251
|
Neilson EH, Goodger JQD, Motawia MS, Bjarnholt N, Frisch T, Olsen CE, Møller BL, Woodrow IE. Phenylalanine derived cyanogenic diglucosides from Eucalyptus camphora and their abundances in relation to ontogeny and tissue type. PHYTOCHEMISTRY 2011; 72:2325-34. [PMID: 21945721 DOI: 10.1016/j.phytochem.2011.08.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Revised: 08/16/2011] [Accepted: 08/19/2011] [Indexed: 05/22/2023]
Abstract
The cyanogenic glucoside profile of Eucalyptus camphora was investigated in the course of plant ontogeny. In addition to amygdalin, three phenylalanine-derived cyanogenic diglucosides characterized by unique linkage positions between the two glucose moieties were identified in E. camphora tissues. This is the first time that multiple cyanogenic diglucosides have been shown to co-occur in any plant species. Two of these cyanogenic glucosides have not previously been reported and are named eucalyptosin B and eucalyptosin C. Quantitative and qualitative differences in total cyanogenic glucoside content were observed across different stages of whole plant and tissue ontogeny, as well as within different tissue types. Seedlings of E. camphora produce only the cyanogenic monoglucoside prunasin, and genetically based variation was observed in the age at which seedlings initiate prunasin biosynthesis. Once initiated, total cyanogenic glucoside concentration increased throughout plant ontogeny with cyanogenic diglucoside production initiated in saplings and reaching a maximum in flower buds of adult trees. The role of multiple cyanogenic glucosides in E. camphora is unknown, but may include enhanced plant defense and/or a primary role in nitrogen storage and transport.
Collapse
Affiliation(s)
- Elizabeth H Neilson
- School of Botany, The University of Melbourne, Melbourne, Victoria 3010, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
252
|
Hamberger B, Ohnishi T, Hamberger B, Séguin A, Bohlmann J. Evolution of diterpene metabolism: Sitka spruce CYP720B4 catalyzes multiple oxidations in resin acid biosynthesis of conifer defense against insects. PLANT PHYSIOLOGY 2011; 157:1677-95. [PMID: 21994349 PMCID: PMC3327196 DOI: 10.1104/pp.111.185843] [Citation(s) in RCA: 119] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Diterpene resin acids (DRAs) are specialized (secondary) metabolites of the oleoresin defense of conifers produced by diterpene synthases and cytochrome P450s of the CYP720B family. The evolution of DRA metabolism shares common origins with the biosynthesis of ent-kaurenoic acid, which is highly conserved in general (primary) metabolism of gibberellin biosynthesis. Transcriptome mining in species of spruce (Picea) and pine (Pinus) revealed CYP720Bs of four distinct clades. We cloned a comprehensive set of 12 different Sitka spruce (Picea sitchensis) CYP720Bs as full-length cDNAs. Spatial expression profiles, methyl jasmonate induction, and transcript enrichment in terpenoid-producing resin ducts suggested a role of CYP720B4 in DRA biosynthesis. CYP720B4 was characterized as a multisubstrate, multifunctional enzyme by the formation of oxygenated diterpenoids in metabolically engineered yeast, yeast in vivo transformation of diterpene substrates, in vitro assays with CYP720B4 protein produced in Escherichia coli, and alteration of DRA profiles in RNA interference-suppressed spruce seedlings. CYP720B4 was active with 24 different diterpenoid substrates, catalyzing consecutive C-18 oxidations in the biosynthesis of an array of diterpene alcohols, aldehydes, and acids. CYP720B4 was most active in the formation of dehydroabietic acid, a compound associated with insect resistance of Sitka spruce. We identified patterns of convergent evolution of CYP720B4 in DRA metabolism and ent-kaurene oxidase CYP701 in gibberellin metabolism and revealed differences in the evolution of specialized and general diterpene metabolism in a gymnosperm. The genomic and functional characterization of the gymnosperm CYP720B family highlights that the evolution of specialized metabolism involves substantial diversification relative to conserved, general metabolism.
Collapse
|
253
|
Oldfield E, Lin FY. Terpene biosynthesis: modularity rules. Angew Chem Int Ed Engl 2011; 51:1124-37. [PMID: 22105807 DOI: 10.1002/anie.201103110] [Citation(s) in RCA: 254] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Indexed: 01/10/2023]
Abstract
Terpenes are the largest class of small-molecule natural products on earth, and the most abundant by mass. Here, we summarize recent developments in elucidating the structure and function of the proteins involved in their biosynthesis. There are six main building blocks or modules (α, β, γ, δ, ε, and ζ) that make up the structures of these enzymes: the αα and αδ head-to-tail trans-prenyl transferases that produce trans-isoprenoid diphosphates from C(5) precursors; the ε head-to-head prenyl transferases that convert these diphosphates into the tri- and tetraterpene precursors of sterols, hopanoids, and carotenoids; the βγ di- and triterpene synthases; the ζ head-to-tail cis-prenyl transferases that produce the cis-isoprenoid diphosphates involved in bacterial cell wall biosynthesis; and finally the α, αβ, and αβγ terpene synthases that produce plant terpenes, with many of these modular enzymes having originated from ancestral α and β domain proteins. We also review progress in determining the structure and function of the two 4Fe-4S reductases involved in formation of the C(5) diphosphates in many bacteria, where again, highly modular structures are found.
Collapse
Affiliation(s)
- Eric Oldfield
- Department of Chemistry and Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL 61801, USA.
| | | |
Collapse
|
254
|
|
255
|
Characterization of a feedback-resistant mevalonate kinase from the archaeon Methanosarcina mazei. Appl Environ Microbiol 2011; 77:7772-8. [PMID: 21908638 DOI: 10.1128/aem.05761-11] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mevalonate pathway is utilized for the biosynthesis of isoprenoids in many bacterial, eukaryotic, and archaeal organisms. Based on previous reports of its feedback inhibition, mevalonate kinase (MVK) may play an important regulatory role in the biosynthesis of mevalonate pathway-derived compounds. Here we report the purification, kinetic characterization, and inhibition analysis of the MVK from the archaeon Methanosarcina mazei. The inhibition of the M. mazei MVK by the following metabolites derived from the mevalonate pathway was explored: dimethylallyl diphosphate (DMAPP), geranyl pyrophosphate (GPP), farnesyl pyrophosphate (FPP), isopentenyl monophosphate (IP), and diphosphomevalonate. M. mazei MVK was not inhibited by DMAPP, GPP, FPP, diphosphomevalonate, or IP, a proposed intermediate in an alternative isoprenoid pathway present in archaea. Our findings suggest that the M. mazei MVK represents a distinct class of mevalonate kinases that can be differentiated from previously characterized MVKs based on its inhibition profile.
Collapse
|
256
|
Antolín-Llovera M, Leivar P, Arró M, Ferrer A, Boronat A, Campos N. Modulation of plant HMG-CoA reductase by protein phosphatase 2A: positive and negative control at a key node of metabolism. PLANT SIGNALING & BEHAVIOR 2011; 6:1127-31. [PMID: 21701259 PMCID: PMC3260709 DOI: 10.4161/psb.6.8.16363] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The enzyme HMG-CoA reductase (HMGR) has a key regulatory role in the mevalonate pathway for isoprenoid biosynthesis, critical not only for normal plant development, but also for the adaptation to demanding environmental conditions. Consistent with this notion, plant HMGR is modulated by many diverse endogenous signals and external stimuli. Protein phosphatase 2A (PP2A) is involved in auxin, abscisic acid, ethylene and brassinosteroid signaling and now emerges as a positive and negative multilevel regulator of plant HMGR, both during normal growth and in response to a variety of stress conditions. The interaction with HMGR is mediated by B" regulatory subunits of PP2A, which are also calcium binding proteins. The new discoveries uncover the potential of PP2A to integrate developmental and calcium-mediated environmental signals in the control of plant HMGR.
Collapse
Affiliation(s)
- Meritxell Antolín-Llovera
- Department of Molecular Genetics; Center for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB); Campus Universitat Autònoma de Barcelona; Bellaterra (Cerdanyola del Vallès); Barcelona, Spain
- Departament de Bioquímica i Biologia Molecular; Facultat de Biologia; Universitat de Barcelona; Barcelona, Spain
| | - Pablo Leivar
- Department of Molecular Genetics; Center for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB); Campus Universitat Autònoma de Barcelona; Bellaterra (Cerdanyola del Vallès); Barcelona, Spain
- Departament de Bioquímica i Biologia Molecular; Facultat de Biologia; Universitat de Barcelona; Barcelona, Spain
| | - Montserrat Arró
- Department of Molecular Genetics; Center for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB); Campus Universitat Autònoma de Barcelona; Bellaterra (Cerdanyola del Vallès); Barcelona, Spain
- Departament de Bioquímica i Biologia Molecular; Facultat de Farmàcia; Universitat de Barcelona; Barcelona, Spain
| | - Albert Ferrer
- Department of Molecular Genetics; Center for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB); Campus Universitat Autònoma de Barcelona; Bellaterra (Cerdanyola del Vallès); Barcelona, Spain
- Departament de Bioquímica i Biologia Molecular; Facultat de Farmàcia; Universitat de Barcelona; Barcelona, Spain
| | - Albert Boronat
- Department of Molecular Genetics; Center for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB); Campus Universitat Autònoma de Barcelona; Bellaterra (Cerdanyola del Vallès); Barcelona, Spain
- Departament de Bioquímica i Biologia Molecular; Facultat de Biologia; Universitat de Barcelona; Barcelona, Spain
| | - Narciso Campos
- Department of Molecular Genetics; Center for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB); Campus Universitat Autònoma de Barcelona; Bellaterra (Cerdanyola del Vallès); Barcelona, Spain
- Departament de Bioquímica i Biologia Molecular; Facultat de Biologia; Universitat de Barcelona; Barcelona, Spain
| |
Collapse
|
257
|
Köksal M, Hu H, Coates RM, Peters RJ, Christianson DW. Structure and mechanism of the diterpene cyclase ent-copalyl diphosphate synthase. Nat Chem Biol 2011; 7:431-3. [PMID: 21602811 PMCID: PMC3118866 DOI: 10.1038/nchembio.578] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Accepted: 03/24/2011] [Indexed: 11/09/2022]
Abstract
The structure of ent-copalyl diphosphate synthase reveals three α-helical domains (α, β and γ), as also observed in the related diterpene cyclase taxadiene synthase. However, active sites are located at the interface of the βγ domains in ent-copalyl diphosphate synthase but exclusively in the α domain of taxadiene synthase. Modular domain architecture in plant diterpene cyclases enables the evolution of alternative active sites and chemical strategies for catalyzing isoprenoid cyclization reactions.
Collapse
Affiliation(s)
- Mustafa Köksal
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104-6323 USA
| | - Huayou Hu
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
| | - Robert M. Coates
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
| | - Reuben J. Peters
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA 50011 USA
| | - David W. Christianson
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104-6323 USA
| |
Collapse
|
258
|
Tholl D, Lee S. Terpene Specialized Metabolism in Arabidopsis thaliana. THE ARABIDOPSIS BOOK 2011; 9:e0143. [PMID: 22303268 PMCID: PMC3268506 DOI: 10.1199/tab.0143] [Citation(s) in RCA: 145] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Terpenes constitute the largest class of plant secondary (or specialized) metabolites, which are compounds of ecological function in plant defense or the attraction of beneficial organisms. Using biochemical and genetic approaches, nearly all Arabidopsis thaliana (Arabidopsis) enzymes of the core biosynthetic pathways producing the 5-carbon building blocks of terpenes have been characterized and closer insight has been gained into the transcriptional and posttranscriptional/translational mechanisms regulating these pathways. The biochemical function of most prenyltransferases, the downstream enzymes that condense the C(5)-precursors into central 10-, 15-, and 20-carbon prenyldiphosphate intermediates, has been described, although the function of several isoforms of C(20)-prenyltranferases is not well understood. Prenyl diphosphates are converted to a variety of C(10)-, C(15)-, and C(20)-terpene products by enzymes of the terpene synthase (TPS) family. Genomic organization of the 32 Arabidopsis TPS genes indicates a species-specific divergence of terpene synthases with tissue- and cell-type specific expression profiles that may have emerged under selection pressures by different organisms. Pseudogenization, differential expression, and subcellular segregation of TPS genes and enzymes contribute to the natural variation of terpene biosynthesis among Arabidopsis accessions (ecotypes) and species. Arabidopsis will remain an important model to investigate the metabolic organization and molecular regulatory networks of terpene specialized metabolism in relation to the biological activities of terpenes.
Collapse
Affiliation(s)
- Dorothea Tholl
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Sungbeom Lee
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|
259
|
Chen F, Tholl D, Bohlmann J, Pichersky E. The family of terpene synthases in plants: a mid-size family of genes for specialized metabolism that is highly diversified throughout the kingdom. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 66:212-29. [PMID: 21443633 DOI: 10.1111/j.1365-313x.2011.04520.x] [Citation(s) in RCA: 853] [Impact Index Per Article: 60.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Some plant terpenes such as sterols and carotenes are part of primary metabolism and found essentially in all plants. However, the majority of the terpenes found in plants are classified as 'secondary' compounds, those chemicals whose synthesis has evolved in plants as a result of selection for increased fitness via better adaptation to the local ecological niche of each species. Thousands of such terpenes have been found in the plant kingdom, but each species is capable of synthesizing only a small fraction of this total. In plants, a family of terpene synthases (TPSs) is responsible for the synthesis of the various terpene molecules from two isomeric 5-carbon precursor 'building blocks', leading to 5-carbon isoprene, 10-carbon monoterpenes, 15-carbon sesquiterpenes and 20-carbon diterpenes. The bryophyte Physcomitrella patens has a single TPS gene, copalyl synthase/kaurene synthase (CPS/KS), encoding a bifunctional enzyme producing ent-kaurene, which is a precursor of gibberellins. The genome of the lycophyte Selaginella moellendorffii contains 18 TPS genes, and the genomes of some model angiosperms and gymnosperms contain 40-152 TPS genes, not all of them functional and most of the functional ones having lost activity in either the CPS- or KS-type domains. TPS genes are generally divided into seven clades, with some plant lineages having a majority of their TPS genes in one or two clades, indicating lineage-specific expansion of specific types of genes. Evolutionary plasticity is evident in the TPS family, with closely related enzymes differing in their product profiles, subcellular localization, or the in planta substrates they use.
Collapse
Affiliation(s)
- Feng Chen
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, USA.
| | | | | | | |
Collapse
|
260
|
Bleif S, Hannemann F, Lisurek M, von Kries JP, Zapp J, Dietzen M, Antes I, Bernhardt R. Identification of CYP106A2 as a Regioselective Allylic Bacterial Diterpene Hydroxylase. Chembiochem 2011; 12:576-82. [DOI: 10.1002/cbic.201000404] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Indexed: 11/06/2022]
|
261
|
Martin DM, Aubourg S, Schouwey MB, Daviet L, Schalk M, Toub O, Lund ST, Bohlmann J. Functional annotation, genome organization and phylogeny of the grapevine (Vitis vinifera) terpene synthase gene family based on genome assembly, FLcDNA cloning, and enzyme assays. BMC PLANT BIOLOGY 2010; 10:226. [PMID: 20964856 PMCID: PMC3017849 DOI: 10.1186/1471-2229-10-226] [Citation(s) in RCA: 297] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Accepted: 10/21/2010] [Indexed: 05/18/2023]
Abstract
BACKGROUND Terpenoids are among the most important constituents of grape flavour and wine bouquet, and serve as useful metabolite markers in viticulture and enology. Based on the initial 8-fold sequencing of a nearly homozygous Pinot noir inbred line, 89 putative terpenoid synthase genes (VvTPS) were predicted by in silico analysis of the grapevine (Vitis vinifera) genome assembly 1. The finding of this very large VvTPS family, combined with the importance of terpenoid metabolism for the organoleptic properties of grapevine berries and finished wines, prompted a detailed examination of this gene family at the genomic level as well as an investigation into VvTPS biochemical functions. RESULTS We present findings from the analysis of the up-dated 12-fold sequencing and assembly of the grapevine genome that place the number of predicted VvTPS genes at 69 putatively functional VvTPS, 20 partial VvTPS, and 63 VvTPS probable pseudogenes. Gene discovery and annotation included information about gene architecture and chromosomal location. A dense cluster of 45 VvTPS is localized on chromosome 18. Extensive FLcDNA cloning, gene synthesis, and protein expression enabled functional characterization of 39 VvTPS; this is the largest number of functionally characterized TPS for any species reported to date. Of these enzymes, 23 have unique functions and/or phylogenetic locations within the plant TPS gene family. Phylogenetic analyses of the TPS gene family showed that while most VvTPS form species-specific gene clusters, there are several examples of gene orthology with TPS of other plant species, representing perhaps more ancient VvTPS, which have maintained functions independent of speciation. CONCLUSIONS The highly expanded VvTPS gene family underpins the prominence of terpenoid metabolism in grapevine. We provide a detailed experimental functional annotation of 39 members of this important gene family in grapevine and comprehensive information about gene structure and phylogeny for the entire currently known VvTPS gene family.
Collapse
Affiliation(s)
- Diane M Martin
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, B.C, V6T 1Z4, Canada
- Wine Research Centre, University of British Columbia, 2205 East Mall, Vancouver, B.C., V6T 1Z4, Canada
| | - Sébastien Aubourg
- Unité de Recherche en Génomique Végétale (URGV) UMR INRA 1165 - Université d'Evry Val d'Essonne - ERL CNRS 8196, 2 Rue Gaston Crémieux, 91057 Evry Cedex, France
| | | | - Laurent Daviet
- Firmenich SA, Corporate R&D Division, Geneva, CH-1211, Switzerland
| | - Michel Schalk
- Firmenich SA, Corporate R&D Division, Geneva, CH-1211, Switzerland
| | - Omid Toub
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, B.C, V6T 1Z4, Canada
- Wine Research Centre, University of British Columbia, 2205 East Mall, Vancouver, B.C., V6T 1Z4, Canada
| | - Steven T Lund
- Wine Research Centre, University of British Columbia, 2205 East Mall, Vancouver, B.C., V6T 1Z4, Canada
| | - Jörg Bohlmann
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, B.C, V6T 1Z4, Canada
| |
Collapse
|
262
|
Gallagher KA, Fenical W, Jensen PR. Hybrid isoprenoid secondary metabolite production in terrestrial and marine actinomycetes. Curr Opin Biotechnol 2010; 21:794-800. [PMID: 20951024 DOI: 10.1016/j.copbio.2010.09.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Accepted: 09/16/2010] [Indexed: 01/06/2023]
Abstract
Terpenoids are among the most ubiquitous and diverse secondary metabolites observed in nature. Although actinomycete bacteria are one of the primary sources of microbially derived secondary metabolites, they rarely produce compounds in this biosynthetic class. The terpenoid secondary metabolites that have been discovered from actinomycetes are often in the form of biosynthetic hybrids called hybrid isoprenoids (HIs). HIs include significant structural diversity and biological activity and thus are important targets for natural product discovery. Recent screening of marine actinomycetes has led to the discovery of a new lineage that is enriched in the production of biologically active HI secondary metabolites. These strains represent a promising resource for natural product discovery and provide unique opportunities to study the evolutionary history and ecological functions of an unusual group of secondary metabolites.
Collapse
Affiliation(s)
- Kelley A Gallagher
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093-0204, USA
| | | | | |
Collapse
|
263
|
Goodger JQD, Heskes AM, Mitchell MC, King DJ, Neilson EH, Woodrow IE. Isolation of intact sub-dermal secretory cavities from Eucalyptus. PLANT METHODS 2010; 6:20. [PMID: 20807444 PMCID: PMC2936884 DOI: 10.1186/1746-4811-6-20] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Accepted: 09/01/2010] [Indexed: 05/19/2023]
Abstract
BACKGROUND The biosynthesis of plant natural products in sub-dermal secretory cavities is poorly understood at the molecular level, largely due to the difficulty of physically isolating these structures for study. Our aim was to develop a protocol for isolating live and intact sub-dermal secretory cavities, and to do this, we used leaves from three species of Eucalyptus with cavities that are relatively large and rich in essential oils. RESULTS Leaves were digested using a variety of commercially available enzymes. A pectinase from Aspergillus niger was found to allow isolation of intact cavities after a relatively short incubation (12 h), with no visible artifacts from digestion and no loss of cellular integrity or cavity contents. Several measurements indicated the potential of the isolated cavities for further functional studies. First, the cavities were found to consume oxygen at a rate that is comparable to that estimated from leaf respiratory rates. Second, mRNA was extracted from cavities, and it was used to amplify a cDNA fragment with high similarity to that of a monoterpene synthase. Third, the contents of the cavity lumen were extracted, showing an unexpectedly low abundance of volatile essential oils and a sizeable amount of non-volatile material, which is contrary to the widely accepted role of secretory cavities as predominantly essential oil repositories. CONCLUSIONS The protocol described herein is likely to be adaptable to a range of Eucalyptus species with sub-dermal secretory cavities, and should find wide application in studies of the developmental and functional biology of these structures, and the biosynthesis of the plant natural products they contain.
Collapse
Affiliation(s)
- Jason QD Goodger
- School of Botany, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Allison M Heskes
- School of Botany, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Madeline C Mitchell
- School of Botany, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Drew J King
- School of Botany, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Elizabeth H Neilson
- School of Botany, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Ian E Woodrow
- School of Botany, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
264
|
Enhanced production of a plant monoterpene by overexpression of the 3-hydroxy-3-methylglutaryl coenzyme A reductase catalytic domain in Saccharomyces cerevisiae. Appl Environ Microbiol 2010; 76:6449-54. [PMID: 20675444 DOI: 10.1128/aem.02987-09] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Linalool production was evaluated in different Saccharomyces cerevisiae strains expressing the Clarkia breweri linalool synthase gene (LIS). The wine strain T(73) was shown to produce higher levels of linalool than conventional laboratory strains (i.e., almost three times the amount). The performance of this strain was further enhanced by manipulating the endogenous mevalonate (MVA) pathway: deregulated overexpression of the rate-limiting 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG-CoA reductase) doubled linalool production. In a haploid laboratory strain, engineering of this key step also improved linalool yield.
Collapse
|
265
|
Combining metabolic and protein engineering of a terpenoid biosynthetic pathway for overproduction and selectivity control. Proc Natl Acad Sci U S A 2010; 107:13654-9. [PMID: 20643967 DOI: 10.1073/pnas.1006138107] [Citation(s) in RCA: 256] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A common strategy of metabolic engineering is to increase the endogenous supply of precursor metabolites to improve pathway productivity. The ability to further enhance heterologous production of a desired compound may be limited by the inherent capacity of the imported pathway to accommodate high precursor supply. Here, we present engineered diterpenoid biosynthesis as a case where insufficient downstream pathway capacity limits high-level levopimaradiene production in Escherichia coli. To increase levopimaradiene synthesis, we amplified the flux toward isopentenyl diphosphate and dimethylallyl diphosphate precursors and reprogrammed the rate-limiting downstream pathway by generating combinatorial mutations in geranylgeranyl diphosphate synthase and levopimaradiene synthase. The mutant library contained pathway variants that not only increased diterpenoid production but also tuned the selectivity toward levopimaradiene. The most productive pathway, combining precursor flux amplification and mutant synthases, conferred approximately 2,600-fold increase in levopimaradiene levels. A maximum titer of approximately 700 mg/L was subsequently obtained by cultivation in a bench-scale bioreactor. The present study highlights the importance of engineering proteins along with pathways as a key strategy in achieving microbial biosynthesis and overproduction of pharmaceutical and chemical products.
Collapse
|
266
|
Köksal M, Zimmer I, Schnitzler JP, Christianson DW. Structure of isoprene synthase illuminates the chemical mechanism of teragram atmospheric carbon emission. J Mol Biol 2010; 402:363-73. [PMID: 20624401 DOI: 10.1016/j.jmb.2010.07.009] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Revised: 07/02/2010] [Accepted: 07/06/2010] [Indexed: 11/29/2022]
Abstract
The X-ray crystal structure of recombinant PcISPS (isoprene synthase from gray poplar hybrid Populus×canescens) has been determined at 2.7 Å resolution, and the structure of its complex with three Mg(2+) and the unreactive substrate analogue dimethylallyl-S-thiolodiphosphate has been determined at 2.8 Å resolution. Analysis of these structures suggests that the generation of isoprene from substrate dimethylallyl diphosphate occurs via a syn-periplanar elimination mechanism in which the diphosphate-leaving group serves as a general base. This chemical mechanism is responsible for the annual atmospheric emission of 100 Tg of isoprene by terrestrial plant life. Importantly, the PcISPS structure promises to guide future protein engineering studies, potentially leading to hydrocarbon fuels and products that do not rely on traditional petrochemical sources.
Collapse
Affiliation(s)
- Mustafa Köksal
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104-6323, USA
| | | | | | | |
Collapse
|
267
|
Bernards MA. Plant natural products: a primerThe present review is one in the special series of reviews on animal–plant interactions. CAN J ZOOL 2010. [DOI: 10.1139/z10-035] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Over the course of evolution, plants have adapted various structural and chemical mechanisms to protect themselves and interact with their environment. The chemical mechanisms are largely based on the secondary metabolites or natural products. Although plant natural products are generally divided into three main categories (terpenoids, alkaloids, and phenylpropanoids) that are based on structural type and biosynthetic origin, there are many other smaller categories of unique compounds. Many important in planta biological functions can be attributed to plant natural products, in large part, owing to their tremendous structural diversity. To understand the functional roles of plant natural products, both as protective compounds and interorganismal signals, it is important to know how they are formed in plants. This minireview provides a general background about the three main categories of plant natural products, their biosynthetic origins, and their structural diversity.
Collapse
Affiliation(s)
- M. A. Bernards
- Department of Biology and The Biotron, The University of Western Ontario, London, ON N6A 5B7, Canada (e-mail: )
| |
Collapse
|
268
|
Keeling CI, Dullat HK, Yuen M, Ralph SG, Jancsik S, Bohlmann J. Identification and functional characterization of monofunctional ent-copalyl diphosphate and ent-kaurene synthases in white spruce reveal different patterns for diterpene synthase evolution for primary and secondary metabolism in gymnosperms. PLANT PHYSIOLOGY 2010; 152:1197-208. [PMID: 20044448 PMCID: PMC2832265 DOI: 10.1104/pp.109.151456] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2009] [Accepted: 12/27/2009] [Indexed: 05/18/2023]
Abstract
The biosynthesis of the tetracyclic diterpene ent-kaurene is a critical step in the general (primary) metabolism of gibberellin hormones. ent-Kaurene is formed by a two-step cyclization of geranylgeranyl diphosphate via the intermediate ent-copalyl diphosphate. In a lower land plant, the moss Physcomitrella patens, a single bifunctional diterpene synthase (diTPS) catalyzes both steps. In contrast, in angiosperms, the two consecutive cyclizations are catalyzed by two distinct monofunctional enzymes, ent-copalyl diphosphate synthase (CPS) and ent-kaurene synthase (KS). The enzyme, or enzymes, responsible for ent-kaurene biosynthesis in gymnosperms has been elusive. However, several bifunctional diTPS of specialized (secondary) metabolism have previously been characterized in gymnosperms, and all known diTPSs for resin acid biosynthesis in conifers are bifunctional. To further understand the evolution of ent-kaurene biosynthesis as well as the evolution of general and specialized diterpenoid metabolisms in gymnosperms, we set out to determine whether conifers use a single bifunctional diTPS or two monofunctional diTPSs in the ent-kaurene pathway. Using a combination of expressed sequence tag, full-length cDNA, genomic DNA, and targeted bacterial artificial chromosome sequencing, we identified two candidate CPS and KS genes from white spruce (Picea glauca) and their orthologs in Sitka spruce (Picea sitchensis). Functional characterization of the recombinant enzymes established that ent-kaurene biosynthesis in white spruce is catalyzed by two monofunctional diTPSs, PgCPS and PgKS. Comparative analysis of gene structures and enzyme functions highlights the molecular evolution of these diTPSs as conserved between gymnosperms and angiosperms. In contrast, diTPSs for specialized metabolism have evolved differently in angiosperms and gymnosperms.
Collapse
|
269
|
Nascimento NCD, Fett-Neto AG. Plant secondary metabolism and challenges in modifying its operation: an overview. Methods Mol Biol 2010; 643:1-13. [PMID: 20552440 DOI: 10.1007/978-1-60761-723-5_1] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Plants have metabolic pathways leading to tens of thousands of secondary products capable of effectively responding to stress situations imposed by biotic and abiotic factors. These pathways, often recruited from essential primary metabolism pathways upon initial gene duplication, are frequently restricted to specific taxonomic groups and play a major role in the plant x environment interaction. A strict spatial and temporal control of gene expression ensures the correct accumulation pattern of various secondary products. The required transport of metabolic intermediates constitutes an additional level of regulation. The induction of secondary metabolism gene expression by wounding, herbivore-derived molecules, pathogen elicitors, and oxidative stress caused by heat, drought, flooding, UV light, or temperature extremes is often mediated by integrating signaling molecules such as jasmonate, salicylic acid, and their derivatives. Ontogeny and circadian clock-controlled gene expression are also important features of plant secondary metabolism, as are master regulatory transcription factors. These regulators are attractive targets for engineering secondary metabolic pathways. In spite of the complexity of secondary metabolism, important advances have been achieved, leading to success stories in engineering this diverse reservoir of useful molecules.
Collapse
Affiliation(s)
- Naíla Cannes do Nascimento
- Department of Botany and Plant Physiology Laboratory, Center for Biotechnology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | |
Collapse
|
270
|
Zulak KG, Bohlmann J. Terpenoid biosynthesis and specialized vascular cells of conifer defense. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2010; 52:86-97. [PMID: 20074143 DOI: 10.1111/j.1744-7909.2010.00910.x] [Citation(s) in RCA: 155] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Defense-related terpenoid biosynthesis in conifers is a dynamic process closely associated with specialized anatomical structures that allows conifers to cope with attack from many potential pests and pathogens. The constitutive and inducible terpenoid defense of conifers involves several hundred different monoterpenes, sesquiterpenes and diterpenes. Changing arrays of these many compounds are formed from the general isoprenoid pathway by activities of large gene families for two classes of enzymes, the terpene synthases and the cytochrome P450-dependent monooxygenases of the CYP720B group. Extensive studies have been conducted on the genomics, proteomics and molecular biochemical characterization of these enzymes. Many of the conifer terpene synthases are multi-product enzymes, and the P450 enzymes of the CYP720B group are promiscuous in catalyzing multiple oxidations, along homologous series of diterpenoids, from a broad spectrum of substrates. The terpene synthases and CYP720B genes respond to authentic or simulated insect attack with increased transcript levels, protein abundance and enzyme activity. The constitutive and induced oleoresin terpenoids for conifer defense accumulate in preformed cortical resin ducts and in xylem trauma-associated resin ducts. Formation of these resin ducts de novo in the cambium zone and developing xylem, following insect attack or treatment of trees with methyl jasmonate, is a unique feature of the induced defense of long-lived conifer trees.
Collapse
Affiliation(s)
- Katherine G Zulak
- Michael Smith Laboratories, University of British Columbia, Vancouver BC V6T 1Z4, Canada
| | | |
Collapse
|
271
|
Affiliation(s)
- Cláudia L Prins
- Universidade Estadual do Norte Fluminense Darcy Ribeiro, Brazil
| | | | | |
Collapse
|
272
|
Khan ST, Izumikawa M, Motohashi K, Mukai A, Takagi M, Shin-Ya K. Distribution of the 3-hydroxyl-3-methylglutaryl coenzyme A reductase gene and isoprenoid production in marine-derived Actinobacteria. FEMS Microbiol Lett 2009; 304:89-96. [PMID: 20067528 DOI: 10.1111/j.1574-6968.2009.01886.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
During the course of our screening program to isolate isoprenoids from marine Actinobacteria, 523 actinobacterial strains were isolated from 18 marine sponges, a tunicate, and two marine sediments. These strains belonged to 21 different genera, but most were members of Streptomyces, Nocardia, Rhodococcus, and Micromonospora. Some Actinobacteria have been reported to use the mevalonate pathway for the production of isoprenoids as secondary metabolites. Therefore, we investigated whether these strains possessed the 3-hydroxyl-3-methylglutaryl coenzyme A reductase (hmgr) gene, which indicates the presence of the mevalonate pathway. As a result, six strains belonging to the genera Streptomyces (SpC080624SC-11, SpA080624GE-02, and Sp080513GE-23), Nocardia (Sp080513SC-18), and Micromonospora (Se080624GE-07 and SpC080624GE-05) were found to possess the hmgr gene, and these genes were highly similar to hmgr genes in isoprenoid biosynthetic gene clusters. Among the six strains, the two strains SpC080624SC-11 and SpA080624GE-02 produced the novel isoprenoids, JBIR-46, -47, and -48, which consisted of phenazine chromophores, and Sp080513GE-23 produced a known isoprenoid, fumaquinone. Furthermore, these compounds showed cytotoxic activity against human acute myelogenous leukemia HL-60 cells.
Collapse
Affiliation(s)
- Shams Tabrez Khan
- Biomedicinal Information Research Center, Japan Biological Informatics Consortium,Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
273
|
Reddy LH, Couvreur P. Squalene: A natural triterpene for use in disease management and therapy. Adv Drug Deliv Rev 2009; 61:1412-26. [PMID: 19804806 DOI: 10.1016/j.addr.2009.09.005] [Citation(s) in RCA: 203] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2009] [Revised: 09/18/2009] [Accepted: 09/21/2009] [Indexed: 01/11/2023]
Abstract
Squalene is a natural lipid belonging to the terpenoid family and a precursor of cholesterol biosynthesis. It is synthesized in humans and also in a wide array of organisms and substances, from sharks to olives and even bran, among others. Because of its significant dietary benefits, biocompatibility, inertness, and other advantageous properties, squalene is extensively used as an excipient in pharmaceutical formulations for disease management and therapy. In addition, squalene acts as a protective agent and has been shown to decrease chemotherapy-induced side-effects. Moreover, squalene alone exhibits chemopreventive activity. Although it is a weak inhibitor of tumor cell proliferation, it contributes either directly or indirectly to the treatment of cancer due to its potentiation effect. In addition, squalene enhances the immune response to various associated antigens, and it is therefore being investigated for vaccine delivery applications. Since this triterpene is well absorbed orally, it has been used to improve the oral delivery of therapeutic molecules. All of these qualities have rendered squalene a potentially interesting excipient for pharmaceutical applications, especially for the delivery of vaccines, drugs, genes, and other biological substances. This paper is the first review of its kind and offers greater insight into squalene's direct or indirect contribution to disease management and therapy.
Collapse
|
274
|
Chen F, Al-Ahmad H, Joyce B, Zhao N, Köllner TG, Degenhardt J, Stewart CN. Within-plant distribution and emission of sesquiterpenes from Copaifera officinalis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2009; 47:1017-1023. [PMID: 19648019 DOI: 10.1016/j.plaphy.2009.07.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Revised: 07/02/2009] [Accepted: 07/06/2009] [Indexed: 05/28/2023]
Abstract
Copaifera officinalis, the diesel tree, is known for massive production of oleoresin, mainly composed of sesquiterpene hydrocarbons. In this study, composition of these sesquiterpenes and their concentrations in leaves, stems and roots of C. officinalis at two developmental stages, including the three-week old (TW) seedlings and two-year old (TY) trees, were determined. The leaves of TW seedlings and TY trees contained similar number of sesquiterpenes, which also had comparable concentrations. The stems of TW seedlings had higher concentrations of sesquiterpenes than those of TY trees. In contrast, the number of sesquiterpene species and their concentrations in the roots of TW seedlings were much lower than those in the roots of TY trees. Cluster analysis of sesquiterpenes estimated that there are at least four terpene synthase genes involved in the production of sesquiterpenes in C. officinalis. Because sesquiterpenes are highly volatile, emissions of sesquiterpenes from healthy and wounded TW seedlings were examined using headspace analysis. Whereas very low emission of sesquiterpenes was detected from undamaged plants, the physically injured seedlings emitted a large number of sesquiterpenes, the quality and the relative quantity of which were similar to those in leaves determined using organic extraction. The implications of our findings to the biosynthetic pathways leading to the production of sesquiterpenes as well as their biological roles in C. officinalis are discussed.
Collapse
Affiliation(s)
- Feng Chen
- Department of Plant Sciences, 2431 Joe Johnson Drive, University of Tennessee, Tennessee 37996, USA.
| | | | | | | | | | | | | |
Collapse
|
275
|
Becerra JX, Noge K, Venable DL. Macroevolutionary chemical escalation in an ancient plant-herbivore arms race. Proc Natl Acad Sci U S A 2009; 106:18062-6. [PMID: 19706441 PMCID: PMC2775328 DOI: 10.1073/pnas.0904456106] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Indexed: 02/07/2023] Open
Abstract
A central paradigm in the field of plant-herbivore interactions is that the diversity and complexity of secondary compounds in plants have intensified over evolutionary time, resulting in the great variety of secondary products that currently exists. Unfortunately, testing of this proposal has been very limited. We analyzed the volatile chemistry of 70 species of the tropical plant genus Bursera and used a molecular phylogeny to test whether the species' chemical diversity or complexity have escalated. The results confirm that as new species diverged over time they tended to be armed not only with more compounds/species, but also with compounds that could potentially be more difficult for herbivores to adapt to because they belong to an increasing variety of chemical pathways. Overall chemical diversity in the genus also increased, but not as fast as species diversity, possibly because of allopatric species gaining improved defense with compounds that are new locally, but already in existence elsewhere.
Collapse
Affiliation(s)
- Judith X Becerra
- Department of Biosphere, University of Arizona, Tucson, AZ 85721, USA.
| | | | | |
Collapse
|
276
|
|
277
|
Trovati G, Sanches EA, Chierice GO. TLC Separation and Identification of the Essential Oil Constituents from Aloysia gratissima. J LIQ CHROMATOGR R T 2009. [DOI: 10.1080/10826070902768179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- G. Trovati
- a Instituto de Química de São Carlos , Universidade de São Paulo, CP Grupo de Química Analítica e Tecnologia de Polímeros , São Carlos, SP, Brasil
| | - E. A. Sanches
- b Instituto de Física de São Carlos , Universidade de São Paulo, CP Grupo de Cristalografia (GC) , São Carlos, SP, Brasil
| | - G. O. Chierice
- b Instituto de Física de São Carlos , Universidade de São Paulo, CP Grupo de Cristalografia (GC) , São Carlos, SP, Brasil
| |
Collapse
|
278
|
Ralph SG, Chun HJE, Kolosova N, Cooper D, Oddy C, Ritland CE, Kirkpatrick R, Moore R, Barber S, Holt RA, Jones SJM, Marra MA, Douglas CJ, Ritland K, Bohlmann J. A conifer genomics resource of 200,000 spruce (Picea spp.) ESTs and 6,464 high-quality, sequence-finished full-length cDNAs for Sitka spruce (Picea sitchensis). BMC Genomics 2008; 9:484. [PMID: 18854048 PMCID: PMC2579922 DOI: 10.1186/1471-2164-9-484] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2008] [Accepted: 10/14/2008] [Indexed: 11/10/2022] Open
Abstract
Background Members of the pine family (Pinaceae), especially species of spruce (Picea spp.) and pine (Pinus spp.), dominate many of the world's temperate and boreal forests. These conifer forests are of critical importance for global ecosystem stability and biodiversity. They also provide the majority of the world's wood and fiber supply and serve as a renewable resource for other industrial biomaterials. In contrast to angiosperms, functional and comparative genomics research on conifers, or other gymnosperms, is limited by the lack of a relevant reference genome sequence. Sequence-finished full-length (FL)cDNAs and large collections of expressed sequence tags (ESTs) are essential for gene discovery, functional genomics, and for future efforts of conifer genome annotation. Results As part of a conifer genomics program to characterize defense against insects and adaptation to local environments, and to discover genes for the production of biomaterials, we developed 20 standard, normalized or full-length enriched cDNA libraries from Sitka spruce (P. sitchensis), white spruce (P. glauca), and interior spruce (P. glauca-engelmannii complex). We sequenced and analyzed 206,875 3'- or 5'-end ESTs from these libraries, and developed a resource of 6,464 high-quality sequence-finished FLcDNAs from Sitka spruce. Clustering and assembly of 147,146 3'-end ESTs resulted in 19,941 contigs and 26,804 singletons, representing 46,745 putative unique transcripts (PUTs). The 6,464 FLcDNAs were all obtained from a single Sitka spruce genotype and represent 5,718 PUTs. Conclusion This paper provides detailed annotation and quality assessment of a large EST and FLcDNA resource for spruce. The 6,464 Sitka spruce FLcDNAs represent the third largest sequence-verified FLcDNA resource for any plant species, behind only rice (Oryza sativa) and Arabidopsis (Arabidopsis thaliana), and the only substantial FLcDNA resource for a gymnosperm. Our emphasis on capturing FLcDNAs and ESTs from cDNA libraries representing herbivore-, wound- or elicitor-treated induced spruce tissues, along with incorporating normalization to capture rare transcripts, resulted in a rich resource for functional genomics and proteomics studies. Sequence comparisons against five plant genomes and the non-redundant GenBank protein database revealed that a substantial number of spruce transcripts have no obvious similarity to known angiosperm gene sequences. Opportunities for future applications of the sequence and clone resources for comparative and functional genomics are discussed.
Collapse
Affiliation(s)
- Steven G Ralph
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
279
|
Schwab W, Davidovich-Rikanati R, Lewinsohn E. Biosynthesis of plant-derived flavor compounds. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 54:712-32. [PMID: 18476874 DOI: 10.1111/j.1365-313x.2008.03446.x] [Citation(s) in RCA: 636] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Plants have the capacity to synthesize, accumulate and emit volatiles that may act as aroma and flavor molecules due to interactions with human receptors. These low-molecular-weight substances derived from the fatty acid, amino acid and carbohydrate pools constitute a heterogenous group of molecules with saturated and unsaturated, straight-chain, branched-chain and cyclic structures bearing various functional groups (e.g. alcohols, aldehydes, ketones, esters and ethers) and also nitrogen and sulfur. They are commercially important for the food, pharmaceutical, agricultural and chemical industries as flavorants, drugs, pesticides and industrial feedstocks. Due to the low abundance of the volatiles in their plant sources, many of the natural products had been replaced by their synthetic analogues by the end of the last century. However, the foreseeable shortage of the crude oil that is the source for many of the artificial flavors and fragrances has prompted recent interest in understanding the formation of these compounds and engineering their biosynthesis. Although many of the volatile constituents of flavors and aromas have been identified, many of the enzymes and genes involved in their biosynthesis are still not known. However, modification of flavor by genetic engineering is dependent on the knowledge and availability of genes that encode enzymes of key reactions that influence or divert the biosynthetic pathways of plant-derived volatiles. Major progress has resulted from the use of molecular and biochemical techniques, and a large number of genes encoding enzymes of volatile biosynthesis have recently been reported.
Collapse
Affiliation(s)
- Wilfried Schwab
- Biomolecular Food Technology, Technical University Munich, 85354 Freising, Lise-Meitner-Strasse 34, Germany.
| | | | | |
Collapse
|
280
|
Benning C, Pichersky E. Harnessing plant biomass for biofuels and biomaterials. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 54:533-535. [PMID: 18476860 DOI: 10.1111/j.1365-313x.2008.03512.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
|