251
|
Gao Y, Zhao L, Son JS, Liu X, Chen Y, Deavila JM, Zhu MJ, Murdoch GK, Du M. Maternal Exercise Before and During Pregnancy Facilitates Embryonic Myogenesis by Enhancing Thyroid Hormone Signaling. Thyroid 2022; 32:581-593. [PMID: 35286177 PMCID: PMC9145266 DOI: 10.1089/thy.2021.0639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Background: Maternal exercise (ME) improves fetal and offspring muscle development, but mechanisms remain to be established. Since the thyroid hormone (TH) is critical for cell differentiation during embryonic development, we hypothesized that ME elevates TH receptor (THR) signaling in embryos, which promotes embryonic myogenesis. Methods: Female mice were exercised daily on a treadmill or received a daily TH, triiodothyronine (T3) injection. Embryos (embryonic day 12.5 [E12.5]) and P19 cells were used for studying effects of TH on embryonic myogenesis. TH levels in serum and embryos after ME or T3I were analyzed. Expression of TH signaling related genes and myogenic genes was assessed. THRα binding to the promoters of myogenic genes was investigated by chromatin immunoprecipitation-qantitative polymerase chain reaction (ChIP-qPCR). A CRISPR/CAS9 plasmid was utilized to knock out THRα in P19 cells. Results: ME elevated TH levels in both maternal circulation and embryos, which were correlated with enhanced TH signaling and myogenesis. At E12.5, both myogenic determinants (Pax3, Pax7) and myogenic regulatory factors (Myf5, Myod) were upregulated in ME embryos. ME increased THRα content and elevated messenger RNA (mRNA) expression of TH transporter Slc16a2 and deiodinase Dio2. In addition, the THRα binding to the promoters of Pax3/7 was increased. In P19 embryoid bodies, T3 promoted myogenic differentiation, which was abolished by ablating THRα. Furthermore, maternal daily injection of T3 at a level matching exercised mothers promoted embryonic myogenesis. Conclusions: ME promotes TH delivery to the embryos and enhances embryonic myogenesis, which is partially mediated by enhanced TH signaling in ME embryos.
Collapse
Affiliation(s)
- Yao Gao
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, Washington, USA
| | - Liang Zhao
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, Washington, USA
| | - Jun Seok Son
- Laboratory of Perinatal Kinesioepigenetics, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Xiangdong Liu
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, Washington, USA
| | - Yanting Chen
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, Washington, USA
| | - Jeanene Marie Deavila
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, Washington, USA
| | - Mei-Jun Zhu
- Food Microbiology and Nutrigenomics Laboratory, School of Food Science, Washington State University, Pullman, Washington, USA
| | - Gordon K. Murdoch
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, Washington, USA
| | - Min Du
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, Washington, USA
- Address correspondence to: Min Du, PhD, Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
252
|
Cao L, Zhu S, Lu H, Soutto M, Bhat N, Chen Z, Peng D, Lin J, Lu J, Li P, Zheng C, Huang C, El-Rifai W. Helicobacter pylori-induced RASAL2 Through Activation of Nuclear Factor-κB Promotes Gastric Tumorigenesis via β-catenin Signaling Axis. Gastroenterology 2022; 162:1716-1731.e17. [PMID: 35134322 PMCID: PMC9038683 DOI: 10.1053/j.gastro.2022.01.046] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 01/25/2022] [Accepted: 01/30/2022] [Indexed: 01/10/2023]
Abstract
BACKGROUND & AIMS Helicobacter pylori infection is the predominant risk factor for gastric cancer. RAS protein activator like 2 (RASAL2) is considered a double-edged sword in carcinogenesis. Herein, we investigated the role of RASAL2 in response to H pylori infection and gastric tumorigenesis. METHODS Bioinformatics analyses of local and public databases were applied to analyze RASAL2 expression, signaling pathways, and clinical significance. In vitro cell culture, spheroids, patient-derived organoids, and in vivo mouse models were used. Molecular assays included chromatin immunoprecipitation, co-immunoprecipitation, Western blotting, quantitative polymerase chain reaction, and immunocyto/histochemistry. RESULTS H pylori infection induced RASAL2 expression via a nuclear factor-κB (NF-κB)-dependent mechanism whereby NF-κB was directly bound to the RASAL2 promoter activating its transcription. By gene silencing and ectopic overexpression, we found that RASAL2 upregulated β-catenin transcriptional activity. RASAL2 inhibited protein phosphatase 2A activity through direct binding with subsequent activation of the AKT/β-catenin signaling axis. Functionally, RASAL2 silencing decreased nuclear β-catenin levels and impaired tumor spheroids and organoids formation. Furthermore, the depletion of RASAL2 impaired tumor growth in gastric tumor xenograft mouse models. Clinicopathological analysis indicated that abnormal overexpression of RASAL2 correlated with poor prognosis and chemoresistance in human gastric tumors. CONCLUSIONS These studies uncovered a novel signaling axis of NF-κB/RASAL2/β-catenin, providing a novel link between infection, inflammation and gastric tumorigenesis.
Collapse
Affiliation(s)
- Longlong Cao
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China; Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Shoumin Zhu
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Heng Lu
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Mohammed Soutto
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Nadeem Bhat
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Zheng Chen
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Dunfa Peng
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Jianxian Lin
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Jun Lu
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Ping Li
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Chaohui Zheng
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Changming Huang
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China.
| | - Wael El-Rifai
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida; Department of Veterans Affairs, Miami Healthcare System, Miami, Florida; Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida.
| |
Collapse
|
253
|
Laugel M, Lecomte E, Ayuso E, Adjali O, Mével M, Penaud-Budloo M. The Diversity of Parvovirus Telomeres. Vet Med Sci 2022. [DOI: 10.5772/intechopen.102684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Parvoviridae are small viruses composed of a 4–6 kb linear single-stranded DNA protected by an icosahedral capsid. The viral genes coding non-structural (NS), capsid, and accessory proteins are flanked by intriguing sequences, namely the telomeres. Telomeres are essential for parvovirus genome replication, encapsidation, and integration. Similar (homotelomeric) or different (heterotelomeric) at the two ends, they all contain imperfect palindromes that fold into hairpin structures. Up to 550 nucleotides in length, they harbor a wide variety of motifs and structures known to be recognized by host cell factors. Our study aims to comprehensively analyze parvovirus ends to better understand the role of these particular sequences in the virus life cycle. Forty Parvoviridae terminal repeats (TR) were publicly available in databases. The folding and specific DNA secondary structures, such as G4 and triplex, were systematically analyzed. A principal component analysis was carried out from the prediction data to determine variables signing parvovirus groups. A special focus will be put on adeno-associated virus (AAV) inverted terminal repeats (ITR), a member of the genus Dependoparvovirus used as vectors for gene therapy. This chapter highlights the diversity of the Parvoviridae telomeres regarding shape and secondary structures, providing information that could be relevant for virus-host interactions studies.
Collapse
|
254
|
Wang Y, Sun Q, Ye Y, Sun X, Xie S, Zhan Y, Song J, Fan X, Zhang B, Yang M, Lv L, Hosaka K, Yang Y, Nie G. FGF-2 signaling in nasopharyngeal carcinoma modulates pericyte-macrophage crosstalk and metastasis. JCI Insight 2022; 7:157874. [PMID: 35439170 PMCID: PMC9220856 DOI: 10.1172/jci.insight.157874] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 04/15/2022] [Indexed: 12/24/2022] Open
Abstract
Molecular signaling in the tumor microenvironment (TME) is complex, and crosstalks among various cell compartments in supporting metastasis remain poorly understood. In particular, the role of vascular pericytes, a critical cellular component in the TME, in cancer invasion and metastasis warrants further investigation. Here we report an elevation of FGF-2 signaling in both nasopharyngeal carcinoma (NPC) patient samples and xenograft mouse models promotes NPC metastasis. Mechanistically, tumor cell-derived FGF-2 strongly promoted pericyte proliferation and pericyte-specific expression of an orphan chemokine (C-X-C motif) ligand 14 (CXCL14) via FGFR1- AHR signaling. Gain and loss-of-function experiments validated that pericyte-derived CXCL14 promoted macrophage recruitment and polarization towards an M2-like phenotype. Genetic knockdown of FGF2 or genetic depletion of tumoral pericytes blocked CXCL14 expression and tumor-associated macrophage (TAM) infiltration. Pharmacological inhibition of TAMs by clodronate liposomes treatment resulted in a reduction of FGF-2-induced pulmonary metastasis. Together, these findings shed light on the inflammatory role of tumoral pericytes in promoting TAM-mediated metastasis. We provide mechanistic insight into an FGF-2-FGFR1-pericyte-CXCL14-TAM stromal communication axis in NPC and propose an effective anti-metastasis therapy concept by targeting a pericyte-derived inflammation for NPC or FGF-2-high tumors.
Collapse
Affiliation(s)
- Yujie Wang
- Department of Otolaryngology, Shenzhen Second People's Hospital, Shenzhen, China
| | - Qi Sun
- Fudan University, Shanghai, China
| | - Ying Ye
- Department of Oral Implantology, Tongji University, Shanghai, China
| | - Xiaoting Sun
- Department of Cellular and Genetic Medicine, Fudan University, Shanghai, China
| | - Sisi Xie
- Department of Cellular and Genetic Medicine, Fudan University, Shanghai, China
| | - Yuhang Zhan
- Department of Cellular and Genetic Medicine, Fudan University, Shanghai, China
| | - Jian Song
- Department of Otolaryngology, Shenzhen Second People's Hospital, Shenzhen, China
| | - Xiaoqin Fan
- Department of Otolaryngology, Shenzhen Second People's Hospital, Shenzhen, China
| | - Bin Zhang
- Department of Otolaryngology, Shenzhen Second People's Hospital, Shenzhen, China
| | - Ming Yang
- Department of Otolaryngology, Shenzhen Second People's Hospital, Shenzhen, China
| | - Lei Lv
- Department of Biochemistry and Molecular Biology, Fudan University, Shanghai, China
| | - Kayoko Hosaka
- Department of Microbiology, Karolinska Institute, Stockholm, Sweden
| | - Yunlong Yang
- Department of Cellular and Genetic Medicine, Fudan University, Shanghai, China
| | - Guohui Nie
- Department of Otolaryngology, Shenzhen Second People's Hospital, Shenzhen, China
| |
Collapse
|
255
|
Guo Y, Zhao J, Xu Q, Gao S, Liu M, Zhang C, Schinckel AP, Zhou B. Identification of Functional Single Nucleotide Polymorphisms in the Porcine SLC6A4 Gene Associated with Aggressive Behavior in Weaned Pigs after Mixing. J Anim Sci 2022; 100:6568350. [PMID: 35419600 PMCID: PMC9115910 DOI: 10.1093/jas/skac131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 04/08/2022] [Indexed: 11/12/2022] Open
Abstract
Variation in genes of the serotonergic system influence aggressive behavior by affecting serotonin levels in the central and cortical nervous system. SLC6A4 (serotonin transporter) is a master regulator of 5-HT signaling and involved in the regulation of aggressive behavior in humans and rodents. To identify potential functional single nucleotide polymorphisms (SNPs) for the porcine SLC6A4 gene associated with aggressive behavior, a total of 500 pigs (268 barrows and 232 gilts) were selected and mixed in 51 pens. Their behavior was recorded and observed for 72 h after mixing. Based on a composite aggressive score (CAS), the most aggressive and the least aggressive pigs within each pen were selected separately (a total of 204 pigs). Ear tissue was sampled to extract genomic DNA. Eight SNPs in the 5'-flanking region, coding region, and 3'-untranslated region (3'-UTR) of SLC6A4 were genotyped, of which 6 SNPs had significant differences (P < 0.05) in allele frequency between the most aggressive and least aggressive pigs. Luciferase activity was greater in plasmids of genotype GG than plasmids of genotype CC of rs345058216 (P < 0.01). Computational analysis nominated MAZ as putative transcription factor (TF) with higher probability to bind the SLC6A4 promoter at the SNP (rs345058216) site. Also, we demonstrated that MAZ overexpression modulates SLC6A4 promoter activity in allele-specific manner with an in vitro assay. In addition, we demonstrated that SLC6A4 was a direct target of miR-671-5p. The dual luciferase reporter gene assay and cell transfection were performed to examine the role of miR-671-5p in regulating SLC6A4 expression. The luciferase assays revealed that the SNP rs332335871 affects regulation of miR-671-5p in SLC6A4 expression. After overexpression of miR-671-5p in porcine primary neural cells, the SLC6A4 mRNA levels can be significantly reduced. In conclusion, we here found that miR-671-5p and MAZ mediated porcine SLC6A4 expression level, which provides the possible molecular mechanism of aggressive behavior.
Collapse
Affiliation(s)
- Yanli Guo
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Jing Zhao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Qinglei Xu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Siyuan Gao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Mingzheng Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Chunlei Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Allan P Schinckel
- Department of Animal Sciences, Purdue University, West Lafayette, USA
| | - Bo Zhou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
256
|
Abstract
Human endogenous retroviruses (HERVs) occupy approximately 8% of the human genome. HERVs, transcribed in early embryos, are epigenetically silenced in somatic cells, except under pathological conditions. HERV-K is thought to protect embryos from exogenous viral infection. However, uncontrolled HERV-K expression in somatic cells has been implicated in several diseases. Here, we show that SOX2, which plays a key role in maintaining the pluripotency of stem cells, is critical for HERV-K LTR5Hs. HERV-K undergoes retrotransposition within producer cells in the absence of Env expression. Furthermore, we identified new HERV-K integration sites in long-term culture of induced pluripotent stem cells that express SOX2. These results suggest that the strict dependence of HERV-K on SOX2 has allowed HERV-K to protect early embryos during evolution while limiting the potentially harmful effects of HERV-K retrotransposition on host genome integrity in these early embryos. IMPORTANCE Human endogenous retroviruses (HERVs) account for approximately 8% of the human genome; however, the physiological role of HERV-K remains unknown. This study found that HERV-K LTR5Hs and LTR5B were transactivated by SOX2, which is essential for maintaining and reestablishing pluripotency. HERV-K can undergo retrotransposition within producer cells without env expression, and new integration sites may affect cell proliferation. In induced pluripotent stem cells (iPSCs), genomic impairment due to HERV-K retrotransposition has been identified, but it is a rare event. Considering the retention of SOX2-responsive elements in the HERV-K long terminal repeat (LTR) for over 20 million years, we conclude that HERV-K may play important physiological roles in SOX2-expressing cells.
Collapse
|
257
|
HIF-1-Dependent Induction of β3 Adrenoceptor: Evidence from the Mouse Retina. Cells 2022; 11:cells11081271. [PMID: 35455951 PMCID: PMC9029465 DOI: 10.3390/cells11081271] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 02/01/2023] Open
Abstract
A major player in the homeostatic response to hypoxia is the hypoxia-inducible factor (HIF)-1 that transactivates a number of genes involved in neovessel proliferation in response to low oxygen tension. In the retina, hypoxia overstimulates β-adrenoceptors (β-ARs) which play a key role in the formation of pathogenic blood vessels. Among β-ARs, β3-AR expression is increased in proliferating vessels in concomitance with increased levels of HIF-1α and vascular endothelial growth factor (VEGF). Whether, similarly to VEGF, hypoxia-induced β3-AR upregulation is driven by HIF-1 is still unknown. We used the mouse model of oxygen-induced retinopathy (OIR), an acknowledged model of retinal angiogenesis, to verify the hypothesis of β3-AR transcriptional regulation by HIF-1. Investigation of β3-AR regulation over OIR progression revealed that the expression profile of β3-AR depends on oxygen tension, similar to VEGF. The additional evidence that HIF-1α stabilization decouples β3-AR expression from oxygen levels further indicates that HIF-1 regulates the expression of the β3-AR gene in the retina. Bioinformatics predicted the presence of six HIF-1 binding sites (HBS #1-6) upstream and inside the mouse β3-AR gene. Among these, HBS #1 has been identified as the most suitable HBS for HIF-1 binding. Chromatin immunoprecipitation-qPCR demonstrated an effective binding of HIF-1 to HBS #1 indicating the existence of a physical interaction between HIF-1 and the β3-AR gene. The additional finding that β3-AR gene expression is concomitantly activated indicates the possibility that HIF-1 transactivates the β3-AR gene. Our results are indicative of β3-AR involvement in HIF-1-mediated response to hypoxia.
Collapse
|
258
|
Yang WY, Izzi B, Bress AP, Thijs L, Citterio L, Wei FF, Salvi E, Delli Carpini S, Manunta P, Cusi D, Hoylaerts MF, Luttun A, Verhamme P, Hardikar S, Nawrot TS, Staessen JA, Zhang ZY. Association of colorectal cancer with genetic and epigenetic variation in PEAR1-A population-based cohort study. PLoS One 2022; 17:e0266481. [PMID: 35390065 PMCID: PMC8989234 DOI: 10.1371/journal.pone.0266481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 03/22/2022] [Indexed: 11/19/2022] Open
Abstract
Platelet Endothelial Aggregation Receptor 1 (PEAR1) modulates angiogenesis and platelet contact-induced activation, which play a role in the pathogenesis of colorectal cancer. We therefore tested the association of incident colorectal cancer and genetic and epigenetic variability in PEAR1 among 2532 randomly recruited participants enrolled in the family-based Flemish Study on Environment, Genes and Health Outcomes (51.2% women; mean age 44.8 years). All underwent genotyping of rs12566888 located in intron 1 of the PEAR1 gene; in 926 participants, methylation at 16 CpG sites in the PEAR1 promoter was also assessed. Over 18.1 years (median), 49 colorectal cancers occurred, all in different pedigrees. While accounting for clustering of risk factors within families and adjusting for sex, age, body mass index, the total-to-HDL cholesterol ratio, serum creatinine, plasma glucose, smoking and drinking, use of antiplatelet and nonsteroidal anti-inflammatory drug, the hazard ratio of colorectal cancer contrasting minor-allele (T) carriers vs. major-allele (GG) homozygotes was 2.17 (95% confidence interval, 1.18-3.99; P = 0.013). Bootstrapped analyses, from which we randomly excluded from two to nine cancer cases, provided confirmatory results. In participants with methylation data, we applied partial least square discriminant analysis (PLS-DA) and identified two methylation sites associated with higher colorectal cancer risk and two with lower risk. In-silico analysis suggested that methylation of the PEAR1 promoter at these four sites might affect binding of transcription factors p53, PAX5, and E2F-1, thereby modulating gene expression. In conclusion, our findings suggest that genetic and epigenetic variation in PEAR1 modulates the risk of colorectal cancer in white Flemish. To what extent, environmental factors as exemplified by our methylation data, interact with genetic predisposition and modulate penetrance of colorectal cancer risk is unknown.
Collapse
Affiliation(s)
- Wen-Yi Yang
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| | - Benedetta Izzi
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Pozzilli, Italy
| | - Adam P. Bress
- Department of Population Health Sciences, University of Utah, Salt Lake City, Utah, United States of America
| | - Lutgarde Thijs
- Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| | - Lorena Citterio
- Division of Nephrology and Dialysis, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Fang-Fei Wei
- Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
- Department of Cardiology, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Erika Salvi
- Department of Health Sciences, University of Milan, Milan, Italy
| | - Simona Delli Carpini
- Division of Nephrology and Dialysis, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Paolo Manunta
- School of Nephrology, University Vita-Salute San Raffaele, Milan, Italy
| | | | | | - Aernout Luttun
- Center for Molecular and Vascular Biology, KU Leuven Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| | - Peter Verhamme
- Center for Molecular and Vascular Biology, KU Leuven Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| | - Sheetal Hardikar
- Department of Population Health Sciences, University of Utah, Salt Lake City, Utah, United States of America
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, United States of America
| | - Tim S. Nawrot
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Jan A. Staessen
- Biomedical Science Group, University of Leuven, Leuven, Belgium
- Research Institute Association for the Promotion of Preventive Medicine, Mechelen, Belgium
| | - Zhen-Yu Zhang
- Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| |
Collapse
|
259
|
Hypermethylation-Mediated Silencing of CIDEA, MAL and PCDH17 Tumour Suppressor Genes in Canine DLBCL: From Multi-Omics Analyses to Mechanistic Studies. Int J Mol Sci 2022; 23:ijms23074021. [PMID: 35409379 PMCID: PMC9000013 DOI: 10.3390/ijms23074021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 11/23/2022] Open
Abstract
Gene expression is controlled by epigenetic deregulation, a hallmark of cancer. The DNA methylome of canine diffuse large B-cell lymphoma (cDLBCL), the most frequent malignancy of B-lymphocytes in dog, has recently been investigated, suggesting that aberrant hypermethylation of CpG loci is associated with gene silencing. Here, we used a multi-omics approach (DNA methylome, transcriptome and copy number variations) combined with functional in vitro assays, to identify putative tumour suppressor genes subjected to DNA methylation in cDLBCL. Using four cDLBCL primary cell cultures and CLBL-1 cells, we found that CiDEA, MAL and PCDH17, which were significantly suppressed in DLBCL samples, were hypermethylated and also responsive (at the DNA, mRNA and protein level) to pharmacological unmasking with hypomethylating drugs and histone deacetylase inhibitors. The regulatory mechanism underneath the methylation-dependent inhibition of those target genes expression was then investigated through luciferase and in vitro methylation assays. In the most responsive CpG-rich regions, an in silico analysis allowed the prediction of putative transcription factor binding sites influenced by DNA methylation. Interestingly, regulatory elements for AP2, MZF1, NF-kB, PAX5 and SP1 were commonly identified in all three genes. This study provides a foundation for characterisation and experimental validation of novel epigenetically-dysregulated pathways in cDLBCL.
Collapse
|
260
|
The Merkel Cell Polyomavirus T-Antigens and IL-33/ST2-IL1RAcP Axis: Possible Role in Merkel Cell Carcinoma. Int J Mol Sci 2022; 23:ijms23073702. [PMID: 35409061 PMCID: PMC8998536 DOI: 10.3390/ijms23073702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 12/27/2022] Open
Abstract
Merkel cell polyomavirus (MCPyV) is a causal factor in Merkel cell carcinoma (MCC). The oncogenic potential is mediated through its viral oncoproteins large T-antigen (LT) and small T-antigen (sT). Cytokines produced by tumor cells play an important role in cancer pathogenesis, and viruses affect their expression. Therefore, we compared human cytokine and receptor transcript levels in virus positive (V+) and virus negative (V−) MCC cell lines. Increased expression of IL-33, a potent modulator of tumor microenvironment, was observed in V+ MCC cell lines when compared to V− MCC-13 cells. Transient transfection studies with luciferase reporter plasmids demonstrated that LT and sT stimulated IL-33, ST2/IL1RL1 and IL1RAcP promoter activity. The induction of IL-33 expression was confirmed by transfecting MCC-13 cells with MCPyV LT. Furthermore, recombinant human cytokine domain IL-33 induced activation of MAP kinase and NF-κB pathways, which could be blocked by a ST2 receptor antibody. Immunohistochemical analysis demonstrated a significantly stronger IL-33, ST2, and IL1RAcP expression in MCC tissues compared to normal skin. Of interest, significantly higher IL-33 and IL1RAcP protein levels were observed in MCC patient plasma compared to plasma from healthy controls. Previous studies have demonstrated the implication of the IL-33/STL2 pathway in cancer. Because our results revealed a T-antigens-dependent induction of the IL-33/ST2 axis, IL-33/ST2 may play a role in the tumorigenesis of MCPyV-positive MCC. Therefore, neutralizing the IL-33/ST2 axis may present a novel therapeutic approach for MCC patients.
Collapse
|
261
|
Xiong H, Chen Z, Lin B, Chen W, Li Q, Li Y, Fang M, Wang Y, Zhang H, Lu Y, Bi A, Wu S, Jia Y, Wang X. Comprehensive analysis of FKBP4/NR3C1/TMEM173 signaling pathway in triple-negative breast cancer cell and dendritic cell among tumor microenvironment. Mol Ther Oncolytics 2022; 24:371-384. [PMID: 35118194 PMCID: PMC8792076 DOI: 10.1016/j.omto.2021.12.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 12/31/2021] [Indexed: 11/17/2022] Open
Abstract
TMEM173 is a pattern recognition receptor detecting cytoplasmic nucleic acids and transmits cGAS related signals that activate host innate immune responses. It has also been found to be involved in tumor immunity and tumorigenesis. In this study, we first identified that the FKBP4/NR3C1 axis was a novel negative regulator of TMEM173 in human breast cancer (BC) cells. The effect of FKBP4 appeared to be at the transcriptional level of TMEM173, because it could suppress the promoter activity of TMEM173, thereby affecting TMEM173 at mRNA and protein levels. Past studies, our bioinformatics analysis, and in vitro experiments further implied that FKBP4 regulated TMEM173 via regulating nuclear translocation of NR3C1. We then demonstrated that the FKBP4/NR3C1/TMEM173 signaling pathway could regulate autophagy and proliferation of BC cells as well as dendritic cell (DC) abundance through exosome release. Our study found an unprecedented strategy used by BC to escape from TMEM173 mediated tumor suppression. Identification of the FKBP4/NR3C1 axis as a novel TMEM173 regulator would provide insights for novel anti-tumor strategy against BC among tumor microenvironment.
Collapse
Affiliation(s)
- Hanchu Xiong
- Department of Radiation Oncology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310000, China
| | - Zihan Chen
- Surgical Intensive Care Unit, First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang 310000, China
| | - Baihua Lin
- Department of Radiation Oncology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310000, China
| | - Weijun Chen
- Department of Radiation Oncology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310000, China
| | - Qiang Li
- Department of Radiation Oncology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310000, China
| | - Yucheng Li
- Department of Radiation Oncology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310000, China
| | - Min Fang
- Department of Radiation Oncology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310000, China
| | - Ying Wang
- Department of Radiation Oncology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310000, China
| | - Haibo Zhang
- Department of Radiation Oncology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310000, China
| | - Yanwei Lu
- Department of Radiation Oncology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310000, China
| | - Aihong Bi
- Department of Radiation Oncology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310000, China
| | - Shuqiang Wu
- Department of Radiation Oncology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310000, China
| | - Yongshi Jia
- Department of Radiation Oncology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310000, China
| | - Xiao Wang
- Department of Medical Oncology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310000, China
| |
Collapse
|
262
|
Kim HJ, Ryu KY, Kim YG, Kim MO, Lee JH, Song MK, Youn YJ, Pokhrel NK, Kim SH, Kim JY, Jung HJ, Kim WS, Hong CW, Kim HH, Lee Y. Myeloid-Specific PTP1B Deficiency Attenuates Inflammation-Induced and Ovariectomy-Induced Bone Loss in Mice by Inhibiting Osteoclastogenesis. J Bone Miner Res 2022; 37:505-514. [PMID: 34812548 DOI: 10.1002/jbmr.4478] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 11/09/2021] [Accepted: 11/17/2021] [Indexed: 11/11/2022]
Abstract
The differentiation and activity of bone-resorbing osteoclasts are tightly regulated to maintain the homeostasis of healthy bones. In this study, the role of protein tyrosine phosphatase 1B (PTP1B) during osteoclastogenesis was studied in myeloid-specific Ptpn1-deficient (conditional knockout [cKO]) mice. The mRNA and protein expression of PTP1B increased during the formation of mature osteoclasts from mouse bone macrophages on stimulation with macrophage-colony stimulating factor (M-CSF) and receptor activator of nuclear factor κB ligand (RANKL). The Ptpn1 cKO mice exhibited increased femoral trabecular bone volume with a decreased number and activity of osteoclasts compared with control mice. The in vitro culture of osteoclast precursors corroborated the inhibition of osteoclastogenesis in cKO cells compared with control, with concomitantly decreased RANKL-dependent proliferation, lower osteoclast marker gene expression, reduced nuclear expression of nuclear factor of activated T cells cytoplasmic 1 (NFATc1), diminished intracellular Ca2+ oscillations, and increased phosphorylation of proto-oncogene tyrosine-protein kinase Src on inhibitory tyrosine residue. In a ligature-induced periodontitis model, Ptpn1 cKO mice exhibited attenuated osteoclastogenesis and alveolar bone loss following the induction of inflammation. The Ptpn1-deficient mice were similarly protected from ovariectomy-induced bone loss compared with control mice. These results provide a novel regulatory role of PTP1B in osteoclastogenesis and suggest a potential as a therapeutic target for bone-lytic diseases. © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Hyo Jeong Kim
- Department of Biochemistry and Institute for Hard Tissue and Bone Regeneration, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Ka-Young Ryu
- Department of Biochemistry and Institute for Hard Tissue and Bone Regeneration, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Yong-Gun Kim
- Department of Periodontology, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Myoung Ok Kim
- Department of Animal Biotechnology, College of Ecology and Environmental Science, Kyungpook National University, Sangju, South Korea
| | - Ji Hye Lee
- Department of Oral Pathology, School of Dentistry, Pusan National University, Yangsan, South Korea
| | - Min-Kyoung Song
- Department of Cell and Developmental Biology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, South Korea
| | - Young-Jin Youn
- Department of Physiology, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Nitin Kumar Pokhrel
- Department of Biochemistry and Institute for Hard Tissue and Bone Regeneration, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Sung-Hyun Kim
- Department of Bio-medical Analysis, Korea Polytechnic College, Chungnam, South Korea
| | - Jae-Young Kim
- Department of Biochemistry and Institute for Hard Tissue and Bone Regeneration, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Hye-Jin Jung
- Department of Biochemistry and Institute for Hard Tissue and Bone Regeneration, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Woo-Shin Kim
- Department of Cell and Developmental Biology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, South Korea
| | - Chang-Won Hong
- Department of Physiology, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Hong-Hee Kim
- Department of Cell and Developmental Biology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, South Korea
| | - Youngkyun Lee
- Department of Biochemistry and Institute for Hard Tissue and Bone Regeneration, School of Dentistry, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
263
|
Xiong H, Chen Z, Lin B, Xie B, Liu X, Chen C, Li Z, Jia Y, Wu Z, Yang M, Jia Y, Wang L, Zhou J, Meng X. Naringenin Regulates FKBP4/NR3C1/NRF2 Axis in Autophagy and Proliferation of Breast Cancer and Differentiation and Maturation of Dendritic Cell. Front Immunol 2022; 12:745111. [PMID: 35087512 PMCID: PMC8786807 DOI: 10.3389/fimmu.2021.745111] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/21/2021] [Indexed: 12/23/2022] Open
Abstract
NRF2 is an important regulatory transcription factor involved in tumor immunity and tumorigenesis. In this study, we firstly identified that FKBP4/NR3C1 axis was a novel negative regulator of NRF2 in human breast cancer (BC) cells. The effect of FKBP4 appeared to be at protein level of NRF2 since it could not suppress the expression of NRF2 at mRNA level. Bioinformatics analysis and in vitro experiments further demonstrated that FKBP4 regulated NRF2 via regulating nuclear translocation of NR3C1. We then reported that naringenin, a flavonoid, widely distributed in citrus and tomato, could suppress autophagy and proliferation of BC cells through FKBP4/NR3C1/NRF2 signaling pathway in vitro and in vivo. Naringenin was also found to promote dendritic cell (DC) differentiation and maturation through FKBP4/NR3C1/NRF2 axis. Therefore, our study found that naringenin could induce inhibition of autophagy and cell proliferation in BC cells and enhance DC differentiation and maturation, at least in part, though regulation of FKBP4/NR3C1/NRF2 signaling pathway. Identification of FKBP4/NR3C1/NRF2 axis would provide insights for novel anti-tumor strategy against BC among tumor microenvironment.
Collapse
Affiliation(s)
- Hanchu Xiong
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Zihan Chen
- Surgical Intensive Care Unit, First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Baihua Lin
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Bojian Xie
- Department of Breast and Thyroid Surgery, Taizhou Hospital of Zhejiang Province, Taizhou, China
| | - Xiaozhen Liu
- Cancer Center, Department of Breast Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Cong Chen
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Zhaoqing Li
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Yunlu Jia
- Department of Medical Oncology, First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Zhuazhua Wu
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Min Yang
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Yongshi Jia
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Linbo Wang
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Jichun Zhou
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Xuli Meng
- Cancer Center, Department of Breast Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
264
|
Gandhi VD, Cephus JY, Norlander AE, Chowdhury NU, Zhang J, Ceneviva ZJ, Tannous E, Polosukhin VV, Putz ND, Wickersham N, Singh A, Ware LB, Bastarache JA, Shaver CM, Chu HW, Peebles RS, Newcomb DC. Androgen receptor signaling promotes Treg suppressive function during allergic airway inflammation. J Clin Invest 2022; 132:e153397. [PMID: 35025767 PMCID: PMC8843736 DOI: 10.1172/jci153397] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 01/04/2022] [Indexed: 11/23/2022] Open
Abstract
Women have higher prevalence of asthma compared with men. In asthma, allergic airway inflammation is initiated by IL-33 signaling through ST2, leading to increased IL-4, IL-5, and IL-13 production and eosinophil infiltration. Foxp3+ Tregs suppress and ST2+ Tregs promote allergic airway inflammation. Clinical studies showed that the androgen dehydroepiandrosterone (DHEA) reduced asthma symptoms in patients, and mouse studies showed that androgen receptor (AR) signaling decreased allergic airway inflammation. Yet the impact of AR signaling on lung Tregs remains unclear. Using AR-deficient and Foxp3 fate-mapping mice, we determined that AR signaling increased Treg suppression during Alternaria extract (Alt Ext; allergen) challenge by stabilizing Foxp3+ Tregs and limiting the number of ST2+ ex-Tregs and IL-13+ Th2 cells and ex-Tregs. AR signaling also decreased Alt Ext-induced ST2+ Tregs in mice by limiting expression of Gata2, a transcription factor for ST2, and by decreasing Alt Ext-induced IL-33 production from murine airway epithelial cells. We confirmed our findings in human cells where 5α-dihydrotestosterone (DHT), an androgen, decreased IL-33-induced ST2 expression in lung Tregs and decreased Alt Ext-induced IL-33 secretion in human bronchial epithelial cells. Our findings showed that AR signaling stabilized Treg suppressive function, providing a mechanism for the sex difference in asthma.
Collapse
Affiliation(s)
| | | | | | - Nowrin U. Chowdhury
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | | | | | | | | | | | - Amrit Singh
- Prevention of Organ Failure (PROOF) Centre of Excellence, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | - Hong Wei Chu
- National Jewish Medical Center, Denver, Colorado, USA
| | - R. Stokes Peebles
- Department of Medicine and
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Dawn C. Newcomb
- Department of Medicine and
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
265
|
Sun Y, Wang P, Zhang Q, Wu H. CDK14/β-catenin/TCF4/miR-26b positive feedback regulation modulating pancreatic cancer cell phenotypes in vitro and tumor growth in mice model in vivo. J Gene Med 2022; 24:e3343. [PMID: 33871149 DOI: 10.1002/jgm.3343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 03/09/2021] [Accepted: 03/24/2021] [Indexed: 11/06/2022] Open
Abstract
INTRODUCTION Chemotherapy and radiotherapy have been reported to be basically ineffective for pancreatic ductal adenocarcinoma patients; thus, gene therapy might provide a novel approach. CDK14, a new oncogenic member of the CDK family involved in the pancreatic cancer cell response to gemcitabine treatment, has been reported to be regulated by microRNAs. In the present study, we aimed to investigate whether miR-26b regulated CDK14 expression to affect the phenotype of pancreatic cancer cells. METHODS Overexpression or knockdown of CDK14 or miR-26b was generated in pancreatic cancer cell lines and the function of CDK14 and miR-26b on cell phenotype and the Wnt signaling pathway was determined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, 5-ethynyl-2'-deoxyuridine and transwell assays, as well as a xenograft model and western blotting. The predicted binding site between the 3'-untranslated region of CDK14 and miR-26b, miR-26b promoter and TCF4 was verified by luciferase or chromatin immunoprecipitation assays. RESULTS CDK14 overexpression inhibited p-GSK3β, whereas it promoted p-LRP6, the nuclear translocation of β-catenin and the transactivation of TCF4 transcription factor, thus promoting pancreatic cancer cell aggressiveness. miR-26b directly targeted CDK14 and inhibited CDK14 expression. In vitro and in vivo, miR-26b overexpression inhibited, and CDK14 overexpression promoted, cancer cell aggressiveness; CDK14 overexpression partially attenuated the miR-26b overexpression effects on cancer cells. The effects of miR-26b overexpression on tumor growth and the Wnt/β-catenin/TCF4 signaling were partially reversed by CDK14 overexpression. TCF4 inhibited the expression of miR-26b by targeting its promoter region. CONCLUSIONS CDK14, β-catenin, TCF4 and miR-26b form a positive feedback regulation for modulating pancreatic cancer cell phenotypes in vitro and tumor growth in vivo.
Collapse
Affiliation(s)
- Yunpeng Sun
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Pengfei Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qiyu Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Huanhuan Wu
- Department of Post-anesthetic ICU, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
266
|
MAPK-mediated transcription factor GATAd contributes to Cry1Ac resistance in diamondback moth by reducing PxmALP expression. PLoS Genet 2022; 18:e1010037. [PMID: 35113858 PMCID: PMC8846524 DOI: 10.1371/journal.pgen.1010037] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/15/2022] [Accepted: 01/12/2022] [Indexed: 12/12/2022] Open
Abstract
The benefits of biopesticides and transgenic crops based on the insecticidal Cry-toxins from Bacillus thuringiensis (Bt) are considerably threatened by insect resistance evolution, thus, deciphering the molecular mechanisms underlying insect resistance to Bt products is of great significance to their sustainable utilization. Previously, we have demonstrated that the down-regulation of PxmALP in a strain of Plutella xylostella (L.) highly resistant to the Bt Cry1Ac toxin was due to a hormone-activated MAPK signaling pathway and contributed to the resistance phenotype. However, the underlying transcriptional regulatory mechanism remains enigmatic. Here, we report that the PxGATAd transcription factor (TF) is responsible for the differential expression of PxmALP observed between the Cry1Ac susceptible and resistant strains. We identified that PxGATAd directly activates PxmALP expression via interacting with a non-canonical but specific GATA-like cis-response element (CRE) located in the PxmALP promoter region. A six-nucleotide insertion mutation in this cis-acting element of the PxmALP promoter from the resistant strain resulted in repression of transcriptional activity, affecting the regulatory performance of PxGATAd. Furthermore, silencing of PxGATAd in susceptible larvae reduced the expression of PxmALP and susceptibility to Cry1Ac toxin. Suppressing PxMAP4K4 expression in the resistant larvae transiently recovered both the expression of PxGATAd and PxmALP, indicating that the PxGATAd is a positive responsive factor involved in the activation of PxmALP promoter and negatively regulated by the MAPK signaling pathway. Overall, this study deciphers an intricate regulatory mechanism of PxmALP gene expression and highlights the concurrent involvement of both trans-regulatory factors and cis-acting elements in Cry1Ac resistance development in lepidopteran insects. Gene expression and regulation are associated with adaptive evolution in living organisms. The rapid evolution of insect resistance to Bt insecticidal Cry toxins is frequently associated with reduced expression of diverse midgut genes that code for Cry-toxin receptors. Nonetheless, our current knowledge about the regulation of gene expression of these pivotal receptor genes in insects is limited. Membrane-bound alkaline phosphatase (mALP) is a known receptor for Cry1Ac toxin in diverse insects and here, we report the transcriptional regulatory mechanism of the PxmALP gene related to Cry1Ac resistance in P. xylostella. We identified a MAPK signaling pathway that negatively regulates the PxGATAd transcriptional factor which is involved in the differential expression of PxmALP via interacting with the PxmALP promoter. Furthermore, a cis-acting element mutation repressing the regulatory activity of PxGATAd for PxmALP expression in the Cry1Ac resistant strain was identified. Our study provides an insight into the precise transcriptional regulatory mechanism that regulates PxmALP expression and is involved in the evolution of Bt Cry1Ac resistance in P. xylostella, which provides a paradigm for decoding the regulation landscape of midgut Cry-toxin receptor genes in insects.
Collapse
|
267
|
Genetic Diversity of HPV 16 and HPV 18 Based on Partial Long Control Region in Iranian Women. CANADIAN JOURNAL OF INFECTIOUS DISEASES AND MEDICAL MICROBIOLOGY 2022; 2022:4759871. [PMID: 35126798 PMCID: PMC8808245 DOI: 10.1155/2022/4759871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/28/2021] [Accepted: 01/11/2022] [Indexed: 11/24/2022]
Abstract
Background Human papillomavirus (HPV) 16 and HPV 18 account for 75% of all cervical cancers. The L1 gene, encoding the major surface protein (MSP), is used to classify HPV types (lineages and sublineages), genotypes, and intratypic variants. Therefore, this study aimed to investigate the lineages, sublineages, genetic variabilities, and mutation effects on transcription factor binding sites by using partial sequences of the HPV 16 and HPV 18 long control regions (LCRs) in these samples. Materials and Methods After DNA isolation from 56 positive samples, the LCR of HPV 16 and HPV 18 were amplified using specific primers, and phylogenetic trees were drawn through MEGA X. Compared to the reference sequences, single nucleotide polymorphisms (SNPs) were identified. The transcription binding sites were also evaluated using the online PROMO database. Results The LCRs of 52 samples were successfully sequenced. Overall, 81.58% of all HPV 16 variants belonged to the D1 sublineage, followed by A4 (13.16%), A1 (2.63%), and C1 (2.63%) sublineages. All HPV 18 isolates belonged to A sublineage, 92.85% to A3 sublineage, and 7.15% to A4 sublineage. Out of 27 SNPs in the HPV 16 LCR, A7382T, T7384G, C7387T, C7393G, A7431G, T7448C, and C7783A were HPV 16-specific. Also, among 14 SNPs in the HPV 18 LCR, C7577A and A7943T were not previously reported. An insertion (C) between 7432 and 7433 positions was identified in all studied HPV 16 variants. Besides, most of the HPV 16 mutations were embedded in the YY1, TFIID, Oct-2, and NF-1 binding sites, while c-Fos and MBF1, as the most common binding sites, were affected by HPV 18 LCR mutations. Conclusion The present results showed that D1 and A3 were the dominant sublineages of HPV 16 and HPV 18, respectively. Therefore, women infected with these variants need to be examined in further longitudinal studies to obtain more information about the oncogenic potential of these dominant variants in Iran. Besides, YY1, TFIID, Oct-2, NF-1, c-Fos, and MBF1 were the most frequent binding sites, which were influenced by the mutations.
Collapse
|
268
|
Liu T, Zhou L, Xiao Y, Andl T, Zhang Y. BRAF Inhibitors Reprogram Cancer-Associated Fibroblasts to Drive Matrix Remodeling and Therapeutic Escape in Melanoma. Cancer Res 2022; 82:419-432. [DOI: 10.1158/0008-5472.can-21-0614] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 10/05/2021] [Accepted: 11/24/2021] [Indexed: 11/16/2022]
|
269
|
Hindle A, Bose C, Lee J, Palade PT, Peterson CJ, Reddy PH, Awasthi S, Singh SP. Rlip Depletion Alters Oncogene Transcription at Multiple Distinct Regulatory Levels. Cancers (Basel) 2022; 14:cancers14030527. [PMID: 35158795 PMCID: PMC8833773 DOI: 10.3390/cancers14030527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/07/2022] [Accepted: 01/15/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Rlip76 is a multifunctional membrane protein that facilitates cancer growth, and its depletion kills cancer cells. We recently found that Rlip depletion also results in broad changes to oncogene and tumor suppressor transcription. The present studies were designed to decipher the unknown downstream signaling pathways and transcriptional regulatory mechanisms driving the effect. Building on prior findings that Rlip depletion induces broad methylomic changes, we found using bioluminescence reporter assays that depletion of Rlip also exerts transcriptional control over several cancer genes through methylation-independent changes in transcription factor-mediated activation of their promoter regions and through additional as yet unidentified mechanisms. These findings have important implications for Rlip-targeted cancer therapy. Abstract Rlip76 (Rlip) is a multifunctional membrane protein that facilitates the high metabolic rates of cancer cells through the efflux of toxic metabolites and other functions. Rlip inhibition or depletion results in broad-spectrum anti-cancer effects in vitro and in vivo. Rlip depletion effectively suppresses malignancy and causes global reversion of characteristic CpG island methylomic and transcriptomic aberrations in the p53-null mouse model of spontaneous carcinogenesis through incompletely defined signaling and transcriptomic mechanisms. The methylome and transcriptome are normally regulated by the concerted actions of several mechanisms that include chromatin remodeling, promoter methylation, transcription factor interactions, and miRNAs. The present studies investigated the interaction of Rlip depletion or inhibition with the promoter methylation and transcription of selected cancer-related genes identified as being affected by Rlip depletion in our previous studies. We constructed novel promoter CpG island/luciferase reporter plasmids that respond only to CpG methylation and transcription factors. We found that Rlip depletion regulated expression by a transcription factor-based mechanism that functioned independently of promoter CpG methylation, lipid peroxidation, and p53 status.
Collapse
Affiliation(s)
- Ashly Hindle
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (A.H.); (C.B.); (J.L.); (C.J.P.); (P.H.R.)
| | - Chhanda Bose
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (A.H.); (C.B.); (J.L.); (C.J.P.); (P.H.R.)
| | - Jihyun Lee
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (A.H.); (C.B.); (J.L.); (C.J.P.); (P.H.R.)
- Division of Hematology & Oncology, Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Philip T. Palade
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| | - Christopher J. Peterson
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (A.H.); (C.B.); (J.L.); (C.J.P.); (P.H.R.)
| | - P. Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (A.H.); (C.B.); (J.L.); (C.J.P.); (P.H.R.)
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Department of Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Department of Speech, Language and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Sanjay Awasthi
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (A.H.); (C.B.); (J.L.); (C.J.P.); (P.H.R.)
- Division of Hematology & Oncology, Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- UMC Cancer Center, UMC Health System, Lubbock, TX 79415, USA
- Correspondence: (S.A.); (S.P.S.); Tel.: +1-806-743-3543 (S.A.); +1-806-743-1540 (S.P.S.)
| | - Sharda P. Singh
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (A.H.); (C.B.); (J.L.); (C.J.P.); (P.H.R.)
- Division of Hematology & Oncology, Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Correspondence: (S.A.); (S.P.S.); Tel.: +1-806-743-3543 (S.A.); +1-806-743-1540 (S.P.S.)
| |
Collapse
|
270
|
Xu Y, Wang D, Zhao G. Transcriptional activation of Proteasome 26S non-ATPase subunit 7 by forkhead box P3 participates in gastric cancer cell proliferation and apoptosis. Bioengineered 2022; 13:2525-2536. [PMID: 35037550 PMCID: PMC8974172 DOI: 10.1080/21655979.2021.2018097] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Proteasome 26S non-ATPase subunit 7 (PSMD7) and forkhead box P3 (FOXP3) have been found to be both upregulated in gastric cancer tissues. FOXP3 was also predicted to have binding sites on PSMD7 promoter. Thus, this study investigated the relationship between PSMD7 and FOXP3 and their roles in gastric cancer. Bioinformatic databases predicted PSMD7 expression in non-cancerous gastric tissue and gastric cancer tissue, as well as the correlation between PSMD7 and the overall/disease free survival. PSMD7 expression in non-cancerous gastric tissue or cells and gastric cancer tissue or cells was detected by qPCR and Western blot. After PSMD7 downregulation by siRNA interference, cell viability, colony-forming capacity and cell apoptosis were analyzed with cell counting kit-8 assay, colony formation assay and terminal deoxynucleotidyl transferasemediated dUTP nick end-labeling. Proliferation and apoptosis markers were assayed by qPCR and Western blot. Dual-luciferase reporter and chromatin immunoprecipitation assays were performed to look at the binding relationship between FOXP3 and PSMD7 promoter. Cell proliferation and apoptosis were examined again after co-transfection of PSMD7 siRNA plasmid and FOXP3 overexpression plasmid. PSMD7 expression was much higher in gastric cancer tissue and cell lines. Interference with PSMD7 decreased gastric cancer cell viability, inhibited their proliferation and colony formation and promoted cell apoptosis. FOXP3 was found to bind to PSMD7 promoter and activate PSMD7 expression. Overexpression of FOXP3 could rescue the effects of PSMD7 knockdown on gastric cancer cells. PSMD7 is involved in the proliferation and apoptosis of gastric cancer cells and can be transcriptionally regulated by FOXP3.
Collapse
Affiliation(s)
- Yujie Xu
- Department of Gastrointestinal Surgery, Haikou People's Hospital, Haikou, Hainan Province, China
| | - Dingmao Wang
- Department of Gastrointestinal Surgery, Haikou People's Hospital, Haikou, Hainan Province, China
| | - Guodong Zhao
- Department of Gastrointestinal Surgery, Haikou People's Hospital, Haikou, Hainan Province, China
| |
Collapse
|
271
|
Das R, Kundu S, Laskar S, Choudhury Y, Ghosh SK. In silico assessment of DNA damage response gene variants associated with head and neck cancer. J Biomol Struct Dyn 2022; 41:2090-2107. [PMID: 35037836 DOI: 10.1080/07391102.2022.2027817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Head and neck cancer (HNC), the sixth most common cancer globally, stands first in India, especially Northeast India, where tobacco usage is predominant, which introduces various carcinogens leading to malignancies by accumulating DNA damages. Consequently, the present work aimed to predict the impact of significant germline variants in DNA repair and Tumour Suppressor genes on HNC development. WES in Ion ProtonTM platform on 'discovery set' (n = 15), followed by recurrence assessment of the observed variants on 'confirmation set' (n = 40) using Sanger Sequencing was performed on the HNC-prevalent NE Indian populations. Initially, 53 variants were identified, of which seven HNC-linked DNA damage response gene variants were frequent in the studied populations. Different tools ascertained the biological consequences of these variants, of which the non-coding variants viz. EXO1_rs4150018, RAD52_rs6413436, CHD5_rs2746066, HACE1_rs6918700 showed risk, while FLT3_rs2491227 and BMPR1A_rs7074064 conferred protection against HNC by affecting transcriptional regulation and splicing mechanism. Molecular Dynamics Simulation of the full-length p53 model predicted that the observed coding TP53_rs1042522 variant conferred HNC-risk by altering the structural dynamics of the protein, which displayed difficulty in the transition between active and inactive conformations due to high-energy barrier. Subsequent pathway and gene ontology analysis revealed that EXO1, RAD52 and TP53 variants affected the Double-Strand Break Repair pathway, whereas CHD5 and HACE1 variants inactivated DNA repair cascade, facilitating uncontrolled cell proliferation, impaired apoptosis and malignant transformation. Conversely, FLT3 and BMPR1A variants protected against HNC by controlling tumorigenesis, which requires experimental validation. These findings may serve as prognostic markers for developing preventive measures against HNC.
Collapse
Affiliation(s)
- Raima Das
- Department of Biotechnology, Assam University, Silchar, India
| | - Sharbadeb Kundu
- Genome Science, School of Interdisciplinary Studies, University of Kalyani, Nadia, West India
| | - Shaheen Laskar
- Department of Biotechnology, Assam University, Silchar, India
| | | | | |
Collapse
|
272
|
Zhao J, Gao S, Guo Y, Xu Q, Liu M, Zhang C, Cheng M, Zhao X, Schinckel AP, Zhou B. Functionally Antagonistic Transcription Factors IRF1 and IRF2 Regulate the Transcription of the Dopamine Receptor D2 Gene Associated with Aggressive Behavior of Weaned Pigs. BIOLOGY 2022; 11:biology11010135. [PMID: 35053133 PMCID: PMC8773180 DOI: 10.3390/biology11010135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/08/2022] [Accepted: 01/12/2022] [Indexed: 11/16/2022]
Abstract
Aggressive behavior has negative effects on animal welfare and growth performance in pigs. The dopamine receptor D2 (DRD2) has a critical neuromodulator role in the dopamine signal pathway within the brain to control behavior. A functional single-nucleotide polymorphism (SNP), rs1110730503, in the promoter region of the porcine DRD2 gene was identified, which affects aggressive behavior in pigs. A chromatin immunoprecipitation (ChIP) assay was used to identify the interactions between interferon regulatory factor 1 (IRF1) and IRF2 with the DRD2 gene. The overexpression or knockdown of these two transcription factors in porcine kidney-15 (PK15) and porcine neuronal cells (PNCs) indicate that the binding of IRF1 to DRD2 promotes the transcription of the DRD2 gene, but the binding of IRF2 to the DRD2 gene inhibits its transcription. Furthermore, IRF1 and IRF2 are functionally antagonistic to each other. The downregulation of DRD2 or upregulation of IRF2 increased the apoptosis rate of porcine neuroglial cells. Taken together, we found that transcriptional factors IRF1 and IRF2 have vital roles in regulating the transcription of the DRD2 gene, and rs1110730503 (−915A/T) is a functional SNP that influences IRF2 binding to the promoter of the DRD2 gene. These findings will provide further insight towards controlling aggressive behavior in pigs.
Collapse
Affiliation(s)
- Jing Zhao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (J.Z.); (S.G.); (Y.G.); (Q.X.); (M.L.); (C.Z.); (M.C.); (X.Z.)
| | - Siyuan Gao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (J.Z.); (S.G.); (Y.G.); (Q.X.); (M.L.); (C.Z.); (M.C.); (X.Z.)
| | - Yanli Guo
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (J.Z.); (S.G.); (Y.G.); (Q.X.); (M.L.); (C.Z.); (M.C.); (X.Z.)
| | - Qinglei Xu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (J.Z.); (S.G.); (Y.G.); (Q.X.); (M.L.); (C.Z.); (M.C.); (X.Z.)
| | - Mingzheng Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (J.Z.); (S.G.); (Y.G.); (Q.X.); (M.L.); (C.Z.); (M.C.); (X.Z.)
| | - Chunlei Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (J.Z.); (S.G.); (Y.G.); (Q.X.); (M.L.); (C.Z.); (M.C.); (X.Z.)
| | - Meng Cheng
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (J.Z.); (S.G.); (Y.G.); (Q.X.); (M.L.); (C.Z.); (M.C.); (X.Z.)
| | - Xianle Zhao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (J.Z.); (S.G.); (Y.G.); (Q.X.); (M.L.); (C.Z.); (M.C.); (X.Z.)
| | - Allan P. Schinckel
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907-2054, USA;
| | - Bo Zhou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (J.Z.); (S.G.); (Y.G.); (Q.X.); (M.L.); (C.Z.); (M.C.); (X.Z.)
- Correspondence:
| |
Collapse
|
273
|
DNA Methylation Levels of the TBX5 Gene Promoter Are Associated with Congenital Septal Defects in Mexican Paediatric Patients. BIOLOGY 2022; 11:biology11010096. [PMID: 35053095 PMCID: PMC8773106 DOI: 10.3390/biology11010096] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/31/2021] [Accepted: 01/07/2022] [Indexed: 11/17/2022]
Abstract
The TBX5 gene regulates morphological changes during heart development, and it has been associated with epigenetic abnormalities observed in congenital heart defects (CHD). The aim of this research was to evaluate the association between DNA methylation levels of the TBX5 gene promoter and congenital septal defects. DNA methylation levels of six CpG sites in the TBX5 gene promoter were evaluated using pyrosequencing analysis in 35 patients with congenital septal defects and 48 controls. Average methylation levels were higher in individuals with congenital septal defects than in the controls (p < 0.004). In five CpG sites, we also found higher methylation levels in patients than in the controls (p < 0.05). High methylation levels were associated with congenital septal defects (OR = 3.91; 95% CI = 1.02–14.8; p = 0.045). The analysis of Receiver Operating Characteristic (ROC) showed that the methylation levels of the TBX5 gene could be used as a risk marker for congenital septal defects (AUC = 0.68, 95% CI = 0.56–0.80; p = 0.004). Finally, an analysis of environmental factors indicated that maternal infections increased the risk (OR = 2.90; 95% CI = 1.01–8.33; p = 0.048) of congenital septal defects. Our data suggest that a high DNA methylation of the TBX5 gene could be associated with congenital septal defects.
Collapse
|
274
|
Go AC, Civetta A. Divergence of X-linked trans regulatory proteins and the misexpression of gene targets in sterile Drosophila pseudoobscura hybrids. BMC Genomics 2022; 23:30. [PMID: 34991488 PMCID: PMC8740060 DOI: 10.1186/s12864-021-08267-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 12/20/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The genetic basis of hybrid incompatibilities is characterized by pervasive cases of gene interactions. Sex chromosomes play a major role in speciation and X-linked hybrid male sterility (HMS) genes have been identified. Interestingly, some of these genes code for proteins with DNA binding domains, suggesting a capability to act as trans-regulatory elements and disturb the expression of a large number of gene targets. To understand how interactions between trans- and cis-regulatory elements contribute to speciation, we aimed to map putative X-linked trans-regulatory elements and to identify gene targets with disrupted gene expression in sterile hybrids between the subspecies Drosophila pseudoobscura pseudoobscura and D. p. bogotana. RESULTS We find six putative trans-regulatory proteins within previously mapped X chromosome HMS loci with sequence changes that differentiate the two subspecies. Among them, the previously characterized HMS gene Overdrive (Ovd) had the largest number of amino acid changes between subspecies, with some substitutions localized within the protein's DNA binding domain. Using an introgression approach, we detected transcriptional responses associated with a sterility/fertility Ovd allele swap. We found a network of 52 targets of Ovd and identified cis-regulatory effects among target genes with disrupted expression in sterile hybrids. However, a combined analysis of polymorphism and divergence in non-coding sequences immediately upstream of target genes found no evidence of changes in candidate regulatory proximal cis-elements. Finally, peptidases were over-represented among target genes. CONCLUSIONS We provide evidence of divergence between subspecies within the DNA binding domain of the HMS protein Ovd and identify trans effects on the expression of 52 gene targets. Our results identify a network of trans-cis interactions with possible effects on HMS. This network provides molecular evidence of gene × gene incompatibilities as contributors to hybrid dysfunction.
Collapse
Affiliation(s)
- Alwyn C Go
- Department of Biology, University of Winnipeg, 515 Portage Ave, Winnipeg, MB, R3B 2E9, Canada
| | - Alberto Civetta
- Department of Biology, University of Winnipeg, 515 Portage Ave, Winnipeg, MB, R3B 2E9, Canada.
| |
Collapse
|
275
|
Lin Y, Zhang J, Li Y, Guo W, Chen L, Chen M, Chen X, Zhang W, Jin X, Jiang M, Xiao H, Wang C, Song C, Fu F. CTPS1 promotes malignant progression of triple-negative breast cancer with transcriptional activation by YBX1. J Transl Med 2022; 20:17. [PMID: 34991621 PMCID: PMC8734240 DOI: 10.1186/s12967-021-03206-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 12/17/2021] [Indexed: 01/18/2023] Open
Abstract
Background Cytidine nucleotide triphosphate synthase 1 (CTPS1) is a CTP synthase which play critical roles in DNA synthesis. However, its biological regulation and mechanism in triple-negative breast cancer (TNBC) has not been reported yet. Methods The expression of CTPS1 in TNBC tissues was determined by GEO, TCGA databases and immunohistochemistry (IHC). The effect of CTPS1 on TNBC cell proliferation, migration, invasion, apoptosis and tumorigenesis were explored in vivo and in vitro. In addition, the transcription factor Y-box binding protein 1 (YBX1) was identified by bioinformatics methods, dual luciferase reporter and chromatin immunoprecipitation (CHIP) assays. Pearson correlation analysis was utilized to assess the association between YBX1 and CTPS1 expression. Results CTPS1 expression was significantly upregulated in TNBC tissues and cell lines. Higher CTPS1 expression was correlated with a poorer disease-free survival (DFS) and overall survival (OS) in TNBC patients. Silencing of CTPS1 dramatically inhibited the proliferation, migration, invasion ability and induced apoptosis of MDA-MB-231 and HCC1937 cells. Xenograft tumor model also indicated that CTPS1 knockdown remarkably reduced tumor growth in mice. Mechanically, YBX1 could bind to the promoter of CTPS1 to promote its transcription. Furthermore, the expression of YBX1 was positively correlated with CTPS1 in TNBC tissues. Rescue experiments confirmed that the enhanced cell proliferation and invasion ability induced by YBX1 overexpression could be reversed by CTPS1 knockdown. Conclusion Our data demonstrate that YBX1/CTPS1 axis plays an important role in the progression of TNBC. CTPS1 might be a promising prognosis biomarker and potential therapeutic target for patients with triple-negative breast cancer. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-021-03206-5.
Collapse
Affiliation(s)
- Yuxiang Lin
- Department of Breast Surgery, Fujian Medical University Union Hospital, No.29, Xin Quan Road, Gulou District, Fuzhou, 350001, Fujian, China.,Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China.,Breast Cancer Institute, Fujian Medical University, Fuzhou, Fujian, China
| | - Jie Zhang
- Department of Breast Surgery, Fujian Medical University Union Hospital, No.29, Xin Quan Road, Gulou District, Fuzhou, 350001, Fujian, China.,Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China.,Breast Cancer Institute, Fujian Medical University, Fuzhou, Fujian, China
| | - Yan Li
- Department of Breast Surgery, Fujian Medical University Union Hospital, No.29, Xin Quan Road, Gulou District, Fuzhou, 350001, Fujian, China.,Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China.,Breast Cancer Institute, Fujian Medical University, Fuzhou, Fujian, China
| | - Wenhui Guo
- Department of Breast Surgery, Fujian Medical University Union Hospital, No.29, Xin Quan Road, Gulou District, Fuzhou, 350001, Fujian, China.,Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China.,Breast Cancer Institute, Fujian Medical University, Fuzhou, Fujian, China
| | - Lili Chen
- Department of Breast Surgery, Fujian Medical University Union Hospital, No.29, Xin Quan Road, Gulou District, Fuzhou, 350001, Fujian, China.,Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China.,Breast Cancer Institute, Fujian Medical University, Fuzhou, Fujian, China
| | - Minyan Chen
- Department of Breast Surgery, Fujian Medical University Union Hospital, No.29, Xin Quan Road, Gulou District, Fuzhou, 350001, Fujian, China.,Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China.,Breast Cancer Institute, Fujian Medical University, Fuzhou, Fujian, China
| | - Xiaobin Chen
- Department of Breast Surgery, Fujian Medical University Union Hospital, No.29, Xin Quan Road, Gulou District, Fuzhou, 350001, Fujian, China.,Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China.,Breast Cancer Institute, Fujian Medical University, Fuzhou, Fujian, China
| | - Wenzhe Zhang
- Department of Breast Surgery, Fujian Medical University Union Hospital, No.29, Xin Quan Road, Gulou District, Fuzhou, 350001, Fujian, China.,Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China.,Breast Cancer Institute, Fujian Medical University, Fuzhou, Fujian, China
| | - Xuan Jin
- Department of Breast Surgery, Fujian Medical University Union Hospital, No.29, Xin Quan Road, Gulou District, Fuzhou, 350001, Fujian, China.,Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China.,Breast Cancer Institute, Fujian Medical University, Fuzhou, Fujian, China
| | - Meichen Jiang
- Department of Pathology, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China
| | - Han Xiao
- Department of Pathology, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China
| | - Chuan Wang
- Department of Breast Surgery, Fujian Medical University Union Hospital, No.29, Xin Quan Road, Gulou District, Fuzhou, 350001, Fujian, China. .,Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China. .,Breast Cancer Institute, Fujian Medical University, Fuzhou, Fujian, China.
| | - Chuangui Song
- Department of Breast Surgery, Fujian Medical University Union Hospital, No.29, Xin Quan Road, Gulou District, Fuzhou, 350001, Fujian, China. .,Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China. .,Breast Cancer Institute, Fujian Medical University, Fuzhou, Fujian, China.
| | - Fangmeng Fu
- Department of Breast Surgery, Fujian Medical University Union Hospital, No.29, Xin Quan Road, Gulou District, Fuzhou, 350001, Fujian, China. .,Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China. .,Breast Cancer Institute, Fujian Medical University, Fuzhou, Fujian, China.
| |
Collapse
|
276
|
He J, Wang J, Li T, Chen K, Li S, Zhang S. SIPL1, Regulated by MAZ, Promotes Tumor Progression and Predicts Poor Survival in Human Triple-Negative Breast Cancer. Front Oncol 2022; 11:766790. [PMID: 34976812 PMCID: PMC8718759 DOI: 10.3389/fonc.2021.766790] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 12/02/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer owing to a lack of effective targeted therapy and acquired chemoresistance. Here, we explored the function and mechanism of shank-interacting protein-like 1 (SIPL1) in TNBC progression. METHODS SIPL1 expression was examined in human TNBC tissues and cell lines by quantitative reverse transcription PCR, western blot, and immunohistochemistry. SIPL1 overexpression and silenced cell lines were established in BT-549 and MDA-MB-231 cells. The biological functions of SIPL1 in TNBC were studied in vitro using the CCK-8 assay, CellTiter-Glo Luminescent Cell Viability assay, caspase-3/8/9 assay, wound healing assay, and transwell assay and in vivo using a nude mouse model. The potential mechanisms underlying the effects of SIPL1 on TNBC progression were explored using bioinformatics analysis, luciferase reporter assays, and chromatin immunoprecipitation followed by qPCR. RESULTS SIPL1 expression was higher in human TNBC tissues and cell lines than in adjacent normal tissues and a breast epithelial cell line (MCF10A). High expression of SIPL1 was positively correlated with poor overall and disease-free survival in patients with TNBC. SIPL1 overexpression elevated and SIPL1 silencing repressed the malignant phenotypes of TNBC cells in vitro. SIPL1 overexpression promoted xenograft tumor growth in vivo. Myc-associated zinc-finger protein (MAZ) transcriptionally activated SIPL1. Finally, we found that SIPL1 promoted TNBC malignant phenotypes via activation of the AKT/NF-κB signaling pathways. CONCLUSIONS These results indicate that the MAZ/SIPL1/AKT/NF-κB axis plays a crucial role in promoting the malignant phenotypes of TNBC cells.
Collapse
Affiliation(s)
- Juanjuan He
- Department of Breast Surgery, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Jing Wang
- Department of Breast Surgery, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Teng Li
- Department of Urology Surgery, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Kunlun Chen
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Songchao Li
- Department of Urology Surgery, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Shaojin Zhang
- Department of Urology Surgery, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
277
|
Relation of serum IL-32 levels and gene polymorphism rs45499297 with obesity in Mexican patients: a laboratory and in silico analysis. NUTR HOSP 2022; 39:313-319. [DOI: 10.20960/nh.03804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
278
|
Vini R, Rajavelu A, Sreeharshan S. 27-Hydroxycholesterol, The Estrogen Receptor Modulator, Alters DNA Methylation in Breast Cancer. Front Endocrinol (Lausanne) 2022; 13:783823. [PMID: 35360070 PMCID: PMC8961300 DOI: 10.3389/fendo.2022.783823] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 01/13/2022] [Indexed: 01/01/2023] Open
Abstract
27-hydroxycholesterol (27-HC) is the first known endogenous selective estrogen receptor modulator (SERM), and its elevation from normal levels is closely associated with breast cancer. A plethora of evidence suggests that aberrant epigenetic signatures in breast cancer cells can result in differential responses to various chemotherapeutics and often leads to the development of resistant cancer cells. Such aberrant epigenetic changes are mostly dictated by the microenvironment. The local concentration of oxygen and metabolites in the microenvironment of breast cancer are known to influence the development of breast cancer. Hence, we hypothesized that 27-HC, an oxysterol, which has been shown to induce breast cancer progression via estrogen receptor alpha (ERα) and liver X receptor (LXR) and by modulating immune cells, may also induce epigenetic changes. For deciphering the same, we treated the estrogen receptor-positive cells with 27-HC and identified DNA hypermethylation on a subset of genes by performing DNA bisulfite sequencing. The genes that showed significant DNA hypermethylation were phosphatidylserine synthase 2 (PTDSS2), MIR613, indoleamine 2,3-dioxygenase 1 (IDO1), thyroid hormone receptor alpha (THRA), dystrotelin (DTYN), and mesoderm induction early response 1, family member 3 (MIER). Furthermore, we found that 27-HC weakens the DNMT3B association with the ERα in MCF-7 cells. This study reports that 27-HC induces aberrant DNA methylation changes on the promoters of a subset of genes through modulation of ERα and DNMT3B complexes to induce the local DNA methylation changes, which may dictate drug responses and breast cancer development.
Collapse
Affiliation(s)
- Ravindran Vini
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, India
| | - Arumugam Rajavelu
- Pathogen Biology, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, India
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology, Chennai, India
- *Correspondence: Arumugam Rajavelu, ; Sreeja Sreeharshan,
| | - Sreeja Sreeharshan
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, India
- *Correspondence: Arumugam Rajavelu, ; Sreeja Sreeharshan,
| |
Collapse
|
279
|
Lee YH, Chang YS, Hsieh CC, Wang RT, Chang JG, Chen CJ, Chang SJ. APOE and KLF14 genetic variants are sex-specific for low high-density lipoprotein cholesterol identified by a genome-wide association study. Genet Mol Biol 2022; 45:e20210280. [PMID: 35238325 PMCID: PMC8892272 DOI: 10.1590/1678-4685-gmb-2021-0280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 12/28/2021] [Indexed: 11/22/2022] Open
|
280
|
Chen TY, Li X, Goobie GC, Hung CH, Hung TK, Hamilton K, Bahudhanapati H, Tan J, Kass DJ, Zhang Y. Identification of a distal RXFP1 gene enhancer with differential activity in fibrotic lung fibroblasts involving AP-1. PLoS One 2022; 16:e0254466. [PMID: 34972106 PMCID: PMC8719731 DOI: 10.1371/journal.pone.0254466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 12/13/2021] [Indexed: 12/29/2022] Open
Abstract
Relaxin/insulin-like family peptide receptor 1 (RXFP1) mediates relaxin’s antifibrotic effects and has reduced expression in the lung and skin of patients with fibrotic interstitial lung disease (fILD) including idiopathic pulmonary fibrosis (IPF) and systemic sclerosis (SSc). This may explain the failure of relaxin-based anti-fibrotic treatments in SSc, but the regulatory mechanisms controlling RXFP1 expression remain largely unknown. This study aimed to identify regulatory elements of RXFP1 that may function differentially in fibrotic fibroblasts. We identified and evaluated a distal regulatory region of RXFP1 in lung fibroblasts using a luciferase reporter system. Using serial deletions, an enhancer upregulating pGL3-promoter activity was localized to the distal region between -584 to -242bp from the distal transcription start site (TSS). This enhancer exhibited reduced activity in IPF and SSc lung fibroblasts. Bioinformatic analysis identified two clusters of activator protein 1 (AP-1) transcription factor binding sites within the enhancer. Site-directed mutagenesis of the binding sites confirmed that only one cluster reduced activity (-358 to -353 relative to distal TSS). Co-expression of FOS in lung fibroblasts further increased enhancer activity. In vitro complex formation with a labeled probe spanning the functional AP-1 site using nuclear proteins isolated from lung fibroblasts confirmed a specific DNA/protein complex formation. Application of antibodies against JUN and FOS resulted in the complex alteration, while antibodies to JUNB and FOSL1 did not. Analysis of AP-1 binding in 5 pairs of control and IPF lung fibroblasts detected positive binding more frequently in control fibroblasts. Expression of JUN and FOS was reduced and correlated positively with RXFP1 expression in IPF lungs. In conclusion, we identified a distal enhancer of RXFP1 with differential activity in fibrotic lung fibroblasts involving AP-1 transcription factors. Our study provides insight into RXFP1 downregulation in fILD and may support efforts to reevaluate relaxin-based therapeutics alongside upregulation of RXFP1 transcription.
Collapse
Affiliation(s)
- Ting-Yun Chen
- Division of Pulmonary, Allergy and Critical Care Medicine and The Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh, Pittsburgh, PA, United States of America
- Institute of Allied Health Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Xiaoyun Li
- Division of Pulmonary, Allergy and Critical Care Medicine and The Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Gillian C. Goobie
- Division of Pulmonary, Allergy and Critical Care Medicine and The Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh, Pittsburgh, PA, United States of America
- Department of Medicine, Clinician Investigator Program, University of British Columbia, Vancouver, B.C., Canada
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Ching-Hsia Hung
- Institute of Allied Health Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Tin-Kan Hung
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Kyle Hamilton
- Division of Pulmonary, Allergy and Critical Care Medicine and The Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Harinath Bahudhanapati
- Division of Pulmonary, Allergy and Critical Care Medicine and The Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Jiangning Tan
- Division of Pulmonary, Allergy and Critical Care Medicine and The Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Daniel J. Kass
- Division of Pulmonary, Allergy and Critical Care Medicine and The Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Yingze Zhang
- Division of Pulmonary, Allergy and Critical Care Medicine and The Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh, Pittsburgh, PA, United States of America
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States of America
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, United States of America
- * E-mail:
| |
Collapse
|
281
|
Racca JD, Chatterjee D, Chen YS, Rai RK, Yang Y, Georgiadis MM, Haas E, Weiss MA. Tenuous transcriptional threshold of human sex determination. II. SRY exploits water-mediated clamp at the edge of ambiguity. Front Endocrinol (Lausanne) 2022; 13:1029177. [PMID: 36568077 PMCID: PMC9771472 DOI: 10.3389/fendo.2022.1029177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/07/2022] [Indexed: 12/03/2022] Open
Abstract
Y-encoded transcription factor SRY initiates male differentiation in therian mammals. This factor contains a high-mobility-group (HMG) box, which mediates sequence-specific DNA binding with sharp DNA bending. A companion article in this issue described sex-reversal mutations at box position 72 (residue 127 in human SRY), invariant as Tyr among mammalian orthologs. Although not contacting DNA, the aromatic ring seals the domain's minor wing at a solvent-exposed junction with a basic tail. A seeming paradox was posed by the native-like biochemical properties of inherited Swyer variant Y72F: its near-native gene-regulatory activity is consistent with the father's male development, but at odds with the daughter's XY female somatic phenotype. Surprisingly, aromatic rings (Y72, F72 or W72) confer higher transcriptional activity than do basic or polar side chains generally observed at solvated DNA interfaces (Arg, Lys, His or Gln). Whereas biophysical studies (time-resolved fluorescence resonance energy transfer and heteronuclear NMR spectroscopy) uncovered only subtle perturbations, dissociation of the Y72F complex was markedly accelerated relative to wild-type. Studies of protein-DNA solvation by molecular-dynamics (MD) simulations of an homologous high-resolution crystal structure (SOX18) suggest that Y72 para-OH anchors a network of water molecules at the tail-DNA interface, perturbed in the variant in association with nonlocal conformational fluctuations. Loss of the Y72 anchor among SRY variants presumably "unclamps" its basic tail, leading to (a) rapid DNA dissociation despite native affinity and (b) attenuated transcriptional activity at the edge of sexual ambiguity. Conservation of Y72 suggests that this water-mediated clamp operates generally among SRY and metazoan SOX domains.
Collapse
Affiliation(s)
- Joseph D. Racca
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
- *Correspondence: Joseph D. Racca, ; Michael A. Weiss,
| | - Deepak Chatterjee
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Yen-Shan Chen
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Ratan K. Rai
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Yanwu Yang
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Millie M. Georgiadis
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Elisha Haas
- Faculty of Life Sciences, Bar Ilan University, Ramat Gan, Israel
| | - Michael A. Weiss
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
- *Correspondence: Joseph D. Racca, ; Michael A. Weiss,
| |
Collapse
|
282
|
Associations of Single-Nucleotide Polymorphisms in Slovenian Patients with Acute Central Serous Chorioretinopathy. Genes (Basel) 2021; 13:genes13010055. [PMID: 35052395 PMCID: PMC8774639 DOI: 10.3390/genes13010055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/15/2021] [Accepted: 12/22/2021] [Indexed: 11/17/2022] Open
Abstract
Central serous chorioretinopathy (CSC) is a chorioretinal disease that usually affects the middle-aged population and is characterised by a thickened choroid, retinal pigment epithelium detachment, and subretinal fluid with a tendency towards spontaneous resolution. We investigated 13 single-nucleotide polymorphisms (SNPs) in 50 Slovenian acute CSC patients and 71 healthy controls in Complement Factor H (CFH), Nuclear Receptor Subfamily 3 Group C Member 2 (NR3C2), Cadherin 5 (CDH5) Age-Related Maculopathy Susceptibility 2 (ARMS2), TNF Receptor Superfamily Member 10a (TNFRSF10A), collagen IV alpha 3 (COL4A3) and collagen IV alpha 4 (COL4A4) genes using high-resolution melt analysis. Statistical calculations revealed significant differences in genotype frequencies for CFH rs1329428 (p = 0.042) between investigated groups and an increased risk for CSC in patients with TC (p = 0.040) and TT (p = 0.034) genotype. Genotype–phenotype correlation analysis revealed that CSC patients with CC genotype in CFH rs3753394 showed a higher tendency for spontaneous CSC episode resolution at 3 months from the disease onset (p = 0.0078), which could indicate clinical significance of SNP testing in CSC patients. Bioinformatics analysis of the non-coding polymorphisms showed alterations in transcription factor binding motifs for CFH rs3753394, CDH5 rs7499886 and TNFRSF10A rs13278062. No association of collagen IV polymorphisms with CSC was found in this study.
Collapse
|
283
|
Genome-Wide Characterization of Zebrafish Endogenous Retroviruses Reveals Unexpected Diversity in Genetic Organizations and Functional Potentials. Microbiol Spectr 2021; 9:e0225421. [PMID: 34908463 PMCID: PMC8672886 DOI: 10.1128/spectrum.02254-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Endogenous retroviruses (ERVs) occupy a substantial fraction of mammalian genomes. However, whether ERVs extensively exist in ancient vertebrates remains unexplored. Here, we performed a genome-wide characterization of ERVs in a zebrafish (Danio rerio) model. Approximately 3,315 ERV-like elements (DrERVs) were identified as Gypsy, Copia, Bel, and class I−III groups. DrERVs accounted for approximately 2.3% of zebrafish genome and were distributed in all 25 chromosomes, with a remarkable bias on chromosome 4. Gypsy and class I are the two most abundant groups with earlier insertion times. The vast majority of the DrERVs have varied structural defects. A total of 509 gag and 71 env genes with coding potentials were detected. The env-coding elements were well-characterized and classified into four subgroups. A ERV-E4.8.43-DanRer element shows high similarity with HERV9NC-int in humans and analogous sequences were detected in species spanning from fish to mammals. RNA-seq data showed that hundreds of DrERVs were expressed in embryos and tissues under physiological conditions, and most of them exhibited stage and tissue specificity. Additionally, 421 DrERVs showed strong responsiveness to virus infection. A unique group of DrERVs with immune-relevant genes, such as fga, ddx41, ftr35, igl1c3, and tbk1, instead of intrinsic viral genes were identified. These DrERVs are regulated by transcriptional factors binding at the long terminal repeats. This study provided a survey of the composition, phylogeny, and potential functions of ERVs in a fish model, which benefits the understanding of the evolutionary history of ERVs from fish to mammals. IMPORTANCE Endogenous retroviruses (ERVs) are relics of past infection that constitute up to 8% of the human genome. Understanding the genetic evolution of the ERV family and the interplay of ERVs and encoded RNAs and proteins with host function has become a new frontier in biology. Fish, as the most primitive vertebrate host for retroviruses, is an indispensable integral part for such investigations. In the present study, we report the genome-wide characterization of ERVs in zebrafish, an attractive model organism of ancient vertebrates from multiple perspectives, including composition, genomic organization, chromosome distribution, classification, phylogeny, insertion time, characterization of gag and env genes, and expression profiles in embryos and tissues. The result helps uncover the evolutionarily conserved and fish-specific ERVs, as well as the immune-relevant ERVs in response to virus infection. This study demonstrates the previously unrecognized abundance, diversification, and extensive activity of ERVs at the early stage of ERV evolution.
Collapse
|
284
|
De Roover A, Núñez AE, Cornelis FM, Cherifi C, Casas-Fraile L, Sermon A, Cailotto F, Lories RJ, Monteagudo S. Hypoxia induces DOT1L in articular cartilage to protect against osteoarthritis. JCI Insight 2021; 6:150451. [PMID: 34727094 PMCID: PMC8783684 DOI: 10.1172/jci.insight.150451] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 10/29/2021] [Indexed: 11/17/2022] Open
Abstract
Osteoarthritis is the most prevalent joint disease worldwide, and it is a leading source of pain and disability. To date, this disease lacks curative treatment, as underlying molecular mechanisms remain largely unknown. The histone methyltransferase DOT1L protects against osteoarthritis, and DOT1L-mediated H3K79 methylation is reduced in human and mouse osteoarthritic joints. Thus, restoring DOT1L function seems to be critical to preserve joint health. However, DOT1L-regulating molecules and networks remain elusive, in the joint and beyond. Here, we identified transcription factors and networks that regulate DOT1L gene expression using a potentially novel bioinformatics pipeline. Thereby, we unraveled a possibly undiscovered link between the hypoxia pathway and DOT1L. We provide evidence that hypoxia enhanced DOT1L expression and H3K79 methylation via hypoxia-inducible factor-1 α (HIF1A). Importantly, we demonstrate that DOT1L contributed to the protective effects of hypoxia in articular cartilage and osteoarthritis. Intra-articular treatment with a selective hypoxia mimetic in mice after surgical induction of osteoarthritis restored DOT1L function and stalled disease progression. Collectively, our data unravel a molecular mechanism that protects against osteoarthritis with hypoxia inducing DOT1L transcription in cartilage. Local treatment with a selective hypoxia mimetic in the joint restores DOT1L function and could be an attractive therapeutic strategy for osteoarthritis.
Collapse
Affiliation(s)
- Astrid De Roover
- Laboratory of Tissue Homeostasis and Disease, Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Ana Escribano Núñez
- Laboratory of Tissue Homeostasis and Disease, Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Frederique Mf Cornelis
- Laboratory of Tissue Homeostasis and Disease, Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Chahrazad Cherifi
- Laboratory of Tissue Homeostasis and Disease, Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Leire Casas-Fraile
- Laboratory of Tissue Homeostasis and Disease, Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - An Sermon
- Division of Trauma Surgery, University Hospitals Leuven, Leuven, Belgium.,Locomotor and Neurological Disorders Unit, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Frederic Cailotto
- UMR 7365 CNRS - University of Lorraine, Molecular Engineering and Articular Physiopathology, Biopôle, University of Lorraine, Campus Biologie-Santé, Vandoeuvre-Les-Nancy, France
| | - Rik J Lories
- Laboratory of Tissue Homeostasis and Disease, Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, Leuven, Belgium.,Division of Rheumatology, University Hospitals Leuven, Leuven, Belgium
| | - Silvia Monteagudo
- Laboratory of Tissue Homeostasis and Disease, Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| |
Collapse
|
285
|
NAPRT Expression Regulation Mechanisms: Novel Functions Predicted by a Bioinformatics Approach. Genes (Basel) 2021; 12:genes12122022. [PMID: 34946971 PMCID: PMC8700865 DOI: 10.3390/genes12122022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 12/13/2022] Open
Abstract
The nicotinate phosphoribosyltransferase (NAPRT) gene has gained relevance in the research of cancer therapeutic strategies due to its main role as a NAD biosynthetic enzyme. NAD metabolism is an attractive target for the development of anti-cancer therapies, given the high energy requirements of proliferating cancer cells and NAD-dependent signaling. A few studies have shown that NAPRT expression varies in different cancer types, making it imperative to assess NAPRT expression and functionality status prior to the application of therapeutic strategies targeting NAD. In addition, the recent finding of NAPRT extracellular form (eNAPRT) suggested the involvement of NAPRT in inflammation and signaling. However, the mechanisms regulating NAPRT gene expression have never been thoroughly addressed. In this study, we searched for NAPRT gene expression regulatory mechanisms in transcription factors (TFs), RNA binding proteins (RBPs) and microRNA (miRNAs) databases. We identified several potential regulators of NAPRT transcription activation, downregulation and alternative splicing and performed GO and expression analyses. The results of the functional analysis of TFs, RBPs and miRNAs suggest new, unexpected functions for the NAPRT gene in cell differentiation, development and neuronal biology.
Collapse
|
286
|
Kaminker JD, Timoshenko AV. Expression, Regulation, and Functions of the Galectin-16 Gene in Human Cells and Tissues. Biomolecules 2021; 11:1909. [PMID: 34944551 PMCID: PMC8699332 DOI: 10.3390/biom11121909] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 12/11/2022] Open
Abstract
Galectins comprise a family of soluble β-galactoside-binding proteins, which regulate a variety of key biological processes including cell growth, differentiation, survival, and death. This paper aims to address the current knowledge on the unique properties, regulation, and expression of the galectin-16 gene (LGALS16) in human cells and tissues. To date, there are limited studies on this galectin, with most focusing on its tissue specificity to the placenta. Here, we report the expression and 8-Br-cAMP-induced upregulation of LGALS16 in two placental cell lines (BeWo and JEG-3) in the context of trophoblastic differentiation. In addition, we provide the results of a bioinformatics search for LGALS16 using datasets available at GEO, Human Protein Atlas, and prediction tools for relevant transcription factors and miRNAs. Our findings indicate that LGALS16 is detected by microarrays in diverse human cells/tissues and alters expression in association with cancer, diabetes, and brain diseases. Molecular mechanisms of the transcriptional and post-transcriptional regulation of LGALS16 are also discussed based on the available bioinformatics resources.
Collapse
|
287
|
Traets JJ, van der Burght SN, Rademakers S, Jansen G, van Zon JS. Mechanism of life-long maintenance of neuron identity despite molecular fluctuations. eLife 2021; 10:66955. [PMID: 34908528 PMCID: PMC8735970 DOI: 10.7554/elife.66955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 12/14/2021] [Indexed: 11/13/2022] Open
Abstract
Cell fate is maintained over long timescales, yet molecular fluctuations can lead to spontaneous loss of this differentiated state. Our simulations identified a possible mechanism that explains life-long maintenance of ASE neuron fate in Caenorhabditis elegans by the terminal selector transcription factor CHE-1. Here, fluctuations in CHE-1 level are buffered by the reservoir of CHE-1 bound at its target promoters, which ensures continued che-1 expression by preferentially binding the che-1 promoter. We provide experimental evidence for this mechanism by showing that che-1 expression was resilient to induced transient CHE-1 depletion, while both expression of CHE-1 targets and ASE function were lost. We identified a 130 bp che-1 promoter fragment responsible for this resilience, with deletion of a homeodomain binding site in this fragment causing stochastic loss of ASE identity long after its determination. Because network architectures that support this mechanism are highly conserved in cell differentiation, it may explain stable cell fate maintenance in many systems.
Collapse
Affiliation(s)
| | | | | | - Gert Jansen
- Department of Cell Biology, Erasmus MC, Rotterdam, Netherlands
| | - Jeroen S van Zon
- Quantitative Developmental Biology, AMOLF, Amsterdam, Netherlands
| |
Collapse
|
288
|
Velásquez MM, Gómez-Maquet Y, Ferro E, Cárdenas W, González-Nieves S, Lattig MC. Multidimensional Analysis of Major Depression: Association Between BDNF Methylation, Psychosocial and Cognitive Domains. Front Psychiatry 2021; 12:768680. [PMID: 34970165 PMCID: PMC8712447 DOI: 10.3389/fpsyt.2021.768680] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/22/2021] [Indexed: 11/29/2022] Open
Abstract
Major Depression is a complex disorder with a growing incidence worldwide and multiple variables have been associated with its etiology. Nonetheless, its diagnosis is continually changing and the need to understand it from a multidimensional perspective is clear. The purpose of this study was to identify risk factors for depression in a case-control study with 100 depressive inpatients and 87 healthy controls. A multivariate logistic regression analysis was performed including psychosocial factors, cognitive maladaptive schema domains, and specific epigenetic marks (BDNF methylation levels at five CpG sites in promoter IV). A family history of depression, the cognitive schemas of impaired autonomy/performance, impaired limits, other-directedness, and the methylation level of a specific CpG site were identified as predictors. Interestingly, we found a mediating effect of those cognitive schemas in the relationship between childhood maltreatment and depression. Also, we found that depressive patients exhibited hypomethylation in a CpG site of BDNF promoter IV, which adds to the current discussion about the role of methylation in depression. We highlight that determining the methylation of a specific region of a single gene offers the possibility of accessing a highly informative an easily measurable variable, which represents benefits for diagnosis. Following complete replication and validation on larger samples, models like ours could be applicable as additional diagnostic tools in the clinical context.
Collapse
Affiliation(s)
- María Marcela Velásquez
- Centro de Investigaciones Genéticas en Enfermedades Humanas, Departamento de Ciencias Biológicas, Universidad de los Andes, Bogotá, Colombia
| | | | - Eugenio Ferro
- Instituto Colombiano del Sistema Nervioso, Clínica Montserrat, Bogotá, Colombia
| | - Wilmer Cárdenas
- Centro de Investigaciones Genéticas en Enfermedades Humanas, Departamento de Ciencias Biológicas, Universidad de los Andes, Bogotá, Colombia
| | - Silvia González-Nieves
- Centro de Investigaciones Genéticas en Enfermedades Humanas, Departamento de Ciencias Biológicas, Universidad de los Andes, Bogotá, Colombia
| | - María Claudia Lattig
- Centro de Investigaciones Genéticas en Enfermedades Humanas, Departamento de Ciencias Biológicas, Universidad de los Andes, Bogotá, Colombia
- SIGEN alianza Universidad de los Andes – Fundación Santa Fe de Bogotá, Bogotá, Colombia
| |
Collapse
|
289
|
Whole exome sequencing identifies the potential role of genes involved in p53 pathway in Nasopharyngeal Carcinoma from Northeast India. Gene 2021; 812:146099. [PMID: 34906645 DOI: 10.1016/j.gene.2021.146099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 10/06/2021] [Accepted: 11/16/2021] [Indexed: 11/21/2022]
Abstract
Nasopharyngeal Carcinoma (NPC) found to be dependent on geographical and racial variation and is more prevalent in Northeast (NE) India. WES-based study was conducted in three states (tribes); Nagaland (Naga), Mizoram (Mizo) and Manipur (Manipuri), which provided an overview of germline variants involved inthemajor signaling pathways. Validation and recurrence assessment of WES data confirmed the risk effect of STEAP3_rs138941861 and JAG1_rs2273059, and the protective role of PARP4_rs17080653 and TGFBR1_rs11568778 variants, where STEAP3_rs138941861conferring Arg290His substitution was the only exonic non-synonymous variant and to be located in proximity to the linking region between the transmembrane and oxidoreductasedomainsof STEAP3 protein, andaffectedits structural and functional dynamics by altering the Electrostatic Potential around this connecting region. Moreover, these significantly associated variants having deleterious effect were observed to have interactions in p53 signaling pathway which emphasizes the importance of this pathway in the causation of NPC.
Collapse
|
290
|
Jamali L, Sadeghi H, Ghasemi MR, Mohseni R, Nazemalhosseini-Mojarad E, Yassaee VR, Larki P, Zali MR, Mirfakhraie R. Autophagy ATG16L1 rs2241880 impacts the colorectal cancer risk: A case-control study. J Clin Lab Anal 2021; 36:e24169. [PMID: 34894411 PMCID: PMC8761398 DOI: 10.1002/jcla.24169] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 11/29/2022] Open
Abstract
Background Despite many efforts to discover the important role of the autophagy process in the pathogenesis of colorectal cancer (CRC), the exact involved molecular mechanism still remains to be elucidated. Recently, a limited number of studies have been employed to discover the impact of autophagy genes’ variants on the development and progression of CRC. Here, we evaluated the association between two single‐nucleotide polymorphisms (SNPs) in the main components of the autophagy genes, ATG16L1 rs2241880, and ATG5 rs1475270, and the CRC risk in an Iranian population. Methods During this investigation, a total of 369 subjects, including 179 CRC patients and 190 non‐cancer controls have been genotyped using Tetra‐primer amplification refractory mutation system‐polymerase chain reaction (TP‐ARMS‐PCR) method. Result The results demonstrated that the T allele of the ATG16L1 rs2241880 was significantly associated with the increased risk of CRC in the studied population (OR 1.64, 95% CI: 1.21–2.22, p = 0.0015). Moreover, ATG16L1 rs2241880 TT genotype increased the susceptibility to CRC (OR 3.31, 95% CI: 1.64–6.69, p = 0.0008). Furthermore, a significant association was observed under the recessive and dominant inheritance models (p = 0.0015 and p = 0.017, respectively). No statistically significant differences were found in the ATG5 rs1475270 alleles and genotypes between the cases and controls. Conclusion The results of the present study may be helpful concerning the risk stratification in CRC patients based on the genotyping approach of autophagy pathways and emphasize the need for further investigations among different populations and ethnicities to refine our conclusions.
Collapse
Affiliation(s)
- Leila Jamali
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Sadeghi
- Genomic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad-Reza Ghasemi
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Roohollah Mohseni
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Ehsan Nazemalhosseini-Mojarad
- Department of Gastrointestinal Cancer, Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vahid Reza Yassaee
- Genomic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Pegah Larki
- Genomic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Department of Gastrointestinal Cancer, Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Mirfakhraie
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
291
|
Thiel W, Esposito EJ, Findley AP, Blume ZI, Mitchell DM. Modulation of retinoid-X-receptors differentially regulates expression of apolipoprotein genes apoc1 and apoeb by zebrafish microglia. Biol Open 2021; 11:273656. [PMID: 34878094 PMCID: PMC8822359 DOI: 10.1242/bio.058990] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 11/30/2021] [Indexed: 11/20/2022] Open
Abstract
Transcriptome analyses performed in both human and zebrafish indicate strong expression of Apoe and Apoc1 by microglia. Apoe expression by microglia is well appreciated, but Apoc1 expression has not been well-examined. PPAR/RXR and LXR/RXR receptors appear to regulate expression of the apolipoprotein gene cluster in macrophages, but a similar role in microglia in vivo has not been studied. Here, we characterized microglial expression of apoc1 in the zebrafish central nervous system (CNS) in situ and demonstrate that in the CNS, apoc1 expression is unique to microglia. We then examined the effects of PPAR/RXR and LXR/RXR modulation on microglial expression of apoc1 and apoeb during early CNS development using a pharmacological approach. Changes in apoc1 and apoeb transcripts in response to pharmacological modulation were quantified by RT-qPCR in whole heads, and in individual microglia using hybridization chain reaction (HCR) in situ hybridization. We found that expression of apoc1 and apoeb by microglia were differentially regulated by LXR/RXR and PPAR/RXR modulating compounds, respectively, during development. Our results also suggest RXR receptors could be involved in endogenous induction of apoc1 expression by microglia. Collectively, our work supports the use of zebrafish to better understand regulation and function of these apolipoproteins in the CNS. Summary: Here we investigate expression of two apolipoprotein genes by microglia in the zebrafish model during normal development, and in contexts of pharmacological manipulations that target candidate regulatory receptors.
Collapse
Affiliation(s)
- Whitney Thiel
- Biological Sciences, University of Idaho, Moscow, ID 83844, Russia
| | - Emma J Esposito
- Biological Sciences, University of Idaho, Moscow, ID 83844, Russia
| | - Anna P Findley
- Biological Sciences, University of Idaho, Moscow, ID 83844, Russia
| | - Zachary I Blume
- Biological Sciences, University of Idaho, Moscow, ID 83844, Russia
| | - Diana M Mitchell
- Biological Sciences, University of Idaho, Moscow, ID 83844, Russia
| |
Collapse
|
292
|
Zhang J, Chen W, Ma W, Song K, Lee S, Han C, Wu T. Epigenetic Silencing of 15-Hydroxyprostaglandin Dehydrogenase by Histone Methyltransferase EHMT2/G9a in Cholangiocarcinoma. Mol Cancer Res 2021; 20:350-360. [PMID: 34880125 DOI: 10.1158/1541-7786.mcr-21-0536] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 11/12/2021] [Accepted: 12/03/2021] [Indexed: 11/16/2022]
Abstract
Cholangiocarcinoma (CCA) is a lethal malignancy with few therapeutic options. NAD+-dependent 15-hydroxyprostaglandin dehydrogenase (15-PGDH) has been shown to inhibit CCA cell growth in vitro and in xenograft models. However, the role of 15-PGDH in CCA development has not been investigated and the mechanism for 15-PGDH gene regulation remains unclear. Here, we evaluated the role of 15-PGDH in CCA development by using a mouse model with hydrodynamic tail vein injection of transposase-based plasmids expressing Notch1 intracellular domain and myr-Akt, with or without co-injection of 15-PGDH expression plasmids. Our results reveal that 15-PGDH overexpression effectively prevents CCA development. Through patient data mining and experimental approaches, we provide novel evidences that 15-PGDH is epigenetically silenced by histone methyltransferase G9a. We observe that 15-PGDH and G9a expressions are inversely correlated in both human and mouse CCAs. By using CCA cells and mouse models, we show that G9a inhibition restores 15-PGDH expression and inhibited CCA in vitro and in vivo. Mechanistically, our data indicate that G9a is recruited to 15-PGDH gene promoter via protein-protein interaction with the E-box binding Myc/Max heterodimer. The recruited G9a then silences 15-PGDH gene through enhanced methylation of H3K9. Our further experiments have led to the identification of STAT4 as a key transcription factor involved in the regulation of 15-PGDH by G9a. Collectively, our findings disclose a novel G9a-15PGDH signaling axis which is importantly implicated in CCA development and progression. Implications: The current study describes a novel G9a-15PGDH signaling axis which is importantly implicated in cholangiocarcinoma (CCA) development and progression.
Collapse
Affiliation(s)
- Jinqiang Zhang
- Pathology and Laboratory Medicine, Tulane University School of Medicine
| | | | - Wenbo Ma
- Tulane University School of Medicine
| | - Kyoungsub Song
- Pathology and Laboratory Medicine, Tulane University School of Medicine
| | - Sean Lee
- Pathology and Laboratory Medicine, Tulane University School of Medicine
| | - Chang Han
- Pathology and Laboratory Medicine, Tulane University School of Medicine
| | - Tong Wu
- Pathology and Laboratory Medicine, Tulane University
| |
Collapse
|
293
|
Puri D, Koschorz B, Engist B, Onishi-Seebacher M, Ryan D, Soujanya M, Montavon T. Foxd3 controls heterochromatin-mediated repression of repeat elements and 2-cell state transcription. EMBO Rep 2021; 22:e53180. [PMID: 34605600 PMCID: PMC8647145 DOI: 10.15252/embr.202153180] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/18/2021] [Accepted: 09/14/2021] [Indexed: 11/17/2022] Open
Abstract
Repeat element transcription plays a vital role in early embryonic development. The expression of repeats such as MERVL characterises mouse embryos at the 2‐cell stage and defines a 2‐cell‐like cell (2CLC) population in a mouse embryonic stem cell culture. Repeat element sequences contain binding sites for numerous transcription factors. We identify the forkhead domain transcription factor FOXD3 as a regulator of major satellite repeats and MERVL transcription in mouse embryonic stem cells. FOXD3 binds to and recruits the histone methyltransferase SUV39H1 to MERVL and major satellite repeats, consequentially repressing the transcription of these repeats by the establishment of the H3K9me3 heterochromatin modification. Notably, depletion of FOXD3 leads to the de‐repression of MERVL and major satellite repeats as well as a subset of genes expressed in the 2‐cell state, shifting the balance between the stem cell and 2‐cell‐like population in culture. Thus, FOXD3 acts as a negative regulator of repeat transcription, ascribing a novel function to this transcription factor.
Collapse
Affiliation(s)
- Deepika Puri
- Department of Epigenetics, Max Planck Institute for Immunobiology and Epigenetics, Freiburg, Germany.,National Centre for Cell Science, Savitribai Phule Pune University, Pune, India
| | - Birgit Koschorz
- Department of Epigenetics, Max Planck Institute for Immunobiology and Epigenetics, Freiburg, Germany
| | - Bettina Engist
- Department of Epigenetics, Max Planck Institute for Immunobiology and Epigenetics, Freiburg, Germany
| | - Megumi Onishi-Seebacher
- Department of Epigenetics, Max Planck Institute for Immunobiology and Epigenetics, Freiburg, Germany
| | - Devon Ryan
- Department of Epigenetics, Max Planck Institute for Immunobiology and Epigenetics, Freiburg, Germany
| | | | - Thomas Montavon
- Department of Epigenetics, Max Planck Institute for Immunobiology and Epigenetics, Freiburg, Germany
| |
Collapse
|
294
|
Viraragavan A, Willmer T, Patel O, Basson A, Johnson R, Pheiffer C. Cafeteria diet induces global and Slc27a3-specific hypomethylation in male Wistar rats. Adipocyte 2021; 10:108-118. [PMID: 33570456 PMCID: PMC7889207 DOI: 10.1080/21623945.2021.1886697] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Increased visceral adipose tissue (VAT) is associated with metabolic dysfunction, while subcutaneous adipose tissue (SAT) is considered protective. The mechanisms underlying these differences are not fully elucidated. This study aimed to investigate molecular differences in VAT and SAT of male Wistar rats fed a cafeteria diet (CD) or a standard rodent diet (STD) for three months. The expression of fatty acid metabolism genes was analysed by quantitative real-time PCR. Global and gene-specific DNA methylation was quantified using the Imprint® Methylated DNA Quantification Kit and pyrosequencing, respectively. Bodyweight, retroperitoneal fat mass, insulin resistance, leptin and triglyceride concentrations and adipocyte hypertrophy were higher in CD- compared to STD-fed rats. The expression of solute carrier family 27 member 3 (Slc27a3), a fatty acid transporter, was 9.6-fold higher in VAT and 6.3-fold lower in SAT of CD- versus STD-fed rats. Taqman probes confirmed increased Slc27a3 expression, while pyrosequencing showed Slc27a3 hypomethylation in VAT of CD- compared to STD-fed rats. The CD decreased global methylation in both VAT and SAT, although no depot differences were observed. Dysregulated fatty acid influx in VAT, in response to a CD, provides insight into the mechanisms underlying depot-differences in adipose tissue expansion during obesity and metabolic disease. Abbreviations: CD: cafeteria diet; E2F1: E2F Transcription Factor 1; EMSA: electrophoretic mobility shift assay; EGFR: epidermal growth factor receptor; GCF: GC-Rich Sequence DNA-Binding Factor; HOMA-IR: Homeostasis model for insulin resistance; NKX2-1: NK2 homeobox 1; PCR: Polymerase chain reaction; qRT-PCR: quantitative real-time PCR; RF: retroperitoneal fat; SAT: subcutaneous adipose tissue; Slc27a3: solute carrier family 27 member 3; STD: standard diet; TNFα: tumour necrosis factor alpha; TTS: transcriptional start site; T2D: Type 2 Diabetes; VAT: visceral adipose tissue; WT1 I: Wilms’ tumour protein 1
Collapse
Affiliation(s)
- Amsha Viraragavan
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, South Africa
- Department of Biochemistry and Microbiology, University of Zululand, Kwa-Dlangezwa, South Africa
| | - Tarryn Willmer
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, South Africa
- Division of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Oelfah Patel
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, South Africa
- Division of Clinical Pharmacology, Department of Medicine, Faculty of Medicine and Health Sciences, University of Stellenbosch, Tygerberg, South Africa
| | - Albertus Basson
- Department of Biochemistry and Microbiology, University of Zululand, Kwa-Dlangezwa, South Africa
| | - Rabia Johnson
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, South Africa
- Division of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Carmen Pheiffer
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, South Africa
- Division of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, Tygerberg, South Africa
| |
Collapse
|
295
|
Payer LM, Steranka JP, Kryatova MS, Grillo G, Lupien M, Rocha PP, Burns KH. Alu insertion variants alter gene transcript levels. Genome Res 2021; 31:2236-2248. [PMID: 34799402 PMCID: PMC8647820 DOI: 10.1101/gr.261305.120] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 09/23/2021] [Indexed: 12/23/2022]
Abstract
Alu are high copy number interspersed repeats that have accumulated near genes during primate and human evolution. They are a pervasive source of structural variation in modern humans. Impacts that Alu insertions may have on gene expression are not well understood, although some have been associated with expression quantitative trait loci (eQTLs). Here, we directly test regulatory effects of polymorphic Alu insertions in isolation of other variants on the same haplotype. To screen insertion variants for those with such effects, we used ectopic luciferase reporter assays and evaluated 110 Alu insertion variants, including more than 40 with a potential role in disease risk. We observed a continuum of effects with significant outliers that up- or down-regulate luciferase activity. Using a series of reporter constructs, which included genomic context surrounding the Alu, we can distinguish between instances in which the Alu disrupts another regulator and those in which the Alu introduces new regulatory sequence. We next focused on three polymorphic Alu loci associated with breast cancer that display significant effects in the reporter assay. We used CRISPR to modify the endogenous sequences, establishing cell lines varying in the Alu genotype. Our findings indicate that Alu genotype can alter expression of genes implicated in cancer risk, including PTHLH, RANBP9, and MYC These data show that commonly occurring polymorphic Alu elements can alter transcript levels and potentially contribute to disease risk.
Collapse
Affiliation(s)
- Lindsay M Payer
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Jared P Steranka
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Maria S Kryatova
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Giacomo Grillo
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 1L7, Canada
| | - Mathieu Lupien
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 1L7, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
- Ontario Institute for Cancer Research, Toronto, Ontario M5G 0A3, Canada
| | - Pedro P Rocha
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland 20892-4340, USA
- National Cancer Institute, NIH, Bethesda, Maryland 20892, USA
| | - Kathleen H Burns
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
- McKusick-Nathans Institute of Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| |
Collapse
|
296
|
Bai Q, Lu Y, Chen Y, Zhang H, Zhang W, Wu H, Wen A. Endothelial METTL3 (Methyltransferase-Like 3) Inhibits Fibrinolysis by Promoting PAI-1 (Plasminogen Activator Inhibitor-1) Expression Through Enhancing Jun Proto-Oncogene N6-Methyladenosine Modification. Arterioscler Thromb Vasc Biol 2021; 41:2877-2889. [PMID: 34645279 PMCID: PMC8608005 DOI: 10.1161/atvbaha.121.316414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 09/23/2021] [Indexed: 11/16/2022]
Abstract
OBJECTIVE METTL3 (methyltransferase-like protein 3)-mediated N6-methyladenosine modification is the most abundant RNA modification on eukaryote mRNAs and plays a crucial role in diverse physiological and pathological processes. However, whether N6-methyladenosine modification has function in thrombosis is unknown. This study aims to determine the role of METTL3 in the endothelial cells-mediated thrombosis. Approach and Results: RNA-sequencing and real-time quantitative PCR revealed that the expression of PAI-1 (plasminogen activator inhibitor-1) was downregulated in METTL3 knockdown human umbilical vein endothelial cells. In vitro experiments showed that METTL3 suppressed fibrinolysis. Mechanically, RNA methylation sequencing and meRIP-quantitative real-time PCR showed that METTL3 catalyzed N6-methyladenosine modification on 3' UTR of JUN mRNA. Western blotting analysis showed that METTL3 promoted JUN protein expression. Chromatin immunoprecipitation analysis demonstrated that JUN bound to the PAI-1 promoter in human umbilical vein endothelial cells. Furthermore, mice challenged with lipopolysaccharide resulted in higher METTL3 expression in vessels. Endothelial-specific knockdown of Mettl3 decreased expression of active PAI-1 in plasma and attenuated fibrin deposition in livers and lungs during endotoxemia. CONCLUSIONS Our study reveals that METTL3-mediated N6-methyladenosine modification plays a crucial role in fibrinolysis and is an underlying target for the therapy of thrombotic disorders.
Collapse
Affiliation(s)
- Qin Bai
- Department of Blood Transfusion, Daping Hospital, Army Medical University, Chongqing, China
| | - Yao Lu
- Department of Blood Transfusion, Daping Hospital, Army Medical University, Chongqing, China
| | - Yanhua Chen
- Department of Blood Transfusion, Daping Hospital, Army Medical University, Chongqing, China
| | - Han Zhang
- Department of Blood Transfusion, Daping Hospital, Army Medical University, Chongqing, China
| | - Weiwei Zhang
- Department of Blood Transfusion, Daping Hospital, Army Medical University, Chongqing, China
| | - Huang Wu
- Department of Blood Transfusion, Daping Hospital, Army Medical University, Chongqing, China
| | - Aiqing Wen
- Department of Blood Transfusion, Daping Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
297
|
Bakusic J, Ghosh M, Polli A, Bekaert B, Schaufeli W, Claes S, Godderis L. Role of NR3C1 and SLC6A4 methylation in the HPA axis regulation in burnout. J Affect Disord 2021; 295:505-512. [PMID: 34509065 DOI: 10.1016/j.jad.2021.08.081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 07/23/2021] [Accepted: 08/25/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Work-related stress and burnout have become major occupational health concerns. Dysregulation of HPA axis is considered one of the central mechanisms and is potentially moderated through epigenetics. In the present study, we aim to investigate epigenetic regulation of the HPA axis in burnout, by focusing on salivary cortisol and cortisone and DNA methylation of the glucocorticoid receptor gene (NR3C1) and the serotonin transporter gene (SLC6A4). METHODS We conducted a cross-sectional study with 59 subjects with burnout and 70 healthy controls recruited from the general population. All participants underwent a clinical interview and psychological assessment. Saliva samples were collected at 0, 30 and 60 min after awakening and were used to quantify cortisol and cortisone. Pyrosequencing was performed on whole blood-derived DNA to assess DNA methylation. RESULTS There were no between-group differences in cortisol levels, whereas burnout participants had higher levels of cortisone. Job stress was associated with increased cortisol and cortisone. We observed both increased and decreased NR3C1 and SLC6A4 methylation in the burnout group compared to the control group. Some of these methylation changes correlated with burnout symptoms dimensionally. Increased methylation in a specific CpG in the SLC6A4 promoter region moderated the association between job stress and burnout. DNA methylation in this CpG was also associated with increased cortisol. In addition, average methylation of NR3C1 was negatively associated with cortisone levels. LIMITATIONS This is a cross-sectional study and therefore no conclusions on causality could be made. CONCLUSIONS We provide first evidence of changes in DNA methylation of NR3C1 and SLC6A4 in burnout, which were further associated with cortisol and cortisone. Further, increased cortisol and cortisone seemed to reflect job stress rather than burnout itself.
Collapse
Affiliation(s)
- Jelena Bakusic
- Centre for Environment and Health, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium.
| | - Manosij Ghosh
- Centre for Environment and Health, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Andrea Polli
- Centre for Environment and Health, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium; Pain in Motion (PAIN) Department, Vrije Universiteit Brussel, Brussels, Belgium
| | - Bram Bekaert
- Department of Forensic Medicine; Laboratory of Forensic Genetics and Molecular Archaeology; KU Leuven, Leuven, Belgium; Department of Imaging & Pathology, KU Leuven, Leuven, Belgium
| | - Wilmar Schaufeli
- Work, Organisational and Personnel Psychology, KU Leuven, Leuven, Belgium; Department of Psychology, Utrecht University, Utrecht, the Netherlands
| | - Stephan Claes
- Psychiatry Research Group, Department of Neuroscience, KU Leuven, Leuven, Belgium
| | - Lode Godderis
- Centre for Environment and Health, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium; IDEWE, External Service for Prevention and Protection at Work, Heverlee, Belgium
| |
Collapse
|
298
|
Singh P, Chalertpet K, Sukbhattee J, Wongmanee N, Suwannakart P, Yanatatsaneejit P. Association between promoter methylation and gene expression of CGB3 and NOP56 in HPV-infected cervical cancer cells. Biomed Rep 2021; 16:1. [PMID: 34820124 PMCID: PMC8609276 DOI: 10.3892/br.2021.1484] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/20/2021] [Indexed: 12/11/2022] Open
Abstract
Overexpression of the E7 gene of human papillomavirus (HPV) type 16 is one of the primary causes of cervical cancer. The E7 protein can bind with DNA methyltransferase I and induce methylation of tumor suppressor genes, such as cyclin-A1 (CCNA1), leading to suppression of their expression, and thus, cancer progression. In the present study, the confirmation of methylation-related expression of chorionic gonadotropin subunit 3 (CGB3) and nucleolar protein 56 (NOP56) genes in 5-Azacytidine (5'-aza)-treated HPV16-positive SiHa and HPV16-negative C33A cell lines was shown. Using methylation-specific-PCR and quantitative PCR, the results showed that CGB3 and NOP56 methylation significantly decreased as the 5'-aza concentration was increased, and this was inversely associated with their expression. Moreover, overexpression of E7 contributed to the augmentation of CGB3 and NOP56 methylation levels in C33A cells, resulting in a decrease in their expression. This study extends on previous observations of E7 HPV16 oncogenic function in terms of methylation-repressing expression in more genes, which may be wholly applied to gene therapy in cervical cancer prevention.
Collapse
Affiliation(s)
- Palak Singh
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kanwalat Chalertpet
- Human Genetics Research Group, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Juthamard Sukbhattee
- Human Genetics Research Group, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Nannabhat Wongmanee
- Human Genetics Research Group, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pimwipa Suwannakart
- Human Genetics Research Group, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pattamawadee Yanatatsaneejit
- Human Genetics Research Group, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.,Center of Excellence in Molecular Genetics of Cancer and Human Diseases, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
299
|
Andresen M, Sletten M, Sandset PM, Iversen N, Stavik B, Tinholt M. Coagulation factor 5 (F5) is an estrogen-responsive gene in breast cancer cells. Thromb Haemost 2021; 122:1288-1295. [PMID: 34826880 DOI: 10.1055/a-1707-2130] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Most breast cancers express estrogen receptor (ER) where estrogen signaling plays an important role. Cancer contributes to activation of the coagulation system leading to an imbalance in the hemostatic system, and Coagulation factor (F) V, which is a key regulator of blood coagulation, has been shown to be increased in breast tumors. Thus, the molecular association between estrogens and FV was explored. Stimulation with 17-β-estradiol (E2) or 17-β-ethinylestradiol (EE2) resulted in a time- and dose-dependent increase in F5 mRNA and FV protein in ERα positive MCF-7 cells. Pre-treatment with the ER antagonist fulvestrant or knockdown of ERα prior to stimulation with E2 counteracted this effect. Three ERα binding half-sites were identified in the promoter region of the F5 gene in silico. Reporter gene analysis showed that all three half-sites were involved in the estrogen-induced gene regulation in vitro, as the effect was abolished only when all half-sites were mutated. High F5 levels in ER positive breast tumors were associated with increased relapse-free survival of breast cancer patients.
Collapse
Affiliation(s)
- Marianne Andresen
- Department of Haematology and Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
| | | | | | - Nina Iversen
- medical genetics, Oslo university hospital, Oslo, Norway
| | - Benedicte Stavik
- Department of Hematology, Oslo University Hospital, Oslo, Norway.,Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
| | - Mari Tinholt
- Department of Genetics, Oslo universitetssykehus Ulleval, Oslo, Norway.,Department of Haematology, Oslo University Rikshospitalet, Oslo, Norway
| |
Collapse
|
300
|
Xu S, Jiang C, Lin R, Wang X, Hu X, Chen W, Chen X, Chen T. Epigenetic activation of the elongator complex sensitizes gallbladder cancer to gemcitabine therapy. J Exp Clin Cancer Res 2021; 40:373. [PMID: 34823564 PMCID: PMC8613969 DOI: 10.1186/s13046-021-02186-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/13/2021] [Indexed: 01/07/2023] Open
Abstract
Background Gallbladder cancer (GBC) is known for its high malignancy and multidrug resistance. Previously, we uncovered that impaired integrity and stability of the elongator complex leads to GBC chemotherapy resistance, but whether its restoration can be an efficient therapeutic strategy for GBC remains unknown. Methods RT-qPCR, MS-qPCR and ChIP-qPCR were used to evaluate the direct association between ELP5 transcription and DNA methylation in tumour and non-tumour tissues of GBC. EMSA, chromatin accessibility assays, and luciferase assays were utilized to analysis the DNA methylation in interfering PAX5-DNA interactions. The functional experiments in vitro and in vivo were performed to investigate the effects of DNA demethylating agent decitabine (DAC) on the transcription activation of elongator complex and the enhanced sensitivity of gemcitabine in GBC cells. Tissue microarray contains GBC tumour tissues was used to evaluate the association between the expression of ELP5, DNMT3A and PAX5. Results We demonstrated that transcriptional repression of ELP5 in GBC was highly correlated with hypermethylation of the promoter. Mechanistically, epigenetic analysis revealed that DNA methyltransferase DNMT3A-catalysed hypermethylation blocked transcription factor PAX5 activation of ELP5 by disrupting PAX5-DNA interaction, resulting in repressed ELP5 transcription. Pharmacologically, the DNA demethylating agent DAC eliminated the hypermethylated CpG dinucleotides in the ELP5 promoter and then facilitated PAX5 binding and reactivated ELP5 transcription, leading to the enhanced function of the elongator complex. To target this mechanism, we employed a sequential combination therapy of DAC and gemcitabine to sensitize GBC cells to gemcitabine-therapy through epigenetic activation of the elongator complex. Conclusions Our findings suggest that ELP5 expression in GBC is controlled by DNA methylation-sensitive induction of PAX5. The sequential combination therapy of DAC and gemcitabine could be an efficient therapeutic strategy to overcome chemotherapy resistance in GBC. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-02186-0.
Collapse
Affiliation(s)
- Sunwang Xu
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China. .,Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China.
| | - Cen Jiang
- Central Laboratory, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Ruirong Lin
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Xiaopeng Wang
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Xiaoqiang Hu
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Wei Chen
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Xiangjin Chen
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China.
| | - Tao Chen
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| |
Collapse
|