251
|
Maxwell CA, Hendzel MJ. The integration of tissue structure and nuclear function. Biochem Cell Biol 2001. [DOI: 10.1139/o01-078] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Living cells can filter the same set of biochemical signals to produce different functional outcomes depending on the deformation of the cell. It has been suggested that the cell may be "hard-wired" such that external forces can mediate internal nuclear changes through the modification of established, balanced, internal cytoskeletal tensions. This review will discuss the potential of subnuclear structures and nuclear chromatin to participate in or respond to transduction of mechanical signals originating outside the nucleus. The mechanical interactions of intranuclear structure with the nuclear lamina will be examined. The nuclear lamina, in turn, provides a structural link between the nucleus and the cytoplasmic and cortical cytoskeleton. These mechanical couplings may provide a basis for regulating gene expression through changes in cell shape.Key words: gene expression, cell structure, nuclear structure, mechanotransduction, chromatin.
Collapse
|
252
|
Grigoryev SA. Higher-order folding of heterochromatin: Protein bridges span the nucleosome arrays. Biochem Cell Biol 2001. [DOI: 10.1139/o01-030] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In interphase eukaryotic nuclei, chromatin is divided into two morphologically distinct types known as heterochromatin and euchromatin. It has been long suggested that the two types of chromatin differ at the level of higher-order folding. Recent studies have revealed the features of chromatin 3D architecture that distinguish the higher-order folding of repressed and active chromatin and have identified chromosomal proteins and their modifications associated with these structural transitions. This review discusses the molecular and structural determinants of chromatin higher-order folding in relation to mechanism(s) of heterochromatin formation and genetic silencing during cell differentiation and tissue development.Key words: heterochromatin, nucleosome, histone, higher-order folding, chromatin 3D structure.
Collapse
|
253
|
Abstract
How can the same gene remember that it is 'off' in one cell lineage and 'on' in another? Studies of how homeotic genes are regulated in Drosophila melanogaster have uncovered a transcriptional maintenance system, encoded by the Polycomb and trithorax group genes, that preserves expression patterns across development. Here we try to formulate a broad framework for the types of molecular mechanism used by the Polycomb and trithorax proteins.
Collapse
Affiliation(s)
- N J Francis
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | | |
Collapse
|
254
|
Urnov FD, Wolffe AP. Chromatin remodeling and transcriptional activation: the cast (in order of appearance). Oncogene 2001; 20:2991-3006. [PMID: 11420714 DOI: 10.1038/sj.onc.1204323] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The number of chromatin modifying and remodeling complexes implicated in genome control is growing faster than our understanding of the functional roles they play. We discuss recent in vitro experiments with biochemically defined chromatin templates that illuminate new aspects of action by histone acetyltransferases and ATP-dependent chromatin remodeling engines in facilitating transcription. We review a number of studies that present an 'ordered recruitment' view of transcriptional activation, according to which various complexes enter and exit their target promoter in a set sequence, and at specific times, such that action by one complex sets the stage for the arrival of the next one. A consensus emerging from all these experiments is that the joint action by several types of chromatin remodeling machines can lead to a more profound alteration of the infrastructure of chromatin over a target promoter than could be obtained by these enzymes acting independently. In addition, it appears that in specific cases one type of chromatin structure alteration (e.g., histone hyperacetylation) is contingent upon prior alterations of a different sort (i.e., ATP-dependent remodeling of histone-DNA contacts). The striking differences between the precise sequence of action by various cofactors observed in these studies may be - at least in part - due to differences between the specific promoters studied, and distinct requirements exhibited by specific loci for chromatin remodeling based on their pre-existing nucleoprotein architecture.
Collapse
Affiliation(s)
- F D Urnov
- Sangamo Biosciences, Pt. Richmond Tech. Center, 501 Canal Blvd., Suite A100, Richmond, California 94804, USA.
| | | |
Collapse
|
255
|
Takagi S, Tsumoto K, Yoshikawa K. Intra-molecular phase segregation in a single polyelectrolyte chain. J Chem Phys 2001. [DOI: 10.1063/1.1342810] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
256
|
Abstract
During the past year and a half, significant progress has been made in understanding the structure and dynamics of nucleosomes and the chromatin fiber, the mechanism of action of the core histone amino termini, the structure and function of histone variants, and the function of linker histones in the chromatin fiber.
Collapse
Affiliation(s)
- J J Hayes
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, New York 14642, USA
| | | |
Collapse
|
257
|
Nuclear Visions. Cell 2001. [DOI: 10.1016/s0092-8674(01)00257-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
258
|
Chevret E, Volpi EV, Sheer D. Mini review: form and function in the human interphase chromosome. CYTOGENETICS AND CELL GENETICS 2001; 90:13-21. [PMID: 11060439 DOI: 10.1159/000015654] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A key feature of interphase chromosomes is their compaction into discrete "territories" in the nucleus. In this review, we focus on the compartmentalization of the genome conferred by this organization and evaluate our current understanding of the role of large-scale chromatin folding in the regulation of gene expression. We examine evidence for the hypothesis that transcription occurs at the external surfaces of chromosomes and follow its evolution to include transcription at the surfaces of chromatin-rich domains within chromosomes. We also present prevailing views regarding the details of large-scale chromatin folding and the functional relationship between chromatin and the enigmatic nuclear matrix.
Collapse
Affiliation(s)
- E Chevret
- Human Cytogenetics Laboratory, Imperial Cancer Research Fund, London, United Kingdom
| | | | | |
Collapse
|
259
|
Tumbar T, Belmont AS. Interphase movements of a DNA chromosome region modulated by VP16 transcriptional activator. Nat Cell Biol 2001; 3:134-9. [PMID: 11175745 DOI: 10.1038/35055033] [Citation(s) in RCA: 151] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We examined changes in intranuclear chromosome positioning induced by a transcriptional activator in a simple experimental system. Targeting the VP16 acidic activation domain (AAD) to an engineered chromosome site resulted in its transcriptional activation and redistribution from a predominantly peripheral to a more interior nuclear localization. Direct visualization in vivo revealed that the chromosome site normally moves into the nuclear interior transiently in early G1 and again in early S phase. In contrast, VP16 AAD targeting induced this site's permanent interior localization in early G1. A single transcriptional activator therefore can modify the cell-cycle-dependent programme of intranuclear positioning of chromosome loci.
Collapse
Affiliation(s)
- T Tumbar
- Department of Cell and Structural Biology, University of Illinois at Urbana-Champaign, Room B107 C&LSL, 601 South Goodwin Avenue, Urbana, Illinois 61801, USA
| | | |
Collapse
|
260
|
Abstract
DNA is highly organized spatially, both within domains of chromatin along each chromosome and within the nucleus as a whole. Recent studies suggest that chromatin localization can affect transcriptional and replicational activity. The similarity between the movements of chromatin nuclear bodies suggests a common mechanism that regulates nuclear dynamics.
Collapse
Affiliation(s)
- J R Swedlow
- Division of Gene Regulation and Expression, Wellcome Trust Biocentre, University of Dundee, Dow Street, Dundee, DD1 5EH, UK.
| | | |
Collapse
|
261
|
Hendzel MJ, Kruhlak MJ, MacLean NA, Boisvert F, Lever MA, Bazett-Jones DP. Compartmentalization of regulatory proteins in the cell nucleus. J Steroid Biochem Mol Biol 2001; 76:9-21. [PMID: 11384859 DOI: 10.1016/s0960-0760(00)00153-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The cell nucleus is increasingly recognized as a spatially organized structure. In this review, the nature and controversies associated with nuclear compartmentalization are discussed. The relationship between nuclear structure and organization of proteins involved in the regulation of RNA polymerase II-transcribed genes is then discussed. Finally, very recent data on the mobility of these proteins within the cell nucleus is considered and their implications for regulation through compartmentalization of proteins and genomic DNA are discussed.
Collapse
Affiliation(s)
- M J Hendzel
- Department of Oncology and Cross Cancer Institute, Faculty of Medicine and Dentistry, University of Alberta, 11560 University Ave., Alta, T6G 1Z2, Edmonton, Canada.
| | | | | | | | | | | |
Collapse
|
262
|
Tsukamoto T, Hashiguchi N, Janicki SM, Tumbar T, Belmont AS, Spector DL. Visualization of gene activity in living cells. Nat Cell Biol 2000; 2:871-8. [PMID: 11146650 DOI: 10.1038/35046510] [Citation(s) in RCA: 225] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Chromatin structure is thought to play a critical role in gene expression. Using the lac operator/repressor system and two colour variants of green fluorescent protein (GFP), we developed a system to visualize a gene and its protein product directly in living cells, allowing us to examine the spatial organization and timing of gene expression in vivo. Dynamic morphological changes in chromatin structure, from a condensed to an open structure, were observed upon gene activation, and targeting of the gene product, cyan fluorescent protein (CFP) reporter to peroxisomes was visualized directly in living cells. We found that the integrated gene locus was surrounded by a promyelocytic leukaemia (PML) nuclear body. The association was transcription independent but was dependent upon the direct in vivo binding of specific proteins (EYFP/lac repressor, tetracycline receptor/VP16 transactivator) to the locus. The ability to visualize gene expression directly in living cells provides a powerful system with which to study the dynamics of nuclear events such as transcription, RNA processing and DNA repair.
Collapse
Affiliation(s)
- T Tsukamoto
- Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, New York 11724, USA
| | | | | | | | | | | |
Collapse
|
263
|
Lundgren M, Chow CM, Sabbattini P, Georgiou A, Minaee S, Dillon N. Transcription factor dosage affects changes in higher order chromatin structure associated with activation of a heterochromatic gene. Cell 2000; 103:733-43. [PMID: 11114330 DOI: 10.1016/s0092-8674(00)00177-x] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The mechanisms of transcriptional activation in heterochromatin were investigated by using FISH to directly visualize changes in chromatin organization during activation of a heterochromatic lambda5 transgene. A DNase I hypersensitive site was shown to relocate the transgene to the outside of the pericentromeric heterochromatin complex in the absence of transcription. Activation of transcription, which is dependent on the transcription factor EBF, occurs in a stochastic manner that resembles telomeric silencing in yeast, with the transcribed gene remaining closely associated with the heterochromatin complex. Reducing the dosage of EBF results in a reduced frequency of localization of the transgene to the outside of the heterochromatin complex and lower levels of transcription. These data provide evidence that transcription factors can initiate changes in higher order chromatin structure during the earliest stages of gene activation.
Collapse
Affiliation(s)
- M Lundgren
- Gene Regulation and Chromatin Group MRC Clinical Sciences Centre Imperial College School of Medicine Hammersmith Hospital W12 ONN, London, United Kingdom
| | | | | | | | | | | |
Collapse
|
264
|
Davie JR, Spencer VA. Signal transduction pathways and the modification of chromatin structure. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2000; 65:299-340. [PMID: 11008491 DOI: 10.1016/s0079-6603(00)65008-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Mechanical and chemical signaling pathways are involved in transmitting information from the exterior of a cell to its chromatin. The mechanical signaling pathway consists of a tissue matrix system that links together the three-dimensional skeletal networks, the extracellular matrix, cytoskeleton, and karyoskeleton. The tissue matrix system governs cell and nuclear shape and forms a structural and functional connection between the cell periphery and chromatin. Further, this mechanical signaling pathway has a role in controlling cell cycle progression and gene expression. Chemical signaling pathways such as the Ras/mitogen-activated protein kinase (MAPK) pathway can stimulate the activity of kinases that modify transcription factors, nonhistone chromosomal proteins, and histones. Activation of the Ras/MAPK pathway results in the alteration of chromatin structure and gene expression. The tissue matrix and chemical signaling pathways are not independent and one signaling pathway can affect the other. In this chapter, we will review chromatin organization, histone variants and modifications, and the impact that signaling pathways have on chromatin structure and function.
Collapse
Affiliation(s)
- J R Davie
- Manitoba Institute of Cell Biology, University of Manitoba, Winnipeg, Canada
| | | |
Collapse
|
265
|
Lemon B, Tjian R. Orchestrated response: a symphony of transcription factors for gene control. Genes Dev 2000; 14:2551-69. [PMID: 11040209 DOI: 10.1101/gad.831000] [Citation(s) in RCA: 551] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- B Lemon
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California 94720, USA
| | | |
Collapse
|
266
|
Volpi EV, Chevret E, Jones T, Vatcheva R, Williamson J, Beck S, Campbell RD, Goldsworthy M, Powis SH, Ragoussis J, Trowsdale J, Sheer D. Large-scale chromatin organization of the major histocompatibility complex and other regions of human chromosome 6 and its response to interferon in interphase nuclei. J Cell Sci 2000; 113 ( Pt 9):1565-76. [PMID: 10751148 DOI: 10.1242/jcs.113.9.1565] [Citation(s) in RCA: 317] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The large-scale chromatin organization of the major histocompatibility complex and other regions of chromosome 6 was studied by three-dimensional image analysis in human cell types with major differences in transcriptional activity. Entire gene clusters were visualized by fluorescence in situ hybridization with multiple locus-specific probes. Individual genomic regions showed distinct configurations in relation to the chromosome 6 terrritory. Large chromatin loops containing several megabases of DNA were observed extending outwards from the surface of the domain defined by the specific chromosome 6 paint. The frequency with which a genomic region was observed on an external chromatin loop was cell type dependent and appeared to be related to the number of active genes in that region. Transcriptional up-regulation of genes in the major histocompatibility complex by interferon-gamma led to an increase in the frequency with which this large gene cluster was found on an external chromatin loop. Our data are consistent with an association between large-scale chromatin organization of specific genomic regions and their transcriptional status.
Collapse
Affiliation(s)
- E V Volpi
- Human Cytogenetics Laboratory, Imperial Cancer Research Fund, London WC2A 3PX, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
267
|
Abstract
A role for histone modifications in transcription processes and the remodeling of chromatin structure has been established. This review highlights the recent advances made in studies on histone acetyltransferases, histone deacetylases, histone kinases, and protein phosphatases, as well as their roles in transcriptional activation and repression. Coactivators with histone acetyltransferase activity stimulate transcription, whereas corepressors with histone deacetylase activity repress transcription. Families of histone acetyltransferases and deacetylases have been identified. We have learned that their substrates are not limited to histones but also include transcription factors and architectural proteins. Studies on the composition of multiprotein complexes with histone acetyltransferase or histone deacetylase have revealed mechanisms by which these complexes are recruited to specific genomic sites that are transcriptionally active, silenced, or being repaired. A new and exciting development, presented in this review, is the role of signal transduction pathways in the phosphorylation of histone H3 and the expression of immediate-early genes. J. Cell. Biochem. Suppls. 32/33:141-148, 1999.
Collapse
Affiliation(s)
- J R Davie
- Manitoba Institute of Cell Biology and the Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba R3E 0V9 Canada.
| | | |
Collapse
|
268
|
Page G, Lödige I, Kögel D, Scheidtmann KH. AATF, a novel transcription factor that interacts with Dlk/ZIP kinase and interferes with apoptosis. FEBS Lett 1999; 462:187-91. [PMID: 10580117 DOI: 10.1016/s0014-5793(99)01529-x] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Dlk, also known as ZIP kinase, is a serine/threonine kinase that is tightly associated with nuclear structures. Under certain conditions, which require cytoplasmic localization, Dlk can induce apoptosis. In search for interaction partners that might serve as regulators or targets of this kinase we identified apoptosis antagonizing transcription factor (AATF), a nuclear phosphoprotein of 523 amino acids. The 1.8 kb mRNA seems to be ubiquitously expressed. AATF contains an extremely acidic domain and a putative leucine zipper characteristic of transcription factors. Indeed, a Gal4-BD-AATF fusion protein exhibited strong transactivation activity. Interestingly, AATF interfered with Dlk-induced apoptosis.
Collapse
Affiliation(s)
- G Page
- Institute of Genetics, University of Bonn, Roemerstr. 164, D-53117, Bonn, Germany
| | | | | | | |
Collapse
|