251
|
Kumar K, Rao KP, Sharma P, Sinha AK. Differential regulation of rice mitogen activated protein kinase kinase (MKK) by abiotic stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2008; 46:891-7. [PMID: 18619847 DOI: 10.1016/j.plaphy.2008.05.014] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2007] [Indexed: 05/21/2023]
Abstract
Mitogen activated protein kinase cascade plays a crucial role in various biotic and abiotic stresses, hormones, cell division and developmental processes. MAP kinase kinase being integral part of this cascade performs an important function of integrating upstream signals to mitogen activated protein kinase for further appropriate cellular responses. We here report cloning of five MAP kinase kinase members from Oryza sativa indica cultivar var. Pusa Basmati 1, namely MAP kinase kinases 1, 3, 4, 6 and 10-2. All these members, except MKK10-2 possess fully canonical motif structures of MAP kinase kinase. The deduced amino acid sequence showed changes at certain position within japonica and indica variety of rice. Analysis of transcript regulation by quantitative real time PCR revealed that these five members are differentially regulated by cold, heat, salinity and drought stresses. MAP kinase kinases 4 and 6 are strongly regulated by cold and salt stresses while MAP kinase kinase 1 is regulated by salt and drought stresses. MAP kinase kinase 10-2 is regulated only by cold stress. The study provides the indication of involvement of specific MAP kinase kinase in different abiotic stress signaling and also possible cross talks that exist during the signaling processes.
Collapse
Affiliation(s)
- Kundan Kumar
- National Institute for Plant Genome Research, Aruna Asaf Ali Road, New Delhi, India
| | | | | | | |
Collapse
|
252
|
Ascencio-Ibáñez JT, Sozzani R, Lee TJ, Chu TM, Wolfinger RD, Cella R, Hanley-Bowdoin L. Global analysis of Arabidopsis gene expression uncovers a complex array of changes impacting pathogen response and cell cycle during geminivirus infection. PLANT PHYSIOLOGY 2008; 148:436-54. [PMID: 18650403 PMCID: PMC2528102 DOI: 10.1104/pp.108.121038] [Citation(s) in RCA: 372] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2008] [Accepted: 07/21/2008] [Indexed: 05/18/2023]
Abstract
Geminiviruses are small DNA viruses that use plant replication machinery to amplify their genomes. Microarray analysis of the Arabidopsis (Arabidopsis thaliana) transcriptome in response to cabbage leaf curl virus (CaLCuV) infection uncovered 5,365 genes (false discovery rate <0.005) differentially expressed in infected rosette leaves at 12 d postinoculation. Data mining revealed that CaLCuV triggers a pathogen response via the salicylic acid pathway and induces expression of genes involved in programmed cell death, genotoxic stress, and DNA repair. CaLCuV also altered expression of cell cycle-associated genes, preferentially activating genes expressed during S and G2 and inhibiting genes active in G1 and M. A limited set of core cell cycle genes associated with cell cycle reentry, late G1, S, and early G2 had increased RNA levels, while core cell cycle genes linked to early G1 and late G2 had reduced transcripts. Fluorescence-activated cell sorting of nuclei from infected leaves revealed a depletion of the 4C population and an increase in 8C, 16C, and 32C nuclei. Infectivity studies of transgenic Arabidopsis showed that overexpression of CYCD3;1 or E2FB, both of which promote the mitotic cell cycle, strongly impaired CaLCuV infection. In contrast, overexpression of E2FA or E2FC, which can facilitate the endocycle, had no apparent effect. These results showed that geminiviruses and RNA viruses interface with the host pathogen response via a common mechanism, and that geminiviruses modulate plant cell cycle status by differentially impacting the CYCD/retinoblastoma-related protein/E2F regulatory network and facilitating progression into the endocycle.
Collapse
Affiliation(s)
- José Trinidad Ascencio-Ibáñez
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695, USA.
| | | | | | | | | | | | | |
Collapse
|
253
|
Xu J, Li Y, Wang Y, Liu H, Lei L, Yang H, Liu G, Ren D. Activation of MAPK kinase 9 induces ethylene and camalexin biosynthesis and enhances sensitivity to salt stress in Arabidopsis. J Biol Chem 2008; 283:26996-7006. [PMID: 18693252 DOI: 10.1074/jbc.m801392200] [Citation(s) in RCA: 219] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Mitogen-activated protein kinase (MAPK) cascades play important roles in regulating plant growth, development, and responses to various environmental stimuli. We demonstrate that MKK9, an MKK, is an upstream activator of the MPKs MPK3 and MPK6 both in vitro and in planta. Expression of active MKK9 protein in transgenic plants induces the synthesis of ethylene and camalexin through the activation of the endogenous MPK3 and MPK6 kinases. As a consequence, transcription of multiple genes responsible for ethylene biosynthesis, ethylene responses, and camalexin biosynthesis is coordinately up-regulated. The activation of MKK9 inhibits hypocotyl elongation in the etiolated seedlings. MKK9-mediated effects on hypocotyl elongation were blocked by the ethylene biosynthesis inhibitor, aminoethoxyvinylglycine, and ethylene receptor antagonist, Ag(+). Expression of active MKK9 protein enhances the sensitivity of transgenic seedlings to salt stress, whereas loss of MKK9 activity reduces salt sensitivity indicating a role for MKK9 in the salt stress response. The results reported here reveal that the MKK9-MPK3/MPK6 cascade participates in the regulation of the biosynthesis of ethylene and camalexin and may be an important axis in the stress responses of Arabidopsis.
Collapse
Affiliation(s)
- Juan Xu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100094, China
| | | | | | | | | | | | | | | |
Collapse
|
254
|
Katsir L, Chung HS, Koo AJ, Howe GA. Jasmonate signaling: a conserved mechanism of hormone sensing. CURRENT OPINION IN PLANT BIOLOGY 2008; 11:428-35. [PMID: 18583180 PMCID: PMC2560989 DOI: 10.1016/j.pbi.2008.05.004] [Citation(s) in RCA: 231] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2008] [Revised: 05/12/2008] [Accepted: 05/16/2008] [Indexed: 05/20/2023]
Abstract
The lipid-derived hormone jasmonate (JA) regulates diverse aspects of plant immunity and development. Among the central components of the JA signaling cascade are the E3 ubiquitin ligase SCFCOI1 and Jasmonate ZIM-domain (JAZ) proteins that repress transcription of JA-responsive genes. Recent studies provide evidence that amino acid-conjugated forms of JA initiate signal transduction upon formation of a coronatine-insensitive1 (COI1)-JA-JAZ ternary complex in which JAZs are ubiquitinated and subsequently degraded. Coronatine, a virulence factor produced by the plant pathogen Pseudomonas syringae, is a potent agonist of this hormone receptor system. Coronatine-induced targeting of JAZs to COI1 obstructs host immune responses to P. syrinage, providing a striking example of how pathogens exploit hormone signaling pathways in the host to promote disease. These findings, together with homology between COI1 and the auxin receptor, TIR1, extend the paradigm of F-box proteins as intracellular sensors of small molecules, and suggest a common evolutionary origin of the auxin and JA response pathways.
Collapse
|
255
|
Schwessinger B, Zipfel C. News from the frontline: recent insights into PAMP-triggered immunity in plants. CURRENT OPINION IN PLANT BIOLOGY 2008; 11:389-95. [PMID: 18602859 DOI: 10.1016/j.pbi.2008.06.001] [Citation(s) in RCA: 186] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2008] [Revised: 05/19/2008] [Accepted: 06/06/2008] [Indexed: 05/20/2023]
Abstract
Plants have developed a complex defence network to fight off invading pathogens. In recent years, the full importance of pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) within this network became apparent. Several new PAMPs have been isolated and new pattern-recognition receptors (PRRs) identified. The discovery of the PRR-interacting protein BAK1 sheds light on the immediate downstream signalling events. Further, transcriptomic analyses identified a core set of approximately 100 PAMP-responsive genes. These studies also revealed a significant overlap with genes regulated during effector-triggered immunity (ETI). Strikingly, ETI seems to operate by alleviating the negative feedback regulation of PTI, leading to stronger defences. This review discusses recent findings in PTI recognition and signalling, and illustrates the need to discover new regulators of PTI responses for a full understanding of plant innate immunity.
Collapse
|
256
|
Arabidopsis MAPKs: a complex signalling network involved in multiple biological processes. Biochem J 2008; 413:217-26. [PMID: 18570633 DOI: 10.1042/bj20080625] [Citation(s) in RCA: 486] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Many changes in environmental conditions and hormones are mediated by MAPK (mitogen-activated protein kinase) cascades in all eukaryotes, including plants. Studies of MAPK pathways in genetic model organisms are especially informative in revealing the molecular mechanisms by means of which MAPK cascades are controlled and modulate cellular processes. The present review highlights recent insights into MAPK-based signalling in Arabidopsis thaliana (thale cress), revealing the complexity and future challenges to understanding signal-transduction networks on a global scale.
Collapse
|
257
|
Schikora A, Carreri A, Charpentier E, Hirt H. The dark side of the salad: Salmonella typhimurium overcomes the innate immune response of Arabidopsis thaliana and shows an endopathogenic lifestyle. PLoS One 2008; 3:e2279. [PMID: 18509467 PMCID: PMC2386236 DOI: 10.1371/journal.pone.0002279] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Accepted: 03/23/2008] [Indexed: 11/22/2022] Open
Abstract
Salmonella enterica serovar typhimurium contaminated vegetables and fruits are considerable sources of human infections. Bacteria present in raw plant-derived nutrients cause salmonellosis, the world wide most spread food poisoning. This facultative endopathogen enters and replicates in host cells and actively suppresses host immune responses. Although Salmonella survives on plants, the underlying bacterial infection mechanisms are only poorly understood. In this report we investigated the possibility to use Arabidopsis thaliana as a genetically tractable host system to study Salmonella-plant interactions. Using green fluorescent protein (GFP) marked bacteria, we show here that Salmonella can infect various Arabidopsis tissues and proliferate in intracelullar cellular compartments. Salmonella infection of Arabidopsis cells can occur via intact shoot or root tissues resulting in wilting, chlorosis and eventually death of the infected organs. Arabidopsis reacts to Salmonella by inducing the activation of mitogen-activated protein kinase (MAPK) cascades and enhanced expression of pathogenesis related (PR) genes. The induction of defense responses fails in plants that are compromised in ethylene or jasmonic acid signaling or in the MKK3-MPK6 MAPK pathway. These findings demonstrate that Arabidopsis represents a true host system for Salmonella, offering unique possibilities to study the interaction of this human pathogen with plants at the molecular level for developing novel drug targets and addressing current safety issues in human nutrition.
Collapse
Affiliation(s)
- Adam Schikora
- Unité de Recherche en Génomique Végétale, Institut National de la Recherche Agronomique/Centre National de la Recherche Scientifique/University of Evry Val d'Essonne, Evry, France
| | - Alessandro Carreri
- Department of Plant Molecular Biology, Max F. Perutz Laboratories, Vienna, Austria
| | - Emmanuelle Charpentier
- Department of Microbiology and Immunobiology, Max F. Perutz Laboratories, Vienna, Austria
| | - Heribert Hirt
- Unité de Recherche en Génomique Végétale, Institut National de la Recherche Agronomique/Centre National de la Recherche Scientifique/University of Evry Val d'Essonne, Evry, France
- Department of Plant Molecular Biology, Max F. Perutz Laboratories, Vienna, Austria
- * E-mail:
| |
Collapse
|
258
|
Ortiz-Masia D, Perez-Amador MA, Carbonell P, Aniento F, Carbonell J, Marcote MJ. Characterization of PsMPK2, the first C1 subgroup MAP kinase from pea (Pisum sativum L.). PLANTA 2008; 227:1333-42. [PMID: 18283488 DOI: 10.1007/s00425-008-0705-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2007] [Accepted: 01/18/2008] [Indexed: 05/18/2023]
Abstract
Mitogen-activated protein kinase (MAPK) cascades play a key role in plant growth and development as well as in biotic and abiotic stress responses. They are classified according to their sequence homology into four major groups (A-D). A large amount of information about MAPKs in groups A and B is available but few data of the C group have been reported. In this study, a C1 subgroup MAP kinase cDNA, PsMPK2, was isolated from Pisum sativum. PsMPK2 is expressed in vegetative (root and leaf) and reproductive (stamen, pistil and fruit) organs. Expression of PsMPK2 in Arabidopsis thaliana shows that mechanical injury and other stress signals as abscisic acid, jasmonic acid and hydrogen peroxide increase its kinase activity, extending previous results indicating that C1 subgroup MAPKs may be involved in the response to stress.
Collapse
Affiliation(s)
- Dolores Ortiz-Masia
- Facultad de Farmacia, Universidad de Valencia, Avda. Vicente Andrés Estellés s/n, 46100, Burjassot, Spain
| | | | | | | | | | | |
Collapse
|
259
|
Kazan K, Manners JM. Jasmonate signaling: toward an integrated view. PLANT PHYSIOLOGY 2008; 146:1459-68. [PMID: 18390489 PMCID: PMC2287326 DOI: 10.1104/pp.107.115717] [Citation(s) in RCA: 264] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2007] [Accepted: 02/04/2008] [Indexed: 05/18/2023]
Affiliation(s)
- Kemal Kazan
- Commonwealth Scientific and Industrial Research Organization Plant Industry, Queensland Bioscience Precinct, St. Lucia, Queensland 4067, Australia.
| | | |
Collapse
|
260
|
Dual control of nuclear EIN3 by bifurcate MAPK cascades in C2H4 signalling. Nature 2008; 451:789-95. [PMID: 18273012 DOI: 10.1038/nature06543] [Citation(s) in RCA: 364] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2007] [Accepted: 12/10/2007] [Indexed: 11/08/2022]
Abstract
A principal question in MAP kinase (MAPK/MPK) cascade signalling is how similar components dictate different specificity in the information-processing machineries from yeast to humans and plants. In Arabidopsis, how MPK3/6 modulates distinct outputs in diverse signal transduction pathways remains elusive. By combining systematic cellular and genetic screens, here we uncover a previously unexpected MKK9-MPK3/MPK6 cascade promoting ethylene-insensitive 3 (EIN3)-mediated transcription in ethylene signalling. The mkk9 mutant exhibits a broad spectrum of moderate ethylene-insensitive phenotypes, and translocated MKK9 governs nuclear signalling downstream of receptors. Breaking a linear model and conventional MAPK signalling, ethylene inactivates the negative regulator constitutive triple response 1 (CTR1, a Raf-like MAPK kinase kinase (MAPKKK)) to activate the positive MKK9-MPK3/6 cascade. The bifurcate and antagonistic CTR1 and MKK9 pathways are both critical in determining ethylene-signalling specificity through two MAPK phosphorylation sites with opposite effects on EIN3 stability. The results suggest a new paradigm for linking intertwined MAPK cascades to control quantitative responses and specificity in signalling networks.
Collapse
|
261
|
Staswick PE. JAZing up jasmonate signaling. TRENDS IN PLANT SCIENCE 2008; 13:66-71. [PMID: 18261950 DOI: 10.1016/j.tplants.2007.11.011] [Citation(s) in RCA: 189] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2007] [Revised: 11/15/2007] [Accepted: 11/19/2007] [Indexed: 05/21/2023]
Abstract
Recent discoveries show that jasmonate ZIM-domain (JAZ) transcriptional repressors are key regulators of jasmonate hormonal response. Jasmonate promotes interaction between JAZ proteins and the SCF(COI1) ubiquitin ligase, leading to JAZ degradation via the 26S proteasome in Arabidopsis thaliana. Elimination of JAZ repressors then frees the MYC2 transcription factor to stimulate jasmonate-dependent gene expression. Although jasmonic acid and methyl jasmonate were thought to be key regulators of jasmonate responses, they were ineffective in promoting SCF(COI1)-JAZ interaction and it is the isoleucine conjugate of jasmonic acid that acts in this signal transduction pathway. The discovery of JAZ transcriptional regulators greatly advances our understanding of how jasmonate signaling regulates plant growth and response to the environment.
Collapse
Affiliation(s)
- Paul E Staswick
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE 68585, USA
| |
Collapse
|
262
|
Balbi V, Devoto A. Jasmonate signalling network in Arabidopsis thaliana: crucial regulatory nodes and new physiological scenarios. THE NEW PHYTOLOGIST 2008; 177:301-318. [PMID: 18042205 DOI: 10.1111/j.1469-8137.2007.02292.x] [Citation(s) in RCA: 213] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Plant development and stress responses are regulated by complex signalling networks that mediate specific and dynamic plant responses upon activation by various types of exogenous and endogenous signal. In this review, we focus on the latest published work on jasmonate (JA) signalling components and new regulatory nodes in the transcriptional network that regulates a number of diverse plant responses to developmental and environmental cues. Not surprisingly, the majority of the key revelations in the field have been made in Arabidopsis thaliana. However, for comparative reasons, we integrate information on Arabidopsis with recent reports for other plant species (when available). Recent findings on the regulation of plant responses to pathogens by JAs, as well as new evidence implicating JAs in the regulation of senescence, suggest a common mechanism of JA action in these responses via distinct groups of transcription factors. Moreover, a significant increase in the amount of evidence has allowed placing of specific mitogen-activated protein kinases (MAPKs) as crucial regulatory nodes in the defence signalling network. In addition, we report on new physiological scenarios for JA signalling, such as organogenesis of nitrogen-fixing nodules and anticancer therapy.
Collapse
Affiliation(s)
- Virginia Balbi
- School of Biological Sciences, Royal Holloway University of London, Egham Hill, Egham, Surrey TW20 0EX, UK
| | - Alessandra Devoto
- School of Biological Sciences, Royal Holloway University of London, Egham Hill, Egham, Surrey TW20 0EX, UK
| |
Collapse
|
263
|
Schweighofer A, Meskiene I. Regulation of stress hormones jasmonates and ethylene by MAPK pathways in plants. MOLECULAR BIOSYSTEMS 2008; 4:799-803. [DOI: 10.1039/b718578m] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
264
|
Zhang X, Dai Y, Xiong Y, DeFraia C, Li J, Dong X, Mou Z. Overexpression of Arabidopsis MAP kinase kinase 7 leads to activation of plant basal and systemic acquired resistance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 52:1066-79. [PMID: 19704652 DOI: 10.1111/j.1365-313x.2007.03294.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
There is a growing body of evidence indicating that mitogen-activated protein kinase (MAPK) cascades are involved in plant defense responses. Analysis of the completed Arabidopsis thaliana genome sequence has revealed the existence of 20 MAPKs, 10 MAPKKs and 60 MAPKKKs, implying a high level of complexity in MAPK signaling pathways, and making the assignment of gene functions difficult. The MAP kinase kinase 7 (MKK7) gene of Arabidopsis has previously been shown to negatively regulate polar auxin transport. Here we provide evidence that MKK7 positively regulates plant basal and systemic acquired resistance (SAR). The activation-tagged bud1 mutant, in which the expression of MKK7 is increased, accumulates elevated levels of salicylic acid (SA), exhibits constitutive pathogenesis-related (PR) gene expression, and displays enhanced resistance to both Pseudomonas syringae pv. maculicola (Psm) ES4326 and Hyaloperonospora parasitica Noco2. Both PR gene expression and disease resistance of the bud1 plants depend on SA, and partially depend on NPR1. We demonstrate that the constitutive defense response in bud1 plants is a result of the increased expression of MKK7, and requires the kinase activity of the MKK7 protein. We found that expression of the MKK7 gene in wild-type plants is induced by pathogen infection. Reducing mRNA levels of MKK7 by antisense RNA expression not only compromises basal resistance, but also blocks the induction of SAR. Intriguingly, ectopic expression of MKK7 in local tissues induces PR gene expression and resistance to Psm ES4326 in systemic tissues, indicating that activation of MKK7 is sufficient for generating the mobile signal of SAR.
Collapse
Affiliation(s)
- Xudong Zhang
- Department of Microbiology and Cell Science, University of Florida, P.O. Box 110700, Gainesville, FL 32611, USA
| | | | | | | | | | | | | |
Collapse
|
265
|
Tokutomi S, Matsuoka D, Zikihara K. Molecular structure and regulation of phototropin kinase by blue light. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2007; 1784:133-42. [PMID: 17988963 DOI: 10.1016/j.bbapap.2007.09.010] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2007] [Revised: 08/27/2007] [Accepted: 09/18/2007] [Indexed: 01/15/2023]
Abstract
Phototropin (phot) is a blue light photoreceptor in plants that mediates phototropism, chloroplast movement, stomata opening and leaf expansion. The phot molecule has two photoreceptive domains, LOV 1 and 2, in the N-terminal half and the C-terminal half forms Ser/Thr kinase. Phot acts as a blue light-regulated protein kinase. Each LOV domain binds a FMN and undergoes a unique cyclic reaction upon blue light absorption that induces conformational changes in the protein moiety and leads to regulation of the kinase activity, in which LOV2 plays a predominant role in the switching and LOV1 acts to attenuate the light sensitivity. Phot kinase is classified into the AGC kinase group since the consensus amino acid residues and the motifs are well conserved except for the lack of the hydrophobic motif and the presence of additional amino acid sequence in the activation loop. Secondary structure prediction and 3D structure simulation show a alpha/beta fold of the phot kinase similar to that of the catalytic subunit of PKA. The additional sequence forms an extra helix and loops. Docking simulation of the LOV2 domain with phot kinase provided useful information regarding the molecular mechanism underlying the photoregulation of phot kinase.
Collapse
Affiliation(s)
- Satoru Tokutomi
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka, Japan.
| | | | | |
Collapse
|
266
|
Dóczi R, Brader G, Pettkó-Szandtner A, Rajh I, Djamei A, Pitzschke A, Teige M, Hirt H. The Arabidopsis mitogen-activated protein kinase kinase MKK3 is upstream of group C mitogen-activated protein kinases and participates in pathogen signaling. THE PLANT CELL 2007; 19:3266-79. [PMID: 17933903 PMCID: PMC2174707 DOI: 10.1105/tpc.106.050039] [Citation(s) in RCA: 162] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2007] [Revised: 09/21/2007] [Accepted: 09/27/2007] [Indexed: 05/17/2023]
Abstract
Although the Arabidopsis thaliana genome contains genes encoding 20 mitogen-activated protein kinases (MAPKs) and 10 MAPK kinases (MAPKKs), most of them are still functionally uncharacterized. In this work, we analyzed the function of the group B MAPK kinase, MKK3. Transgenic ProMKK3:GUS lines showed basal expression in vascular tissues that was strongly induced by Pseudomonas syringae pv tomato strain DC3000 (Pst DC3000) infection but not by abiotic stresses. The growth of virulent Pst DC3000 was increased in mkk3 knockout plants and decreased in MKK3-overexpressing plants. Moreover, MKK3 overexpression lines showed increased expression of several PR genes. By yeast two-hybrid analysis, coimmunoprecipitation, and protein kinase assays, MKK3 was revealed to be an upstream activator of the group C MAPKs MPK1, MPK2, MPK7, and MPK14. Flagellin-derived flg22 peptide strongly activated MPK6 but resulted in poor activation of MPK7. By contrast, MPK6 and MPK7 were both activated by H(2)O(2), but only MPK7 activation was enhanced by MKK3. In agreement with the notion that MKK3 regulates the expression of PR genes, ProPR1:GUS expression was strongly enhanced by coexpression of MKK3-MPK7. Our results reveal that the MKK3 pathway plays a role in pathogen defense and further underscore the importance and complexity of MAPK signaling in plant stress responses.
Collapse
Affiliation(s)
- Róbert Dóczi
- Department of Plant Molecular Biology, Max F. Perutz Laboratories, University of Viena, A-1030 Viena, Austria
| | | | | | | | | | | | | | | |
Collapse
|
267
|
de la Fuente van Bentem S, Hirt H. Using phosphoproteomics to reveal signalling dynamics in plants. TRENDS IN PLANT SCIENCE 2007; 12:404-11. [PMID: 17765599 DOI: 10.1016/j.tplants.2007.08.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2007] [Revised: 07/02/2007] [Accepted: 08/14/2007] [Indexed: 05/17/2023]
Abstract
To ensure appropriate responses to stimuli, organisms have evolved signalling networks that rely on post-translational modifications of their components. Among these, protein phosphorylation has a prominent role and much research in plants has focused on protein kinases and phosphatases, which, respectively, catalyse phosphorylation and dephosphorylation of specific substrates. Technical limitations, however, have hampered the identification of these substrates. As reviewed here, novel mass spectrometry-based techniques have enabled the large-scale mapping of in vivo phosphorylation sites. Alternatively, methods based on peptide and protein microarrays have revealed protein kinase activities in cell extracts, in addition to kinase substrates. A combined phosphoproteomic approach of mass spectrometry and microarray technology could enhance the construction of dynamic plant signalling networks that underlie plant biology.
Collapse
Affiliation(s)
- Sergio de la Fuente van Bentem
- Department of Plant Molecular Biology, Max F. Perutz Laboratories, University of Vienna, Dr. Bohr-Gasse 9, A-1030 Vienna, Austria
| | | |
Collapse
|
268
|
Dombrecht B, Xue GP, Sprague SJ, Kirkegaard JA, Ross JJ, Reid JB, Fitt GP, Sewelam N, Schenk PM, Manners JM, Kazan K. MYC2 differentially modulates diverse jasmonate-dependent functions in Arabidopsis. THE PLANT CELL 2007; 19:2225-45. [PMID: 17616737 PMCID: PMC1955694 DOI: 10.1105/tpc.106.048017] [Citation(s) in RCA: 724] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The Arabidopsis thaliana basic helix-loop-helix Leu zipper transcription factor (TF) MYC2/JIN1 differentially regulates jasmonate (JA)-responsive pathogen defense (e.g., PDF1.2) and wound response (e.g., VSP) genes. In this study, genome-wide transcriptional profiling of wild type and mutant myc2/jin1 plants followed by functional analyses has revealed new roles for MYC2 in the modulation of diverse JA functions. We found that MYC2 negatively regulates Trp and Trp-derived secondary metabolism such as indole glucosinolate biosynthesis during JA signaling. Furthermore, MYC2 positively regulates JA-mediated resistance to insect pests, such as Helicoverpa armigera, and tolerance to oxidative stress, possibly via enhanced ascorbate redox cycling and flavonoid biosynthesis. Analyses of MYC2 cis binding elements and expression of MYC2-regulated genes in T-DNA insertion lines of a subset of MYC2-regulated TFs suggested that MYC2 might modulate JA responses via differential regulation of an intermediate spectrum of TFs with activating or repressing roles in JA signaling. MYC2 also negatively regulates its own expression, and this may be one of the mechanisms used in fine-tuning JA signaling. Overall, these results provide new insights into the function of MYC2 and the transcriptional coordination of the JA signaling pathway.
Collapse
Affiliation(s)
- Bruno Dombrecht
- Commonwealth Scientific and Industrial Research Organization Plant Industry, Queensland Bioscience Precinct, St. Lucia, Queensland, 4067, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
269
|
Schweighofer A, Kazanaviciute V, Scheikl E, Teige M, Doczi R, Hirt H, Schwanninger M, Kant M, Schuurink R, Mauch F, Buchala A, Cardinale F, Meskiene I. The PP2C-type phosphatase AP2C1, which negatively regulates MPK4 and MPK6, modulates innate immunity, jasmonic acid, and ethylene levels in Arabidopsis. THE PLANT CELL 2007; 19:2213-24. [PMID: 17630279 PMCID: PMC1955703 DOI: 10.1105/tpc.106.049585] [Citation(s) in RCA: 235] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Wound signaling pathways in plants are mediated by mitogen-activated protein kinases (MAPKs) and stress hormones, such as ethylene and jasmonates. In Arabidopsis thaliana, the transmission of wound signals by MAPKs has been the subject of detailed investigations; however, the involvement of specific phosphatases in wound signaling is not known. Here, we show that AP2C1, an Arabidopsis Ser/Thr phosphatase of type 2C, is a novel stress signal regulator that inactivates the stress-responsive MAPKs MPK4 and MPK6. Mutant ap2c1 plants produce significantly higher amounts of jasmonate upon wounding and are more resistant to phytophagous mites (Tetranychus urticae). Plants with increased AP2C1 levels display lower wound activation of MAPKs, reduced ethylene production, and compromised innate immunity against the necrotrophic pathogen Botrytis cinerea. Our results demonstrate a key role for the AP2C1 phosphatase in regulating stress hormone levels, defense responses, and MAPK activities in Arabidopsis and provide evidence that the activity of AP2C1 might control the plant's response to B. cinerea.
Collapse
Affiliation(s)
- Alois Schweighofer
- Max F. Perutz Laboratories of the University of Viena, 1030 Viena, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|