251
|
Talbot SC, Vining KJ, Snelling JW, Clevenger J, Mehlenbacher SA. A haplotype-resolved chromosome-level assembly and annotation of European hazelnut (C. avellana cv. Jefferson) provides insight into mechanisms of eastern filbert blight resistance. G3 (BETHESDA, MD.) 2024; 14:jkae021. [PMID: 38325326 DOI: 10.1093/g3journal/jkae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 12/11/2023] [Accepted: 01/05/2024] [Indexed: 02/09/2024]
Abstract
European hazelnut (Corylus avellana L.) is an important tree nut crop. Hazelnut production in North America is currently limited in scalability due to Anisogramma anomala, a fungal pathogen that causes Eastern Filbert Blight (EFB) disease in hazelnut. Successful deployment of EFB resistant cultivars has been limited to the state of Oregon, where the breeding program at Oregon State University (OSU) has released cultivars with a dominant allele at a single resistance locus identified by classical breeding, linkage mapping, and molecular markers. C. avellana cultivar "Jefferson" is resistant to the predominant EFB biotype in Oregon and has been selected by the OSU breeding program as a model for hazelnut genetic and genomic research. Here, we present a near complete, haplotype-resolved chromosome-level hazelnut genome assembly for "Jefferson". This new assembly is a significant improvement over a previously published genome draft. Analysis of genomic regions linked to EFB resistance and self-incompatibility confirmed haplotype splitting and identified new gene candidates that are essential for downstream molecular marker development, thereby facilitating breeding efforts.
Collapse
Affiliation(s)
- Samuel C Talbot
- Department of Horticulture, Oregon State University, 4017 Agriculture and Life Sciences Building, Corvallis, OR 97331, USA
| | - Kelly J Vining
- Department of Horticulture, Oregon State University, 4017 Agriculture and Life Sciences Building, Corvallis, OR 97331, USA
| | - Jacob W Snelling
- Department of Horticulture, Oregon State University, 4017 Agriculture and Life Sciences Building, Corvallis, OR 97331, USA
| | - Josh Clevenger
- Hudson Alpha Institute for Biotechnology, 601 Genome Way Northwest, Huntsville, AL 35806, USA
| | - Shawn A Mehlenbacher
- Department of Horticulture, Oregon State University, 4017 Agriculture and Life Sciences Building, Corvallis, OR 97331, USA
| |
Collapse
|
252
|
Ang G, Zhang A, Obrycki J, Sethuraman A. A high-quality genome of the convergent lady beetle, Hippodamia convergens. G3 (BETHESDA, MD.) 2024; 14:jkae083. [PMID: 38620009 PMCID: PMC11232282 DOI: 10.1093/g3journal/jkae083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 09/25/2023] [Accepted: 03/29/2024] [Indexed: 04/17/2024]
Abstract
Here, we describe a high-quality genome assembly and annotation of the convergent lady beetle, Hippodamia convergens (Coleoptera: Coccinellidae). The highest quality unmasked genome comprises 619 megabases (Mb) of chromosomal DNA, organized into 899 contigs, with a contig N50 score of 89 Mbps. The genome was assessed to be 96% complete (BUSCO). Reconstruction of a whole-genome phylogeny resolved H. convergens as sister to the Harlequin lady beetle, Harmonia axyridis, and nested within a clade of several known agricultural pests.
Collapse
Affiliation(s)
- Gavrila Ang
- Department of Biology, San Diego State University, San Diego, CA 92182, USA
| | - Andrew Zhang
- Department of Biology, Indiana University, Bloomington, IN 47408, USA
- National Institutes of Health, Bethesda, MD 20892, USA
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA 92096, USA
| | - John Obrycki
- Department of Entomology, University of Kentucky, Lexington, KY 40506, USA
| | - Arun Sethuraman
- Department of Biology, San Diego State University, San Diego, CA 92182, USA
| |
Collapse
|
253
|
Wang J, Lv J, Shi M, Ge Q, Wang Q, He Y, Li J, Li J. Chromosome-level genome assembly of ridgetail white shrimp Exopalaemon carinicauda. Sci Data 2024; 11:576. [PMID: 38834644 DOI: 10.1038/s41597-024-03423-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/24/2024] [Indexed: 06/06/2024] Open
Abstract
Exopalaemon carinicauda, a eurythermal and euryhaline shrimp, contributes one third of the total biomass production of polyculture ponds in eastern China and is considered as a potential ideal experimental animal for research on crustaceans. We conducted a high-quality chromosome-level genome assembly of E. carinicauda combining PacBio HiFi and Hi-C sequencing data. The total assembly size was 5.86 Gb, with a contig N50 of 235.52 kb and a scaffold N50 of 138.24 Mb. Approximately 95.29% of the assembled sequences were anchored onto 45 pseudochromosomes. BUSCO analysis revealed that 92.89% of 1,013 single-copy genes were highly conserved orthologs. A total of 44, 288 protein-coding genes were predicted, of which 70.53% were functionally annotated. Given its high heterozygosity (2.62%) and large proportion of repeat sequences (71.49%), it is one of the most complex genome assemblies. This chromosome-scale genome will be a valuable resource for future molecular breeding and functional genomics research on E. carinicauda.
Collapse
Affiliation(s)
- Jiajia Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
| | - Jianjian Lv
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
| | - Miao Shi
- Berry Genomics Co., Ltd., Beijing, China
| | - Qianqian Ge
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
| | - Qiong Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
| | - Yuying He
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
| | - Jian Li
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
| | - Jitao Li
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China.
| |
Collapse
|
254
|
Han H, Li X, Li T, Chen Q, Zhao J, Zhai H, Deng L, Meng X, Li C. Chromosome-level genome assembly of Solanum pimpinellifolium. Sci Data 2024; 11:577. [PMID: 38834611 DOI: 10.1038/s41597-024-03442-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 05/29/2024] [Indexed: 06/06/2024] Open
Abstract
Solanum pimpinellifolium, the closest wild relative of the domesticated tomato, has high potential for use in breeding programs aimed at developing multi-pathogen resistance and quality improvement. We generated a chromosome-level genome assembly of S. pimpinellifolium LA1589, with a size of 833 Mb and a contig N50 of 31 Mb. We anchored 98.80% of the contigs into 12 pseudo-chromosomes, and identified 74.47% of the sequences as repetitive sequences. The genome evaluation revealed BUSCO and LAI score of 98.3% and 14.49, respectively, indicating high quality of this assembly. A total of 41,449 protein-coding genes were predicted in the genome, of which 89.17% were functionally annotated. This high-quality genome assembly serves as a valuable resource for accelerating the biological discovery and molecular breeding of this important horticultural crop.
Collapse
Affiliation(s)
- Hongyu Han
- College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China
- Taishan Academy of Tomato Innovation, Shandong Agricultural University, Tai'an, 271018, China
| | - Xiuhong Li
- College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China
| | - Tianze Li
- College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China
| | - Qian Chen
- Taishan Academy of Tomato Innovation, Shandong Agricultural University, Tai'an, 271018, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China
| | - Jiuhai Zhao
- College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Huawei Zhai
- Taishan Academy of Tomato Innovation, Shandong Agricultural University, Tai'an, 271018, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China
| | - Lei Deng
- Taishan Academy of Tomato Innovation, Shandong Agricultural University, Tai'an, 271018, China
- College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Xianwen Meng
- Taishan Academy of Tomato Innovation, Shandong Agricultural University, Tai'an, 271018, China.
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China.
| | - Chuanyou Li
- Taishan Academy of Tomato Innovation, Shandong Agricultural University, Tai'an, 271018, China.
- College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China.
| |
Collapse
|
255
|
Melton AE, Novak SJ, Buerki S. Utilizing a comparative approach to assess genome evolution during diploidization in Artemisia tridentata, a keystone species of western North America. AMERICAN JOURNAL OF BOTANY 2024; 111:e16353. [PMID: 38826031 DOI: 10.1002/ajb2.16353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/03/2024] [Accepted: 04/03/2024] [Indexed: 06/04/2024]
Abstract
PREMISE Polyploidization is often followed by diploidization. Diploidization is generally studied using synthetic polyploid lines and/or crop plants, but rarely using extant diploids or nonmodel plants such as Artemisia tridentata. This threatened western North American keystone species has a large genome compared to congeneric Artemisia species; dominated by diploid and tetraploid cytotypes, with multiple origins of tetraploids with genome size reduction. METHODS The genome of an A. tridentata sample was resequenced to study genome evolution and compared to that of A. annua, a diploid congener. Three diploid genomes of A. tridentata were compared to test for multiple diploidization events. RESULTS The A. tridentata genome had many chromosomal rearrangements relative to that of A. annua, while large-scale synteny of A. tridentata chromosome 3 and A. annua chromosome 4 was conserved. The three A. tridentata genomes had similar sizes (4.19-4.2 Gbp), heterozygosity (2.24-2.25%), and sequence (98.73-99.15% similarity) across scaffolds, and in k-mer analyses, similar patterns of diploid heterozygous k-mers (AB = 41%, 47%, and 47%), triploid heterozygous k-mers (AAB = 18-21%), and tetraploid k-mers (AABB = 13-17%). Biallelic SNPs were evenly distributed across scaffolds for all individuals. Comparisons of transposable element (TE) content revealed differential enrichment of TE clades. CONCLUSIONS Our findings suggest population-level TE differentiation after a shared polyploidization-to-diploidization event(s) and exemplify the complex processes of genome evolution. This research approached provides new resources for exploration of abiotic stress response, especially the roles of TEs in response pathways.
Collapse
Affiliation(s)
- Anthony E Melton
- Department of Biological Sciences, Boise State University, Boise, 83725, ID, USA
| | - Stephen J Novak
- Department of Biological Sciences, Boise State University, Boise, 83725, ID, USA
| | - Sven Buerki
- Department of Biological Sciences, Boise State University, Boise, 83725, ID, USA
| |
Collapse
|
256
|
Huang XZ, Gong SD, Shang XH, Gao M, Zhao BY, Xiao L, Shi PL, Zeng WD, Cao S, Wu ZD, Song JM, Chen LL, Yan HB. High-integrity Pueraria montana var. lobata genome and population analysis revealed the genetic diversity of Pueraria genus. DNA Res 2024; 31:dsae017. [PMID: 38809753 PMCID: PMC11149379 DOI: 10.1093/dnares/dsae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 04/23/2024] [Accepted: 05/24/2024] [Indexed: 05/31/2024] Open
Abstract
Pueraria montana var. lobata (P. lobata) is a traditional medicinal plant belonging to the Pueraria genus of Fabaceae family. Pueraria montana var. thomsonii (P. thomsonii) and Pueraria montana var. montana (P. montana) are its related species. However, evolutionary history of the Pueraria genus is still largely unknown. Here, a high-integrity, chromosome-level genome of P. lobata and an improved genome of P. thomsonii were reported. It found evidence for an ancient whole-genome triplication and a recent whole-genome duplication shared with Fabaceae in three Pueraria species. Population genomics of 121 Pueraria accessions demonstrated that P. lobata populations had substantially higher genetic diversity, and P. thomsonii was probably derived from P. lobata by domestication as a subspecies. Selection sweep analysis identified candidate genes in P. thomsonii populations associated with the synthesis of auxin and gibberellin, which potentially play a role in the expansion and starch accumulation of tubers in P. thomsonii. Overall, the findings provide new insights into the evolutionary and domestication history of the Pueraria genome and offer a valuable genomic resource for the genetic improvement of these species.
Collapse
Affiliation(s)
- Xuan-Zhao Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Shao-Da Gong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Xiao-hong Shang
- Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences (GXAAS), Nanning, Guangxi 530007, China
| | - Min Gao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Bo-Yuan Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Liang Xiao
- Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences (GXAAS), Nanning, Guangxi 530007, China
| | - Ping-li Shi
- Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences (GXAAS), Nanning, Guangxi 530007, China
| | - Wen-dan Zeng
- Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences (GXAAS), Nanning, Guangxi 530007, China
| | - Sheng Cao
- Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences (GXAAS), Nanning, Guangxi 530007, China
| | - Zheng-dan Wu
- Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences (GXAAS), Nanning, Guangxi 530007, China
| | - Jia-Ming Song
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Ling-Ling Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Hua-bing Yan
- Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences (GXAAS), Nanning, Guangxi 530007, China
| |
Collapse
|
257
|
Wang P, Meng F, Yang Y, Ding T, Liu H, Wang F, Li A, Zhang Q, Li K, Fan S, Li B, Ma Z, Zhang T, Zhou Y, Zhao H, Wang X. De novo assembling a high-quality genome sequence of Amur grape ( Vitis amurensis Rupr .) gives insight into Vitis divergence and sex determination. HORTICULTURE RESEARCH 2024; 11:uhae117. [PMID: 38919553 PMCID: PMC11197301 DOI: 10.1093/hr/uhae117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 04/09/2024] [Indexed: 06/27/2024]
Abstract
To date, there has been no high-quality sequence for genomes of the East Asian grape species, hindering biological and breeding efforts to improve grape cultivars. This study presents ~522 Mb of the Vitis amurensis (Va) genome sequence containing 27 635 coding genes. Phylogenetic analysis indicated that Vitis riparia (Vr) may have first split from the other two species, Va and Vitis vinifera (Vv). Divergent numbers of duplicated genes reserved among grapes suggests that the core eudicot-common hexaploidy (ECH) and the subsequent genome instability still play a non-negligible role in species divergence and biological innovation. Prominent accumulation of sequence variants might have improved cold resistance in Va, resulting in a more robust network of regulatory cold resistance genes, explaining why it is extremely cold-tolerant compared with Vv and Vr. In contrast, Va has preserved many fewer nucleotide binding site (NBS) disease resistance genes than the other grapes. Notably, multi-omics analysis identified one trans-cinnamate 4-monooxygenase gene positively correlated to the resveratrol accumulated during Va berry development. A selective sweep analysis revealed a hypothetical Va sex-determination region (SDR). Besides, a PPR-containing protein-coding gene in the hypothetical SDR may be related to sex determination in Va. The content and arrangement order of genes in the putative SDR of female Va were similar to those of female Vv. However, the putative SDR of female Va has lost one flavin-containing monooxygenase (FMO) gene and contains one extra protein-coding gene uncharacterized so far. These findings will improve the understanding of Vitis biology and contribute to the improvement of grape breeding.
Collapse
Affiliation(s)
| | - Fanbo Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yiming Yang
- Institute of Special Animal and Plant Sciences of CAAS, Changchun 130000, China
| | | | - Huiping Liu
- Shandong Academy of Grape, Jinan 250100, China
| | | | - Ao Li
- Shandong Academy of Grape, Jinan 250100, China
| | | | - Ke Li
- Shandong Academy of Grape, Jinan 250100, China
| | - Shutian Fan
- Institute of Special Animal and Plant Sciences of CAAS, Changchun 130000, China
| | - Bo Li
- Shandong Academy of Grape, Jinan 250100, China
| | - Zhiyao Ma
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
| | - Tianhao Zhang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
| | - Yongfeng Zhou
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
| | | | - Xiyin Wang
- North China University of Science and Technology, Tangshan 063000, China
| |
Collapse
|
258
|
Gao Y, Xu D, Hu Z. Telomere-to-telomere genome assembly of Oldenlandia diffusa. DNA Res 2024; 31:dsae012. [PMID: 38600880 DOI: 10.1093/dnares/dsae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/07/2024] [Accepted: 04/10/2024] [Indexed: 04/12/2024] Open
Abstract
We report the complete telomere-to-telomere genome assembly of Oldenlandia diffusa which renowned in traditional Chinese medicine, comprising 16 chromosomes and spanning 499.7 Mb. The assembly showcases 28 telomeres and minimal gaps, with a total of only five. Repeat sequences constitute 46.41% of the genome, and 49,701 potential protein-coding genes have been predicted. Compared with O. corymbosa, O. diffusa exhibits chromosome duplication and fusion events, diverging 20.34 million years ago. Additionally, a total of 11 clusters of terpene synthase have been identified. The comprehensive genome sequence, gene catalog, and terpene synthase clusters of O. diffusa detailed in this study will significantly contribute to advancing research in this species' genetic, genomic, and pharmacological aspects.
Collapse
Affiliation(s)
- Yubang Gao
- School of Life Sciences and Agricultural Engineering, Nanyang Normal University, Nanyang, Henan 473061, China
- Henan Province Artemisia Argyi Development and Utilization Engineering Technology Research Center, Nanyang, Henan 473061, China
| | - DanDan Xu
- School of Life Sciences and Agricultural Engineering, Nanyang Normal University, Nanyang, Henan 473061, China
| | - Zehua Hu
- School of Life Sciences and Agricultural Engineering, Nanyang Normal University, Nanyang, Henan 473061, China
| |
Collapse
|
259
|
Vargas A, DeBiasse M, Dykes L, Edgar A, Hayes T, Groso D, Babonis L, Martindale M, Ryan J. Morphological and dietary changes encoded in the genome of Beroe ovata, a ctenophore-eating ctenophore. NAR Genom Bioinform 2024; 6:lqae072. [PMID: 38895105 PMCID: PMC11184263 DOI: 10.1093/nargab/lqae072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/03/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
As the sister group to all other animals, ctenophores (comb jellies) are important for understanding the emergence and diversification of numerous animal traits. Efforts to explore the evolutionary processes that promoted diversification within Ctenophora are hindered by undersampling genomic diversity within this clade. To address this gap, we present the sequence, assembly and initial annotation of the genome of Beroe ovata. Beroe possess unique morphology, behavior, ecology and development. Unlike their generalist carnivorous kin, beroid ctenophores feed exclusively on other ctenophores. Accordingly, our analyses revealed a loss of chitinase, an enzyme critical for the digestion of most non-ctenophore prey, but superfluous for ctenophorivores. Broadly, our genomic analysis revealed that extensive gene loss and changes in gene regulation have shaped the unique biology of B. ovata. Despite the gene losses in B. ovata, our phylogenetic analyses on photosensitive opsins and several early developmental regulatory genes show that these genes are conserved in B. ovata. This additional sampling contributes to a more complete reconstruction of the ctenophore ancestor and points to the need for extensive comparisons within this ancient and diverse clade of animals. To promote further exploration of these data, we present BovaDB (http://ryanlab.whitney.ufl.edu/bovadb/), a portal for the B. ovata genome.
Collapse
Affiliation(s)
- Alexandra M Vargas
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL 32080, USA
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Melissa B DeBiasse
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL 32080, USA
- Department of Biology, Radford University, Radford, VA 24142, USA
| | - Lana L Dykes
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL 32080, USA
| | - Allison Edgar
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL 32080, USA
- Federated Department of Biological Sciences, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - T Danielle Hayes
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL 32080, USA
| | - Daniel J Groso
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL 32080, USA
- Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Leslie S Babonis
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
| | - Mark Q Martindale
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL 32080, USA
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Joseph F Ryan
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL 32080, USA
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
260
|
Wang Y, Fuentes RR, van Rengs WMJ, Effgen S, Zaidan MWAM, Franzen R, Susanto T, Fernandes JB, Mercier R, Underwood CJ. Harnessing clonal gametes in hybrid crops to engineer polyploid genomes. Nat Genet 2024; 56:1075-1079. [PMID: 38741016 PMCID: PMC11176054 DOI: 10.1038/s41588-024-01750-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 04/09/2024] [Indexed: 05/16/2024]
Abstract
Heterosis boosts crop yield; however, harnessing additional progressive heterosis in polyploids is challenging for breeders. We bioengineered a 'mitosis instead of meiosis' (MiMe) system that generates unreduced, clonal gametes in three hybrid tomato genotypes and used it to establish polyploid genome design. Through the hybridization of MiMe hybrids, we generated '4-haplotype' plants that encompassed the complete genetics of their four inbred grandparents, providing a blueprint for exploiting polyploidy in crops.
Collapse
Affiliation(s)
- Yazhong Wang
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Roven Rommel Fuentes
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Willem M J van Rengs
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Sieglinde Effgen
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | | | - Rainer Franzen
- Central Microscopy (CeMic), Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Tamara Susanto
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | | | - Raphael Mercier
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Charles J Underwood
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany.
| |
Collapse
|
261
|
Jiang J, Zhang Z, Bai Y, Wang X, Dou Y, Geng R, Wu C, Zhang H, Lu C, Gu L, Gao J. Chromosomal-level genome and metabolome analyses of highly heterozygous allohexaploid Dendrocalamus brandisii elucidate shoot quality and developmental characteristics. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:1087-1105. [PMID: 38051011 DOI: 10.1111/jipb.13592] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/17/2023] [Accepted: 12/04/2023] [Indexed: 12/07/2023]
Abstract
Dendrocalamus brandisii (Munro) Kurz is a sympodial bamboo species with inimitable taste and flavorful shoots. Its rapid growth and use as high-quality material make this bamboo species highly valued for both food processing and wood applications. However, genome information for D. brandisii is lacking, primarily due to its polyploidy and large genome size. Here, we assembled a high-quality genome for hexaploid D. brandisii, which comprises 70 chromosomes with a total size of 2,756 Mb, using long-read HiFi sequencing. Furthermore, we accurately separated the genome into its three constituent subgenomes. We used Oxford Nanopore Technologies long reads to construct a transcriptomic dataset covering 15 tissues for gene annotation to complement our genome assembly, revealing differential gene expression and post-transcriptional regulation. By integrating metabolome analysis, we unveiled that well-balanced lignin formation, as well as abundant flavonoid and fructose contents, contribute to the superior quality of D. brandisii shoots. Integrating genomic, transcriptomic, and metabolomic datasets provided a solid foundation for enhancing bamboo shoot quality and developing efficient gene-editing techniques. This study should facilitate research on D. brandisii and enhance its use as a food source and wood material by providing crucial genomic resources.
Collapse
Affiliation(s)
- Jutang Jiang
- Key Laboratory of National Forestry and Grassland Administration, Beijing for Bamboo & Rattan Science and Technology, Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing, 100102, China
| | - Zeyu Zhang
- College of Forestry, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yucong Bai
- Key Laboratory of National Forestry and Grassland Administration, Beijing for Bamboo & Rattan Science and Technology, Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing, 100102, China
| | - Xiaojing Wang
- School of Life Science, Peking University, Beijing, 100871, China
| | - Yuping Dou
- Key Laboratory of National Forestry and Grassland Administration, Beijing for Bamboo & Rattan Science and Technology, Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing, 100102, China
| | - Ruiman Geng
- Key Laboratory of National Forestry and Grassland Administration, Beijing for Bamboo & Rattan Science and Technology, Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing, 100102, China
| | - Chongyang Wu
- Key Laboratory of National Forestry and Grassland Administration, Beijing for Bamboo & Rattan Science and Technology, Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing, 100102, China
| | - Hangxiao Zhang
- College of Forestry, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Cunfu Lu
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Lianfeng Gu
- College of Forestry, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jian Gao
- Key Laboratory of National Forestry and Grassland Administration, Beijing for Bamboo & Rattan Science and Technology, Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing, 100102, China
| |
Collapse
|
262
|
Li W, Chen X, Yu J, Zhu Y. Upgraded durian genome reveals the role of chromosome reshuffling during ancestral karyotype evolution, lignin biosynthesis regulation, and stress tolerance. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1266-1279. [PMID: 38763999 DOI: 10.1007/s11427-024-2580-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/26/2024] [Indexed: 05/21/2024]
Abstract
Durian (Durio zibethinus) is a tropical fruit that has a unique flavor and aroma. It occupies a significant phylogenetic position within the Malvaceae family. Extant core-eudicot plants are reported to share seven ancestral karyotypes that have undergone reshuffling, resulting in an abundant genomic diversity. However, the ancestral karyotypes of the Malvaceae family, as well as the evolution trajectory leading to the 28 chromosomes in durian, remain poorly understood. Here, we report the high-quality assembly of the durian genome with comprehensive comparative genomic analyses. By analyzing the collinear blocks between cacao and durian, we inferred 11 Malvaceae ancestral karyotypes. These blocks were present in a single-copy form in cacao and mainly in triplicates in durian, possibly resulting from a recent whole genome triplication (WGT) event that led to hexaploidization of the durian genome around 20 (17-24) million years ago. A large proportion of the duplicated genes in durian, such as those involved in the lignin biosynthesis module for phenylpropane biosynthesis, are derived directly from whole genome duplication, which makes it an important force in reshaping its genomic architecture. Transcriptome studies have revealed that genes involved in feruloyl-CoA formations were highly preferentially expressed in fruit peels, indicating that the thorns produced on durian fruit may comprise guaiacyl and syringyl lignins. Among all the analyzed transcription factors (TFs), members of the heat shock factor family (HSF) were the most significantly upregulated under heat stress. All subfamilies of genes encoding heat shock proteins (HSPs) in the durian genome appear to have undergone expansion. The potential interactions between HSF Dzi05.397 and HSPs were examined and experimentally verified. Our study provides a high-quality durian genome and reveals the reshuffling mechanism of ancestral Malvaceae chromosomes to produce the durian genome. We also provide insights into the mechanism underlying lignin biosynthesis and heat stress tolerance.
Collapse
Affiliation(s)
- Wanwan Li
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Xin Chen
- The State Key Laboratory of Protein and Gene Research, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Jianing Yu
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China.
| | - Yuxian Zhu
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
263
|
Cao J, Zhu H, Gao Y, Hu Y, Li X, Shi J, Chen L, Kang H, Ru D, Ren B, Liu B. Chromosome-level genome assembly and characterization of the Calophaca sinica genome. DNA Res 2024; 31:dsae011. [PMID: 38590243 DOI: 10.1093/dnares/dsae011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/26/2024] [Accepted: 04/06/2024] [Indexed: 04/10/2024] Open
Abstract
Calophaca sinica is a rare plant endemic to northern China which belongs to the Fabaceae family and possesses rich nutritional value. To support the preservation of the genetic resources of this plant, we have successfully generated a high-quality genome of C. sinica (1.06 Gb). Notably, transposable elements (TEs) constituted ~73% of the genome, with long terminal repeat retrotransposons (LTR-RTs) dominating this group of elements (~54% of the genome). The average intron length of the C. sinica genome was noticeably longer than what has been observed for closely related species. The expansion of LTR-RTs and elongated introns emerged had the largest influence on the enlarged genome size of C. sinica in comparison to other Fabaceae species. The proliferation of TEs could be explained by certain modes of gene duplication, namely, whole genome duplication (WGD) and dispersed duplication (DSD). Gene family expansion, which was found to enhance genes associated with metabolism, genetic maintenance, and environmental stress resistance, was a result of transposed duplicated genes (TRD) and WGD. The presented genomic analysis sheds light on the genetic architecture of C. sinica, as well as provides a starting point for future evolutionary biology, ecology, and functional genomics studies centred around C. sinica and closely related species.
Collapse
Affiliation(s)
| | - Hui Zhu
- State Key Laboratory of Grassland Agro-ecosystem, College of Ecology, Lanzhou University, Lanzhou, China
| | - Yingqi Gao
- Institute of Loess Plateau, Shanxi University, Taiyuan, Shanxi, China
| | - Yue Hu
- Institute of Loess Plateau, Shanxi University, Taiyuan, Shanxi, China
| | - Xuejiao Li
- Institute of Loess Plateau, Shanxi University, Taiyuan, Shanxi, China
| | - Jianwei Shi
- Institute of Loess Plateau, Shanxi University, Taiyuan, Shanxi, China
| | - Luqin Chen
- Taiyuan Botanical Garden, Taiyuan, China
| | - Hao Kang
- Taiyuan Botanical Garden, Taiyuan, China
| | - Dafu Ru
- State Key Laboratory of Grassland Agro-ecosystem, College of Ecology, Lanzhou University, Lanzhou, China
| | | | - Bingbing Liu
- Institute of Loess Plateau, Shanxi University, Taiyuan, Shanxi, China
| |
Collapse
|
264
|
Song J, Kong H, Yang J, Jing J, Li S, Ma N, Yang R, Cao Y, Wang Y, Hu T, Yang P. Genome assembly and multi-omic analyses reveal the mechanisms underlying flower color formation in Torenia fournieri. THE PLANT GENOME 2024; 17:e20439. [PMID: 38485674 DOI: 10.1002/tpg2.20439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/15/2024] [Accepted: 01/27/2024] [Indexed: 07/02/2024]
Abstract
Torenia fournieri Lind. is an ornamental plant that is popular for its numerous flowers and variety of colors. However, its genomic evolutionary history and the genetic and metabolic bases of flower color formation remain poorly understood. Here, we report the first T. fournieri reference genome, which was resolved to the chromosome scale and was 164.4 Mb in size. Phylogenetic analyses clarified relationships with other plant species, and a comparative genomic analysis indicated that the shared ancestor of T. fournieri and Antirrhinum majus underwent a whole genome duplication event. Joint transcriptomic and metabolomic analyses identified many metabolites related to pelargonidin, peonidin, and naringenin production in rose (TfR)-colored flowers. Samples with blue (TfB) and deep blue (TfD) colors contained numerous derivatives of petunidin, cyanidin, quercetin, and malvidin; differences in the abundances of these metabolites and expression levels of the associated genes were hypothesized to be responsible for variety-specific differences in flower color. Furthermore, the genes encoding flavonoid 3-hydroxylase, anthocyanin synthase, and anthocyanin reductase were differentially expressed between flowers of different colors. Overall, we successfully identified key genes and metabolites involved in T. fournieri flower color formation. The data provided by the chromosome-scale genome assembly establish a basis for understanding the differentiation of this species and will facilitate future genetic studies and genomic-assisted breeding.
Collapse
Affiliation(s)
- Jiaxing Song
- College of Grassland Agriculture, Northwest A&F University, Yangling, China
| | - Haiming Kong
- College of Grassland Agriculture, Northwest A&F University, Yangling, China
| | - Jing Yang
- College of Grassland Agriculture, Northwest A&F University, Yangling, China
| | - Jiaxian Jing
- College of Grassland Agriculture, Northwest A&F University, Yangling, China
| | - Siyu Li
- College of Grassland Agriculture, Northwest A&F University, Yangling, China
| | - Nan Ma
- College of Grassland Agriculture, Northwest A&F University, Yangling, China
| | - Rongchen Yang
- College of Grassland Agriculture, Northwest A&F University, Yangling, China
| | - Yuman Cao
- College of Grassland Agriculture, Northwest A&F University, Yangling, China
| | - Yafang Wang
- College of Grassland Agriculture, Northwest A&F University, Yangling, China
| | - Tianming Hu
- College of Grassland Agriculture, Northwest A&F University, Yangling, China
| | - Peizhi Yang
- College of Grassland Agriculture, Northwest A&F University, Yangling, China
| |
Collapse
|
265
|
Wang H, Fang T, Li X, Xie Y, Wang W, Hu T, Kudrna D, Amombo E, Yin Y, Fan S, Gong Z, Huang Y, Xia C, Zhang J, Wu Y, Fu J. Whole-genome sequencing of allotetraploid bermudagrass reveals the origin of Cynodon and candidate genes for salt tolerance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:2068-2084. [PMID: 38531629 DOI: 10.1111/tpj.16729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 02/06/2024] [Accepted: 03/09/2024] [Indexed: 03/28/2024]
Abstract
Bermudagrass (Cynodon dactylon) is a globally distributed, extensively used warm-season turf and forage grass with high tolerance to salinity and drought stress in alkaline environments. However, the origin of the species and genetic mechanisms for salinity tolerance in the species are basically unknown. Accordingly, we set out to study evolution divergence events in the Cynodon genome and to identify genes for salinity tolerance. We developed a 604.0 Mb chromosome-level polyploid genome sequence for bermudagrass 'A12359' (n = 18). The C. dactylon genome comprises 2 complete sets of homoeologous chromosomes, each with approximately 30 000 genes, and most genes are conserved as syntenic pairs. Phylogenetic study showed that the initial Cynodon species diverged from Oropetium thomaeum approximately 19.7-25.4 million years ago (Mya), the A and B subgenomes of C. dactylon diverged approximately 6.3-9.1 Mya, and the bermudagrass polyploidization event occurred 1.5 Mya on the African continent. Moreover, we identified 82 candidate genes associated with seven agronomic traits using a genome-wide association study, and three single-nucleotide polymorphisms were strongly associated with three salt resistance genes: RAP2-2, CNG channels, and F14D7.1. These genes may be associated with enhanced bermudagrass salt tolerance. These bermudagrass genomic resources, when integrated, may provide fundamental insights into evolution of diploid and tetraploid genomes and enhance the efficacy of comparative genomics in studying salt tolerance in Cynodon.
Collapse
Affiliation(s)
- Huan Wang
- College of Grassland Science, Qingdao Agricultural University, Qingdao City, Shandong Province, 266109, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China
| | - Tilin Fang
- Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, Oklahoma, 74078, USA
| | - Xiaoning Li
- Coastal Salinity Tolerant Grass Engineering and Research Center, Ludong University, Yantai, Shandong Province, 264025, China
| | - Yan Xie
- Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei Province, 430074, China
| | - Wei Wang
- Coastal Salinity Tolerant Grass Engineering and Research Center, Ludong University, Yantai, Shandong Province, 264025, China
| | - Tao Hu
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou City, Gansu Province, 730020, China
| | - David Kudrna
- School of Plant Science, University of Arizona, Tucson, Arizona, 85721, USA
| | - Erick Amombo
- Coastal Salinity Tolerant Grass Engineering and Research Center, Ludong University, Yantai, Shandong Province, 264025, China
| | - Yanling Yin
- Coastal Salinity Tolerant Grass Engineering and Research Center, Ludong University, Yantai, Shandong Province, 264025, China
| | - Shugao Fan
- Coastal Salinity Tolerant Grass Engineering and Research Center, Ludong University, Yantai, Shandong Province, 264025, China
| | - Zhiyun Gong
- Agricultural Department, Yangzhou University, Yangzhou, Jiangsu Province, 225009, China
| | - Yicheng Huang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China
| | - Chunjiao Xia
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China
| | - Jianwei Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China
| | - Yanqi Wu
- Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, Oklahoma, 74078, USA
| | - Jinmin Fu
- College of Grassland Science, Qingdao Agricultural University, Qingdao City, Shandong Province, 266109, China
- Coastal Salinity Tolerant Grass Engineering and Research Center, Ludong University, Yantai, Shandong Province, 264025, China
| |
Collapse
|
266
|
Vangestel C, Swaegers J, De Corte Z, Dekoninck W, Gharbi K, Gillespie R, Vandekerckhove M, Van Belleghem SM, Hendrickx F. Chromosomal inversions from an initial ecotypic divergence drive a gradual repeated radiation of Galápagos beetles. SCIENCE ADVANCES 2024; 10:eadk7906. [PMID: 38820159 PMCID: PMC11141621 DOI: 10.1126/sciadv.adk7906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 04/30/2024] [Indexed: 06/02/2024]
Abstract
Island faunas exhibit some of the most iconic examples where similar forms repeatedly evolve within different islands. Yet, whether these deterministic evolutionary trajectories within islands are driven by an initial, singular divergence and the subsequent exchange of individuals and adaptive genetic variation between islands remains unclear. Here, we study a gradual, repeated evolution of low-dispersive highland ecotypes from a dispersive lowland ecotype of Calosoma beetles along the island progression of the Galápagos. We show that repeated highland adaptation involved selection on multiple shared alleles within extensive chromosomal inversions that originated from an initial adaptation event on the oldest island. These highland inversions first spread through dispersal of highland individuals. Subsequent admixture with the lowland ecotype resulted in polymorphic dispersive populations from which the highland populations evolved on the youngest islands. Our findings emphasize the significance of an ancient divergence in driving repeated evolution and highlight how a mixed contribution of inter-island colonization and within-island evolution can shape parallel species communities.
Collapse
Affiliation(s)
- Carl Vangestel
- Royal Belgian Institute of Natural Sciences, Brussels, Belgium
- Terrestrial Ecology Unit, Biology Department, Ghent University, Gent, Belgium
| | - Janne Swaegers
- Royal Belgian Institute of Natural Sciences, Brussels, Belgium
- Ecology, Evolution and Conservation Biology, Biology Department, University of Leuven, Leuven, Belgium
| | - Zoë De Corte
- Royal Belgian Institute of Natural Sciences, Brussels, Belgium
- Terrestrial Ecology Unit, Biology Department, Ghent University, Gent, Belgium
| | | | - Karim Gharbi
- Earlham Institute, Norwich Research Park, Norfolk, United Kingdom
| | - Rosemary Gillespie
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, CA, USA
| | - Matthias Vandekerckhove
- Royal Belgian Institute of Natural Sciences, Brussels, Belgium
- Terrestrial Ecology Unit, Biology Department, Ghent University, Gent, Belgium
| | - Steven M. Van Belleghem
- Ecology, Evolution and Conservation Biology, Biology Department, University of Leuven, Leuven, Belgium
| | - Frederik Hendrickx
- Royal Belgian Institute of Natural Sciences, Brussels, Belgium
- Terrestrial Ecology Unit, Biology Department, Ghent University, Gent, Belgium
| |
Collapse
|
267
|
Huang J, Zhang Y, Li Y, Xing M, Lei C, Wang S, Nie Y, Wang Y, Zhao M, Han Z, Sun X, Zhou H, Wang Y, Zheng X, Xiao X, Fan W, Liu Z, Guo W, Zhang L, Cheng Y, Qian Q, He H, Yang Q, Qiao W. Haplotype-resolved gapless genome and chromosome segment substitution lines facilitate gene identification in wild rice. Nat Commun 2024; 15:4573. [PMID: 38811581 PMCID: PMC11137157 DOI: 10.1038/s41467-024-48845-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/15/2024] [Indexed: 05/31/2024] Open
Abstract
The abundant genetic variation harbored by wild rice (Oryza rufipogon) has provided a reservoir of useful genes for rice breeding. However, the genome of wild rice has not yet been comprehensively assessed. Here, we report the haplotype-resolved gapless genome assembly and annotation of wild rice Y476. In addition, we develop two sets of chromosome segment substitution lines (CSSLs) using Y476 as the donor parent and cultivated rice as the recurrent parents. By analyzing the gapless reference genome and CSSL population, we identify 254 QTLs associated with agronomic traits, biotic and abiotic stresses. We clone a receptor-like kinase gene associated with rice blast resistance and confirm its wild rice allele improves rice blast resistance. Collectively, our study provides a haplotype-resolved gapless reference genome and demonstrates a highly efficient platform for gene identification from wild rice.
Collapse
Affiliation(s)
- Jingfen Huang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yilin Zhang
- School of Advanced Agriculture Sciences and School of Life Sciences, State Key Laboratory of Protein and Plant Gene Research, Peking University, Beijing, China
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, Shandong, China
| | - Yapeng Li
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, Hainan, China
- Hainan Academy of Agricultural Sciences, Haikou, Hainan, China
| | - Meng Xing
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, Hainan, China
| | - Cailin Lei
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, Hainan, China
| | - Shizhuang Wang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, Hainan, China
| | - Yamin Nie
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, Hainan, China
| | - Yanyan Wang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, Hainan, China
| | - Mingchao Zhao
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, Hainan, China
- Hainan Academy of Agricultural Sciences, Haikou, Hainan, China
| | - Zhenyun Han
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xianjun Sun
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Han Zhou
- School of Advanced Agriculture Sciences and School of Life Sciences, State Key Laboratory of Protein and Plant Gene Research, Peking University, Beijing, China
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, Shandong, China
| | - Yan Wang
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, Shandong, China
| | - Xiaoming Zheng
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, Hainan, China
| | - Xiaorong Xiao
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, Hainan, China
- Hainan Academy of Agricultural Sciences, Haikou, Hainan, China
| | - Weiya Fan
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ziran Liu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wenlong Guo
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lifang Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yunlian Cheng
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qian Qian
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, Hainan, China
| | - Hang He
- School of Advanced Agriculture Sciences and School of Life Sciences, State Key Laboratory of Protein and Plant Gene Research, Peking University, Beijing, China.
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, Shandong, China.
| | - Qingwen Yang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, Hainan, China.
| | - Weihua Qiao
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, Hainan, China.
| |
Collapse
|
268
|
Jiang S, Zou M, Zhang C, Ma W, Xia C, Li Z, Zhao L, Liu Q, Yu F, Huang D, Xia Z. A high-quality haplotype genome of Michelia alba DC reveals differences in methylation patterns and flower characteristics. MOLECULAR HORTICULTURE 2024; 4:23. [PMID: 38807235 PMCID: PMC11134676 DOI: 10.1186/s43897-024-00098-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 04/19/2024] [Indexed: 05/30/2024]
Abstract
Michelia alba DC is a highly valuable ornamental plant of the Magnoliaceae family. This evergreen tropical tree commonly grows in Southeast Asia and is adored for its delightful fragrance. Our study assembled the M. alba haplotype genome MC and MM by utilizing Nanopore ultralong reads, Pacbio Hifi long reads and parental second-generation data. Moreover, the first methylation map of Magnoliaceae was constructed based on the methylation site data obtained using Nanopore data. Metabolomic datasets were generated from the flowers of three different species to assess variations in pigment and volatile compound accumulation. Finally, transcriptome data were generated to link genomic, methylation, and morphological patterns to reveal the reasons underlying the differences between M. alba and its parental lines in petal color, flower shape, and fragrance. We found that the AP1 and AP2 genes are crucial in M. alba petal formation, while the 4CL, PAL, and C4H genes control petal color. The data generated in this study serve as a foundation for future physiological and biochemical research on M. alba, facilitate the targeted improvement of M. alba varieties, and offer a theoretical basis for molecular research on Michelia L.
Collapse
Affiliation(s)
- Sirong Jiang
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, China
- College of Tropical Crops, Hainan University, Haikou, China
| | - Meiling Zou
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, China
- College of Tropical Crops, Hainan University, Haikou, China
| | | | - Wanfeng Ma
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, China
- College of Tropical Crops, Hainan University, Haikou, China
| | - Chengcai Xia
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, China
- College of Tropical Crops, Hainan University, Haikou, China
| | - Zixuan Li
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, China
- College of Tropical Crops, Hainan University, Haikou, China
| | | | - Qi Liu
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, China
- College of Tropical Crops, Hainan University, Haikou, China
| | - Fen Yu
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, China
- College of Tropical Crops, Hainan University, Haikou, China
| | - Dongyi Huang
- College of Tropical Crops, Hainan University, Haikou, China.
| | - Zhiqiang Xia
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, China.
- College of Tropical Crops, Hainan University, Haikou, China.
| |
Collapse
|
269
|
Dong Y, Wang X, Ahmad N, Sun Y, Wang Y, Liu X, Yao N, Jing Y, Du L, Li X, Wang N, Liu W, Wang F, Li X, Li H. The Carthamus tinctorius L. genome sequence provides insights into synthesis of unsaturated fatty acids. BMC Genomics 2024; 25:510. [PMID: 38783193 PMCID: PMC11112859 DOI: 10.1186/s12864-024-10405-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 05/10/2024] [Indexed: 05/25/2024] Open
Abstract
Domesticated safflower (Carthamus tinctorius L.) is a widely cultivated edible oil crop. However, despite its economic importance, the genetic basis underlying key traits such as oil content, resistance to biotic and abiotic stresses, and flowering time remains poorly understood. Here, we present the genome assembly for C. tinctorius variety Jihong01, which was obtained by integrating Oxford Nanopore Technologies (ONT) and BGI-SEQ500 sequencing results. The assembled genome was 1,061.1 Mb, and consisted of 32,379 protein-coding genes, 97.71% of which were functionally annotated. Safflower had a recent whole genome duplication (WGD) event in evolution history and diverged from sunflower approximately 37.3 million years ago. Through comparative genomic analysis at five seed development stages, we unveiled the pivotal roles of fatty acid desaturase 2 (FAD2) and fatty acid desaturase 6 (FAD6) in linoleic acid (LA) biosynthesis. Similarly, the differential gene expression analysis further reinforced the significance of these genes in regulating LA accumulation. Moreover, our investigation of seed fatty acid composition at different seed developmental stages unveiled the crucial roles of FAD2 and FAD6 in LA biosynthesis. These findings offer important insights into enhancing breeding programs for the improvement of quality traits and provide reference resource for further research on the natural properties of safflower.
Collapse
Affiliation(s)
- Yuanyuan Dong
- Engineering Research Center of Bioreactor and Pharmaceutical Development, College of Life Sciences, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Xiaojie Wang
- School of Pharmaceutical Science, Key Laboratory of Biotechnology and Pharmaceutical Engineering of Zhejiang Province, Wenzhou Medical University, Wenzhou, 325035, China
| | - Naveed Ahmad
- Engineering Research Center of Bioreactor and Pharmaceutical Development, College of Life Sciences, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Yepeng Sun
- Engineering Research Center of Bioreactor and Pharmaceutical Development, College of Life Sciences, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Yuanxin Wang
- Engineering Research Center of Bioreactor and Pharmaceutical Development, College of Life Sciences, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Xiuming Liu
- Engineering Research Center of Bioreactor and Pharmaceutical Development, College of Life Sciences, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Na Yao
- Engineering Research Center of Bioreactor and Pharmaceutical Development, College of Life Sciences, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Yang Jing
- Engineering Research Center of Bioreactor and Pharmaceutical Development, College of Life Sciences, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Linna Du
- Engineering Research Center of Bioreactor and Pharmaceutical Development, College of Life Sciences, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Xiaowei Li
- Engineering Research Center of Bioreactor and Pharmaceutical Development, College of Life Sciences, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Nan Wang
- Engineering Research Center of Bioreactor and Pharmaceutical Development, College of Life Sciences, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Weican Liu
- Engineering Research Center of Bioreactor and Pharmaceutical Development, College of Life Sciences, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Fawei Wang
- Engineering Research Center of Bioreactor and Pharmaceutical Development, College of Life Sciences, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Xiaokun Li
- School of Pharmaceutical Science, Key Laboratory of Biotechnology and Pharmaceutical Engineering of Zhejiang Province, Wenzhou Medical University, Wenzhou, 325035, China
| | - Haiyan Li
- Sanya Nanfan Research Institute of Hainan University, Sanya, 572025, China.
| |
Collapse
|
270
|
Huang W, Ding Y, Fan S, Liu W, Chen H, Segar S, Compton SG, Yu H. A high-quality chromosome-level genome assembly of Ficus hirta. Sci Data 2024; 11:526. [PMID: 38778063 PMCID: PMC11111794 DOI: 10.1038/s41597-024-03376-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
Ficus species (Moraceae) play pivotal roles in tropical and subtropical ecosystems. Thriving across diverse habitats, from rainforests to deserts, they harbor a multitude of mutualistic and antagonistic interactions with insects, nematodes, and pathogens. Despite their ecological significance, knowledge about the genomic background of Ficus remains limited. In this study, we report a chromosome-level reference genome of F. hirta, with a total size of 297.27 Mb, containing 28,625 protein-coding genes and 44.67% repeat sequences. These findings illuminate the genetic basis of Ficus responses to environmental challenges, offering valuable genomic resources for understanding genome size, adaptive evolution, and co-evolution with natural enemies and mutualists within the genus.
Collapse
Affiliation(s)
- Weicheng Huang
- Plant Resources Conservation and Sustainable Utilization, the Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Yamei Ding
- Plant Resources Conservation and Sustainable Utilization, the Chinese Academy of Sciences, Guangzhou, 510650, China
- State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, the Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Songle Fan
- Plant Resources Conservation and Sustainable Utilization, the Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Wanzhen Liu
- Plant Resources Conservation and Sustainable Utilization, the Chinese Academy of Sciences, Guangzhou, 510650, China
- State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, the Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Hongfeng Chen
- Plant Resources Conservation and Sustainable Utilization, the Chinese Academy of Sciences, Guangzhou, 510650, China
- State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, the Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Simon Segar
- Department of Crop and Environment Sciences, Harper Adams University, Newport, Shropshire, TF10 8NB, UK
| | | | - Hui Yu
- Plant Resources Conservation and Sustainable Utilization, the Chinese Academy of Sciences, Guangzhou, 510650, China.
- State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, the Chinese Academy of Sciences, Guangzhou, 510650, China.
- State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, 510650, China.
| |
Collapse
|
271
|
Chen W, Wang X, Sun J, Wang X, Zhu Z, Ayhan DH, Yi S, Yan M, Zhang L, Meng T, Mu Y, Li J, Meng D, Bian J, Wang K, Wang L, Chen S, Chen R, Jin J, Li B, Zhang X, Deng XW, He H, Guo L. Two telomere-to-telomere gapless genomes reveal insights into Capsicum evolution and capsaicinoid biosynthesis. Nat Commun 2024; 15:4295. [PMID: 38769327 PMCID: PMC11106260 DOI: 10.1038/s41467-024-48643-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 05/08/2024] [Indexed: 05/22/2024] Open
Abstract
Chili pepper (Capsicum) is known for its unique fruit pungency due to the presence of capsaicinoids. The evolutionary history of capsaicinoid biosynthesis and the mechanism of their tissue specificity remain obscure due to the lack of high-quality Capsicum genomes. Here, we report two telomere-to-telomere (T2T) gap-free genomes of C. annuum and its wild nonpungent relative C. rhomboideum to investigate the evolution of fruit pungency in chili peppers. We precisely delineate Capsicum centromeres, which lack high-copy tandem repeats but are extensively invaded by CRM retrotransposons. Through phylogenomic analyses, we estimate the evolutionary timing of capsaicinoid biosynthesis. We reveal disrupted coding and regulatory regions of key biosynthesis genes in nonpungent species. We also find conserved placenta-specific accessible chromatin regions, which likely allow for tissue-specific biosynthetic gene coregulation and capsaicinoid accumulation. These T2T genomic resources will accelerate chili pepper genetic improvement and help to understand Capsicum genome evolution.
Collapse
Affiliation(s)
- Weikai Chen
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, 261325, China
| | - Xiangfeng Wang
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, 261325, China
| | - Jie Sun
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, 261325, China
| | - Xinrui Wang
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, 261325, China
| | - Zhangsheng Zhu
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, 261325, China
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Dilay Hazal Ayhan
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, 261325, China
| | - Shu Yi
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, 261325, China
| | - Ming Yan
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, 261325, China
| | - Lili Zhang
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, 261325, China
- College of Modern Agriculture and Environment, Weifang Institute of Technology, Weifang, 262500, China
| | - Tan Meng
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, 261325, China
| | - Yu Mu
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, 261325, China
| | - Jun Li
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, 261325, China
| | - Dian Meng
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, 261325, China
| | - Jianxin Bian
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, 261325, China
| | - Ke Wang
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, 261325, China
- College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Lu Wang
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, 261325, China
| | - Shaoying Chen
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, 261325, China
| | - Ruidong Chen
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, 261325, China
| | - Jingyun Jin
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, 261325, China
| | - Bosheng Li
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, 261325, China
| | - Xingping Zhang
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, 261325, China
| | - Xing Wang Deng
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, 261325, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Hang He
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, 261325, China.
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.
| | - Li Guo
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, 261325, China.
| |
Collapse
|
272
|
Wang J, Xu Y, Peng Y, Wang Y, Kang Z, Zhao J. A fully haplotype-resolved and nearly gap-free genome assembly of wheat stripe rust fungus. Sci Data 2024; 11:508. [PMID: 38755209 PMCID: PMC11099153 DOI: 10.1038/s41597-024-03361-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 05/10/2024] [Indexed: 05/18/2024] Open
Abstract
Stripe rust fungus Puccinia striiformis f. sp. tritici (Pst) is a destructive pathogen of wheat worldwide. Pst has a macrocyclic-heteroecious lifecycle, in which one-celled urediniospores are dikaryotic, each nucleus containing one haploid genome. We successfully generated the first fully haplotype-resolved and nearly gap-free chromosome-scale genome assembly of Pst by combining PacBio HiFi sequencing and trio-binning strategy. The genome size of the two haploid assemblies was 75.59 Mb and 75.91 Mb with contig N50 of 4.17 Mb and 4.60 Mb, and both had 18 pseudochromosomes. The high consensus quality values of 55.57 and 59.02 for both haplotypes confirmed the correctness of the assembly. Of the total 18 chromosomes, 15 and 16 were gapless while there were only five and two gaps for the remaining chromosomes of the two haplotypes, respectively. In total, 15,046 and 15,050 protein-coding genes were predicted for the two haplotypes, and the complete BUSCO scores achieved 97.7% and 97.9%, respectively. The genome will lay the foundation for further research on genetic variations and the evolution of rust fungi.
Collapse
Affiliation(s)
- Jierong Wang
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, China
- College of Life Science, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yiwen Xu
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yuxi Peng
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yiping Wang
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhensheng Kang
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China.
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Jing Zhao
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China.
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
273
|
Schultz DT, Heath-Heckman EA, Winchell CJ, Kuo DH, Yu YS, Oberauer F, Kocot KM, Cho SJ, Simakov O, Weisblat DA. Acceleration of genome rearrangement in clitellate annelids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.12.593736. [PMID: 38798472 PMCID: PMC11118384 DOI: 10.1101/2024.05.12.593736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Comparisons of multiple metazoan genomes have revealed the existence of ancestral linkage groups (ALGs), genomic scaffolds sharing sets of orthologous genes that have been inherited from ancestral animals for hundreds of millions of years (Simakov et al. 2022; Schultz et al. 2023) These ALGs have persisted across major animal taxa including Cnidaria, Deuterostomia, Ecdysozoa and Spiralia. Notwithstanding this general trend of chromosome-scale conservation, ALGs have been obliterated by extensive genome rearrangements in certain groups, most notably including Clitellata (oligochaetes and leeches), a group of easily overlooked invertebrates that is of tremendous ecological, agricultural and economic importance (Charles 2019; Barrett 2016). To further investigate these rearrangements, we have undertaken a comparison of 12 clitellate genomes (including four newly sequenced species) and 11 outgroup representatives. We show that these rearrangements began at the base of the Clitellata (rather than progressing gradually throughout polychaete annelids), that the inter-chromosomal rearrangements continue in several clitellate lineages and that these events have substantially shaped the evolution of the otherwise highly conserved Hox cluster.
Collapse
Affiliation(s)
- Darrin T. Schultz
- Department of Neuroscience and Developmental Biology, University of Vienna, Vienna 1010, Austria
| | - Elizabeth A.C. Heath-Heckman
- Department of Integrative Biology, Michigan State University, East Lansing, MI, USA
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Christopher J. Winchell
- Department of Molecular and Cell Biology, University of California, 385 Weill Hall, Berkeley, CA 94720-3200, USA
| | - Dian-Han Kuo
- Department of Life Science & Museum of Zoology, National Taiwan University, No. 1 Section 4 Roosevelt Rd., Taipei 10617, Taiwan
| | - Yun-sang Yu
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Fabian Oberauer
- Department of Neuroscience and Developmental Biology, University of Vienna, Vienna 1010, Austria
| | - Kevin M. Kocot
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA
- Alabama Museum of Natural History, University of Alabama, Tuscaloosa, AL 35487, USA
| | - Sung-Jin Cho
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Oleg Simakov
- Department of Neuroscience and Developmental Biology, University of Vienna, Vienna 1010, Austria
| | - David A. Weisblat
- Department of Molecular and Cell Biology, University of California, 385 Weill Hall, Berkeley, CA 94720-3200, USA
| |
Collapse
|
274
|
Wen J, Wang Y, Lu X, Pan H, Jin D, Wen J, Jin C, Sahu SK, Su J, Luo X, Jin X, Zhao J, Wu H, Liu EH, Liu H. An integrated multi-omics approach reveals polymethoxylated flavonoid biosynthesis in Citrus reticulata cv. Chachiensis. Nat Commun 2024; 15:3991. [PMID: 38734724 PMCID: PMC11088696 DOI: 10.1038/s41467-024-48235-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Citrus reticulata cv. Chachiensis (CRC) is an important medicinal plant, its dried mature peels named "Guangchenpi", has been used as a traditional Chinese medicine to treat cough, indigestion, and lung diseases for several hundred years. However, the biosynthesis of the crucial natural products polymethoxylated flavonoids (PMFs) in CRC remains unclear. Here, we report a chromosome-scale genome assembly of CRC with the size of 314.96 Mb and a contig N50 of 16.22 Mb. Using multi-omics resources, we discover a putative caffeic acid O-methyltransferase (CcOMT1) that can transfer a methyl group to the 3-hydroxyl of natsudaidain to form 3,5,6,7,8,3',4'-heptamethoxyflavone (HPMF). Based on transient overexpression and virus-induced gene silencing experiments, we propose that CcOMT1 is a candidate enzyme in HPMF biosynthesis. In addition, a potential gene regulatory network associated with PMF biosynthesis is identified. This study provides insights into PMF biosynthesis and may assist future research on mining genes for the biosynthesis of plant-based medicines.
Collapse
Affiliation(s)
- Jiawen Wen
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yayu Wang
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen, 518083, China
| | - Xu Lu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, 210009, China
| | - Huimin Pan
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Dian Jin
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, 210009, China
| | - Jialing Wen
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Canzhi Jin
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Sunil Kumar Sahu
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Jianmu Su
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Xinyue Luo
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Xiaohuan Jin
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen, 518083, China
| | - Jiao Zhao
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen, 518083, China
| | - Hong Wu
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China.
| | - E-Hu Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Huan Liu
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen, 518083, China.
| |
Collapse
|
275
|
Cai Y, Anderson E, Xue W, Wong S, Cui L, Cheng X, Wang O, Mao Q, Liu SJ, Davis JT, Magalang PR, Schmidt D, Kasuga T, Garbelotto M, Drmanac R, Kua CS, Cannon C, Maloof JN, Peters BA. Assembly and analysis of the genome of Notholithocarpus densiflorus. G3 (BETHESDA, MD.) 2024; 14:jkae043. [PMID: 38427916 PMCID: PMC11075539 DOI: 10.1093/g3journal/jkae043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/16/2024] [Accepted: 02/22/2024] [Indexed: 03/03/2024]
Abstract
Tanoak (Notholithocarpus densiflorus) is an evergreen tree in the Fagaceae family found in California and southern Oregon. Historically, tanoak acorns were an important food source for Native American tribes, and the bark was used extensively in the leather tanning process. Long considered a disjunct relictual element of the Asian stone oaks (Lithocarpus spp.), phylogenetic analysis has determined that the tanoak is an example of convergent evolution. Tanoaks are deeply divergent from oaks (Quercus) of the Pacific Northwest and comprise a new genus with a single species. These trees are highly susceptible to "sudden oak death" (SOD), a plant pathogen (Phytophthora ramorum) that has caused widespread deaths of tanoaks. In this study, we set out to assemble the genome and perform comparative studies among a number of individuals that demonstrated varying levels of susceptibility to SOD. First, we sequenced and de novo assembled a draft reference genome of N. densiflorus using cobarcoded library processing methods and an MGI DNBSEQ-G400 sequencer. To increase the contiguity of the final assembly, we also sequenced Oxford Nanopore long reads to 30× coverage. To our knowledge, the draft genome reported here is one of the more contiguous and complete genomes of a tree species published to date, with a contig N50 of ∼1.2 Mb, a scaffold N50 of ∼2.1 Mb, and a complete gene score of 95.5% through BUSCO analysis. In addition, we sequenced 11 genetically distinct individuals and mapped these onto the draft reference genome, enabling the discovery of almost 25 million single nucleotide polymorphisms and ∼4.4 million small insertions and deletions. Finally, using cobarcoded data, we were able to generate a complete haplotype coverage of all 11 genomes.
Collapse
Affiliation(s)
- Ying Cai
- Advanced Genomics Technology Laboratory, Complete Genomics Inc, San Jose, CA 95134, USA
| | - Ellis Anderson
- Advanced Genomics Technology Laboratory, Complete Genomics Inc, San Jose, CA 95134, USA
| | - Wen Xue
- Advanced Genomics Technology Laboratory, Complete Genomics Inc, San Jose, CA 95134, USA
| | - Sylvia Wong
- Advanced Genomics Technology Laboratory, Complete Genomics Inc, San Jose, CA 95134, USA
| | - Luman Cui
- Department of Research, BGI-Shenzhen, Shenzhen 518083, China
| | - Xiaofang Cheng
- Department of Research, MGI, BGI-Shenzhen, Shenzhen 518083, China
| | - Ou Wang
- Department of Research, BGI-Shenzhen, Shenzhen 518083, China
| | - Qing Mao
- Advanced Genomics Technology Laboratory, Complete Genomics Inc, San Jose, CA 95134, USA
| | - Sophie Jia Liu
- Advanced Genomics Technology Laboratory, Complete Genomics Inc, San Jose, CA 95134, USA
| | - John T Davis
- Department of Plant Biology, University of California, Davis, CA 95616, USA
| | - Paulo R Magalang
- Department of Plant Biology, University of California, Davis, CA 95616, USA
| | - Douglas Schmidt
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA 94720, USA
| | - Takao Kasuga
- Crops Pathology and Genetics Research Unit, United States Department of Agriculture—Agricultural Research Service, Davis, CA 95616, USA
| | - Matteo Garbelotto
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA 94720, USA
| | - Radoje Drmanac
- Advanced Genomics Technology Laboratory, Complete Genomics Inc, San Jose, CA 95134, USA
| | - Chai-Shian Kua
- Center for Tree Science, The Morton Arboretum, Lisle, IL 60532, USA
| | - Charles Cannon
- Center for Tree Science, The Morton Arboretum, Lisle, IL 60532, USA
| | - Julin N Maloof
- Department of Plant Biology, University of California, Davis, CA 95616, USA
| | - Brock A Peters
- Advanced Genomics Technology Laboratory, Complete Genomics Inc, San Jose, CA 95134, USA
| |
Collapse
|
276
|
Wan JN, Wang SW, Leitch AR, Leitch IJ, Jian JB, Wu ZY, Xin HP, Rakotoarinivo M, Onjalalaina GE, Gituru RW, Dai C, Mwachala G, Bai MZ, Zhao CX, Wang HQ, Du SL, Wei N, Hu GW, Chen SC, Chen XY, Wan T, Wang QF. The rise of baobab trees in Madagascar. Nature 2024; 629:1091-1099. [PMID: 38750363 PMCID: PMC11136661 DOI: 10.1038/s41586-024-07447-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 04/19/2024] [Indexed: 05/30/2024]
Abstract
The baobab trees (genus Adansonia) have attracted tremendous attention because of their striking shape and distinctive relationships with fauna1. These spectacular trees have also influenced human culture, inspiring innumerable arts, folklore and traditions. Here we sequenced genomes of all eight extant baobab species and argue that Madagascar should be considered the centre of origin for the extant lineages, a key issue in their evolutionary history2,3. Integrated genomic and ecological analyses revealed the reticulate evolution of baobabs, which eventually led to the species diversity seen today. Past population dynamics of Malagasy baobabs may have been influenced by both interspecific competition and the geological history of the island, especially changes in local sea levels. We propose that further attention should be paid to the conservation status of Malagasy baobabs, especially of Adansonia suarezensis and Adansonia grandidieri, and that intensive monitoring of populations of Adansonia za is required, given its propensity for negatively impacting the critically endangered Adansonia perrieri.
Collapse
Affiliation(s)
- Jun-Nan Wan
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Sino-Africa Joint Research Centre, Chinese Academy of Sciences, Wuhan, China
| | - Sheng-Wei Wang
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Sino-Africa Joint Research Centre, Chinese Academy of Sciences, Wuhan, China
| | - Andrew R Leitch
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | | | - Jian-Bo Jian
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | | | - Hai-Ping Xin
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | | | | | - Robert Wahiti Gituru
- Sino-Africa Joint Research Centre, Chinese Academy of Sciences, Wuhan, China
- Department of Botany, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Can Dai
- School of Resources and Environmental Science, Hubei University, Wuhan, China
| | | | - Ming-Zhou Bai
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | | | | | - Sheng-Lan Du
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Neng Wei
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Sino-Africa Joint Research Centre, Chinese Academy of Sciences, Wuhan, China
| | - Guang-Wan Hu
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Sino-Africa Joint Research Centre, Chinese Academy of Sciences, Wuhan, China
| | - Si-Chong Chen
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Sino-Africa Joint Research Centre, Chinese Academy of Sciences, Wuhan, China
| | - Xiao-Ya Chen
- Sino-Africa Joint Research Centre, Chinese Academy of Sciences, Wuhan, China
- Shanghai Chenshan Botanical Garden, Shanghai, China
| | - Tao Wan
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China.
- Sino-Africa Joint Research Centre, Chinese Academy of Sciences, Wuhan, China.
| | - Qing-Feng Wang
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China.
- Sino-Africa Joint Research Centre, Chinese Academy of Sciences, Wuhan, China.
| |
Collapse
|
277
|
Xiao TW, Liu X, Fu N, Liu TJ, Wang ZF, Ge XJ, Huang HR. Chromosome-level genome assemblies of Musa ornata and Musa velutina provide insights into pericarp dehiscence and anthocyanin biosynthesis in banana. HORTICULTURE RESEARCH 2024; 11:uhae079. [PMID: 38766534 PMCID: PMC11101321 DOI: 10.1093/hr/uhae079] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 03/08/2024] [Indexed: 05/22/2024]
Abstract
Musa ornata and Musa velutina are members of the Musaceae family and are indigenous to the South and Southeast Asia. They are very popular in the horticultural market, but the lack of genomic sequencing data and genetic studies has hampered efforts to improve their ornamental value. In this study, we generated the first chromosome-level genome assemblies for both species by utilizing Oxford Nanopore long reads and Hi-C reads. The genomes of M. ornata and M. velutina were assembled into 11 pseudochromosomes with genome sizes of 427.85 Mb and 478.10 Mb, respectively. Repetitive sequences comprised 46.70% and 50.91% of the total genomes for M. ornata and M. velutina, respectively. Differentially expressed gene (DEG) and Gene Ontology (GO) enrichment analyses indicated that upregulated genes in the mature pericarps of M. velutina were mainly associated with the saccharide metabolic processes, particularly at the cell wall and extracellular region. Furthermore, we identified polygalacturonase (PG) genes that exhibited higher expression level in mature pericarps of M. velutina compared to other tissues, potentially being accountable for pericarp dehiscence. This study also identified genes associated with anthocyanin biosynthesis pathway. Taken together, the chromosomal-level genome assemblies of M. ornata and M. velutina provide valuable insights into the mechanism of pericarp dehiscence and anthocyanin biosynthesis in banana, which will significantly contribute to future genetic and molecular breeding efforts.
Collapse
Affiliation(s)
- Tian-Wen Xiao
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- South China National Botanical Garden, Guangzhou 510650, China
| | - Xin Liu
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- South China National Botanical Garden, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ning Fu
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- South China National Botanical Garden, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tong-Jian Liu
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- South China National Botanical Garden, Guangzhou 510650, China
| | - Zheng-Feng Wang
- South China National Botanical Garden, Guangzhou 510650, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Xue-Jun Ge
- South China National Botanical Garden, Guangzhou 510650, China
- State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Hui-Run Huang
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- South China National Botanical Garden, Guangzhou 510650, China
| |
Collapse
|
278
|
Liu X, Zhang W, Zhang Y, Yang J, Zeng P, Tian Z, Sun W, Cai J. Chromosome-scale genomes of Quercus sichourensis and Quercus rex provide insights into the evolution and adaptation of Fagaceae. J Genet Genomics 2024; 51:554-565. [PMID: 38575109 DOI: 10.1016/j.jgg.2024.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 04/06/2024]
Abstract
The Fagaceae, a plant family with a wide distribution and diverse adaptability, has garnered significant interest as a subject of study in plant speciation and adaptation. Meanwhile, certain Fagaceae species are regarded as highly valuable wood resources due to the exceptional quality of their wood. In this study, we present two high-quality, chromosome-scale genome sequences for Quercus sichourensis (848.75 Mb) and Quercus rex (883.46 Mb). Comparative genomics analysis reveals that the difference in the number of plant disease resistance genes and the nonsynonymous and synonymous substitution ratio (Ka/Ks) of protein-coding genes among Fagaceae species are related to different environmental adaptations. Interestingly, most genes related to starch synthesis in the investigated Quercoideae species are located on a single chromosome, as compared to the outgroup species, Fagus sylvatica. Furthermore, resequencing and population analysis of Q. sichourensis and Q. rex reveal that Q. sichourensis has lower genetic diversity and higher deleterious mutations compared to Q. rex. The high-quality, chromosome-level genomes and the population genomic analysis of the critically endangered Q. sichourensis and Q. rex will provide an invaluable resource as well as insights for future study in these two species, even the genus Quercus, to facilitate their conservation.
Collapse
Affiliation(s)
- Xue Liu
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Weixiong Zhang
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Yongting Zhang
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Jing Yang
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Peng Zeng
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Zunzhe Tian
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Weibang Sun
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China.
| | - Jing Cai
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China.
| |
Collapse
|
279
|
Zeng S, Wang Z, Shi D, Yu F, Liu T, Peng T, Bi G, Yan J, Wang Y. The high-quality genome of Grona styracifolia uncovers the genomic mechanism of high levels of schaftoside, a promising drug candidate for treatment of COVID-19. HORTICULTURE RESEARCH 2024; 11:uhae089. [PMID: 38799125 PMCID: PMC11119794 DOI: 10.1093/hr/uhae089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/20/2024] [Indexed: 05/29/2024]
Abstract
Recent study has evidenced that traditional Chinese medicinal (TCM) plant-derived schaftoside shows promise as a potential drug candidate for COVID-19 treatment. However, the biosynthetic pathway of schaftoside in TCM plants remains unknown. In this study, the genome of the TCM herb Grona styracifolia (Osbeck) H.Ohashi & K.Ohashi (GSO), which is rich in schaftoside, was sequenced, and a high-quality assembly of GSO genome was obtained. Our findings revealed that GSO did not undergo recent whole genome duplication (WGD) but shared an ancestral papilionoid polyploidy event, leading to the gene expansion of chalcone synthase (CHS) and isoflavone 2'-hydroxylase (HIDH). Furthermore, GSO-specific tandem gene duplication resulted in the gene expansion of C-glucosyltransferase (CGT). Integrative analysis of the metabolome and transcriptome identified 13 CGTs and eight HIDHs involved in the biosynthetic pathway of schaftoside. Functional studies indicated that CGTs and HIDHs identified here are bona fide responsible for the biosynthesis of schaftoside in GSO, as confirmed through hairy root transgenic system and in vitro enzyme activity assay. Taken together, the ancestral papilionoid polyploidy event expanding CHSs and HIDHs, along with the GSO-specific tandem duplication of CGT, contributes, partially if not completely, to the robust biosynthesis of schaftoside in GSO. These findings provide insights into the genomic mechanisms underlying the abundant biosynthesis of schaftoside in GSO, highlighting the potential of GSO as a source of bioactive compounds for pharmaceutical development.
Collapse
Affiliation(s)
- Shaohua Zeng
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China National Botanical Garden, State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- College of Life Sciences, Gannan Normal University, Ganzhou 341000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiqiang Wang
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China National Botanical Garden, State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dingding Shi
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China National Botanical Garden, State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fangqin Yu
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China National Botanical Garden, State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- College of Life Sciences, Gannan Normal University, Ganzhou 341000, China
| | - Ting Liu
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China National Botanical Garden, State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- College of Life Sciences, Gannan Normal University, Ganzhou 341000, China
| | - Ting Peng
- College of Life Sciences, Gannan Normal University, Ganzhou 341000, China
| | - Guiqi Bi
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Jianbin Yan
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Ying Wang
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China National Botanical Garden, State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- College of Life Sciences, Gannan Normal University, Ganzhou 341000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
280
|
Kim J, Park Y, Moon S, Seo JA, Moon J, Park H, Choi BY, Raveendar S, Kim CW, Chung JW, Shim D. A comprehensive analysis integrating phenotypic assessment uncovering thornless cultivar lineages in Aralia elata. Genomics 2024; 116:110824. [PMID: 38485062 DOI: 10.1016/j.ygeno.2024.110824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 03/08/2024] [Accepted: 03/11/2024] [Indexed: 03/17/2024]
Abstract
Aralia elata is an Araliaceae woody plant species found in Northeastern Asia. To understand how genetic pools are distributed for A.elata clones, we were to analyze the population structure of A.elata cultivars and identify how these are correlated with thorn-related phenotype which determines the utility of A.elata. We found that the de novo assembled genome of 'Yeongchun' shared major genomic compartments with the public A.elata genome assembled from the wild-type from China. To identify the population structure of the 32 Korean and Japanese cultivars, we identified 44 SSR markers and revealed three main sub-clusters using ΔK analysis with one isolated cultivar. Machine-learning based clustering with thorn-related phenotype correlated moderately with population structure based on SSR analysis suggested multi-layered genetic regulation of thorn-related phenotypes. Thus, we revealed genetic lineage of A.elata and uncovered isolated cultivar which can provide new genetic material for further breeding.
Collapse
Affiliation(s)
- Jaewook Kim
- Department of Biological Science, Chungnam National University, Daejeon 34134, Republic of Korea; Department of Biology Education, Korea National University of Education, Cheongju 28173, Republic of Korea
| | - Yunmi Park
- Special Forest Resources Division, National Institute of Forest Science, Suwon 16631, Republic of Korea
| | - Suyun Moon
- Department of Industrial Plant Science and Technology, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Ji-Ae Seo
- Special Forest Resources Division, National Institute of Forest Science, Suwon 16631, Republic of Korea
| | - Jisook Moon
- Department of Biological Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Hyeonseon Park
- Department of Biological Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Bae Young Choi
- Department of Biological Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Sebastin Raveendar
- Department of Industrial Plant Science and Technology, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Cheol-Woo Kim
- Special Forest Resources Division, National Institute of Forest Science, Suwon 16631, Republic of Korea.
| | - Jong-Wook Chung
- Department of Industrial Plant Science and Technology, Chungbuk National University, Cheongju 28644, Republic of Korea.
| | - Donghwan Shim
- Department of Biological Science, Chungnam National University, Daejeon 34134, Republic of Korea; Center for Genome Engineering, Institute for Basic Science, Daejeon 34126, Republic of Korea.
| |
Collapse
|
281
|
Huang W, Xu B, Guo W, Huang Z, Li Y, Wu W. De novo genome assembly and population genomics of a shrub tree Barthea barthei (Hance) krass provide insights into the adaptive color variations. FRONTIERS IN PLANT SCIENCE 2024; 15:1365686. [PMID: 38751846 PMCID: PMC11094225 DOI: 10.3389/fpls.2024.1365686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/19/2024] [Indexed: 05/18/2024]
Abstract
Flower color is a classic example of an ecologically important trait under selection in plants. Understanding the genetic mechanisms underlying shifts in flower color can provide key insights into ecological speciation. In this study, we investigated the genetic basis of flower color divergence in Barthea barthei, a shrub tree species exhibiting natural variation in flower color. We assembled a high-quality genome assembly for B. barthei with a contig N50 of 2.39 Mb and a scaffold N50 of 16.21 Mb. The assembly was annotated with 46,430 protein-coding genes and 1,560 non-coding RNAs. Genome synteny analysis revealed two recent tetraploidization events in B. barthei, estimated to have occurred at approximately 17 and 63 million years ago. These tetraploidization events resulted in massive duplicated gene content, with over 70% of genes retained in collinear blocks. Gene family members of the core regulators of the MBW complex were significantly expanded in B. barthei compared to Arabidopsis, suggesting that these duplications may have provided raw genetic material for the evolution of novel regulatory interactions and the diversification of anthocyanin pigmentation. Transcriptome profiling of B. barthei flowers revealed differential expression of 9 transcription factors related to anthocyanin biosynthesis between the two ecotypes. Six of these differentially expressed transcription factors were identified as high-confidence candidates for adaptive evolution based on positive selection signals. This study provides insights into the genetic basis of flower color divergence and the evolutionary mechanisms underlying ecological adaptation in plants.
Collapse
Affiliation(s)
- Weicheng Huang
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- South China Botanical Garden, Chinese Academy of Science, Guangzhou, China
| | - Bin Xu
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, China
| | - Wei Guo
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Zecheng Huang
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Yongquan Li
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Wei Wu
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| |
Collapse
|
282
|
Li R, Qin Y, Rong W, Deng WA, Li X. Chromosome-level genome assembly of the pygmy grasshopper Eucriotettix oculatus (Orthoptera: Tetrigoidea). Sci Data 2024; 11:431. [PMID: 38670991 PMCID: PMC11053044 DOI: 10.1038/s41597-024-03276-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
The pygmy grasshoppers, which belong to the superfamily Tetrigoidea, exhibit remarkable environmental adaptability. However, no study has yet reported a reference genome for this group. In this study, we assembled a high-quality chromosome-scale genome of Eucriotettix oculatus, which survive in the environment heavily polluted by heavy metals, achieved through Illumina and PacBio sequencing, alongside chromosome conformation capture techniques. The resulting genome spans 985.45 Mb across seven chromosomes (range: 71.55 to 266.65 Mb) and features an N50 length of 123.82 Mb. Chr5 is considered to be the single sex chromosome (X). This genome is composed of 46.42% repetitive elements and contains 14,906 predicted protein-coding genes, 91.63% of which are functionally annotated. Decoding the E. oculatus genome not only promotes future studies on environmental adaptation for the pygmy grasshopper, but also provides valuable resources for in-depth investigation on phylogeny, evolution, and behavior of Orthoptera.
Collapse
Affiliation(s)
- Ran Li
- Guangxi Key Laboratory of Sericulture Ecology and Applied Intelligent Technology, Hechi University, Hechi, China
- College of Life Sciences, Qufu Normal University, Qufu, China
| | - Yingcan Qin
- School of Chemistry and Bioengineering, Hechi University, Yizhou, China
| | - Wantao Rong
- Guangxi Key Laboratory of Sericulture Ecology and Applied Intelligent Technology, Hechi University, Hechi, China
- School of Chemistry and Bioengineering, Hechi University, Yizhou, China
| | - Wei-An Deng
- Guangxi Key Laboratory of Sericulture Ecology and Applied Intelligent Technology, Hechi University, Hechi, China.
- College of Life Sciences, Guangxi Normal University, Guilin, China.
| | - Xiaodong Li
- Guangxi Key Laboratory of Sericulture Ecology and Applied Intelligent Technology, Hechi University, Hechi, China.
- School of Chemistry and Bioengineering, Hechi University, Yizhou, China.
| |
Collapse
|
283
|
Hong Kong Biodiversity Genomics Consortium, Hui JHL, Chan TF, Chan LL, Cheung SG, Cheang CC, Fang JKH, Gaitan-Espitia JD, Lau SCK, Sung YH, Wong CKC, Yip KYL, Wei Y, Chong TK, Law STS, Nong W, Yip HY. Genome assembly of the edible jelly fungus Dacryopinax spathularia (Dacrymycetaceae). GIGABYTE 2024; 2024:gigabyte120. [PMID: 38707634 PMCID: PMC11066560 DOI: 10.46471/gigabyte.120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/13/2024] [Indexed: 05/07/2024] Open
Abstract
The edible jelly fungus Dacryopinax spathularia (Dacrymycetaceae) is wood-decaying and can be commonly found worldwide. It has found application in food additives, given its ability to synthesize long-chain glycolipids, among other uses. In this study, we present the genome assembly of D. spathularia using a combination of PacBio HiFi reads and Omni-C data. The genome size is 29.2 Mb. It has high sequence contiguity and completeness, with a scaffold N50 of 1.925 Mb and a 92.0% BUSCO score. A total of 11,510 protein-coding genes and 474.7 kb repeats (accounting for 1.62% of the genome) were predicted. The D. spathularia genome assembly generated in this study provides a valuable resource for understanding their ecology, such as their wood-decaying capability, their evolutionary relationships with other fungi, and their unique biology and applications in the food industry.
Collapse
Affiliation(s)
| | - Jerome H. L. Hui
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Hong Kong, China
| | - Ting Fung Chan
- School of Life Sciences, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Leo Lai Chan
- State Key Laboratory of Marine Pollution and Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Siu Gin Cheung
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
| | - Chi Chiu Cheang
- Department of Science and Environmental Studies, The Education University of Hong Kong, Hong Kong SAR, China
- EcoEdu PEI, Charlottetown, PE, C1A 4B7, Canada
| | - James Kar-Hei Fang
- Department of Food Science and Nutrition, Research Institute for Future Food, and State Key Laboratory of Marine Pollution, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Juan Diego Gaitan-Espitia
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Stanley Chun Kwan Lau
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Yik Hei Sung
- Science Unit, Lingnan University, Hong Kong SAR, China
- School of Allied Health Sciences, University of Suffolk, Ipswich, IP4 1QJ, UK
| | - Chris Kong Chu Wong
- Croucher Institute for Environmental Sciences, and Department of Biology, Hong Kong Baptist University, Hong Kong SAR, China
| | - Kevin Yuk-Lap Yip
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Yingying Wei
- Department of Statistics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Tze Kiu Chong
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Hong Kong, China
| | - Sean Tsz Sum Law
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Hong Kong, China
| | - Wenyan Nong
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Hong Kong, China
| | - Ho Yin Yip
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
284
|
Sebastianelli M, Lukhele SM, Secomandi S, de Souza SG, Haase B, Moysi M, Nikiforou C, Hutfluss A, Mountcastle J, Balacco J, Pelan S, Chow W, Fedrigo O, Downs CT, Monadjem A, Dingemanse NJ, Jarvis ED, Brelsford A, vonHoldt BM, Kirschel ANG. A genomic basis of vocal rhythm in birds. Nat Commun 2024; 15:3095. [PMID: 38653976 DOI: 10.1038/s41467-024-47305-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/22/2024] [Indexed: 04/25/2024] Open
Abstract
Vocal rhythm plays a fundamental role in sexual selection and species recognition in birds, but little is known of its genetic basis due to the confounding effect of vocal learning in model systems. Uncovering its genetic basis could facilitate identifying genes potentially important in speciation. Here we investigate the genomic underpinnings of rhythm in vocal non-learning Pogoniulus tinkerbirds using 135 individual whole genomes distributed across a southern African hybrid zone. We find rhythm speed is associated with two genes that are also known to affect human speech, Neurexin-1 and Coenzyme Q8A. Models leveraging ancestry reveal these candidate loci also impact rhythmic stability, a trait linked with motor performance which is an indicator of quality. Character displacement in rhythmic stability suggests possible reinforcement against hybridization, supported by evidence of asymmetric assortative mating in the species producing faster, more stable rhythms. Because rhythm is omnipresent in animal communication, candidate genes identified here may shape vocal rhythm across birds and other vertebrates.
Collapse
Affiliation(s)
- Matteo Sebastianelli
- Department of Biological Sciences, University of Cyprus, PO Box 20537, Nicosia, 1678, Cyprus.
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, 751 23, Uppsala, Sweden.
| | - Sifiso M Lukhele
- Department of Biological Sciences, University of Cyprus, PO Box 20537, Nicosia, 1678, Cyprus
| | - Simona Secomandi
- Department of Biological Sciences, University of Cyprus, PO Box 20537, Nicosia, 1678, Cyprus
| | - Stacey G de Souza
- Department of Biological Sciences, University of Cyprus, PO Box 20537, Nicosia, 1678, Cyprus
| | - Bettina Haase
- Vertebrate Genome Lab, The Rockefeller University, New York, NY, USA
| | - Michaella Moysi
- Department of Biological Sciences, University of Cyprus, PO Box 20537, Nicosia, 1678, Cyprus
| | - Christos Nikiforou
- Department of Biological Sciences, University of Cyprus, PO Box 20537, Nicosia, 1678, Cyprus
| | - Alexander Hutfluss
- Behavioural Ecology, Faculty of Biology, LMU Munich (LMU), 82152, Planegg-Martinsried, Germany
| | | | - Jennifer Balacco
- Vertebrate Genome Lab, The Rockefeller University, New York, NY, USA
| | | | | | - Olivier Fedrigo
- Vertebrate Genome Lab, The Rockefeller University, New York, NY, USA
| | - Colleen T Downs
- Centre for Functional Biodiversity, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, 3209, South Africa
| | - Ara Monadjem
- Department of Biological Sciences, University of Eswatini, Kwaluseni, Eswatini
- Mammal Research Institute, Department of Zoology & Entomology, University of Pretoria, Private Bag 20, Hatfield, 0028, Pretoria, South Africa
| | - Niels J Dingemanse
- Behavioural Ecology, Faculty of Biology, LMU Munich (LMU), 82152, Planegg-Martinsried, Germany
| | - Erich D Jarvis
- Vertebrate Genome Lab, The Rockefeller University, New York, NY, USA
- Laboratory of Neurogenetics of Language, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Alan Brelsford
- Department of Evolution, Ecology and Organismal Biology, University of California Riverside, Riverside, CA, 92521, USA
| | - Bridgett M vonHoldt
- Department of Ecology & Evolutionary Biology, Princeton University, Princeton, NJ, 08544, USA
| | - Alexander N G Kirschel
- Department of Biological Sciences, University of Cyprus, PO Box 20537, Nicosia, 1678, Cyprus.
| |
Collapse
|
285
|
Liu S, Chen N. Chromosome-level genome assembly of marine diatom Skeletonema tropicum. Sci Data 2024; 11:403. [PMID: 38643276 PMCID: PMC11032307 DOI: 10.1038/s41597-024-03238-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/08/2024] [Indexed: 04/22/2024] Open
Abstract
Skeletonema tropicum is a marine diatom of the genus Skeletonema that also includes many well-known species including S. marinoi. S. tropicum is a high temperature preferring species thriving in tropical ocean regions or temperate ocean regions during summer-autumn. However, mechanisms of ecological adaptation of S. tropicum remain poorly understood due partially to the lack of a high-quality whole genome assembly. Here, we report the first high-quality chromosome-scale genome assembly for S. tropicum, using cutting-edge technologies including PacBio single molecular sequencing and high-throughput chromatin conformation capture. The assembled genome has a size of 78.78 Mb with a scaffold N50 of 3.17 Mb, anchored to 23 pseudo-chromosomes. In total, 20,613 protein-coding genes were predicted, of which 17,757 (86.14%) genes were functionally annotated. Collinearity analysis of the genomes of S. tropicum and S. marinoi revealed that these two genomes were highly homologous. This chromosome-level genome assembly of S. tropicum provides a valuable genomic platform for comparative analysis of mechanisms of ecological adaption.
Collapse
Affiliation(s)
- Shuya Liu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, 266200, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Nansheng Chen
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, 266200, China.
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China.
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, V5A 1S6, Canada.
| |
Collapse
|
286
|
Mielecki D, Detman A, Aleksandrzak-Piekarczyk T, Widomska M, Chojnacka A, Stachurska-Skrodzka A, Walczak P, Grzesiuk E, Sikora A. Unlocking the genome of the non-sourdough Kazachstania humilis MAW1: insights into inhibitory factors and phenotypic properties. Microb Cell Fact 2024; 23:111. [PMID: 38622625 PMCID: PMC11017505 DOI: 10.1186/s12934-024-02380-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 03/22/2024] [Indexed: 04/17/2024] Open
Abstract
BACKGROUND Ascomycetous budding yeasts are ubiquitous environmental microorganisms important in food production and medicine. Due to recent intensive genomic research, the taxonomy of yeast is becoming more organized based on the identification of monophyletic taxa. This includes genera important to humans, such as Kazachstania. Until now, Kazachstania humilis (previously Candida humilis) was regarded as a sourdough-specific yeast. In addition, any antibacterial activity has not been associated with this species. RESULTS Previously, we isolated a yeast strain that impaired bio-hydrogen production in a dark fermentation bioreactor and inhibited the growth of Gram-positive and Gram-negative bacteria. Here, using next generation sequencing technologies, we sequenced the genome of this strain named K. humilis MAW1. This is the first genome of a K. humilis isolate not originating from a fermented food. We used novel phylogenetic approach employing the 18 S-ITS-D1-D2 region to show the placement of the K. humilis MAW1 among other members of the Kazachstania genus. This strain was examined by global phenotypic profiling, including carbon sources utilized and the influence of stress conditions on growth. Using the well-recognized bacterial model Escherichia coli AB1157, we show that K. humilis MAW1 cultivated in an acidic medium inhibits bacterial growth by the disturbance of cell division, manifested by filament formation. To gain a greater understanding of the inhibitory effect of K. humilis MAW1, we selected 23 yeast proteins with recognized toxic activity against bacteria and used them for Blast searches of the K. humilis MAW1 genome assembly. The resulting panel of genes present in the K. humilis MAW1 genome included those encoding the 1,3-β-glucan glycosidase and the 1,3-β-glucan synthesis inhibitor that might disturb the bacterial cell envelope structures. CONCLUSIONS We characterized a non-sourdough-derived strain of K. humilis, including its genome sequence and physiological aspects. The MAW1, together with other K. humilis strains, shows the new organization of the mating-type locus. The revealed here pH-dependent ability to inhibit bacterial growth has not been previously recognized in this species. Our study contributes to the building of genome sequence-based classification systems; better understanding of K.humilis as a cell factory in fermentation processes and exploring bacteria-yeast interactions in microbial communities.
Collapse
Affiliation(s)
- Damian Mielecki
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, Warsaw, 02-106, Poland
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5, Warsaw, 02-106, Poland
| | - Anna Detman
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, Warsaw, 02-106, Poland
| | | | - Małgorzata Widomska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, Warsaw, 02-106, Poland
| | - Aleksandra Chojnacka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, Warsaw, 02-106, Poland
- Institute of Biology, Warsaw University of Life Sciences, Nowoursynowska 159, Warsaw, 02-776, Poland
| | | | - Paulina Walczak
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, Warsaw, 02-106, Poland
| | - Elżbieta Grzesiuk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, Warsaw, 02-106, Poland
| | - Anna Sikora
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, Warsaw, 02-106, Poland.
| |
Collapse
|
287
|
Zhang T, Zhou L, Pu Y, Tang Y, Liu J, Yang L, Zhou T, Feng L, Wang X. A chromosome-level genome reveals genome evolution and molecular basis of anthraquinone biosynthesis in Rheum palmatum. BMC PLANT BIOLOGY 2024; 24:261. [PMID: 38594606 PMCID: PMC11005207 DOI: 10.1186/s12870-024-04972-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/01/2024] [Indexed: 04/11/2024]
Abstract
BACKGROUND Rhubarb is one of common traditional Chinese medicine with a diverse array of therapeutic efficacies. Despite its widespread use, molecular research into rhubarb remains limited, constraining our comprehension of the geoherbalism. RESULTS We assembled the genome of Rheum palmatum L., one of the source plants of rhubarb, to elucidate its genome evolution and unpack the biosynthetic pathways of its bioactive compounds using a combination of PacBio HiFi, Oxford Nanopore, Illumina, and Hi-C scaffolding approaches. Around 2.8 Gb genome was obtained after assembly with more than 99.9% sequences anchored to 11 pseudochromosomes (scaffold N50 = 259.19 Mb). Transposable elements (TE) with a continuous expansion of long terminal repeat retrotransposons (LTRs) is predominant in genome size, contributing to the genome expansion of R. palmatum. Totally 30,480 genes were predicted to be protein-coding genes with 473 significantly expanded gene families enriched in diverse pathways associated with high-altitude adaptation for this species. Two successive rounds of whole genome duplication event (WGD) shared by Fagopyrum tataricum and R. palmatum were confirmed. We also identified 54 genes involved in anthraquinone biosynthesis and other 97 genes entangled in flavonoid biosynthesis. Notably, RpALS emerged as a compelling candidate gene for the octaketide biosynthesis after the key residual screening. CONCLUSION Overall, our findings offer not only an enhanced understanding of this remarkable medicinal plant but also pave the way for future innovations in its genetic breeding, molecular design, and functional genomic studies.
Collapse
Affiliation(s)
- Tianyi Zhang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Lipan Zhou
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yang Pu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yadi Tang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Jie Liu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Li Yang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Tao Zhou
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Li Feng
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Xumei Wang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
288
|
Nakandala U, Furtado A, Masouleh AK, Smith MW, Williams DC, Henry RJ. The genome of Citrus australasica reveals disease resistance and other species specific genes. BMC PLANT BIOLOGY 2024; 24:260. [PMID: 38594608 PMCID: PMC11005238 DOI: 10.1186/s12870-024-04988-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 04/04/2024] [Indexed: 04/11/2024]
Abstract
BACKGROUND The finger lime (Citrus australasica), one of six Australian endemic citrus species shows a high natural phenotypic diversity and novel characteristics. The wide variation and unique horticultural features have made this lime an attractive candidate for domestication. Currently no haplotype resolved genome is available for this species. Here we present a high quality, haplotype-resolved reference genome for this species using PacBio HiFi and Hi-C sequencing. RESULTS Hifiasm assembly and SALSA scaffolding resulted in a collapsed genome size of 344.2 Mb and 321.1 Mb and 323.2 Mb size for the two haplotypes. The nine pseudochromosomes of the collapsed genome had an N50 of 35.2 Mb, 99.1% genome assembly completeness and 98.9% gene annotation completeness (BUSCO). A total of 41,304 genes were predicted in the nuclear genome. Comparison with C. australis revealed that 13,661 genes in pseudochromosomes were unique in C. australasica. These were mainly involved in plant-pathogen interactions, stress response, cellular metabolic and developmental processes, and signal transduction. The two genomes showed a syntenic arrangement at the chromosome level with large structural rearrangements in some chromosomes. Genetic variation among five C. australasica cultivars was analysed. Genes related to defense, synthesis of volatile compounds and red/yellow coloration were identified in the genome. A major expansion of genes encoding thylakoid curvature proteins was found in the C. australasica genome. CONCLUSIONS The genome of C. australasica present in this study is of high quality and contiguity. This genome helps deepen our understanding of citrus evolution and reveals disease resistance and quality related genes with potential to accelerate the genetic improvement of citrus.
Collapse
Affiliation(s)
- Upuli Nakandala
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, 4072, Australia
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, University of Queensland, Brisbane, 4072, Australia
| | - Agnelo Furtado
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, 4072, Australia
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, University of Queensland, Brisbane, 4072, Australia
| | - Ardashir Kharabian Masouleh
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, 4072, Australia
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, University of Queensland, Brisbane, 4072, Australia
| | - Malcolm W Smith
- Department of Agriculture and Fisheries, Bundaberg Research Station, Bundaberg, QLD, 4670, Australia
| | | | - Robert J Henry
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, 4072, Australia.
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, University of Queensland, Brisbane, 4072, Australia.
| |
Collapse
|
289
|
Wang Y, Yao Y, Zhang Y, Qian X, Guo D, Coates BS. A chromosome-level genome assembly of the soybean pod borer: insights into larval transcriptional response to transgenic soybean expressing the pesticidal Cry1Ac protein. BMC Genomics 2024; 25:355. [PMID: 38594617 PMCID: PMC11005160 DOI: 10.1186/s12864-024-10216-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 03/12/2024] [Indexed: 04/11/2024] Open
Abstract
BACKGROUND Genetically modified (GM) crop plants with transgenic expression of Bacillus thuringiensis (Bt) pesticidal proteins are used to manage feeding damage by pest insects. The durability of this technology is threatened by the selection for resistance in pest populations. The molecular mechanism(s) involved in insect physiological response or evolution of resistance to Bt is not fully understood. RESULTS To investigate the response of a susceptible target insect to Bt, the soybean pod borer, Leguminivora glycinivorella (Lepidoptera: Tortricidae), was exposed to soybean, Glycine max, expressing Cry1Ac pesticidal protein or the non-transgenic parental cultivar. Assessment of larval changes in gene expression was facilitated by a third-generation sequenced and scaffolded chromosome-level assembly of the L. glycinivorella genome (657.4 Mb; 27 autosomes + Z chromosome), and subsequent structural annotation of 18,197 RefSeq gene models encoding 23,735 putative mRNA transcripts. Exposure of L. glycinivorella larvae to transgenic Cry1Ac G. max resulted in prediction of significant differential gene expression for 204 gene models (64 up- and 140 down-regulated) and differential splicing among isoforms for 10 genes compared to unexposed cohorts. Differentially expressed genes (DEGs) included putative peritrophic membrane constituents, orthologs of Bt receptor-encoding genes previously linked or associated with Bt resistance, and those involved in stress responses. Putative functional Gene Ontology (GO) annotations assigned to DEGs were significantly enriched for 36 categories at GO level 2, respectively. Most significantly enriched cellular component (CC), biological process (BP), and molecular function (MF) categories corresponded to vacuolar and microbody, transport and metabolic processes, and binding and reductase activities. The DEGs in enriched GO categories were biased for those that were down-regulated (≥ 0.783), with only MF categories GTPase and iron binding activities were bias for up-regulation genes. CONCLUSIONS This study provides insights into pathways and processes involved larval response to Bt intoxication, which may inform future unbiased investigations into mechanisms of resistance that show no evidence of alteration in midgut receptors.
Collapse
Affiliation(s)
- Yangzhou Wang
- Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Yao Yao
- Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Yunyue Zhang
- Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Xueyan Qian
- Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Dongquan Guo
- Jilin Academy of Agricultural Sciences, Changchun, 130033, China.
| | - Brad S Coates
- United States Department of Agriculture, Agricultural Research Service, Corn Insects & Crop Genetics Research Unit, 532 Science II, 2310 Pammel Dr., Ames, IA, 50011, USA.
| |
Collapse
|
290
|
Chen L, Yu XY, Zhang F, Zhang HM, Guo LX, Ren L, Hong XY, Sun JT. A chromosome-level genome assembly of the spider mite Tetranychus piercei McGregor. Sci Data 2024; 11:340. [PMID: 38580722 PMCID: PMC10997676 DOI: 10.1038/s41597-024-03189-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/25/2024] [Indexed: 04/07/2024] Open
Abstract
Despite the rapid advances in sequencing technology, limited genomic resources are currently available for phytophagous spider mites, which include many important agricultural pests. One of these pests is Tetranychus piercei (McGregor), a serious banana pest in East Asia exhibiting remarkable tolerance to high temperature. In this study, we assembled a high-quality genome of T. piercei using a combination of PacBio long reads and Illumina short reads sequencing. With the assistance of chromatin conformation capture technology, 99.9% of the contigs were anchored into three pseudochromosomes with a total size of 86.02 Mb. Repetitive elements, accounting for 14.16% of this genome (12.20 Mb), are predominantly composed of long-terminal repeats (30.7%). By combining evidence of ab initio prediction, transcripts, and homologous proteins, we annotated 11,881 protein-coding genes. Both the genome and proteins have high BUSCO completeness scores (>94%). This high-quality genome, along with reliable annotation, provides a valuable resource for investigating the high-temperature tolerance of this species and exploring the genomic basis that underlies the host range evolution of spider mites.
Collapse
Affiliation(s)
- Lei Chen
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Xin-Yue Yu
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Feng Zhang
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Hua-Meng Zhang
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Li-Xue Guo
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Lu Ren
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Xiao-Yue Hong
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Jing-Tao Sun
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.
| |
Collapse
|
291
|
Yesaya A, Zhang L, Wu C, Fu Y, Zhang J, An J, Xiao Y. The chromosomal-scale genome sequencing and assembly of Athetis lepigone. Sci Data 2024; 11:338. [PMID: 38580759 PMCID: PMC10997617 DOI: 10.1038/s41597-024-03136-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/11/2024] [Indexed: 04/07/2024] Open
Abstract
Athetis lepigone is an emerging highly polyphagous insect pest reported to cause crop damage in several European and Asian countries. However, our understanding of its genetic adaptation mechanisms has been limited due to lack of high-quality genetic resources. In this study, we present a chromosomal-level genome of A. lepigone, representing the first species in the genus of Athetis. We employed PacBio long-read sequencing and Hi-C technologies to generate 612.49 Mb genome assembly which contains 42.43% repeat sequences with a scaffold N50 of 20.9 Mb. The contigs were successfully clustered into 31 chromosomal-size scaffolds with 37% GC content. BUSCO assessment revealed a genome completeness of 97.4% with 96.3 identified as core Arthropoda single copy orthologs. Among the 17,322 genes that were predicted, 15,965 genes were functionally annotated, representing a coverage of 92.17%. Furthermore, we revealed 106 P450, 37 GST, 27 UGT, and 74 COE gene families in the genome of A. lepigone. This genome provides a significant and invaluable genomic resource for further research across the entire genus of Athetis.
Collapse
Affiliation(s)
- Alexander Yesaya
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518120, Shenzhen, China
| | - Lei Zhang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518120, Shenzhen, China
| | - Chao Wu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518120, Shenzhen, China
| | - Yiheng Fu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, 530005, Nanning, China
| | - Ji Zhang
- Sanya Nanfan Research Institute and College of Tropical Crops, Hainan University, Sanya, 572025, China
| | - Jingjie An
- Plant Protection Institute, Hebei Academy of Agriculture and Forestry Sciences, Key Laboratory of Integrated Pest Management on Crops in Northern Region of North China, Ministry of Agriculture and Rural Affairs, IPM Innovation Canter of Hebei Province, International Science and Technology Joint Research Canter on IPM of Hebei Province, Baoding, China
| | - Yutao Xiao
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518120, Shenzhen, China.
| |
Collapse
|
292
|
Kim KD, Shim J, Hwang JH, Kim D, El Baidouri M, Park S, Song J, Yu Y, Lee K, Ahn BO, Hong SY, Chin JH. Chromosome-level genome assembly of milk thistle (Silybum marianum (L.) Gaertn.). Sci Data 2024; 11:342. [PMID: 38580686 PMCID: PMC10997770 DOI: 10.1038/s41597-024-03178-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 03/22/2024] [Indexed: 04/07/2024] Open
Abstract
Silybum marianum (L.) Gaertn., commonly known as milk thistle, is a medicinal plant belonging to the Asteraceae family. This plant has been recognized for its medicinal properties for over 2,000 years. However, the genome of this plant remains largely undiscovered, having no reference genome at a chromosomal level. Here, we assembled the chromosome-level genome of S. marianum, allowing for the annotation of 53,552 genes and the identification of transposable elements comprising 58% of the genome. The genome assembly from this study showed 99.1% completeness as determined by BUSCO assessment, while the previous assembly (ASM154182v1) showed 36.7%. Functional annotation of the predicted genes showed 50,329 genes (94% of total genes) with known protein functions in public databases. Comparative genome analysis among Asteraceae plants revealed a striking conservation of collinearity between S. marianum and C. cardunculus. The genomic information generated from this study will be a valuable resource for milk thistle breeding and for use by the larger research community.
Collapse
Affiliation(s)
- Kyung Do Kim
- Department of Biosciences and Bioinformatics, Myongji University, Yongin, 17058, Korea.
| | | | - Ji-Hun Hwang
- Department of Biosciences and Bioinformatics, Myongji University, Yongin, 17058, Korea
| | - Daegwan Kim
- Department of Research and Development, DNACARE Co. Ltd., Seoul, 06126, Korea
| | - Moaine El Baidouri
- Laboratoire Génome et Développement des Plantes, Center National de la Recherche Scientifique (CNRS), Perpignan, France
- Laboratoire Génome et Développement des Plantes, University of Perpignan Via Domitia, Perpignan, France
| | - Soyeon Park
- Department of Biosciences and Bioinformatics, Myongji University, Yongin, 17058, Korea
| | - Jiyong Song
- Department of Biosciences and Bioinformatics, Myongji University, Yongin, 17058, Korea
- Department of Research and Development, DNACARE Co. Ltd., Seoul, 06126, Korea
| | - Yeisoo Yu
- Department of Research and Development, DNACARE Co. Ltd., Seoul, 06126, Korea
| | - Keunpyo Lee
- International Technology Cooperation Center, Technology Cooperation Bureau, Rural Development Administration, Jeonju, 54875, Korea
| | - Byoung-Ohg Ahn
- Genomics Division, Department of Agricultural Biotechnology, National Institute of Agricultural Science, Rural Development Administration, Jeonju, 54874, Korea
| | - Su Young Hong
- Genomics Division, Department of Agricultural Biotechnology, National Institute of Agricultural Science, Rural Development Administration, Jeonju, 54874, Korea.
| | - Joong Hyoun Chin
- Food Crops Molecular Breeding Laboratory, Department of Integrative Biological Sciences and Industry, Sejong University, Seoul, 05006, Korea.
- Convergence Research Center for Natural Products, Sejong University, Seoul, 05006, Korea.
| |
Collapse
|
293
|
Niimura Y, Biswa BB, Kishida T, Toyoda A, Fujiwara K, Ito M, Touhara K, Inoue-Murayama M, Jenkins SH, Adenyo C, Kayang BB, Koide T. Synchronized Expansion and Contraction of Olfactory, Vomeronasal, and Taste Receptor Gene Families in Hystricomorph Rodents. Mol Biol Evol 2024; 41:msae071. [PMID: 38649162 PMCID: PMC11035023 DOI: 10.1093/molbev/msae071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/02/2024] [Accepted: 03/03/2024] [Indexed: 04/25/2024] Open
Abstract
Chemical senses, including olfaction, pheromones, and taste, are crucial for the survival of most animals. There has long been a debate about whether different types of senses might influence each other. For instance, primates with a strong sense of vision are thought to have weakened olfactory abilities, although the oversimplified trade-off theory is now being questioned. It is uncertain whether such interactions between different chemical senses occur during evolution. To address this question, we examined four receptor gene families related to olfaction, pheromones, and taste: olfactory receptor (OR), vomeronasal receptor type 1 and type 2 (V1R and V2R), and bitter taste receptor (T2R) genes in Hystricomorpha, which is morphologically and ecologically the most diverse group of rodents. We also sequenced and assembled the genome of the grasscutter, Thryonomys swinderianus. By examining 16 available genome assemblies alongside the grasscutter genome, we identified orthologous gene groups among hystricomorph rodents for these gene families to separate the gene gain and loss events in each phylogenetic branch of the Hystricomorpha evolutionary tree. Our analysis revealed that the expansion or contraction of the four gene families occurred synchronously, indicating that when one chemical sense develops or deteriorates, the others follow suit. The results also showed that V1R/V2R genes underwent the fastest evolution, followed by OR genes, and T2R genes were the most evolutionarily stable. This variation likely reflects the difference in ligands of V1R/V2Rs, ORs, and T2Rs: species-specific pheromones, environment-based scents, and toxic substances common to many animals, respectively.
Collapse
Affiliation(s)
- Yoshihito Niimura
- Department of Veterinary Sciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Bhim B Biswa
- Mouse Genomics Resource Laboratory, National Institute of Genetics, Mishima, Japan
- Department of Genetics, SOKENDAI (The Graduate University for Advanced Studies), Shizuoka, Japan
| | - Takushi Kishida
- Curatorial Division, Museum of Natural and Environmental History, Shizuoka, Japan
- Present address: College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Atsushi Toyoda
- Comparative Genomics Laboratory, National Institute of Genetics, Shizuoka, Japan
| | - Kazumichi Fujiwara
- Mouse Genomics Resource Laboratory, National Institute of Genetics, Mishima, Japan
| | - Masato Ito
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kazushige Touhara
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | | | - Scott H Jenkins
- Wildlife Research Center, Kyoto University, Kyoto, Japan
- Present address: Biosphere Informatics Laboratory, Department of Social Informatics, Graduate School of Informatics, Kyoto, Japan
| | - Christopher Adenyo
- Livestock and Poultry Research Centre, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Boniface B Kayang
- Department of Animal Science, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Tsuyoshi Koide
- Mouse Genomics Resource Laboratory, National Institute of Genetics, Mishima, Japan
- Department of Genetics, SOKENDAI (The Graduate University for Advanced Studies), Shizuoka, Japan
| |
Collapse
|
294
|
De Jode A, Faria R, Formenti G, Sims Y, Smith TP, Tracey A, Wood JMD, Zagrodzka ZB, Johannesson K, Butlin RK, Leder EH. Chromosome-scale Genome Assembly of the Rough Periwinkle Littorina saxatilis. Genome Biol Evol 2024; 16:evae076. [PMID: 38584387 PMCID: PMC11050657 DOI: 10.1093/gbe/evae076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/26/2024] [Accepted: 03/29/2024] [Indexed: 04/09/2024] Open
Abstract
The intertidal gastropod Littorina saxatilis is a model system to study speciation and local adaptation. The repeated occurrence of distinct ecotypes showing different levels of genetic divergence makes L. saxatilis particularly suited to study different stages of the speciation continuum in the same lineage. A major finding is the presence of several large chromosomal inversions associated with the divergence of ecotypes and, specifically, the species offers a system to study the role of inversions in this divergence. The genome of L. saxatilis is 1.35 Gb and composed of 17 chromosomes. The first reference genome of the species was assembled using Illumina data, was highly fragmented (N50 of 44 kb), and was quite incomplete, with a BUSCO completeness of 80.1% on the Metazoan dataset. A linkage map of one full-sibling family enabled the placement of 587 Mbp of the genome into 17 linkage groups corresponding to the haploid number of chromosomes, but the fragmented nature of this reference genome limited the understanding of the interplay between divergent selection and gene flow during ecotype formation. Here, we present a newly generated reference genome that is highly contiguous, with a N50 of 67 Mb and 90.4% of the total assembly length placed in 17 super-scaffolds. It is also highly complete with a BUSCO completeness of 94.1% of the Metazoa dataset. This new reference will allow for investigations into the genomic regions implicated in ecotype formation as well as better characterization of the inversions and their role in speciation.
Collapse
Affiliation(s)
- Aurélien De Jode
- Department of Marine Sciences, Tjärnö Marine Laboratory, University of Gothenburg, SE 45296 Strömstad, Sweden
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, USA
- Dauphin Island Sea Lab, Dauphin Island, AL, USA
| | - Rui Faria
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal
- Ecology and Evolutionary Biology, School of Biosciences, The University of Sheffield, Sheffield S10 2TN, UK
| | - Giulio Formenti
- The Vertebrate Genome Laboratory, The Rockefeller University, New York, NY 10065, USA
| | - Ying Sims
- Tree of Life, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
| | - Timothy P Smith
- USDA Agricultural Research Service, U.S. Meat Animal Research Center, Clay Center, NE 68933, USA
| | - Alan Tracey
- Tree of Life, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
| | - Jonathan M D Wood
- Tree of Life, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
| | - Zuzanna B Zagrodzka
- Ecology and Evolutionary Biology, School of Biosciences, The University of Sheffield, Sheffield S10 2TN, UK
| | - Kerstin Johannesson
- Department of Marine Sciences, Tjärnö Marine Laboratory, University of Gothenburg, SE 45296 Strömstad, Sweden
| | - Roger K Butlin
- Department of Marine Sciences, Tjärnö Marine Laboratory, University of Gothenburg, SE 45296 Strömstad, Sweden
- Ecology and Evolutionary Biology, School of Biosciences, The University of Sheffield, Sheffield S10 2TN, UK
| | - Erica H Leder
- Department of Marine Sciences, Tjärnö Marine Laboratory, University of Gothenburg, SE 45296 Strömstad, Sweden
- Natural History Museum, University of Oslo, Oslo, Norway
| |
Collapse
|
295
|
Audoor S, Bilcke G, Pargana K, Belišová D, Thierens S, Van Bel M, Sterck L, Rijsdijk N, Annunziata R, Ferrante MI, Vandepoele K, Vyverman W. Transcriptional chronology reveals conserved genes involved in pennate diatom sexual reproduction. Mol Ecol 2024; 33:e17320. [PMID: 38506152 DOI: 10.1111/mec.17320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/23/2024] [Accepted: 03/07/2024] [Indexed: 03/21/2024]
Abstract
Sexual reproduction is a major driver of adaptation and speciation in eukaryotes. In diatoms, siliceous microalgae with a unique cell size reduction-restitution life cycle and among the world's most prolific primary producers, sex also acts as the main mechanism for cell size restoration through the formation of an expanding auxospore. However, the molecular regulators of the different stages of sexual reproduction and size restoration are poorly explored. Here, we combined RNA sequencing with the assembly of a 55 Mbp reference genome for Cylindrotheca closterium to identify patterns of gene expression during different stages of sexual reproduction. These were compared with a corresponding transcriptomic time series of Seminavis robusta to assess the degree of expression conservation. Integrative orthology analysis revealed 138 one-to-one orthologues that are upregulated during sex in both species, among which 56 genes consistently upregulated during cell pairing and gametogenesis, and 11 genes induced when auxospores are present. Several early, sex-specific transcription factors and B-type cyclins were also upregulated during sex in other pennate and centric diatoms, pointing towards a conserved core regulatory machinery for meiosis and gametogenesis across diatoms. Furthermore, we find molecular evidence that the pheromone-induced cell cycle arrest is short-lived in benthic diatoms, which may be linked to their active mode of mate finding through gliding. Finally, we exploit the temporal resolution of our comparative analysis to report the first marker genes for auxospore identity called AAE1-3 ("Auxospore-Associated Expression"). Altogether, we introduce a multi-species model of the transcriptional dynamics during size restoration in diatoms and highlight conserved gene expression dynamics during different stages of sexual reproduction.
Collapse
Affiliation(s)
- Sien Audoor
- Laboratory of Protistology and Aquatic Ecology, Department of Biology, University Ghent, Ghent, Belgium
| | - Gust Bilcke
- Laboratory of Protistology and Aquatic Ecology, Department of Biology, University Ghent, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Katerina Pargana
- Laboratory of Protistology and Aquatic Ecology, Department of Biology, University Ghent, Ghent, Belgium
| | - Darja Belišová
- Laboratory of Protistology and Aquatic Ecology, Department of Biology, University Ghent, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Sander Thierens
- VIB Center for Plant Systems Biology, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Michiel Van Bel
- VIB Center for Plant Systems Biology, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Lieven Sterck
- VIB Center for Plant Systems Biology, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Nadine Rijsdijk
- Laboratory of Protistology and Aquatic Ecology, Department of Biology, University Ghent, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | | | - Maria Immacolata Ferrante
- Stazione Zoologica Anton Dohrn, Naples, Italy
- Associate to the National Institute of Oceanography and Applied Geophysics, Trieste, Italy
| | - Klaas Vandepoele
- VIB Center for Plant Systems Biology, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for AI & Computational Biology, VIB, Ghent, Belgium
| | - Wim Vyverman
- Laboratory of Protistology and Aquatic Ecology, Department of Biology, University Ghent, Ghent, Belgium
| |
Collapse
|
296
|
Wu W, Feng X, Wang N, Shao S, Liu M, Si F, Chen L, Jin C, Xu S, Guo Z, Zhong C, Shi S, He Z. Genomic analysis of Nypa fruticans elucidates its intertidal adaptations and early palm evolution. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:824-843. [PMID: 38372488 DOI: 10.1111/jipb.13625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 01/28/2024] [Indexed: 02/20/2024]
Abstract
Nypa fruticans (Wurmb), a mangrove palm species with origins dating back to the Late Cretaceous period, is a unique species for investigating long-term adaptation strategies to intertidal environments and the early evolution of palms. Here, we present a chromosome-level genome sequence and assembly for N. fruticans. We integrated the genomes of N. fruticans and other palm family members for a comparative genomic analysis, which confirmed that the common ancestor of all palms experienced a whole-genome duplication event around 89 million years ago, shaping the distinctive characteristics observed in this clade. We also inferred a low mutation rate for the N. fruticans genome, which underwent strong purifying selection and evolved slowly, thus contributing to its stability over a long evolutionary period. Moreover, ancient duplicates were preferentially retained, with critical genes having experienced positive selection, enhancing waterlogging tolerance in N. fruticans. Furthermore, we discovered that the pseudogenization of Early Methionine-labelled 1 (EM1) and EM6 in N. fruticans underly its crypto-vivipary characteristics, reflecting its intertidal adaptation. Our study provides valuable genomic insights into the evolutionary history, genome stability, and adaptive evolution of the mangrove palm. Our results also shed light on the long-term adaptation of this species and contribute to our understanding of the evolutionary dynamics in the palm family.
Collapse
Affiliation(s)
- Weihong Wu
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Xiao Feng
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
- Greater Bay Area Institute of Precision Medicine, School of Life Sciences, Fudan University, Guangzhou, 511462, China
| | - Nan Wang
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Shao Shao
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Min Liu
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Fa Si
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Linhao Chen
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Chuanfeng Jin
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Shaohua Xu
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Zixiao Guo
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Cairong Zhong
- Hainan Academy of Forestry (Hainan Academy of Mangrove), Haikou, 571100, China
| | - Suhua Shi
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Ziwen He
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| |
Collapse
|
297
|
Ma PF, Liu YL, Guo C, Jin G, Guo ZH, Mao L, Yang YZ, Niu LZ, Wang YJ, Clark LG, Kellogg EA, Xu ZC, Ye XY, Liu JX, Zhou MY, Luo Y, Yang Y, Soltis DE, Bennetzen JL, Soltis PS, Li DZ. Genome assemblies of 11 bamboo species highlight diversification induced by dynamic subgenome dominance. Nat Genet 2024; 56:710-720. [PMID: 38491323 PMCID: PMC11018529 DOI: 10.1038/s41588-024-01683-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 02/08/2024] [Indexed: 03/18/2024]
Abstract
Polyploidy (genome duplication) is a pivotal force in evolution. However, the interactions between parental genomes in a polyploid nucleus, frequently involving subgenome dominance, are poorly understood. Here we showcase analyses of a bamboo system (Poaceae: Bambusoideae) comprising a series of lineages from diploid (herbaceous) to tetraploid and hexaploid (woody), with 11 chromosome-level de novo genome assemblies and 476 transcriptome samples. We find that woody bamboo subgenomes exhibit stunning karyotype stability, with parallel subgenome dominance in the two tetraploid clades and a gradual shift of dominance in the hexaploid clade. Allopolyploidization and subgenome dominance have shaped the evolution of tree-like lignified culms, rapid growth and synchronous flowering characteristic of woody bamboos as large grasses. Our work provides insights into genome dominance in a remarkable polyploid system, including its dependence on genomic context and its ability to switch which subgenomes are dominant over evolutionary time.
Collapse
Affiliation(s)
- Peng-Fei Ma
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Yun-Long Liu
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Cen Guo
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
- Center for Integrative Conservation & Yunnan Key Laboratory for the Conservation of Tropical Rainforests and Asian Elephants, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan, China
| | - Guihua Jin
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Zhen-Hua Guo
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Ling Mao
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Yi-Zhou Yang
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Liang-Zhong Niu
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Yu-Jiao Wang
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Lynn G Clark
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, 345 Bessey, Ames, IA, USA
| | | | - Zu-Chang Xu
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Xia-Ying Ye
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Jing-Xia Liu
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Meng-Yuan Zhou
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Yan Luo
- Center for Integrative Conservation & Yunnan Key Laboratory for the Conservation of Tropical Rainforests and Asian Elephants, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan, China
| | - Yang Yang
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Douglas E Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
- Department of Biology, University of Florida, Gainesville, FL, USA
| | | | - Pamela S Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| | - De-Zhu Li
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China.
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China.
- Key Laboratory for Plant Diversity and Biogeography in East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China.
| |
Collapse
|
298
|
Lu Y, Chen X, Yu H, Zhang C, Xue Y, Zhang Q, Wang H. Haplotype-resolved genome assembly of Phanera championii reveals molecular mechanisms of flavonoid synthesis and adaptive evolution. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:488-505. [PMID: 38173092 DOI: 10.1111/tpj.16620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 12/15/2023] [Accepted: 12/20/2023] [Indexed: 01/05/2024]
Abstract
Phanera championii is a medicinal liana plant that has successfully adapted to hostile karst habitats. Despite extensive research on its medicinal components and pharmacological effects, the molecular mechanisms underlying the biosynthesis of critical flavonoids and its adaptation to karst habitats remain elusive. In this study, we performed high-coverage PacBio and Hi-C sequencing of P. championii, which revealed its high heterozygosity and phased the genome into two haplotypes: Hap1 (384.60 Mb) and Hap2 (383.70 Mb), encompassing a total of 58 612 annotated genes. Comparative genomes analysis revealed that P. championii experienced two whole-genome duplications (WGDs), with approximately 59.59% of genes originating from WGD events, thereby providing a valuable genetic resource for P. championii. Moreover, we identified a total of 112 genes that were strongly positively selected. Additionally, about 81.60 Mb of structural variations between the two haplotypes. The allele-specific expression patterns suggested that the dominant effect of P. championii was the elimination of deleterious mutations and the promotion of beneficial mutations to enhance fitness. Moreover, our transcriptome and metabolome analysis revealed alleles in different tissues or different haplotypes collectively regulate the synthesis of flavonoid metabolites. In summary, our comprehensive study highlights the significance of genomic and morphological adaptation in the successful adaptation of P. championii to karst habitats. The high-quality phased genomes obtained in this study serve as invaluable genomic resources for various applications, including germplasm conservation, breeding, evolutionary studies, and elucidation of pathways governing key biological traits of P. championii.
Collapse
Affiliation(s)
- Yongbin Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, 530004, China
- Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and the Chinese Academy of Sciences, Yanshan, Guilin, 541006, China
| | - Xiao Chen
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Hang Yu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, 530004, China
- Key Laboratory of Crop Cultivation and Physiology, Education Department of Guangxi Zhuang Autonomous Region, Guangxi University, Nanning, 530004, China
| | - Chao Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, 530004, China
- Key Laboratory of Crop Cultivation and Physiology, Education Department of Guangxi Zhuang Autonomous Region, Guangxi University, Nanning, 530004, China
| | - Yajie Xue
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, 530004, China
- Key Laboratory of Crop Cultivation and Physiology, Education Department of Guangxi Zhuang Autonomous Region, Guangxi University, Nanning, 530004, China
| | - Qiang Zhang
- Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and the Chinese Academy of Sciences, Yanshan, Guilin, 541006, China
| | - Haifeng Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, 530004, China
- Key Laboratory of Crop Cultivation and Physiology, Education Department of Guangxi Zhuang Autonomous Region, Guangxi University, Nanning, 530004, China
| |
Collapse
|
299
|
Fukuta K, Kato DI, Maeda J, Tsuruta A, Suzuki H, Nagano Y, Tsukamoto H, Niwa K, Terauchi M, Toyoda A, Fujiyama A, Noguchi H. Genome assembly of Genji firefly (Nipponoluciola cruciata) reveals novel luciferase-like luminescent proteins without peroxisome targeting signal. DNA Res 2024; 31:dsae006. [PMID: 38494174 PMCID: PMC11090084 DOI: 10.1093/dnares/dsae006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 01/12/2024] [Accepted: 03/01/2024] [Indexed: 03/19/2024] Open
Abstract
The Genji firefly, Nipponoluciola cruciata, is an aquatic firefly endemic to Japan, inhabiting a wide area of the Japanese archipelago. The luminescence of fireflies is a scientifically interesting phenomenon, and many studies have evaluated this species in Japan. In this study, we sequenced the whole genome of male N. cruciata and constructed a high-quality genome assembly of 662 Mb with a BUSCO completeness of 99.1% in the genome mode. Using the detected set of 15,169 protein-coding genes, the genomic structures and genetic background of luminescence-related genes were also investigated. We found four new firefly luciferase-like genes in the genome. The highest bioluminescent activity was observed for LLa2, which originated from ancestral PDGY, a mitochondrial acyl-CoA synthetase. A thioesterase candidate, NcruACOT1, which is involved in d-luciferin biosynthesis, was expressed in the lantern. Two opsins were also detected and the absorption wavelength of the UV-type opsin candidate shifted from UV to blue. These findings provide an important resource for unravelling the adaptive evolution of fireflies in terms of luminescence and vision.
Collapse
Affiliation(s)
- Kentaro Fukuta
- Center for Genome Informatics, Joint Support-Center for Data Science Research, Research Organization of Information and Systems, Mishima, Shizuoka 411-8540, Japan
- Data Analysis Division, Advanced Genomics Center, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Dai-ichiro Kato
- Department of Science, Graduate School of Science and Engineering, Kagoshima University, Kagoshima 890-0065, Japan
| | - Juri Maeda
- Department of Science, Graduate School of Science and Engineering, Kagoshima University, Kagoshima 890-0065, Japan
| | - Atsuhiro Tsuruta
- Department of Science, Graduate School of Science and Engineering, Kagoshima University, Kagoshima 890-0065, Japan
| | | | - Yukio Nagano
- Analytical Research Center for Experimental Sciences, Saga University, Saga 840-8502, Japan
| | - Hisao Tsukamoto
- Department of Biology, Graduate School of Science, Kobe University, Kobe 657-8501, Japan
| | - Kazuki Niwa
- Advanced Quantum Measurement Group, Research Institute for Physical Measurement, National Metrology Institute of Japan, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8563, Japan
| | - Makoto Terauchi
- Center for Genome Informatics, Joint Support-Center for Data Science Research, Research Organization of Information and Systems, Mishima, Shizuoka 411-8540, Japan
- Data Analysis Division, Advanced Genomics Center, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Atsushi Toyoda
- Comparative Genomics Laboratory, Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
- Sequencing Division, Advanced Genomics Center, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Asao Fujiyama
- Data Analysis Division, Advanced Genomics Center, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
- Comparative Genomics Laboratory, Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Hideki Noguchi
- Center for Genome Informatics, Joint Support-Center for Data Science Research, Research Organization of Information and Systems, Mishima, Shizuoka 411-8540, Japan
- Data Analysis Division, Advanced Genomics Center, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| |
Collapse
|
300
|
Dong Z, Wang J, Chen G, Guo Y, Zhao N, Wang Z, Zhang B. A high-quality chromosome-level genome assembly of the Chinese medaka Oryzias sinensis. Sci Data 2024; 11:322. [PMID: 38548787 PMCID: PMC10978949 DOI: 10.1038/s41597-024-03173-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 03/21/2024] [Indexed: 04/01/2024] Open
Abstract
Oryzias sinensis, also known as Chinese medaka or Chinese ricefish, is a commonly used animal model for aquatic environmental assessment in the wild as well as gene function validation or toxicology research in the lab. Here, a high-quality chromosome-level genome assembly of O. sinensis was generated using single-tube long fragment read (stLFR) reads, Nanopore long-reads, and Hi-C sequencing data. The genome is 796.58 Mb, and a total of 712.17 Mb of the assembled sequences were anchored to 23 pseudo-chromosomes. A final set of 22,461 genes were annotated, with 98.67% being functionally annotated. The Benchmarking Universal Single-Copy Orthologs (BUSCO) benchmark of genome assembly and gene annotation reached 95.1% (93.3% single-copy) and 94.6% (91.7% single-copy), respectively. Furthermore, we also use ATAC-seq to uncover chromosome transposase-accessibility as well as related genome area function enrichment for Oryzias sinensis. This study offers a new improved foundation for future genomics research in Chinese medaka.
Collapse
Affiliation(s)
- Zhongdian Dong
- Key Laboratory of Aquaculture in the South China Sea for Aquatic Economic Animals of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, China
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Jiangman Wang
- Qingdao Marine Management Support Center, Qingdao, Shandong, China
| | - Guozhu Chen
- National Plateau Wetland Research Center, College of Wetlands, Southwest Forestry University, Kunming, 650224, China
| | - Yusong Guo
- Key Laboratory of Aquaculture in the South China Sea for Aquatic Economic Animals of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Na Zhao
- Key Laboratory of Aquaculture in the South China Sea for Aquatic Economic Animals of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, China
- Southern Marine Science and Engineering Guangdong Laboratory-Zhanjiang, Zhanjiang, 524000, China
| | - Zhongduo Wang
- Key Laboratory of Aquaculture in the South China Sea for Aquatic Economic Animals of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, China.
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, China.
| | - Bo Zhang
- Key Laboratory of Aquaculture in the South China Sea for Aquatic Economic Animals of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, China.
- Southern Marine Science and Engineering Guangdong Laboratory-Zhanjiang, Zhanjiang, 524000, China.
| |
Collapse
|