251
|
Doi K, Izawa T, Fuse T, Yamanouchi U, Kubo T, Shimatani Z, Yano M, Yoshimura A. Ehd1, a B-type response regulator in rice, confers short-day promotion of flowering and controls FT-like gene expression independently of Hd1. Genes Dev 2004; 18:926-36. [PMID: 15078816 PMCID: PMC395851 DOI: 10.1101/gad.1189604] [Citation(s) in RCA: 571] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Two evolutionarily distant plant species, rice (Oryza sativa L.), a short-day (SD) plant, and Arabidopsis thaliana, a long-day plant, share a conserved genetic network controlling photoperiodic flowering. The orthologous floral regulators-rice Heading date 1 (Hd1) and Arabidopsis CONSTANS (CO)-integrate circadian clock and external light signals into mRNA expression of the FLOWERING LOCUS T (FT) group floral inducer. Here, we report that the rice Early heading date 1 (Ehd1) gene, which confers SD promotion of flowering in the absence of a functional allele of Hd1, encodes a B-type response regulator that might not have an ortholog in the Arabidopsis genome. Ehd1 mRNA was induced by 1-wk SD treatment, and Ehd1 may promote flowering by inducing FT-like gene expression only under SD conditions. Microarray analysis further revealed a few MADS box genes downstream of Ehd1. Our results indicate that a novel two-component signaling cascade is integrated into the conserved pathway in the photoperiodic control of flowering in rice.
Collapse
Affiliation(s)
- Kazuyuki Doi
- Plant Breeding Laboratory, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
252
|
Somers DE, Kim WY, Geng R. The F-box protein ZEITLUPE confers dosage-dependent control on the circadian clock, photomorphogenesis, and flowering time. THE PLANT CELL 2004; 16:769-82. [PMID: 14973171 PMCID: PMC385287 DOI: 10.1105/tpc.016808] [Citation(s) in RCA: 161] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2003] [Accepted: 01/08/2004] [Indexed: 05/18/2023]
Abstract
As an F-box protein, ZEITLUPE (ZTL) is involved in targeting one or more substrates for ubiquitination and degradation via the proteasome. The initial characterization of ZTL suggested a function limited largely to the regulation of the circadian clock. Here, we show a considerably broader role for ZTL in the control of circadian period and photomorphogenesis. Using a ZTL-specific antibody, we quantitated and characterized a ZTL dosage series that ranges from a null mutation to a strong ZTL overexpressor. In the dark, ztl null mutations lengthen circadian period, and overexpression causes arrhythmicity, suggesting a more comprehensive role for this protein in the clock than previously suspected. In the light, circadian period becomes increasingly shorter at higher levels of ZTL, to the point of arrhythmicity. By contrast, hypocotyl length increases and flowering time is delayed in direct proportion to the level of ZTL. We propose a novel testable mechanism by which circadian period and amplitude may act together to gate phytochrome B-mediated suppression of hypocotyl. We also demonstrate that ZTL-dependent delay of flowering is mediated through decreases in CONSTANS and FLOWERING LOCUS T message levels, thus directly linking proteasome-dependent proteolysis to flowering.
Collapse
Affiliation(s)
- David E Somers
- Department of Plant Biology/Plant Biotechnology Center, Ohio State University, Columbus, Ohio 43210, USA.
| | | | | |
Collapse
|
253
|
Aoki S, Kato S, Ichikawa K, Shimizu M. Circadian Expression of the PpLhcb2 Gene Encoding a Major Light-Harvesting Chlorophyll a/b-Binding Protein in the Moss Physcomitrella patens. ACTA ACUST UNITED AC 2004; 45:68-76. [PMID: 14749487 DOI: 10.1093/pcp/pch006] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Circadian clocks control the expression of Lhcb genes encoding the chlorophyll a/b-binding proteins broadly in seed plants. We show here that this regulation is also conserved in the primitive moss Physcomitrella patens. Northern blotting analyses revealed a robust daily oscillation of Lhcb mRNA levels in protonema cells in 12-h : 12-h light-dark cycles (12 : 12LD) that damped rapidly in continuous darkness (DD). In continuous light (LL), by contrast with typical profiles in higher plants, Lhcb mRNA levels only peaked during the first day and thereafter it showed constant levels. Reverse transcription (RT)-PCR analyses showed similar patterns of expression in LL for three distinct Lhcb genes (PpLhcb1, PpLhcb2 and Zlab1). Moreover, transgenic reporter strains expressing luciferase under the control of the PpLhcb2 promoter showed bioluminescence patterns consistent with the Northern and RT-PCR data. At a higher concentration (4.5%) of glucose in the medium, the reporter strain showed self-sustained rhythms in DD, which was entrained to a differently phased 12 : 12LD, revealing a circadian regulation on the transcription. Kinetics of bioluminescent peaks in 12 : 12LD from gametophore was different to those from protonema, indicating a developmental regulation on PpLhcb2. Together, the regulatory link between the clock and Lhcb genes in P. patens shows characteristics that appear to differ from those in higher plants.
Collapse
Affiliation(s)
- Setsuyuki Aoki
- Unit of Informatics for Life Sciences, Graduate School of Information Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601 Japan.
| | | | | | | |
Collapse
|
254
|
Nakamichi N, Ito S, Oyama T, Yamashino T, Kondo T, Mizuno T. Characterization of plant circadian rhythms by employing Arabidopsis cultured cells with bioluminescence reporters. PLANT & CELL PHYSIOLOGY 2004; 45:57-67. [PMID: 14749486 DOI: 10.1093/pcp/pch003] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Recent intensive studies have begun to shed light on the molecular mechanisms underlying the plant circadian clock in Arabidopsis thaliana. During the course of these previous studies, the most powerful technique, elegantly adopted, was a real-time bioluminescence monitoring system of circadian rhythms in intact plants carrying a luciferase (LUC) fusion transgene. We previously demonstrated that Arabidopsis cultured cells also retain an ability to generate circadian rhythms, at least partly. To further improve the cultured cell system for studies on circadian rhythms, here we adopted a bioluminescence monitoring system by establishing the cell lines carrying appropriate reporter genes, namely, CCA1::LUC and APRR1::LUC, with which CCA1 (CIRCADIAN CLOCK-ASSOCIATED1) and APRR1 (or TOC1) (ARABIDOPSIS PSEUDO-RESPONSE REGULATORS1 or TIMING OF CAB EXPRESSION1) are believed to be the components of the central oscillator. We report the results that consistently supported the view that the established cell lines, equipped with such bioluminescence reporters, might provide us with an advantageous means to characterize the plant circadian clock.
Collapse
Affiliation(s)
- Norihito Nakamichi
- Laboratory of Molecular Microbiology, School of Agriculture, Nagoya University, Chikusa-ku, Nagoya, 464-8601 Japan
| | | | | | | | | | | |
Collapse
|
255
|
Abstract
For more than three billion years, the organisms on this planet have known, like Little Orphan Annie, that "The sun'll come out tomorrow", and many have honed their biochemistry to exploit this knowledge. The cyanobacteria have had ample time to fashion a suitable timepiece, as they are among the oldest inhabitants of the earth. For these organisms, light is food, and it is a nutrient that shows up at the same time every day. Not surprisingly, cyanobacteria have learned to arrange their days around dinnertime.
Collapse
Affiliation(s)
- Susan S Golden
- Department of Biology, Texas A&M University, College Station, Texas 77843-3258, USA.
| | | |
Collapse
|
256
|
Ito S, Matsushika A, Yamada H, Sato S, Kato T, Tabata S, Yamashino T, Mizuno T. Characterization of the APRR9 Pseudo-Response Regulator Belonging to the APRR1/TOC1 Quintet in Arabidopsis thaliana. ACTA ACUST UNITED AC 2003; 44:1237-45. [PMID: 14634162 DOI: 10.1093/pcp/pcg136] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In Arabidopsis thaliana, a number of circadian-associated factors have been identified, including TOC1 (TIMING OF CAB EXPRESSION1) that is believed to be a component of the central oscillator. TOC1 is a member of a small family of proteins, designated as ARABIDOPSIS PSEUDO-RESPONSE REGULATORS (APRR1/TOC1, APRR3, APRR5, APRR7, and APRR9). As demonstrated previously, these APRR1/TOC1 quintet members are crucial for a better understanding of the molecular links between circadian rhythms and photosensory signal transduction. Here we focused on the light-induced quintet member, APRR9, and three critical issues with regard to this member were simultaneously addressed: (i) clarification of the mechanism underlying the light-dependent acute response of APRR9, (ii) clarification of the phenotype of a null mutant of APRR9, (iii) identification of protein(s) that interacts with APRR9. In this study, we present the results that support the following views. (i) A phytochrome-mediated signaling pathway(s) activates the transcription of APRR9, leading to the acute light response of APRR9. (ii) The severe mutational lesion of APRR9 singly, if not directly, affects the period (and/or phase) of free-running rhythms, in continuous light, of every circadian-controlled gene tested, including the clock genes, APRR1/TOC1, CCA1, and LHY. (iii) The APRR9 protein is capable of interacting with APRR1/TOC1, suggesting a hetrodimer formation between these cognate family members. These results are discussed within the context of a current consistent model of the Arabidopsis circadian oscillator.
Collapse
Affiliation(s)
- Shogo Ito
- Laboratory of Molecular Microbiology, School of Agriculture, Nagoya University, Chikusa-ku, Nagoya, 464-8601 Japan
| | | | | | | | | | | | | | | |
Collapse
|
257
|
Michael TP, Salomé PA, Yu HJ, Spencer TR, Sharp EL, McPeek MA, Alonso JM, Ecker JR, McClung CR. Enhanced Fitness Conferred by Naturally Occurring Variation in the Circadian Clock. Science 2003; 302:1049-53. [PMID: 14605371 DOI: 10.1126/science.1082971] [Citation(s) in RCA: 326] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Natural variation in clock parameters is necessary for the circadian clock to contribute to organismal fitness over a broad geographic range. Considerable variation is evident in the period, phase, and amplitude of 150 Arabidopsis accessions, and the period length is correlated with the day length at the latitude of origin, implying the adaptive significance of correctly regulated circadian timing. Quantitative trait loci analysis of recombinant inbred lines indicates that multiple loci interact to determine period, phase, and amplitude. The loss-of-function analysis of each member of the ARABIDOPSIS PSEUDO-RESPONSE REGULATOR family suggests that they are candidates for clock quantitative trait loci.
Collapse
Affiliation(s)
- Todd P Michael
- Dartmouth College, Department of Biological Sciences, Hanover, NH 03755, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
258
|
Yamamoto Y, Sato E, Shimizu T, Nakamich N, Sato S, Kato T, Tabata S, Nagatani A, Yamashino T, Mizuno T. Comparative genetic studies on the APRR5 and APRR7 genes belonging to the APRR1/TOC1 quintet implicated in circadian rhythm, control of flowering time, and early photomorphogenesis. PLANT & CELL PHYSIOLOGY 2003; 44:1119-30. [PMID: 14634148 DOI: 10.1093/pcp/pcg148] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In Arabidopsis thaliana, a number of circadian-associated factors have been identified. Among those, TOC1 (TIMING OF CAB EXPRESSION 1) is believed to be a component of the central oscillator. TOC1 is a member of a small family of proteins, designated as Arabidopsis PSEUDO-RESPONSE REGULATORS (APRR1/TOC1, APRR3, APRR5, APRR7, and APRR9). Nonetheless, it is not very clear whether or not the APRR family members other than APRR1/TOC1 are also implicated in the mechanisms underlying the circadian rhythm. To address this issue further, here we characterized a set of T-DNA insertion mutants, each of which is assumed to have a severe lesion in each one of the quintet genes (i.e. APRR5 and APRR7). For each of these mutants (aprr5-11 and aprr7-11) we demonstrate that a given mutation singly, if not directly, affects the circadian-associated biological events simultaneously: (i) flowering time in the long-day photoperiod conditions, (ii) red light sensitivity of seedlings during the early photomorphogenesis, and (iii) the period of free-running rhythms of certain clock-controlled genes including CCA1 and APRR1/TOC1 in constant white light. These results suggest that, although the quintet members other than APRR1/TOC1 may not be directly integrated into the framework of the central oscillator, they are crucial for a better understanding of the molecular mechanisms underlying the Arabidopsis circadian clock.
Collapse
Affiliation(s)
- Yoko Yamamoto
- Laboratory of Molecular Microbiology, School of Agriculture, Nagoya University, Chikusa-ku, Nagoya, 464-8601 Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
259
|
Murakami M, Ashikari M, Miura K, Yamashino T, Mizuno T. The evolutionarily conserved OsPRR quintet: rice pseudo-response regulators implicated in circadian rhythm. PLANT & CELL PHYSIOLOGY 2003; 44:1229-36. [PMID: 14634161 DOI: 10.1093/pcp/pcg135] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
In Arabidopsis thaliana, a number of circadian-associated factors have been identified, including TOC1 (TIMING OF CAB EXPRESSION 1) that is believed to be a component of the central oscillator. TOC1 is a member of a small family of proteins, designated as ARABIDOPSIS PSEUDO-RESPONSE REGULATORS (APRR1/TOC1, APRR3, APRR5, APRR7, and APRR9). As demonstrated previously, these APRR1/TOC1 quintet members are crucial for a better understanding of the molecular links between circadian rhythms, control of flowering time through photoperiodic pathways, and also photosensory signal transduction in this dicotyledonous plant. In this respect, both the dicotyledonous (e.g. A. thaliana) and monocotyledonous (e.g. Oryza sativa) plants might share the evolutionarily conserved molecular mechanism underlying the circadian rhythm. Based on such an assumption, and as the main objective of this study, we asked the question of whether rice also has a set of pseudo-response regulators, and if so, whether or not they are associated with the circadian rhythm. Here we showed that rice has five members of the OsPRR family (Oryza sativa Pseudo-Response Regulator), and also that the expressions of these OsPRR genes are under the control of circadian rhythm. They are expressed in a diurnal and sequential manner in the order of OsPRR73 (OsPRR37)-->OsPRR95 (OsPRR59)-->OsPRR1, which is reminiscent of the circadian waves of the APRR1/TOC1 quintet in A. thaliana. These and other results of this study suggested that the OsPRR quintet, including the ortholog of APRR1/TOC1, might play important roles within, or close to, the circadian clock of rice.
Collapse
Affiliation(s)
- Masaya Murakami
- Laboratory of Molecular Microbiology, School of Agriculture, Nagoya University, Chikusa-ku, Nagoya, 464-8601 Japan
| | | | | | | | | |
Collapse
|
260
|
Rashotte AM, Carson SDB, To JPC, Kieber JJ. Expression profiling of cytokinin action in Arabidopsis. PLANT PHYSIOLOGY 2003; 132:1998-2011. [PMID: 12913156 PMCID: PMC181285 DOI: 10.1104/pp.103.021436] [Citation(s) in RCA: 195] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2003] [Revised: 02/25/2003] [Accepted: 05/12/2003] [Indexed: 05/18/2023]
Abstract
The phytohormone cytokinin is an important regulator of plant growth and development; however, relatively few genes that mediate cytokinin responses have been identified. Genome-wide analyses of Arabidopsis seedlings using the approximately 8,300-element Affymetrix Arabidopsis GeneChips (Affymetrix, Santa Clara, CA) to examine cytokinin-responsive genes were conducted, revealing at least 30 genes whose steady-state level of mRNA was elevated and at least 40 that were down-regulated at multiple time points after application of cytokinin. The cytokinin up-regulated genes include the type-A Arabidopsis response regulators (ARRs), which had been shown previously to be cytokinin primary response genes, cytokinin oxidase, which encodes an enzyme that degrades cytokinins, and several transcription factors. Cytokinin down-regulated genes include several peroxidases and kinases and an E3 ubiquitin ligase. We identified a common sequence motif enriched in the upstream regions of the most consistently cytokinin up-regulated genes. This motif is highly similar to the optimal DNA-binding sites for ARR1/ARR2, type-B ARRs that have been implicated in the transcriptional elevation of the type-A ARRs. Additionally, genome-wide analyses of cytokinin receptor mutants (wol/cre1) revealed large-scale changes in gene expression, including down-regulation of the type-A ARRs and several meristem and cell cycle genes, such as CycD3. Mutations in CRE1 reduced but did not eliminate the effect of cytokinin on gene expression for a subset of cytokinin-responsive genes and had little or no effect on others, suggesting functional redundancy among the cytokinin receptors.
Collapse
Affiliation(s)
- Aaron M Rashotte
- University of North Carolina, Biology Department, CB Number 3280, Chapel Hill, North Carolina 27599-3280, USA
| | | | | | | |
Collapse
|
261
|
Michael TP, McClung CR. Enhancer trapping reveals widespread circadian clock transcriptional control in Arabidopsis. PLANT PHYSIOLOGY 2003; 132:629-39. [PMID: 12805593 PMCID: PMC167003 DOI: 10.1104/pp.021006] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2003] [Revised: 02/21/2003] [Accepted: 03/01/2003] [Indexed: 05/18/2023]
Abstract
The circadian clock synchronizes the internal biology of an organism with the environment and has been shown to be widespread among organisms. Microarray experiments have shown that the circadian clock regulates mRNA abundance of about 10% of the transcriptome in plants, invertebrates, and mammals. In contrast, the circadian clock regulates the transcription of the virtually all cyanobacterial genes. To determine the extent to which the circadian clock controls transcription in Arabidopsis, we used in vivo enhancer trapping. We found that 36% of our enhancer trap lines display circadian-regulated transcription, which is much higher than estimates of circadian regulation based on analysis of steady-state mRNA abundance. Individual lines identified by enhancer trapping exhibit peak transcription rates at circadian phases spanning the complete circadian cycle. Flanking genomic sequence was identified for 23 enhancer trap lines to identify clock-controlled genes (CCG-ETs). Promoter analysis of CCG-ETs failed to predict new circadian clock response elements (CCREs), although previously defined CCREs, the CCA1-binding site, and the evening element were identified. However, many CCGs lack either the CCA1-binding site or the evening element; therefore, the presence of these CCREs is insufficient to confer circadian regulation, and it is clear that additional elements play critical roles.
Collapse
Affiliation(s)
- Todd P Michael
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755, USA
| | | |
Collapse
|
262
|
Yamashino T, Matsushika A, Fujimori T, Sato S, Kato T, Tabata S, Mizuno T. A Link between circadian-controlled bHLH factors and the APRR1/TOC1 quintet in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2003; 44:619-29. [PMID: 12826627 DOI: 10.1093/pcp/pcg078] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
APRR1 (ARABIDPSIS PSUEDO-RESPONSE REGULATOR 1) (or TOC1, TIMING OF CAB EXPRESSION 1) is believed to be a crucial component of biological clocks of Arabidopsis thaliana. Nevertheless, its molecular function remains to be fully elucidated. Based on the results of yeast two-hybrid and in vitro binding assays, we previously showed that APRR1/TOC1 interacts with certain bHLH factors (i.e. PIF3 and PIL1, which are PHYTOCHROME INTERACTING FACTOR 3 and its homolog (PIF3-LIKE 1), respectively). To critically examine the relevance of PIL1 with reference to the function of APRR1/TOC1, T-DNA insertion mutants were isolated for PIL1. No phenotype was observed for such homozygous pil1 mutants, in terms of circadian-associated events in plants. We then examined more extensively a certain set of bHLH factors, which are considerably similar to PIL1 in their structural designs. The results of extensive analyses of such bHLH factors (namely, HFR1, PIL2, PIF4, PIL5 and PIL6) in wild-type and APRR1-overexressing (APRR1-ox) transgenic lines provided us with several new insights into a link between APRR1/TOC1 and these bHLH factors. In yeast two-hybrid assays, APRR1/TOC1 showed the ability to interact with these proteins (except for HFR1), as well as PIL1 and PIF3. Among them, it was found that the expressions of PIF4 and PIL6 were regulated in a circadian-dependent manner, exhibiting free-running robust rhythms. The expressions of PIF4 and PIL6 were regulated also by light in a manner that their transcripts were rapidly accumulated upon exposure of etiolated seedlings to light. The light-induced expressions of PIF4 and PIL6 were severely impaired in APRR1-ox transgenic lines. Taken together, here we propose the novel view that these bHLH factors (PIF4 and PIL6) might play roles, in concert with APRR1/TOC1, in the integration of light-signals to control both circadian and photomorphogenic processes.
Collapse
Affiliation(s)
- Takafumi Yamashino
- Laboratory of Molecular Microbiology, School of Agriculture, Nagoya University, Chikusa-ku, Nagoya, 464-8601 Japan
| | | | | | | | | | | | | |
Collapse
|
263
|
Eriksson ME, Millar AJ. The circadian clock. A plant's best friend in a spinning world. PLANT PHYSIOLOGY 2003; 132:732-8. [PMID: 12805602 PMCID: PMC523864 DOI: 10.1104/pp.103.022343] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2003] [Revised: 02/21/2003] [Accepted: 02/21/2003] [Indexed: 05/18/2023]
Affiliation(s)
- Maria E Eriksson
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | | |
Collapse
|
264
|
Mutsuda M, Michel KP, Zhang X, Montgomery BL, Golden SS. Biochemical properties of CikA, an unusual phytochrome-like histidine protein kinase that resets the circadian clock in Synechococcus elongatus PCC 7942. J Biol Chem 2003; 278:19102-10. [PMID: 12626498 DOI: 10.1074/jbc.m213255200] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We recently described the cikA (circadian input kinase A) gene, whose product supplies environmental information to the circadian oscillator in the cyanobacterium Synechococcus elongatus PCC 7942. CikA possesses three distinct domains: a GAF, a histidine protein kinase (HPK), and a receiver domain similar to those of the response regulator family. To determine how CikA functions in providing circadian input, we constructed modified alleles to tag and truncate the protein, allowing analysis of each domain individually. CikA covalently bound bilin chromophores in vitro, even though it lacks the expected ligand residues, and the GAF domain influenced but did not entirely account for this function. Full-length CikA and truncated variants that carry the HPK domain showed autophosphorylation activity. Deletion of the GAF domain or the N-terminal region adjacent to GAF dramatically reduced autophosphorylation, whereas elimination of the receiver domain increased activity 10-fold. Assays to test phosphorelay from the HPK to the cryptic receiver domain, which lacks the conserved aspartyl residue that serves as a phosphoryl acceptor in response regulators, were negative. We propose that the cryptic receiver is a regulatory domain that interacts with an unknown protein partner to modulate the autokinase activity of CikA but does not work as bona fide receiver domain in a phosphorelay.
Collapse
Affiliation(s)
- Michinori Mutsuda
- Department of Biology, Texas A & M University, College Station, Texas 77843-3258, USA
| | | | | | | | | |
Collapse
|
265
|
Kim WY, Geng R, Somers DE. Circadian phase-specific degradation of the F-box protein ZTL is mediated by the proteasome. Proc Natl Acad Sci U S A 2003; 100:4933-8. [PMID: 12665620 PMCID: PMC404699 DOI: 10.1073/pnas.0736949100] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Critical to the maintenance of circadian rhythmicity is the cyclic expression of at least some components of the central oscillator. High-amplitude cycling of mRNA and protein abundance, protein phosphorylation and nuclear/cytoplasmic shuttling have all been implicated in the maintenance of circadian period. Here we use a newly characterized Arabidopsis suspension cell culture to establish that the rhythmic changes in the levels of the clock-associated F-box protein, ZTL, are posttranscriptionally controlled through different circadian phase-specific degradation rates. This proteolysis is proteasome dependent, implicating ZTL itself as substrate for ubiquitination. This demonstration of circadian phase-regulated degradation of an F-box protein, which itself controls circadian period, suggests a novel regulatory feedback mechanism among known circadian systems.
Collapse
Affiliation(s)
- Woe-Yeon Kim
- Department of Plant Biology/Plant Biotechnology Center, Ohio State University, Columbus, OH 43210, USA
| | | | | |
Collapse
|
266
|
Abstract
Reproductive processes in plants and animals are usually synchronized with favourable seasons of the year. It has been known for 80 years that organisms anticipate seasonal changes by adjusting developmental programmes in response to daylength. Recent studies indicate that plants perceive daylength through the degree of coincidence of light with the expression of CONSTANS, which encodes a clock-regulated transcription factor that controls the expression of floral-inductive genes in a light-dependent manner.
Collapse
Affiliation(s)
- Marcelo J Yanovsky
- Department of Cell Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037 USA
| | | |
Collapse
|
267
|
Nakamichi N, Matsushika A, Yamashino T, Mizuno T. Cell autonomous circadian waves of the APRR1/TOC1 quintet in an established cell line of Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2003; 44:360-5. [PMID: 12668783 DOI: 10.1093/pcp/pcg039] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A small family of genes, named Arabidopsis Pseudo Response Regulator (APRR), are intriguing with special reference to circadian rhythms in plants, based on the fact that one of the members (APRR1) is identical to TOC1 (Timing of CAB Expression 1) that is believed to encode a clock component. In Arabidopsis plants, each transcript of the APRR1/TOC1 quintet genes starts accumulating after dawn rhythmically and one after another at intervals in the order of APRR9 --> APRR7 --> APRR5 --> APRR3 --> APRR1/TOC1. To characterize such intriguing circadian-associated events, we employed an established Arabidopsis cell line (named T87). When T87 cells were grown in an appropriate light and dark cycle, cell autonomous diurnal oscillations of the APRR1/TOC1 quintet genes were observed at the level of transcription, as seen in intact plants. After transfer to the conditions without any environmental time cues, particularly in constant dark, we further showed that free-running circadian rhythms persisted in the cultured cells, not only for the APRR1/TOC1 quintet genes, but also other typical circadian-controlled genes including CCA1 (Circadian Clock Associated 1), LHY (Late Elongated Hypocotyl) and CCR2 (Cold Circadian Rhythm RNA Binding 2). To our knowledge, this is the first indication of cell autonomous circadian rhythms in cultured cells in Arabidopsis thaliana, which will provide us with an alternative and advantageous means to characterize the plant biological clock.
Collapse
Affiliation(s)
- Norihito Nakamichi
- Laboratory of Molecular Microbiology, School of Agriculture, Nagoya University, Chikusa-ku, Nagoya, 464-8601 Japan
| | | | | | | |
Collapse
|
268
|
|
269
|
Más P, Alabadí D, Yanovsky MJ, Oyama T, Kay SA. Dual role of TOC1 in the control of circadian and photomorphogenic responses in Arabidopsis. THE PLANT CELL 2003; 15:223-36. [PMID: 12509533 PMCID: PMC143493 DOI: 10.1105/tpc.006734] [Citation(s) in RCA: 212] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2002] [Accepted: 10/02/2002] [Indexed: 05/18/2023]
Abstract
To examine the role of the TOC1 (TIMING OF CAB EXPRESSION1) gene in the Arabidopsis circadian system, we generated a series of transgenic plants expressing a gradation in TOC1 levels. Silencing of the TOC1 gene causes arrhythmia in constant darkness and in various intensities of red light, whereas in blue light, the clock runs faster in silenced plants than in wild-type plants. Increments in TOC1 gene dosage delayed the pace of the clock, whereas TOC1 overexpression abolished rhythmicity in all light conditions tested. Our results show that TOC1 RNA interference and toc1-2 mutant plants displayed an important reduction in sensitivity to red and far-red light in the control of hypocotyl elongation, whereas increments in TOC1 gene dosage clearly enhanced light sensitivity. Furthermore, the red light-mediated induction of CCA1/LHY expression was decreased in TOC1 RNA interference and toc1-2 mutant plants, indicating a role for TOC1 in the phytochrome regulation of circadian gene expression. We conclude that TOC1 is an important component of the circadian clock in Arabidopsis with a crucial function in the integration of light signals to control circadian and morphogenic responses.
Collapse
Affiliation(s)
- Paloma Más
- Department of Cell Biology, Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | |
Collapse
|
270
|
Nakamichi N, Murakami-Kojima M, Sato E, Kishi Y, Yamashino T, Mizuno T. Compilation and characterization of a novel WNK family of protein kinases in Arabiodpsis thaliana with reference to circadian rhythms. Biosci Biotechnol Biochem 2002; 66:2429-36. [PMID: 12506983 DOI: 10.1271/bbb.66.2429] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The complete genome sequence of Arabidopsis thaliana revealed that this higher plant has a tremendous number of protein kinases. We recently isolated a novel type of protein kinase, named AtWNK1, which shows an in vitro ability to phosphorylate the APRR3 member of the APRR1/TOC1 quintet that has been implicated in a mechanism underlying circadian rhythms in Arabidopsis. We here address two issues, one general and one specific, as to this novel protein kinase. We first asked the general question of how many WNK family members are present in this higher plant, then whether or not other members are also relevant to circadian rhythms. The results of our analyses showed that Arabidopsis has at least 9 members of the WNK1 family of protein kinases (designated here as WNK1 to WNK9), the structural design of which is clearly distinct from those of other known protein kinases, such as receptor-like kinases and mitogen-activated protein kinases. They were examined with special reference to the circadian-related APRR1/TOC1 quintet. It was found that not only the transcription of the WNK1 gene, but also those of three other members (WNK2, WNK4, and WNK6) are under the control of circadian rhythms. These results suggested that certain members of the WNK family of protein kinases might play roles in a mechanism that generates circadian rhythms in Arabidopsis.
Collapse
Affiliation(s)
- Norihito Nakamichi
- Laboratory of Molecular Microbiology, School of Agriculture, Nagoya University, Chikusa-ku, Nagoya 464-8601, Japan
| | | | | | | | | | | |
Collapse
|
271
|
Sato E, Nakamichi N, Yamashino T, Mizuno T. Aberrant expression of the Arabidopsis circadian-regulated APRR5 gene belonging to the APRR1/TOC1 quintet results in early flowering and hypersensitiveness to light in early photomorphogenesis. PLANT & CELL PHYSIOLOGY 2002; 43:1374-85. [PMID: 12461138 DOI: 10.1093/pcp/pcf166] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
In Arabidopsis thaliana, the transcripts of the APRR1/TOC1 family genes each start accumulating after dawn rhythmically and one after another at intervals in the order of APRR9-->APRR7-->APRR5-->APRR3-->APRR1/TOC1 under continuous light. Except for the well-characterized APRR1/TOC1, however, no evidence has been provided that other APRR1/TOC1 family genes are indeed implicated in the mechanisms underlying circadian rhythms. We here attempted to provide such evidence by characterizing transgenic plants that constitutively express the APRR5 gene. The resulting APRR5-overexpressing (APRR5-ox) plants showed intriguing properties with regard to not only circadian rhythms, but also control of flowering time and light response. First, the aberrant expression of APRR5 in such transgenic plants resulted in a characteristic phenotype with regard to transcriptional events, in which free-running rhythms were considerably altered for certain circadian-regulated genes, including CCA1, LHY, APRR1/TOC1, other APRR1/TOC1 members, GI and CAB2, although each rhythm was clearly sustained even after plants were transferred to continuous light. With regard to biological events, APRR5-ox plants flowered much earlier than wild-type plants, more or less, in a manner independent of photoperiodicity (or under short-day conditions). Furthermore, APRR5-ox plants showed an SRL (short-hypocotyls under red light) phenotype that is indicative of hypersensitiveness to red light in early photomorphogenesis. Both APRR1-ox and APRR9-ox plants also showed the same phenotype. Therefore, APRR5 (together with APRR1/TOC1 and APRR9) must be taken into consideration for a better understanding of the molecular links between circadian rhythms, control of flowering time through the photoperiodic long-day pathway, and also light signaling-controlled plant development.
Collapse
Affiliation(s)
- Eriko Sato
- Laboratory of Molecular Microbiology, School of Agriculture, Nagoya University, Chikusa-ku, Nagoya, 464-8601 Japan
| | | | | | | |
Collapse
|
272
|
Michael TP, McClung CR. Phase-specific circadian clock regulatory elements in Arabidopsis. PLANT PHYSIOLOGY 2002; 130:627-38. [PMID: 12376630 PMCID: PMC166592 DOI: 10.1104/pp.004929] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2002] [Revised: 04/18/2002] [Accepted: 06/03/2002] [Indexed: 05/18/2023]
Abstract
We have defined a minimal Arabidopsis CATALASE 3 (CAT3) promoter sufficient to drive evening-specific circadian transcription of a LUCIFERASE reporter gene. Deletion analysis and site-directed mutagenesis reveal a circadian response element, the evening element (EE: AAAATATCT), that is necessary for evening-specific transcription. The EE differs only by a single base pair from the CIRCADIAN CLOCK ASSOCIATED 1-binding site (CBS: AAAAAATCT), which is important for morning-specific transcription. We tested the hypothesis that the EE and the CBS specify circadian phase by site-directed mutagenesis to convert the CAT3 EE into a CBS. Changing the CAT3 EE to a CBS changes the phase of peak transcription from the evening to the morning in continuous dark and in light-dark cycles, consistent with the specification of phase by the single base pair that distinguishes these elements. However, rhythmicity of the CBS-containing CAT3 promoter is dramatically compromised in continuous light. Thus, we conclude that additional information normally provided in the context of a morning-specific promoter is necessary for full circadian activity of the CBS.
Collapse
Affiliation(s)
- Todd P Michael
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
| | | |
Collapse
|
273
|
Rensing L, Ruoff P. Temperature effect on entrainment, phase shifting, and amplitude of circadian clocks and its molecular bases. Chronobiol Int 2002; 19:807-64. [PMID: 12405549 DOI: 10.1081/cbi-120014569] [Citation(s) in RCA: 198] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Effects of temperature and temperature changes on circadian clocks in cyanobacteria, unicellular algae, and plants, as well as fungi, arthropods, and vertebrates are reviewed. Periodic temperature with periods around 24 h even in the low range of 1-2 degrees C (strong Zeitgeber effect) can entrain all ectothermic (poikilothermic) organisms. This is also reflected by the phase shifts-recorded by phase response curves (PRCs)-that are elicited by step- or pulsewise changes in the temperature. The amount of phase shift (weak or strong type of PRC) depends on the amplitude of the temperature change and on its duration when applied as a pulse. Form and position of the PRC to temperature pulses are similar to those of the PRC to light pulses. A combined high/low temperature and light/dark cycle leads to a stabile phase and maximal amplitude of the circadian rhythm-when applied in phase (i.e., warm/light and cold/dark). When the two Zeitgeber cycles are phase-shifted against each other the phase of the circadian rhythm is determined by either Zeitgeber or by both, depending on the relative strength (amplitude) of both Zeitgeber signals and the sensitivity of the species/individual toward them. A phase jump of the circadian rhythm has been observed in several organisms at a certain phase relationship of the two Zeitgeber cycles. Ectothermic organisms show inter- and intraspecies plus seasonal variations in the temperature limits for the expression of the clock, either of the basic molecular mechanism, and/or the dependent variables. A step-down from higher temperatures or a step-up from lower temperatures to moderate temperatures often results in initiation of oscillations from phase positions that are about 180 degrees different. This may be explained by holding the clock at different phase positions (maximum or minimum of a clock component) or by significantly different levels of clock components at the higher or lower temperatures. Different permissive temperatures result in different circadian amplitudes, that usually show a species-specific optimum. In endothermic (homeothermic) organisms periodic temperature changes of about 24 h often cause entrainment, although with considerable individual differences, only if they are of rather high amplitudes (weak Zeitgeber effects). The same applies to the phase-shifting effects of temperature pulses. Isolated bird pineals and rat suprachiasmatic nuclei tissues on the other hand, respond to medium high temperature pulses and reveal PRCs similar to that of light signals. Therefore, one may speculate that the self-selected circadian rhythm of body temperature in reptiles or the endogenously controlled body temperature in homeotherms (some of which show temperature differences of more than 2 degrees C) may, in itself, serve as an internal entraining system. The so-called heterothermic mammals (undergoing low body temperature states in a daily or seasonal pattern) may be more sensitive to temperature changes. Effects of temperature elevation on the molecular clock mechanisms have been shown in Neurospora (induction of the frequency (FRQ) protein) and in Drosophila (degradation of the period (PER) and timeless (TIM) protein) and can explain observed phase shifts of rhythms in conidiation and locomotor activity, respectively. Temperature changes probably act directly on all processes of the clock mechanism some being more sensitive than the others. Temperature changes affect membrane properties, ion homeostasis, calcium influx, and other signal cascades (cAMP, cGMP, and the protein kinases A and C) (indirect effects) and may thus influence, in particular, protein phosphorylation processes of the clock mechanism. The temperature effects resemble to some degree those induced by light or by light-transducing neurons and their transmitters. In ectothermic vertebrates temperature changes significantly affect the melatonin rhythm, which in turn exerts entraining (phase shifting) functions.
Collapse
Affiliation(s)
- Ludger Rensing
- Institute of Cell Biology, Biochemistry and Biotechnology, University of Bremen, Germany.
| | | |
Collapse
|
274
|
Matsushika A, Imamura A, Yamashino T, Mizuno T. Aberrant expression of the light-inducible and circadian-regulated APRR9 gene belonging to the circadian-associated APRR1/TOC1 quintet results in the phenotype of early flowering in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2002; 43:833-843. [PMID: 12198185 DOI: 10.1093/pcp/pcf118] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Several Arabidopsis genes have been proposed to encode potential clock-associated components, including the Myb-related CCA1 and LHY transcription factors and a member (APRR1/TOC1) of the family of pseudo-response regulators. We previously showed that transcripts of the APRR1/TOC1 family genes each start accumulating after dawn rhythmically and sequentially at intervals in the order of APRR9-->APRR7-->APRR5-->APRR3-->APRR1/TOC1, under the conditions of continuous light. Nevertheless, no evidence has been provided that each member of the APRR1/TOC1 quintet, except for APRR1/TOC1, is indeed relevant to the mechanisms underlying circadian rhythms. Here we attempt to provide such evidence by characterizing transgenic plants that aberrantly (or constitutively) express the APRR9 gene in a manner independent of circadian rhythms. The resulting APRR9-ox plants showed intriguing phenotypes with regard to circadian rhythms, in two aspects. First, the aberrant expression of APRR9 resulted in a characteristic phenotype with regard to transcriptional events, in which short-period rhythms were commonly observed for certain circadian-regulated genes, including CCA1, LHY, APRR1/TOC1, other APRR1/TOC1 members, ELF3, and CAB2. With regard to biological consequences, such APRR9-ox plants flowered much earlier than wild-type plants, in a manner independent of photoperiodicity (or under short-day conditions). These results suggest that APRR9 (and perhaps other members of the APRR1/TOC1 quintet) must also be taken into consideration for a better understanding of the molecular mechanisms underlying circadian rhythms, and also underlying control of the flowering time through the photoperiodic long-day pathway.
Collapse
Affiliation(s)
- Akinori Matsushika
- Laboratory of Molecular Microbiology, School of Agriculture, Nagoya University, Chikusa-ku, Nagoya, 464-8601 Japan
| | | | | | | |
Collapse
|
275
|
Nair U, Ditty JL, Min H, Golden SS. Roles for sigma factors in global circadian regulation of the cyanobacterial genome. J Bacteriol 2002; 184:3530-8. [PMID: 12057947 PMCID: PMC135120 DOI: 10.1128/jb.184.13.3530-3538.2002] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The circadian clock of the unicellular cyanobacterium Synechococcus elongatus PCC 7942 imposes a global rhythm of transcription on promoters throughout the genome. Inactivation of any of the four known group 2 sigma factor genes (rpoD2, rpoD3, rpoD4, and sigC), singly or pairwise, altered circadian expression from the psbAI promoter, changing amplitude, phase angle, waveform, or period. However, only the rpoD2 mutation and the rpoD3 rpoD4 and rpoD2 rpoD3 double mutations affected expression from the kaiB promoter. A striking differential effect was a 2-h lengthening of the circadian period of expression from the promoter of psbAI, but not of those of kaiB or purF, when sigC was inactivated. The data show that separate timing circuits with different periods can coexist in a cell. Overexpression of rpoD2, rpoD3, rpoD4, or sigC also changed the period or abolished the rhythmicity of PpsbAI expression, consistent with a model in which sigma factors work as a consortium to convey circadian information to downstream genes.
Collapse
Affiliation(s)
- Usha Nair
- Department of Biology, Texas A&M University, College Station, Texas 77843-3258, USA
| | | | | | | |
Collapse
|
276
|
Murakami-Kojima M, Nakamichi N, Yamashino T, Mizuno T. The APRR3 component of the clock-associated APRR1/TOC1 quintet is phosphorylated by a novel protein kinase belonging to the WNK family, the gene for which is also transcribed rhythmically in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2002; 43:675-683. [PMID: 12091722 DOI: 10.1093/pcp/pcf084] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
In higher plants, clock-controlled circadian rhythms are a longstanding issue in physiology, and a newly emerging paradigm of molecular biology. In the model higher plant Arabidopsis thaliana, several genes have been proposed to encode potential clock-associated components, including a member (APRR1/TOC1) of the pseudo-response regulator family. We previously showed that transcripts of the APRR1/TOC1 family start accumulating after dawn rhythmically and sequentially at approximately 2 h intervals in the order of APRR9-->APRR7-->APRR5-->APRR3-->APRR1/ TOC1. This and other results led us to propose that this APRR1/TOC1 quintet might play coordinate roles in the mechanism underlying circadian rhythms in higher plants. To gain further insight as to such an idea, we here attempt to identify proteins that interact with one of the quintet members, APRR3. The identified component is a novel protein kinase, named WNK1, which is considerably similar to, but clearly distinct from, mitogen-activated protein kinases (MAPKs). It was found that APRR3 is a substrate of this novel protein kinase, the gene for which also shows a rhythmic transcription profile that is well coincident with the APRR3 rhythm. These findings give new insight into the mechanisms underlying the circadian rhythm in A. thaliana, providing a molecular link between the putative clock component, APRR3, and WNK1, a novel protein kinase that might be implicated as a signal transducer.
Collapse
Affiliation(s)
- Masaya Murakami-Kojima
- Laboratory of Molecular Microbiology, School of Agriculture, Nagoya University, Chikusa-ku, Nagoya, 464-8601 Japan
| | | | | | | |
Collapse
|
277
|
Hwang I, Chen HC, Sheen J. Two-component signal transduction pathways in Arabidopsis. PLANT PHYSIOLOGY 2002; 129:500-15. [PMID: 12068096 PMCID: PMC161668 DOI: 10.1104/pp.005504] [Citation(s) in RCA: 278] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2002] [Revised: 03/21/2002] [Accepted: 03/22/2002] [Indexed: 05/18/2023]
Abstract
The two-component system, consisting of a histidine (His) protein kinase that senses a signal input and a response regulator that mediates the output, is an ancient and evolutionarily conserved signaling mechanism in prokaryotes and eukaryotes. The identification of 54 His protein kinases, His-containing phosphotransfer proteins, response regulators, and related proteins in Arabidopsis suggests an important role of two-component phosphorelay in plant signal transduction. Recent studies indicate that two-component elements are involved in plant hormone, stress, and light signaling. In this review, we present a genome analysis of the Arabidopsis two-component elements and summarize the major advances in our understanding of Arabidopsis two-component signaling.
Collapse
Affiliation(s)
- Ildoo Hwang
- Department of Genetics, Harvard Medical School, Boston, MA 02114, USA
| | | | | |
Collapse
|
278
|
Osakabe Y, Miyata S, Urao T, Seki M, Shinozaki K, Yamaguchi-Shinozaki K. Overexpression of Arabidopsis response regulators, ARR4/ATRR1/IBC7 and ARR8/ATRR3, alters cytokinin responses differentially in the shoot and in callus formation. Biochem Biophys Res Commun 2002; 293:806-15. [PMID: 12054542 DOI: 10.1016/s0006-291x(02)00286-3] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Arabidopsis ARR4/ATRR1/IBC7 and ARR8/ATRR3 are homologous genes of prokaryotic response regulators that are involved in the His-Asp phosphorelay signal transduction. We analyzed the function of these genes as response regulators using transgenic plants. Overexpression of ARR4 in cultured stems of the transgenics markedly promoted shoot formation in the presence of cytokinin, while overexpression of ARR8 repressed shoot formation and greening of calli. The expression level of cytokinin-inducible genes, cycD3 and cab increased in the ARR4 overexpressor but decreased in the ARR8 overexpressor. By contrast, two drought stress-inducible genes, rd29A and erd1, were expressed in both overexpressors as that in control plants. These results suggest that ARR4 and ARR8 are involved in cytokinin signal transduction, and that ARR4 functions as a positive-regulator, whereas ARR8 functions as a negative-regulator. Furthermore, microarray analysis showed that several genes were up-regulated in the ARR4 overexpressor. Consistent with these results, ARR4 and ARR8 might play important roles in the sensoring system of cytokinin signal transduction pathway in various developmental and environmental conditions and the regulation of gene expression.
Collapse
Affiliation(s)
- Yuriko Osakabe
- Biological Resources Division, Japan International Research Center for Agricultural Sciences, 1-1 Ohwashi, Tsukuba, Ibaraki 305-8686, Japan
| | | | | | | | | | | |
Collapse
|
279
|
McClung CR, Salomé PA, Michael TP. The Arabidopsis circadian system. THE ARABIDOPSIS BOOK 2002; 1:e0044. [PMID: 22303209 PMCID: PMC3243369 DOI: 10.1199/tab.0044] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Rhythms with periods of approximately 24 hr are widespread in nature. Those that persist in constant conditions are termed circadian rhythms and reflect the activity of an endogenous biological clock. Plants, including Arabidopsis, are richly rhythmic. Expression analysis, most recently on a genomic scale, indicates that the Arabidopsis circadian clock regulates a number of key metabolic pathways and stress responses. A number of sensitive and high-throughput assays have been developed to monitor the Arabidopsis clock. These assays have facilitated the identification of components of plant circadian systems through genetic and molecular biological studies. Although much remains to be learned, the framework of the Arabidopsis circadian system is coming into focus.DedicationThis review is dedicated to the memory of DeLill Nasser, a wonderful mentor and an unwavering advocate of both Arabidopsis and circadian rhythms research.
Collapse
Affiliation(s)
- C. Robertson McClung
- Department of Biological Sciences, 6044 Gilman Laboratories, Dartmouth College, Hanover, New Hampshire 03755-3576
- Corresponding Author: telephone: 603-646-3940; fax: 603-646-1347;
| | - Patrice A. Salomé
- Department of Biological Sciences, 6044 Gilman Laboratories, Dartmouth College, Hanover, New Hampshire 03755-3576
| | - Todd P. Michael
- Department of Biological Sciences, 6044 Gilman Laboratories, Dartmouth College, Hanover, New Hampshire 03755-3576
| |
Collapse
|
280
|
Abstract
Circadian rhythms are found in most eukaryotes and some prokaryotes. The mechanism by which organisms maintain these roughly 24-h rhythms in the absence of environmental stimuli has long been a mystery and has recently been the subject of intense research. In the past few years, we have seen explosive progress in the understanding of the molecular basis of circadian rhythms in model systems ranging from cyanobacteria to mammals. This review attempts to outline these primarily genetic and biochemical findings and encompasses work done in cyanobacteria, Neurospora, higher plants, Drosophila, and rodents. Although actual clock components do not seem to be conserved between kingdoms, central clock mechanisms are conserved. Somewhat paradoxically, clock components that are conserved between species can be used in diverse ways. The different uses of common components may reflect the important role that the circadian clock plays in adaptation of species to particular environmental niches.
Collapse
Affiliation(s)
- S L Harmer
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California 92037, USA.
| | | | | |
Collapse
|
281
|
Matsushika A, Makino S, Kojima M, Yamashino T, Mizuno T. The APRR1/TOC1 quintet implicated in circadian rhythms of Arabidopsis thaliana: II. Characterization with CCA1-overexpressing plants. PLANT & CELL PHYSIOLOGY 2002; 43:118-22. [PMID: 11828029 DOI: 10.1093/pcp/pcf006] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We previously identified a novel class of proteins, named pseudo-response regulators (APRRs) in Arabidopsis thaliana, each of which (APRR1, APRR3, APRR5, APRR7, and APRR9) has an intriguing structural design containing an N-terminal pseudo receiver domain and a C-terminal CONSTANS motif. Among them, APRR1 is identical to TOC1, previously proposed to be a candidate component of an Arabidopsis circadian clock. Intriguingly, expressions of the APRR1/TOC1 family of genes are under control of coordinate circadian rhythms at the level of transcription, in the manner that each APRR-transcript starts accumulating sequentially after dawn with 2 to 3 h intervals in the order: APRR9-->APRR7-->APRR5-->APRR3-->APRR1/TOC1. Here we examined this circadian-related event, "circadian waves of the APRR1/TOC1 quintet", by employing CCA1-overexpression (CCA1-ox) transgenic plants, based on the fact that CCA1 is a well-characterized and the most plausible oscillator component. It was found that aberrant overexpression of the CCA1 gene severely perturbed free-running and sequential rhythms of the APRR1/TOC1 family of genes. In the accompanying paper, it was shown that overexpression of APRR1 also results in a marked alteration of the CCA1 circadian rhythm, and vice versa. Taken together, it was suggested that there are intimate and mutual links between these two types of circadian-associated components (APRRs and CCA1).
Collapse
Affiliation(s)
- Akinori Matsushika
- Laboratory of Molecular Microbiology, School of Agriculture, Nagoya University, Chikusa-ku, Nagoya, 464-8601 Japan
| | | | | | | | | |
Collapse
|
282
|
Makino S, Matsushika A, Kojima M, Yamashino T, Mizuno T. The APRR1/TOC1 quintet implicated in circadian rhythms of Arabidopsis thaliana: I. Characterization with APRR1-overexpressing plants. PLANT & CELL PHYSIOLOGY 2002; 43:58-69. [PMID: 11828023 DOI: 10.1093/pcp/pcf005] [Citation(s) in RCA: 148] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Several Arabidopsis genes have been proposed to encode potential clock-associated components, including the Myb-related CCA1 and LHY transcription factors and a member of the novel family of pseudo response regulators (APRR1/TOC1). We previously showed that mRNAs of the APRR1/TOC1 family of genes start accumulating after dawn rhythmically and sequentially at approximately 2 h intervals in the order: APRR9--> APRR7-->APRR5-->APRR3-->APRR1/TOC1. Here we constructed APRR1-overexpressing (APRR1-ox) plants, and examined certain circadian profiles for APRRs, CCA1, LHY, GI, CCR2, and CAB2. The free-running circadian rhythms of the APRR1/TOC1 family of genes, including APRR1, were dampened in APRR1-ox plants. In particular, the light-inducible expression of APRR9 was severely repressed in APRR1-ox plants, suggesting that there is a negative APRR1-->APRR9 regulation. The free-running robust rhythm of CAB2 was also dampened in APRR1-ox. The circadian profiles of potential clock-associated genes, CCA1, LHY, GI, and CCR2 were all markedly altered in APRR1-ox, each in characteristic fashion. To gain further insight into the molecular function of APRR1, we then identified a novel Myc-related bHLH transcription factor, which physically associated with APRR1. This protein (named PIL1) is similar in its amino acid sequence to PIF3, which has been identified as a phytochrome-interacting transcription factor. These results are discussed in relation to the current idea that APRR1 (TOC1) plays a role within, or close to, the Arabidopsis central oscillator.
Collapse
Affiliation(s)
- Seiya Makino
- Laboratory of Molecular Microbiology, School of Agriculture, Nagoya University, Chikusa-ku, Nagoya, 464-8601 Japan
| | | | | | | | | |
Collapse
|
283
|
Abstract
The identification of components of the plant circadian clock has been advanced recently with the success of two forward genetics approaches. The ZEITLUPE and TOC1 loci were cloned and each was found to be part of two separate, larger gene families with intriguing domain structures. The ZTL family of proteins contains a subclass of the PAS domain coupled to an F box and kelch motifs, suggesting that they play a role in a novel light-regulated ubiquitination mechanism. TOC1 shares similarity to the receiver domain of the well-known two-component phosphorelay signalling systems, combined with a strong similarity to a region of the CONSTANS transcription factor, which is involved in controlling flowering time. When added to the repertoire of previously identified clock-associated genes, it is clear that both similarities and differences with other circadian systems will emerge in the coming years.
Collapse
Affiliation(s)
- D E Somers
- Department of Plant Biology, Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
284
|
Yanovsky MJ, Kay SA. Signaling networks in the plant circadian system. CURRENT OPINION IN PLANT BIOLOGY 2001; 4:429-435. [PMID: 11597501 DOI: 10.1016/s1369-5266(00)00196-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Significant advances have been made during the past year in the genetic and molecular dissection of the plant circadian system. Several proteins involved in circadian clock regulation have been identified and the way that their interactions contribute to temporal organization is starting to emerge. In addition, genomic approaches have identified hundreds of genes under clock control, providing a molecular basis to our understanding of how the clock coordinates plant physiology and development with daily and seasonal environmental cycles.
Collapse
Affiliation(s)
- M J Yanovsky
- The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA.
| | | |
Collapse
|
285
|
Abstract
The circadian clock is a widespread cellular mechanism that underlies diverse rhythmic functions in organisms from bacteria and fungi, to plants and animals. Intense genetic analysis during recent years has uncovered many of the components and molecular mechanisms comprising these clocks. Although autoregulatory genetic networks are a consistent feature in the design of all clocks, the weight of evidence favours their independent evolutionary origins in different kingdoms.
Collapse
Affiliation(s)
- M W Young
- Laboratory of Genetics, The Rockefeller University, 1230 York Avenue, New York, New York 10021, USA.
| | | |
Collapse
|
286
|
Alabadí D, Oyama T, Yanovsky MJ, Harmon FG, Más P, Kay SA. Reciprocal regulation between TOC1 and LHY/CCA1 within the Arabidopsis circadian clock. Science 2001; 293:880-3. [PMID: 11486091 DOI: 10.1126/science.1061320] [Citation(s) in RCA: 761] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The interactive regulation between clock genes is central for oscillator function. Here, we show interactions between the Arabidopsis clock genes LATE ELONGATED HYPOCOTYL (LHY), CIRCADIAN CLOCK ASSOCIATED 1 (CCA1), and TIMING OF CAB EXPRESSION 1 (TOC1). The MYB transcription factors LHY and CCA1 negatively regulate TOC1 expression. We show that both proteins bind to a region in the TOC1 promoter that is critical for its clock regulation. Conversely, TOC1 appears to participate in the positive regulation of LHY and CCA1 expression. Our results indicate that these interactions form a loop critical for clock function in Arabidopsis.
Collapse
Affiliation(s)
- D Alabadí
- Department of Cell Biology and Institute for Childhood and Neglected Diseases, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | |
Collapse
|
287
|
Abstract
While a number of physiological and biochemical processes in plants have been found to be regulated in a circadian manner, the mechanism underlying the circadian oscillator remains to be elucidated. Advances in the identification and characterization of components of the plant circadian system have been made largely through the use of genetics in Arabidopsis thaliana. Results so far indicate that the generation of rhythmicity by the Arabidopsis clock relies on molecular mechanisms that are similar to those described for other organisms, but that a totally different set of molecular components has been recruited to perform these functions.
Collapse
Affiliation(s)
- L C Roden
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK
| | | |
Collapse
|
288
|
Tepperman JM, Zhu T, Chang HS, Wang X, Quail PH. Multiple transcription-factor genes are early targets of phytochrome A signaling. Proc Natl Acad Sci U S A 2001; 98:9437-42. [PMID: 11481498 PMCID: PMC55439 DOI: 10.1073/pnas.161300998] [Citation(s) in RCA: 338] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The phytochrome family of sensory photoreceptors directs adaptational changes in gene expression in response to environmental light signals. Using oligonucleotide microarrays to measure expression profiles in wild-type and phytochrome A (phyA) null-mutant Arabidopsis seedlings, we have shown that 10% of the genes represented on the array are regulated by phyA in response to a continuous far-red light signal. Strikingly, 44% of the genes responding to the signal within 1 h are predicted to encode multiple classes of transcriptional regulators. Together with previous data, this observation suggests that phyA may regulate seedling photomorphogenesis by direct targeting of light signals to the promoters of genes encoding a master set of diverse transcriptional regulators, responsible in turn for orchestrating the expression of multiple downstream target genes in various branches of a phyA-regulated transcriptional network.
Collapse
Affiliation(s)
- J M Tepperman
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | | | | | | | | |
Collapse
|
289
|
Abstract
Circadian and photoperiodic timing mechanisms were first described in photosynthetic organisms. These organisms depend upon sunlight for their energy, so adaptation to daily and seasonal fluctuations in light must have generated a strong selective pressure. Studies of the endogenous timekeepers of photosynthetic organisms provide evidence for both a fitness advantage and for selective pressures involved in early evolution of circadian clocks. Photoperiodic timing mechanisms in plants appear to use their circadian timers as the ruler by which the day/night length is measured. As in animals, the overall clock system in plants appears to be complex; the system includes multiple oscillators, several input pathways, and a myriad of outputs. Genes have now been isolated from plants that are likely to encode components of the central clockwork or at least that act very close to the central mechanism. Genetic and biochemical analyses of the central clockwork of a photosynthetic organism are most highly advanced in cyanobacteria, where a cluster of clock genes and interacting factors have been characterized.
Collapse
Affiliation(s)
- C H Johnson
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37235, USA.
| |
Collapse
|
290
|
Makino S, Matsushika A, Kojima M, Oda Y, Mizuno T. Light response of the circadian waves of the APRR1/TOC1 quintet: when does the quintet start singing rhythmically in Arabidopsis? PLANT & CELL PHYSIOLOGY 2001; 42:334-339. [PMID: 11266585 DOI: 10.1093/pcp/pce036] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We previously identified a novel class of proteins, named A:rabidopsis pseudo-response regulators (APRRs), each of which (APRR1/TOC1, APRR3, APRR5, APRR7, APRR9) has an intriguing structural design containing an N-terminal pseudo-receiver domain and a C-terminal CONSTANS motif. Expression of these APRR1/TOC1 family members is under the control of a coordinate circadian rhythm at the level of transcription such that the APRR-mRNAs start accumulating sequentially after dawn with 2 to 3 h intervals in the order of APRR9-->APRR7-->APRR5-->APRR3-->APRR1/TOC1 in a given 24 h photo-period. Based on these data, we previously proposed that these sequential and rhythmic events of transcription, termed 'circadian waves of APRR1/TOC1 quintet', may be a basis of a presumed Arabidopsis biological clock (named 'bar code clock') [Matsushika et al. (2000) Plant and Cell Physiol. 41: 1002]. Here we further characterized the event of circadian waves, by demonstrating that certain light stimuli are crucial determinants to induce the robust circadian waves, and accordingly, the first-boosted and light-induced APRR9 appears to be primarily responsible for this light response of the circadian waves. Also, as such a light stimulus, a red light pulse that is presumably perceived by phytochromes appears to be sufficient to induce (or synchronize) the APRR1/TOC1 circadian waves.
Collapse
Affiliation(s)
- S Makino
- Laboratory of Molecular Microbiology, School of Agriculture, Nagoya University, Chikusa-ku, Nagoya, 464-8601 Japan
| | | | | | | | | |
Collapse
|