251
|
Exogenous S1P Exposure Potentiates Ischemic Stroke Damage That Is Reduced Possibly by Inhibiting S1P Receptor Signaling. Mediators Inflamm 2015; 2015:492659. [PMID: 26576074 PMCID: PMC4630407 DOI: 10.1155/2015/492659] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 09/18/2015] [Accepted: 09/28/2015] [Indexed: 01/31/2023] Open
Abstract
Initial and recurrent stroke produces central nervous system (CNS) damage, involving neuroinflammation. Receptor-mediated S1P signaling can influence neuroinflammation and has been implicated in cerebral ischemia through effects on the immune system. However, S1P-mediated events also occur within the brain itself where its roles during stroke have been less well studied. Here we investigated the involvement of S1P signaling in initial and recurrent stroke by using a transient middle cerebral artery occlusion/reperfusion (M/R) model combined with analyses of S1P signaling. Gene expression for S1P receptors and involved enzymes was altered during M/R, supporting changes in S1P signaling. Direct S1P microinjection into the normal CNS induced neuroglial activation, implicating S1P-initiated neuroinflammatory responses that resembled CNS changes seen during initial M/R challenge. Moreover, S1P microinjection combined with M/R potentiated brain damage, approximating a model for recurrent stroke dependent on S1P and suggesting that reduction in S1P signaling could ameliorate stroke damage. Delivery of FTY720 that removes S1P signaling with chronic exposure reduced damage in both initial and S1P-potentiated M/R-challenged brain, while reducing stroke markers like TNF-α. These results implicate direct S1P CNS signaling in the etiology of initial and recurrent stroke that can be therapeutically accessed by S1P modulators acting within the brain.
Collapse
|
252
|
Phosphorylation and Internalization of Lysophosphatidic Acid Receptors LPA1, LPA2, and LPA3. PLoS One 2015; 10:e0140583. [PMID: 26473723 PMCID: PMC4608732 DOI: 10.1371/journal.pone.0140583] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 09/27/2015] [Indexed: 12/31/2022] Open
Abstract
Results The lysophosphatidic acid receptors LPA1, LPA2, and LPA3 were individually expressed in C9 cells and their signaling and regulation were studied. Agonist-activation increases intracellular calcium concentration in a concentration-dependent fashion. Phorbol myristate acetate markedly inhibited LPA1- and LPA3-mediated effect, whereas that mediated by LPA2 was only partially diminished; the actions of the phorbol ester were inhibited by bisindolylmaleimide I and by overnight incubation with the protein kinase C activator, which leads to down regulation of this protein kinase. Homologous desensitization was also observed for the three LPA receptors studied, with that of LPA2 receptors being consistently of lesser magnitude; neither inhibition nor down-regulation of protein kinase C exerted any effect on homologous desensitization. Activation of LPA1–3 receptors induced ERK 1/2 phosphorylation; this effect was markedly attenuated by inhibition of epidermal growth factor receptor tyrosine kinase activity, suggesting growth factor receptor transactivation in this effect. Lysophosphatidic acid and phorbol myristate acetate were able to induce LPA1–3 phosphorylation, in time- and concentration-dependent fashions. It was also clearly observed that agonists and protein kinase C activation induced internalization of these receptors. Phosphorylation of the LPA2 subtype required larger concentrations of these agents and its internalization was less intense than that of the other subtypes. Conclusion Our data show that these three LPA receptors are phosphoproteins whose phosphorylation state is modulated by agonist-stimulation and protein kinase C-activation and that differences in regulation and cellular localization exist, among the subtypes.
Collapse
|
253
|
Activation of Lysophosphatidic Acid Receptor Type 1 Contributes to Pathophysiology of Spinal Cord Injury. J Neurosci 2015; 35:10224-35. [PMID: 26180199 DOI: 10.1523/jneurosci.4703-14.2015] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
UNLABELLED Lysophosphatidic acid (LPA) is an extracellular lipid mediator involved in many physiological functions that signals through six known G-protein-coupled receptors (LPA1-LPA6). A wide range of LPA effects have been identified in the CNS, including neural progenitor cell physiology, astrocyte and microglia activation, neuronal cell death, axonal retraction, and development of neuropathic pain. However, little is known about the involvement of LPA in CNS pathologies. Herein, we demonstrate for the first time that LPA signaling via LPA1 contributes to secondary damage after spinal cord injury. LPA levels increase in the contused spinal cord parenchyma during the first 14 d. To model this potential contribution of LPA in the spinal cord, we injected LPA into the normal spinal cord, revealing that LPA induces microglia/macrophage activation and demyelination. Use of a selective LPA1 antagonist or mice lacking LPA1 linked receptor-mediated signaling to demyelination, which was in part mediated by microglia. Finally, we demonstrate that selective blockade of LPA1 after spinal cord injury results in reduced demyelination and improvement in locomotor recovery. Overall, these results support LPA-LPA1 signaling as a novel pathway that contributes to secondary damage after spinal cord contusion in mice and suggest that LPA1 antagonism might be useful for the treatment of acute spinal cord injury. SIGNIFICANCE STATEMENT This study reveals that LPA signaling via LPA receptor type 1 activation causes demyelination and functional deficits after spinal cord injury.
Collapse
|
254
|
Abstract
Lysophosphatidic acid (LPA) is a bioactive phospholipid that is present in all tissues examined to date. LPA signals extracellularly via cognate G protein-coupled receptors to mediate cellular processes such as survival, proliferation, differentiation, migration, adhesion and morphology. These LPA-influenced processes impact many aspects of organismal development. In particular, LPA signalling has been shown to affect fertility and reproduction, formation of the nervous system, and development of the vasculature. Here and in the accompanying poster, we review the developmentally related features of LPA signalling.
Collapse
Affiliation(s)
- Xiaoyan Sheng
- Molecular and Cellular Neuroscience Department, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Yun C Yung
- Molecular and Cellular Neuroscience Department, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Allison Chen
- Molecular and Cellular Neuroscience Department, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jerold Chun
- Molecular and Cellular Neuroscience Department, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
255
|
Xu K, Ma L, Li Y, Wang F, Zheng GY, Sun Z, Jiang F, Chen Y, Liu H, Dang A, Chen X, Chun J, Tian XL. Genetic and Functional Evidence Supports LPAR1 as a Susceptibility Gene for Hypertension. Hypertension 2015; 66:641-6. [PMID: 26123684 DOI: 10.1161/hypertensionaha.115.05515] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 06/08/2015] [Indexed: 01/11/2023]
Abstract
Essential hypertension is a complex disease affected by genetic and environmental factors and serves as a major risk factor for cardiovascular diseases. Serum lysophosphatidic acid correlates with an elevated blood pressure in rats, and lysophosphatidic acid interacts with 6 subtypes of receptors. In this study, we assessed the genetic association of lysophosphatidic acid receptors with essential hypertension by genotyping 28 single-nucleotide polymorphisms from genes encoding for lysophosphatidic acid receptors, LPAR1, LPAR2, LPAR3, LPAR4, LPAR5, and LPAR6 and their flanking sequences, in 3 Han Chinese cohorts consisting of 2630 patients and 3171 controls in total. We identified a single-nucleotide polymorphism, rs531003 in the 3'-flanking genomic region of LPAR1, associated with hypertension (the Bonferroni corrected P=1.09×10(-5), odds ratio [95% confidence interval]=1.23 [1.13-1.33]). The risk allele C of rs531003 is associated with the increased expression of LPAR1 and the susceptibility of hypertension, particularly in those with a shortage of sleep (P=4.73×10(-5), odds ratio [95% confidence interval]=1.75 [1.34-2.28]). We further demonstrated that blood pressure elevation caused by sleep deprivation and phenylephrine-induced vasoconstriction was both diminished in LPAR1-deficient mice. Together, we show that LPAR1 is a novel susceptibility gene for human essential hypertension and that stress, such as shortage of sleep, increases the susceptibility of patients with risk allele to essential hypertension.
Collapse
Affiliation(s)
- Ke Xu
- From the Department of Human Population Genetics, Institute of Molecular Medicine, Peking University, Beijing, PR China (K.X., Y.L., G.Y.Z., X.L.T.); Department of Physiology and Pathophysiology, School of Basic Medical Sciences (L.M., H.L.) and Department of Cardiology, Beijing Chaoyang Hospital (F.J.), Capital Medical University, Beijing, PR China; State Key Laboratory of Cardiovascular Diseases (F.W., X.C.) and Department of Cardiology (A.D.), Fuwai Hospital and Cardiovascular Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, National Center for Cardiovascular Diseases, Beijing, PR China; Cardiovascular Department, PLA General Hospital, Beijing, PR China (Z.S., Y.C.); and Molecular and Cellular Neuroscience Department, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA (J.C.)
| | - Lu Ma
- From the Department of Human Population Genetics, Institute of Molecular Medicine, Peking University, Beijing, PR China (K.X., Y.L., G.Y.Z., X.L.T.); Department of Physiology and Pathophysiology, School of Basic Medical Sciences (L.M., H.L.) and Department of Cardiology, Beijing Chaoyang Hospital (F.J.), Capital Medical University, Beijing, PR China; State Key Laboratory of Cardiovascular Diseases (F.W., X.C.) and Department of Cardiology (A.D.), Fuwai Hospital and Cardiovascular Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, National Center for Cardiovascular Diseases, Beijing, PR China; Cardiovascular Department, PLA General Hospital, Beijing, PR China (Z.S., Y.C.); and Molecular and Cellular Neuroscience Department, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA (J.C.)
| | - Yang Li
- From the Department of Human Population Genetics, Institute of Molecular Medicine, Peking University, Beijing, PR China (K.X., Y.L., G.Y.Z., X.L.T.); Department of Physiology and Pathophysiology, School of Basic Medical Sciences (L.M., H.L.) and Department of Cardiology, Beijing Chaoyang Hospital (F.J.), Capital Medical University, Beijing, PR China; State Key Laboratory of Cardiovascular Diseases (F.W., X.C.) and Department of Cardiology (A.D.), Fuwai Hospital and Cardiovascular Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, National Center for Cardiovascular Diseases, Beijing, PR China; Cardiovascular Department, PLA General Hospital, Beijing, PR China (Z.S., Y.C.); and Molecular and Cellular Neuroscience Department, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA (J.C.)
| | - Fang Wang
- From the Department of Human Population Genetics, Institute of Molecular Medicine, Peking University, Beijing, PR China (K.X., Y.L., G.Y.Z., X.L.T.); Department of Physiology and Pathophysiology, School of Basic Medical Sciences (L.M., H.L.) and Department of Cardiology, Beijing Chaoyang Hospital (F.J.), Capital Medical University, Beijing, PR China; State Key Laboratory of Cardiovascular Diseases (F.W., X.C.) and Department of Cardiology (A.D.), Fuwai Hospital and Cardiovascular Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, National Center for Cardiovascular Diseases, Beijing, PR China; Cardiovascular Department, PLA General Hospital, Beijing, PR China (Z.S., Y.C.); and Molecular and Cellular Neuroscience Department, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA (J.C.)
| | - Gu-Yan Zheng
- From the Department of Human Population Genetics, Institute of Molecular Medicine, Peking University, Beijing, PR China (K.X., Y.L., G.Y.Z., X.L.T.); Department of Physiology and Pathophysiology, School of Basic Medical Sciences (L.M., H.L.) and Department of Cardiology, Beijing Chaoyang Hospital (F.J.), Capital Medical University, Beijing, PR China; State Key Laboratory of Cardiovascular Diseases (F.W., X.C.) and Department of Cardiology (A.D.), Fuwai Hospital and Cardiovascular Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, National Center for Cardiovascular Diseases, Beijing, PR China; Cardiovascular Department, PLA General Hospital, Beijing, PR China (Z.S., Y.C.); and Molecular and Cellular Neuroscience Department, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA (J.C.)
| | - Zhijun Sun
- From the Department of Human Population Genetics, Institute of Molecular Medicine, Peking University, Beijing, PR China (K.X., Y.L., G.Y.Z., X.L.T.); Department of Physiology and Pathophysiology, School of Basic Medical Sciences (L.M., H.L.) and Department of Cardiology, Beijing Chaoyang Hospital (F.J.), Capital Medical University, Beijing, PR China; State Key Laboratory of Cardiovascular Diseases (F.W., X.C.) and Department of Cardiology (A.D.), Fuwai Hospital and Cardiovascular Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, National Center for Cardiovascular Diseases, Beijing, PR China; Cardiovascular Department, PLA General Hospital, Beijing, PR China (Z.S., Y.C.); and Molecular and Cellular Neuroscience Department, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA (J.C.)
| | - Feng Jiang
- From the Department of Human Population Genetics, Institute of Molecular Medicine, Peking University, Beijing, PR China (K.X., Y.L., G.Y.Z., X.L.T.); Department of Physiology and Pathophysiology, School of Basic Medical Sciences (L.M., H.L.) and Department of Cardiology, Beijing Chaoyang Hospital (F.J.), Capital Medical University, Beijing, PR China; State Key Laboratory of Cardiovascular Diseases (F.W., X.C.) and Department of Cardiology (A.D.), Fuwai Hospital and Cardiovascular Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, National Center for Cardiovascular Diseases, Beijing, PR China; Cardiovascular Department, PLA General Hospital, Beijing, PR China (Z.S., Y.C.); and Molecular and Cellular Neuroscience Department, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA (J.C.)
| | - Yundai Chen
- From the Department of Human Population Genetics, Institute of Molecular Medicine, Peking University, Beijing, PR China (K.X., Y.L., G.Y.Z., X.L.T.); Department of Physiology and Pathophysiology, School of Basic Medical Sciences (L.M., H.L.) and Department of Cardiology, Beijing Chaoyang Hospital (F.J.), Capital Medical University, Beijing, PR China; State Key Laboratory of Cardiovascular Diseases (F.W., X.C.) and Department of Cardiology (A.D.), Fuwai Hospital and Cardiovascular Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, National Center for Cardiovascular Diseases, Beijing, PR China; Cardiovascular Department, PLA General Hospital, Beijing, PR China (Z.S., Y.C.); and Molecular and Cellular Neuroscience Department, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA (J.C.)
| | - Huirong Liu
- From the Department of Human Population Genetics, Institute of Molecular Medicine, Peking University, Beijing, PR China (K.X., Y.L., G.Y.Z., X.L.T.); Department of Physiology and Pathophysiology, School of Basic Medical Sciences (L.M., H.L.) and Department of Cardiology, Beijing Chaoyang Hospital (F.J.), Capital Medical University, Beijing, PR China; State Key Laboratory of Cardiovascular Diseases (F.W., X.C.) and Department of Cardiology (A.D.), Fuwai Hospital and Cardiovascular Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, National Center for Cardiovascular Diseases, Beijing, PR China; Cardiovascular Department, PLA General Hospital, Beijing, PR China (Z.S., Y.C.); and Molecular and Cellular Neuroscience Department, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA (J.C.)
| | - Aimin Dang
- From the Department of Human Population Genetics, Institute of Molecular Medicine, Peking University, Beijing, PR China (K.X., Y.L., G.Y.Z., X.L.T.); Department of Physiology and Pathophysiology, School of Basic Medical Sciences (L.M., H.L.) and Department of Cardiology, Beijing Chaoyang Hospital (F.J.), Capital Medical University, Beijing, PR China; State Key Laboratory of Cardiovascular Diseases (F.W., X.C.) and Department of Cardiology (A.D.), Fuwai Hospital and Cardiovascular Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, National Center for Cardiovascular Diseases, Beijing, PR China; Cardiovascular Department, PLA General Hospital, Beijing, PR China (Z.S., Y.C.); and Molecular and Cellular Neuroscience Department, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA (J.C.)
| | - Xi Chen
- From the Department of Human Population Genetics, Institute of Molecular Medicine, Peking University, Beijing, PR China (K.X., Y.L., G.Y.Z., X.L.T.); Department of Physiology and Pathophysiology, School of Basic Medical Sciences (L.M., H.L.) and Department of Cardiology, Beijing Chaoyang Hospital (F.J.), Capital Medical University, Beijing, PR China; State Key Laboratory of Cardiovascular Diseases (F.W., X.C.) and Department of Cardiology (A.D.), Fuwai Hospital and Cardiovascular Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, National Center for Cardiovascular Diseases, Beijing, PR China; Cardiovascular Department, PLA General Hospital, Beijing, PR China (Z.S., Y.C.); and Molecular and Cellular Neuroscience Department, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA (J.C.)
| | - Jerold Chun
- From the Department of Human Population Genetics, Institute of Molecular Medicine, Peking University, Beijing, PR China (K.X., Y.L., G.Y.Z., X.L.T.); Department of Physiology and Pathophysiology, School of Basic Medical Sciences (L.M., H.L.) and Department of Cardiology, Beijing Chaoyang Hospital (F.J.), Capital Medical University, Beijing, PR China; State Key Laboratory of Cardiovascular Diseases (F.W., X.C.) and Department of Cardiology (A.D.), Fuwai Hospital and Cardiovascular Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, National Center for Cardiovascular Diseases, Beijing, PR China; Cardiovascular Department, PLA General Hospital, Beijing, PR China (Z.S., Y.C.); and Molecular and Cellular Neuroscience Department, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA (J.C.)
| | - Xiao-Li Tian
- From the Department of Human Population Genetics, Institute of Molecular Medicine, Peking University, Beijing, PR China (K.X., Y.L., G.Y.Z., X.L.T.); Department of Physiology and Pathophysiology, School of Basic Medical Sciences (L.M., H.L.) and Department of Cardiology, Beijing Chaoyang Hospital (F.J.), Capital Medical University, Beijing, PR China; State Key Laboratory of Cardiovascular Diseases (F.W., X.C.) and Department of Cardiology (A.D.), Fuwai Hospital and Cardiovascular Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, National Center for Cardiovascular Diseases, Beijing, PR China; Cardiovascular Department, PLA General Hospital, Beijing, PR China (Z.S., Y.C.); and Molecular and Cellular Neuroscience Department, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA (J.C.).
| |
Collapse
|
256
|
Chrencik JE, Roth CB, Terakado M, Kurata H, Omi R, Kihara Y, Warshaviak D, Nakade S, Asmar-Rovira G, Mileni M, Mizuno H, Griffith MT, Rodgers C, Han GW, Velasquez J, Chun J, Stevens RC, Hanson MA. Crystal Structure of Antagonist Bound Human Lysophosphatidic Acid Receptor 1. Cell 2015; 161:1633-43. [PMID: 26091040 PMCID: PMC4476059 DOI: 10.1016/j.cell.2015.06.002] [Citation(s) in RCA: 159] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 02/17/2015] [Accepted: 05/27/2015] [Indexed: 12/23/2022]
Abstract
Lipid biology continues to emerge as an area of significant therapeutic interest, particularly as the result of an enhanced understanding of the wealth of signaling molecules with diverse physiological properties. This growth in knowledge is epitomized by lysophosphatidic acid (LPA), which functions through interactions with at least six cognate G protein-coupled receptors. Herein, we present three crystal structures of LPA1 in complex with antagonist tool compounds selected and designed through structural and stability analyses. Structural analysis combined with molecular dynamics identified a basis for ligand access to the LPA1 binding pocket from the extracellular space contrasting with the proposed access for the sphingosine 1-phosphate receptor. Characteristics of the LPA1 binding pocket raise the possibility of promiscuous ligand recognition of phosphorylated endocannabinoids. Cell-based assays confirmed this hypothesis, linking the distinct receptor systems through metabolically related ligands with potential functional and therapeutic implications for treatment of disease.
Collapse
Affiliation(s)
- Jill E Chrencik
- Department of Structural Discovery, Receptos, San Diego, CA 92121, USA
| | | | - Masahiko Terakado
- Medicinal Chemistry Research Laboratories, Ono Pharmaceutical Co., Ltd., Osaka 618-8585, Japan
| | - Haruto Kurata
- Medicinal Chemistry Research Laboratories, Ono Pharmaceutical Co., Ltd., Osaka 618-8585, Japan
| | - Rie Omi
- Medicinal Chemistry Research Laboratories, Ono Pharmaceutical Co., Ltd., Osaka 618-8585, Japan
| | - Yasuyuki Kihara
- Department of Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Dora Warshaviak
- Schrödinger Inc., 120 West 45th Street, New York, NY 10036, USA
| | - Shinji Nakade
- Exploratory Research Laboratories, Ono Pharmaceutical Co., Ltd., Ibaraki 300-4247, Japan
| | | | - Mauro Mileni
- Department of Structural Discovery, Receptos, San Diego, CA 92121, USA
| | - Hirotaka Mizuno
- Department of Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Exploratory Research Laboratories, Ono Pharmaceutical Co., Ltd., Ibaraki 300-4247, Japan
| | - Mark T Griffith
- Department of Structural Discovery, Receptos, San Diego, CA 92121, USA
| | - Caroline Rodgers
- Department of Structural Discovery, Receptos, San Diego, CA 92121, USA
| | - Gye Won Han
- Departments of Biological Sciences and Chemistry, Bridge Institute, University of Southern California, Los Angeles, Los Angeles, CA 90089, USA
| | - Jeffrey Velasquez
- Departments of Biological Sciences and Chemistry, Bridge Institute, University of Southern California, Los Angeles, Los Angeles, CA 90089, USA
| | - Jerold Chun
- Department of Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Raymond C Stevens
- Departments of Biological Sciences and Chemistry, Bridge Institute, University of Southern California, Los Angeles, Los Angeles, CA 90089, USA; iHuman Institute, ShanghaiTech University, 2F Building 6, 99 Haike Road, Pudong New District, Shanghai, 201210, China
| | - Michael A Hanson
- Department of Structural Discovery, Receptos, San Diego, CA 92121, USA.
| |
Collapse
|
257
|
Abstract
Sphingolipids are a diverse class of signaling molecules implicated in many important aspects of cellular biology, including growth, differentiation, apoptosis, and autophagy. Autophagy and apoptosis are fundamental physiological processes essential for the maintenance of cellular and tissue homeostasis. There is great interest into the investigation of sphingolipids and their roles in regulating these key physiological processes as well as the manifestation of several disease states. With what is known to date, the entire scope of sphingolipid signaling is too broad, and a single review would hardly scratch the surface. Therefore, this review attempts to highlight the significance of sphingolipids in determining cell fate (e.g. apoptosis, autophagy, cell survival) in the context of the healthy lung, as well as various respiratory diseases including acute lung injury, acute respiratory distress syndrome, bronchopulmonary dysplasia, asthma, chronic obstructive pulmonary disease, emphysema, and cystic fibrosis. We present an overview of the latest findings related to sphingolipids and their metabolites, provide a short introduction to autophagy and apoptosis, and then briefly highlight the regulatory roles of sphingolipid metabolites in switching between cell survival and cell death. Finally, we describe functions of sphingolipids in autophagy and apoptosis in lung homeostasis, especially in the context of the aforementioned diseases.
Collapse
Affiliation(s)
- Joyce Lee
- Program in Physiology and Experimental Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4 Canada
- Institute of Medical Science, University of Toronto, Toronto, ON Canada
| | - Behzad Yeganeh
- Program in Physiology and Experimental Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4 Canada
| | - Leonardo Ermini
- Program in Physiology and Experimental Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4 Canada
| | - Martin Post
- Program in Physiology and Experimental Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4 Canada
- Institute of Medical Science, University of Toronto, Toronto, ON Canada
| |
Collapse
|
258
|
González de San Román E, Manuel I, Giralt MT, Chun J, Estivill-Torrús G, Rodríguez de Fonseca F, Santín LJ, Ferrer I, Rodríguez-Puertas R. Anatomical location of LPA1 activation and LPA phospholipid precursors in rodent and human brain. J Neurochem 2015; 134:471-85. [PMID: 25857358 DOI: 10.1111/jnc.13112] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 03/02/2015] [Accepted: 03/31/2015] [Indexed: 12/29/2022]
Abstract
Lysophosphatidic acid (LPA) is a signaling molecule that binds to six known G protein-coupled receptors: LPA1 -LPA6 . LPA evokes several responses in the CNS, including cortical development and folding, growth of the axonal cone and its retraction process. Those cell processes involve survival, migration, adhesion proliferation, differentiation, and myelination. The anatomical localization of LPA1 is incompletely understood, particularly with regard to LPA binding. Therefore, we have used functional [(35) S]GTPγS autoradiography to verify the anatomical distribution of LPA1 binding sites in adult rodent and human brain. The greatest activity was observed in myelinated areas of the white matter such as corpus callosum, internal capsule and cerebellum. MaLPA1 -null mice (a variant of LPA1 -null) lack [(35) S]GTPγS basal binding in white matter areas, where the LPA1 receptor is expressed at high levels, suggesting a relevant role of the activity of this receptor in the most myelinated brain areas. In addition, phospholipid precursors of LPA were localized by MALDI-IMS in both rodent and human brain slices identifying numerous species of phosphatides and phosphatidylcholines. Both phosphatides and phosphatidylcholines species represent potential LPA precursors. The anatomical distribution of these precursors in rodent and human brain may indicate a metabolic relationship between LPA and LPA1 receptors. Lysophosphatidic acid (LPA) is a signaling molecule that binds to six known G protein-coupled receptors (GPCR), LPA1 to LPA6 . LPA evokes several responses in the central nervous system (CNS), including cortical development and folding, growth of the axonal cone and its retraction process. We used functional [(35) S]GTPγS autoradiography to verify the anatomical distribution of LPA1 -binding sites in adult rodent and human brain. The distribution of LPA1 receptors in rat, mouse and human brains show the highest activity in white matter myelinated areas. The basal and LPA-evoked activities are abolished in MaLPA1 -null mice. The phospholipid precursors of LPA are localized by MALDI-IMS. The anatomical distribution of LPA precursors in rodent and human brain suggests a relationship with functional LPA1 receptors.
Collapse
Affiliation(s)
| | - Iván Manuel
- Department of Pharmacology, Faculty of Medicine and Odontology, University of the Basque Country, UPV/EHU, Leioa, Spain
| | - María Teresa Giralt
- Department of Pharmacology, Faculty of Medicine and Odontology, University of the Basque Country, UPV/EHU, Leioa, Spain
| | - Jerold Chun
- Molecular and Cellular Neuroscience Department, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, California, USA
| | - Guillermo Estivill-Torrús
- UGC Intercentros de Neurociencias y UGC de Salud Mental, Instituto de Investigación Biomédica de Malaga (IBIMA), Hospitales Universitarios Regional de Málaga y Virgen de la Victoria, Universidad de Málaga, Spain
| | - Fernando Rodríguez de Fonseca
- UGC Intercentros de Neurociencias y UGC de Salud Mental, Instituto de Investigación Biomédica de Malaga (IBIMA), Hospitales Universitarios Regional de Málaga y Virgen de la Victoria, Universidad de Málaga, Spain
| | - Luis Javier Santín
- Departmento de Psicobiología y Metodología de las Ciencias del Comportamiento. Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad of Málaga, Málaga, Spain
| | - Isidro Ferrer
- Institute of Neuropathology, University Hospital Bellvitge, University of Barcelona, Ciberned, Spain
| | - Rafael Rodríguez-Puertas
- Department of Pharmacology, Faculty of Medicine and Odontology, University of the Basque Country, UPV/EHU, Leioa, Spain
| |
Collapse
|
259
|
Japtok L, Schmitz EI, Fayyaz S, Krämer S, Hsu LJ, Kleuser B. Sphingosine 1-phosphate counteracts insulin signaling in pancreatic β-cells via the sphingosine 1-phosphate receptor subtype 2. FASEB J 2015; 29:3357-69. [PMID: 25911610 DOI: 10.1096/fj.14-263194] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 04/16/2015] [Indexed: 01/04/2023]
Abstract
Glucolipotoxic stress has been identified as a key player in the progression of pancreatic β-cell dysfunction contributing to insulin resistance and the development of type 2 diabetes mellitus (T2D). It has been suggested that bioactive lipid intermediates, formed under lipotoxic conditions, are involved in these processes. Here, we show that sphingosine 1-phosphate (S1P) levels are not only increased in palmitate-stimulated pancreatic β-cells but also regulate β-cell homeostasis in a divergent manner. Although S1P possesses a prosurvival effect in β-cells, an enhanced level of the sphingolipid antagonizes insulin-mediated cell growth and survival via the sphingosine 1-phosphate receptor subtype 2 (S1P2) followed by an inhibition of Akt-signaling. In an attempt to investigate the role of the S1P/S1P2 axis in vivo, the New Zealand obese (NZO) diabetic mouse model, characterized by β-cell loss under high-fat diet (HFD) conditions, was used. The occurrence of T2D was accompanied by an increase of plasma S1P levels. To examine whether S1P contributes to the morphologic changes of islets via S1P2, the receptor antagonist JTE-013 was administered. Most interestingly, JTE-013 rescued β-cell damage clearly indicating an important role of the S1P2 in β-cell homeostasis. Therefore, the present study provides a new therapeutic strategy to diminish β-cell dysfunction and the development of T2D.
Collapse
Affiliation(s)
- Lukasz Japtok
- *Faculty of Mathematics and Natural Science, Institute of Nutritional Science, Department of Toxicology, University of Potsdam, Potsdam, Germany; German Institute of Human Nutrition, Max Rubner Laboratory, Nuthetal, Germany; and Lpath Incorporated, San Diego, California, USA
| | - Elisabeth I Schmitz
- *Faculty of Mathematics and Natural Science, Institute of Nutritional Science, Department of Toxicology, University of Potsdam, Potsdam, Germany; German Institute of Human Nutrition, Max Rubner Laboratory, Nuthetal, Germany; and Lpath Incorporated, San Diego, California, USA
| | - Susann Fayyaz
- *Faculty of Mathematics and Natural Science, Institute of Nutritional Science, Department of Toxicology, University of Potsdam, Potsdam, Germany; German Institute of Human Nutrition, Max Rubner Laboratory, Nuthetal, Germany; and Lpath Incorporated, San Diego, California, USA
| | - Stephanie Krämer
- *Faculty of Mathematics and Natural Science, Institute of Nutritional Science, Department of Toxicology, University of Potsdam, Potsdam, Germany; German Institute of Human Nutrition, Max Rubner Laboratory, Nuthetal, Germany; and Lpath Incorporated, San Diego, California, USA
| | - Leigh J Hsu
- *Faculty of Mathematics and Natural Science, Institute of Nutritional Science, Department of Toxicology, University of Potsdam, Potsdam, Germany; German Institute of Human Nutrition, Max Rubner Laboratory, Nuthetal, Germany; and Lpath Incorporated, San Diego, California, USA
| | - Burkhard Kleuser
- *Faculty of Mathematics and Natural Science, Institute of Nutritional Science, Department of Toxicology, University of Potsdam, Potsdam, Germany; German Institute of Human Nutrition, Max Rubner Laboratory, Nuthetal, Germany; and Lpath Incorporated, San Diego, California, USA
| |
Collapse
|
260
|
Olianas MC, Dedoni S, Onali P. Antidepressants activate the lysophosphatidic acid receptor LPA(1) to induce insulin-like growth factor-I receptor transactivation, stimulation of ERK1/2 signaling and cell proliferation in CHO-K1 fibroblasts. Biochem Pharmacol 2015; 95:311-23. [PMID: 25888927 DOI: 10.1016/j.bcp.2015.04.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Accepted: 04/02/2015] [Indexed: 12/20/2022]
Abstract
Different lines of evidence indicate that the lysophosphatidic acid (LPA) receptor LPA1 is involved in neurogenesis, synaptic plasticity and anxiety-related behavior, but little is known on whether this receptor can be targeted by neuropsychopharmacological agents. The present study investigated the effects of different antidepressants on LPA1 signaling. We found that in Chinese hamster ovary (CHO)-K1 fibroblasts expressing endogenous LPA1 tricyclic and tetracyclic antidepressants and fluoxetine induced the phosphorylation of extracellular signal-regulated kinase1/2 (ERK1/2) and CREB. This response was antagonized by either LPA1 blockade with Ki16425 and AM966 or knocking down LPA1 with siRNA. Antidepressants induced ERK1/2 phosphorylation in human embryonic kidney (HEK)-293 cells overexpressing LPA1, but not in wild-type cells. In PathHunter™ assay measuring receptor-β-arrestin interaction, amitriptyline, mianserin and fluoxetine failed to induce activation of LPA2 and LPA3 stably expressed in CHO-K1 cells. ERK1/2 stimulation by antidepressants and LPA was suppressed by pertussis toxin and inhibition of Src, phosphatidylinositol-3 kinase and insulin-like growth factor-I receptor (IGF-IR) activities. Antidepressants and LPA induced tyrosine phosphorylation of IGF-IR and insulin receptor-substrate-1 through LPA1 and Src. Prolonged exposure of CHO-K1 fibroblasts to either mianserin, mirtazapine or LPA enhanced cell proliferation as indicated by increased [(3)H]-thymidine incorporation and Ki-67 immunofluorescence. This effect was inhibited by blockade of LPA1- and ERK1/2 activity. These data provide evidence that different antidepressants induce LPA1 activation, leading to receptor tyrosine kinase transactivation, stimulation of ERK1/2 signaling and enhanced cell proliferation.
Collapse
Affiliation(s)
- Maria C Olianas
- Laboratory of Cellular and Molecular Pharmacology, Section of Neurosciences and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato Cagliari, Italy
| | - Simona Dedoni
- Laboratory of Cellular and Molecular Pharmacology, Section of Neurosciences and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato Cagliari, Italy
| | - Pierluigi Onali
- Laboratory of Cellular and Molecular Pharmacology, Section of Neurosciences and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato Cagliari, Italy.
| |
Collapse
|
261
|
Abstract
The brain is composed of many lipids with varied forms that serve not only as structural components but also as essential signaling molecules. Lysophosphatidic acid (LPA) is an important bioactive lipid species that is part of the lysophospholipid (LP) family. LPA is primarily derived from membrane phospholipids and signals through six cognate G protein-coupled receptors (GPCRs), LPA1-6. These receptors are expressed on most cell types within central and peripheral nervous tissues and have been functionally linked to many neural processes and pathways. This Review covers a current understanding of LPA signaling in the nervous system, with particular focus on the relevance of LPA to both physiological and diseased states.
Collapse
Affiliation(s)
- Yun C Yung
- Molecular and Cellular Neuroscience Department, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Nicole C Stoddard
- Molecular and Cellular Neuroscience Department, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Biomedical Sciences Graduate Program, University of California, San Diego School of Medicine, La Jolla, CA 92037, USA
| | - Hope Mirendil
- Molecular and Cellular Neuroscience Department, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jerold Chun
- Molecular and Cellular Neuroscience Department, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
262
|
Mirendil H, Thomas EA, De Loera C, Okada K, Inomata Y, Chun J. LPA signaling initiates schizophrenia-like brain and behavioral changes in a mouse model of prenatal brain hemorrhage. Transl Psychiatry 2015; 5:e541. [PMID: 25849980 PMCID: PMC4462599 DOI: 10.1038/tp.2015.33] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 01/15/2015] [Accepted: 02/09/2015] [Indexed: 12/13/2022] Open
Abstract
Genetic, environmental and neurodevelopmental factors are thought to underlie the onset of neuropsychiatric disorders such as schizophrenia. How these risk factors collectively contribute to pathology is unclear. Here, we present a mouse model of prenatal intracerebral hemorrhage--an identified risk factor for schizophrenia--using a serum-exposure paradigm. This model exhibits behavioral, neurochemical and schizophrenia-related gene expression alterations in adult females. Behavioral alterations in amphetamine-induced locomotion, prepulse inhibition, thigmotaxis and social interaction--in addition to increases in tyrosine hydroxylase-positive dopaminergic cells in the substantia nigra and ventral tegmental area and decreases in parvalbumin-positive cells in the prefrontal cortex--were induced upon prenatal serum exposure. Lysophosphatidic acid (LPA), a lipid component of serum, was identified as a key molecular initiator of schizophrenia-like sequelae induced by serum. Prenatal exposure to LPA alone phenocopied many of the schizophrenia-like alterations seen in the serum model, whereas pretreatment with an antagonist against the LPA receptor subtype LPA1 prevented many of the behavioral and neurochemical alterations. In addition, both prenatal serum and LPA exposure altered the expression of many genes and pathways related to schizophrenia, including the expression of Grin2b, Slc17a7 and Grid1. These findings demonstrate that aberrant LPA receptor signaling associated with fetal brain hemorrhage may contribute to the development of some neuropsychiatric disorders.
Collapse
Affiliation(s)
- H Mirendil
- Department of Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, USA
| | - E A Thomas
- Department of Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, USA
| | - C De Loera
- Department of Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, USA
| | - K Okada
- Advanced Medical Research Laboratories, Research Division, Mitsubishi Tanabe Pharma Corporation, Toda-shi, Saitama, Japan
| | - Y Inomata
- Pharmacology Research Laboratories I, Research Division, Mitsubishi Tanabe Pharma Corporation, Yokohama, Japan
| | - J Chun
- Department of Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
263
|
Sun R, Zhang D, Zhang J, Feng Q, Zhang Y, Zhao C, Zhang W. Different effects of lysophosphatidic acid on L-type calcium current in neonatal rat ventricular myocytes with and without H2O2 treatment. Prostaglandins Other Lipid Mediat 2015; 118-119:1-10. [PMID: 25841350 DOI: 10.1016/j.prostaglandins.2015.03.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 03/08/2015] [Accepted: 03/23/2015] [Indexed: 12/11/2022]
Abstract
L-type calcium current (I(Ca-L)) alterations are implicated in various cardiac diseases, and the lysophosphatidic acid (LPA) level increases in several ischemic heart diseases. We investigated the effects of LPA on I(Ca-L) in normal and H2O2-treated neonatal rat ventricular myocytes. LPA treatment (24h) increased the action potential duration (APD) and I(Ca-L) in normal ventricular myocytes, but it decreased these parameters in H2O2-treated myocytes. LPA increased the single-channel open probability of L-type calcium channels in both normal and H2O2-treated myocytes. LPA activated calcineurin (CaN) and induced the cytoplasm-to-nucleus translocation of nuclear factor of activated T-cells (NFAT) in H2O2-treated cardiomyocytes. In H2O2-treated cardiomyocytes, LPA decreased Ca(v)1.2 mRNA and protein expression levels at 4 and 8h, respectively. A CaN inhibitor (FK-506) prevented LPA-induced APD, I(Ca-L), and Ca(v)1.2 mRNA and protein down-regulation. The LPA-induced I(Ca-L) increase in normal cardiomyocytes was CaN-NFAT signaling-independent, and LPA did not affect Ca(v)1.2 mRNA or protein expression. In conclusion, LPA increases the I(Ca-L) in normal ventricular myocytes by increasing the single-channel open probability of L-type calcium channels, and LPA decreases I(Ca-L) in H2O2-treated cardiomyocytes via the CaN-NFAT pathway.
Collapse
Affiliation(s)
- Renren Sun
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Duoduo Zhang
- Department of Thoracic Surgery, First Hospital of Jilin University, Changchun 130021, China; Department of Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Jun Zhang
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Qiuyan Feng
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Yan Zhang
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Chunyan Zhao
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| | - Wenjie Zhang
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| |
Collapse
|
264
|
Llona-Minguez S, Ghassemian A, Helleday T. Lysophosphatidic acid receptor (LPAR) modulators: The current pharmacological toolbox. Prog Lipid Res 2015; 58:51-75. [DOI: 10.1016/j.plipres.2015.01.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 01/15/2015] [Accepted: 01/20/2015] [Indexed: 12/17/2022]
|
265
|
Rubio JM, Rodríguez JP, Gil-de-Gómez L, Guijas C, Balboa MA, Balsinde J. Group V secreted phospholipase A2 is upregulated by IL-4 in human macrophages and mediates phagocytosis via hydrolysis of ethanolamine phospholipids. THE JOURNAL OF IMMUNOLOGY 2015; 194:3327-39. [PMID: 25725101 DOI: 10.4049/jimmunol.1401026] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Studies on the heterogeneity and plasticity of macrophage populations led to the identification of two major polarization states: classically activated macrophages or M1, induced by IFN-γ plus LPS, and alternatively activated macrophages, induced by IL-4. We studied the expression of multiple phospholipase A2 enzymes in human macrophages and the effect that polarization of the cells has on their levels. At least 11 phospholipase A2 genes were found at significant levels in human macrophages, as detected by quantitative PCR. None of these exhibited marked changes after treating the cells with IFN-γ plus LPS. However, macrophage treatment with IL-4 led to strong upregulation of the secreted group V phospholipase A2 (sPLA2-V), both at the mRNA and protein levels. In parallel with increasing sPLA2-V expression levels, IL-4-treated macrophages exhibited increased phagocytosis of yeast-derived zymosan and bacteria, and we show that both events are causally related, because cells deficient in sPLA2-V exhibited decreased phagocytosis, and cells overexpressing the enzyme manifested higher rates of phagocytosis. Mass spectrometry analyses of lipid changes in the IL-4-treated macrophages suggest that ethanolamine lysophospholipid (LPE) is an sPLA2-V-derived product that may be involved in regulating phagocytosis. Cellular levels of LPE are selectively maintained by sPLA2-V. By supplementing sPLA2-V-deficient cells with LPE, phagocytosis of zymosan or bacteria was fully restored in IL-4-treated cells. Collectively, our results show that sPLA2-V is required for efficient phagocytosis by IL-4-treated human macrophages and provide evidence that sPLA2-V-derived LPE is involved in the process.
Collapse
Affiliation(s)
- Julio M Rubio
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas, Universidad de Valladolid, 47003 Valladolid, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, 28029 Madrid, Spain; and
| | - Juan P Rodríguez
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas, Universidad de Valladolid, 47003 Valladolid, Spain; Laboratorio de Investigación en Proteínas, Facultad de Ciencias Exactas y Naturales y Agrimensura, Universidad Nacional del Nordeste, 3400 Corrientes, Argentina
| | - Luis Gil-de-Gómez
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas, Universidad de Valladolid, 47003 Valladolid, Spain
| | - Carlos Guijas
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas, Universidad de Valladolid, 47003 Valladolid, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, 28029 Madrid, Spain; and
| | - María A Balboa
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas, Universidad de Valladolid, 47003 Valladolid, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, 28029 Madrid, Spain; and
| | - Jesús Balsinde
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas, Universidad de Valladolid, 47003 Valladolid, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, 28029 Madrid, Spain; and
| |
Collapse
|
266
|
González-Gil I, Zian D, Vázquez-Villa H, Ortega-Gutiérrez S, López-Rodríguez ML. The status of the lysophosphatidic acid receptor type 1 (LPA1R). MEDCHEMCOMM 2015. [DOI: 10.1039/c4md00333k] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The current status of the LPA1receptor and its ligands in the drug development pipeline is reviewed.
Collapse
Affiliation(s)
- Inés González-Gil
- Departamento de Química Orgánica I
- Facultad de Ciencias Químicas
- Universidad Complutense de Madrid
- E-28040 Madrid
- Spain
| | - Debora Zian
- Departamento de Química Orgánica I
- Facultad de Ciencias Químicas
- Universidad Complutense de Madrid
- E-28040 Madrid
- Spain
| | - Henar Vázquez-Villa
- Departamento de Química Orgánica I
- Facultad de Ciencias Químicas
- Universidad Complutense de Madrid
- E-28040 Madrid
- Spain
| | - Silvia Ortega-Gutiérrez
- Departamento de Química Orgánica I
- Facultad de Ciencias Químicas
- Universidad Complutense de Madrid
- E-28040 Madrid
- Spain
| | - María L. López-Rodríguez
- Departamento de Química Orgánica I
- Facultad de Ciencias Químicas
- Universidad Complutense de Madrid
- E-28040 Madrid
- Spain
| |
Collapse
|
267
|
Kihara Y, Mizuno H, Chun J. Lysophospholipid receptors in drug discovery. Exp Cell Res 2014; 333:171-177. [PMID: 25499971 DOI: 10.1016/j.yexcr.2014.11.020] [Citation(s) in RCA: 156] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 11/24/2014] [Indexed: 11/17/2022]
Abstract
Lysophospholipids (LPs), including lysophosphatidic acid (LPA), sphingosine 1-phospate (S1P), lysophosphatidylinositol (LPI), and lysophosphatidylserine (LysoPS), are bioactive lipids that transduce signals through their specific cell-surface G protein-coupled receptors, LPA1-6, S1P1-5, LPI1, and LysoPS1-3, respectively. These LPs and their receptors have been implicated in both physiological and pathophysiological processes such as autoimmune diseases, neurodegenerative diseases, fibrosis, pain, cancer, inflammation, metabolic syndrome, bone formation, fertility, organismal development, and other effects on most organ systems. Advances in the LP receptor field have enabled the development of novel small molecules targeting LP receptors for several diseases. Most notably, fingolimod (FTY720, Gilenya, Novartis), an S1P receptor modulator, became the first FDA-approved medicine as an orally bioavailable drug for treating relapsing forms of multiple sclerosis. This success is currently being followed by multiple, mechanistically related compounds targeting S1P receptor subtypes, which are in various stages of clinical development. In addition, an LPA1 antagonist, BMS-986020 (Bristol-Myers Squibb), is in Phase 2 clinical development for treating idiopathic pulmonary fibrosis, as a distinct compound, SAR100842 (Sanofi) for the treatment of systemic sclerosis and related fibrotic diseases. This review summarizes the current state of drug discovery in the LP receptor field.
Collapse
Affiliation(s)
- Yasuyuki Kihara
- Department of Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, DNC-118, 10550 N, Torrey Pines Road, La Jolla, CA 92037, USA
| | - Hirotaka Mizuno
- Department of Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, DNC-118, 10550 N, Torrey Pines Road, La Jolla, CA 92037, USA; Exploratory Research Laboratories, Ono Pharmaceutical Co., Ltd., Ibaraki 300-4247, Japan
| | - Jerold Chun
- Department of Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, DNC-118, 10550 N, Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
268
|
Makide K, Uwamizu A, Shinjo Y, Ishiguro J, Okutani M, Inoue A, Aoki J. Novel lysophosphoplipid receptors: their structure and function. J Lipid Res 2014; 55:1986-95. [PMID: 24891334 DOI: 10.1194/jlr.r046920] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
It is now accepted that lysophospholipids (LysoGPs) have a wide variety of functions as lipid mediators that are exerted through G protein-coupled receptors (GPCRs) specific to each lysophospholipid. While the roles of some LysoGPs, such as lysophosphatidic acid and sphingosine 1-phosphate, have been thoroughly examined, little is known about the roles of several other LysoGPs, such as lysophosphatidylserine (LysoPS), lysophosphatidylthreonine, lysophosphatidylethanolamine, lysophosphatidylinositol (LPI), and lysophosphatidylglycerol. Recently, a GPCR was found for LPI (GPR55) and three GPCRs (GPR34/LPS1, P2Y10/LPS2, and GPR174/LPS3) were found for LysoPS. In this review, we focus on these newly identified GPCRs and summarize the actions of LysoPS and LPI as lipid mediators.
Collapse
Affiliation(s)
- Kumiko Makide
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan PRESTO Japan Science and Technology Corporation, Saitama, Japan
| | - Akiharu Uwamizu
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Yuji Shinjo
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Jun Ishiguro
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Michiyo Okutani
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan PRESTO Japan Science and Technology Corporation, Saitama, Japan
| | - Junken Aoki
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan CREST, Japan Science and Technology Corporation, Saitama, Japan
| |
Collapse
|