, Kumar S, R Camps JI, Nsah NA, Stappert D, Morris K, Heger P, Altmüller J, Frommolt P, Nürnberg P, Thomas WK, Blaxter ML, Schierenberg E. The genome of Romanomermis culicivorax: revealing fundamental changes in the core developmental genetic toolkit in Nematoda. BMC Genomics 2013; 14:923. [PMID: 24373391 PMCID: PMC3890508 DOI: 10.1186/1471-2164-14-923] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 12/17/2013] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The genetics of development in the nematode Caenorhabditis elegans has been described in exquisite detail. The phylum Nematoda has two classes: Chromadorea (which includes C. elegans) and the Enoplea. While the development of many chromadorean species resembles closely that of C. elegans, enoplean nematodes show markedly different patterns of early cell division and cell fate assignment. Embryogenesis of the enoplean Romanomermis culicivorax has been studied in detail, but the genetic circuitry underpinning development in this species has not been explored. RESULTS We generated a draft genome for R. culicivorax and compared its gene content with that of C. elegans, a second enoplean, the vertebrate parasite Trichinella spiralis, and a representative arthropod, Tribolium castaneum. This comparison revealed that R. culicivorax has retained components of the conserved ecdysozoan developmental gene toolkit lost in C. elegans. T. spiralis has independently lost even more of this toolkit than has C. elegans. However, the C. elegans toolkit is not simply depauperate, as many novel genes essential for embryogenesis in C. elegans are not found in, or have only extremely divergent homologues in R. culicivorax and T. spiralis. Our data imply fundamental differences in the genetic programmes not only for early cell specification but also others such as vulva formation and sex determination. CONCLUSIONS Despite the apparent morphological conservatism, major differences in the molecular logic of development have evolved within the phylum Nematoda. R. culicivorax serves as a tractable system to contrast C. elegans and understand how divergent genomic and thus regulatory backgrounds nevertheless generate a conserved phenotype. The R. culicivorax draft genome will promote use of this species as a research model.
Collapse
Affiliation(s)
| | - Michael Kroiher
- Zoologisches Institut, Universität zu Köln, Cologne, NRW, Germany
| | | | - Georgios D Koutsovoulos
- Institute of Evolutionary Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, Scotland, UK
| | - Sujai Kumar
- Institute of Evolutionary Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, Scotland, UK
| | - Julia I R Camps
- Zoologisches Institut, Universität zu Köln, Cologne, NRW, Germany
| | - Ndifon A Nsah
- Zoologisches Institut, Universität zu Köln, Cologne, NRW, Germany
| | - Dominik Stappert
- Institute für Entwicklungsbiologie, Universität zu Köln, Cologne, NRW, Germany
| | - Krystalynne Morris
- Hubbard Center for Genome Studies, University of New Hampshire, Durham, NH, USA
| | - Peter Heger
- Zoologisches Institut, Universität zu Köln, Cologne, NRW, Germany
| | - Janine Altmüller
- Cologne Center for Genomics, Universität zu Köln, Cologne, NRW, Germany
| | - Peter Frommolt
- Cologne Center for Genomics, Universität zu Köln, Cologne, NRW, Germany
| | - Peter Nürnberg
- Cologne Center for Genomics, Universität zu Köln, Cologne, NRW, Germany
| | - W Kelley Thomas
- Hubbard Center for Genome Studies, University of New Hampshire, Durham, NH, USA
| | - Mark L Blaxter
- Institute of Evolutionary Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, Scotland, UK
| | | |
Collapse
|
299
|
Liu Q, Haag ES. Evolutionarily dynamic roles of a PUF RNA-binding protein in the somatic development of Caenorhabditis briggsae. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2013; 322:129-41. [PMID: 24254995 DOI: 10.1002/jez.b.22550] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 08/19/2013] [Accepted: 10/18/2013] [Indexed: 11/12/2022]
Abstract
Gene duplication and divergence has emerged as an important aspect of developmental evolution. The genomes of Caenorhabditis nematodes encode an ancient family of PUF RNA-binding proteins. Most have been implicated in germline development, and are often redundant with paralogs of the same sub-family. An exception is Cbr-puf-2 (one of three Caenorhabditis briggsae PUF-2 sub-family paralogs), which is required for development past the second larval stage. Here, we provide a detailed functional characterization of Cbr-puf-2. The larval arrest of Cbr-puf-2 mutant animals is caused by inefficient breakdown of bacterial food, which leads to starvation. Cbr-puf-2 is required for the normal grinding cycle of the muscular terminal bulb during early larval stages, and is transiently expressed in this tissue. In addition, rescue of larval arrest reveals that Cbr-puf-2 also promotes normal vulval development. It is expressed in the anchor cell (which induces vulval fate) and vulval muscles, but not in the vulva precursor cells (VPCs) themselves. This contrasts with the VPC-autonomous repression of vulval development described for the Caenorhabditis elegans homologs fbf-1/2. These different roles for PUF proteins occur even as the vulva and pharynx maintain highly conserved anatomies across Caenorhabditis, indicating pervasive developmental system drift (DSD). Because Cbr-PUF-2 shares RNA-binding specificity with its paralogs and with C. elegans FBF, we suggest that functional novelty of RNA-binding proteins evolves through changes in the site of their expression, perhaps in concert with cis-regulatory evolution in target mRNAs.
Collapse
Affiliation(s)
- Qinwen Liu
- Department of Biology, University of Maryland, College Park, Maryland
| | | |
Collapse
|
300
|
Abstract
The term "micro-evo-devo" refers to the combined study of the genetic and developmental bases of natural variation in populations and the evolutionary forces that have shaped this variation. It thus represents a synthesis of the fields of evolutionary developmental biology and population genetics. As has been pointed out by several others, this synthesis can provide insights into the evolution of organismal form and function that have not been possible within these individual disciplines separately. Despite a number of important successes in micro-evo-devo, however, it appears that evo devo and population genetics remain largely separate spheres of research, limiting their ability to address evolutionary questions. This also risks pushing contemporary evo devo to the fringes of evolutionary biology because it does not describe the causative molecular changes underlying evolution or the evolutionary forces involved. Here we reemphasize the theoretical and practical importance of micro-evo-devo as a strategy for understanding phenotypic evolution, review the key recent insights that it has provided, and present a perspective on both the potential and the remaining challenges of this exciting interdisciplinary field.
Collapse
Affiliation(s)
- Maria D. S. Nunes
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, United Kingdom
| | - Saad Arif
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, United Kingdom
| | | | - Alistair P. McGregor
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, United Kingdom
| |
Collapse
|