251
|
Wang RQ, Zhao WS, Hu GR, Ponce-Gordo F, Zou H, Li WX, Wu SG, Wang GT, Li M. Redescription of Opalina triangulata (Heterokonta, Opalinea) from Fejervarya limnocharis based on morphological and molecular data. Eur J Protistol 2019; 71:125639. [DOI: 10.1016/j.ejop.2019.125639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 08/28/2019] [Accepted: 09/04/2019] [Indexed: 10/26/2022]
|
252
|
Borg Dahl M, Brejnrod AD, Russel J, Sørensen SJ, Schnittler M. Different Degrees of Niche Differentiation for Bacteria, Fungi, and Myxomycetes Within an Elevational Transect in the German Alps. MICROBIAL ECOLOGY 2019; 78:764-780. [PMID: 30903202 DOI: 10.1007/s00248-019-01347-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 02/17/2019] [Indexed: 06/09/2023]
Abstract
We used direct DNA amplification from soil extracts to analyze microbial communities from an elevational transect in the German Alps by parallel metabarcoding of bacteria (16S rRNA), fungi (ITS2), and myxomycetes (18S rRNA). For the three microbial groups, 5710, 6133, and 261 operational taxonomic units (OTU) were found. For the latter group, we can relate OTUs to barcodes from fruit bodies sampled over a 4-year period. The alpha diversity of myxomycetes was positively correlated with that of bacteria. Vegetation type was found to be the main explanatory parameter for the community composition of all three groups and a substantial species turnover with elevation was observed. Bacteria and fungi display similar community responses, driven by symbiont species and plant substrate quality. Myxamoebae show a more patchy distribution, though still clearly stratified between taxa, which seems to be a response to both structural properties of the habitat and interaction with specific bacterial and fungal taxa. Finally, we report a high number of myxomycete OTUs not represented in a reference database from fructifications, which might represent novel species.
Collapse
Affiliation(s)
- Mathilde Borg Dahl
- Institute of Botany and Landscape Ecology, University of Greifswald, Soldmannstrasse 15, 17487, Greifswald, Mecklenburg-Vorpommern, Germany.
| | - Asker Daniel Brejnrod
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Jakob Russel
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Søren Johannes Sørensen
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Martin Schnittler
- Institute of Botany and Landscape Ecology, University of Greifswald, Soldmannstrasse 15, 17487, Greifswald, Mecklenburg-Vorpommern, Germany
| |
Collapse
|
253
|
Analysis of Microbial Community Dynamics during the Acclimatization Period of a Membrane Bioreactor Treating Table Olive Processing Wastewater. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9183647] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Biological treatment of table olive processing wastewater (TOPW) may be problematic due to its high organic and polyphenolic compound content. Biomass acclimatization is a necessary, yet sensitive, stage for efficient TOPW biological treatment. Next-generation sequencing technologies can provide valuable insights into this critical process step. An aerobic membrane bioreactor (MBR) system, initially inoculated with municipal activated sludge, was acclimatized to treat TOPW. Operational stability and bioremediation efficiency were monitored for approx. three months, whereas microbial community dynamics and metabolic adaptation were assessed through metagenomic and metatranscriptomic analysis. A swift change was identified in both the prokaryotic and eukaryotic bio-community after introduction of TOPW in the MBR, and a new diverse bio-community was established. Thauera and Paracoccus spp. are dominant contributors to the metabolic activity of the stable bio-community, which resulted in over 90% and 85% removal efficiency of total organic carbon and total polyphenols, respectively. This is the first study assessing the microbial community dynamics in a well-defined MBR process treating TOPW, offering guidance in the start-up of large-scale applications.
Collapse
|
254
|
Sanchez Granel ML, Cánepa C, Cid NG, Navarro JC, Monroig Ó, Verstraeten SV, Nudel CB, Nusblat AD. Gene identification and functional characterization of a Δ12 fatty acid desaturase in Tetrahymena thermophila and its influence in homeoviscous adaptation to low temperature. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:1644-1655. [PMID: 31421180 DOI: 10.1016/j.bbalip.2019.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 08/07/2019] [Accepted: 08/10/2019] [Indexed: 01/26/2023]
Abstract
Homeoviscous adaptation in poikilotherms is based in the regulation of the level of desaturation of fatty acids, variation in phospholipids head groups and sterol content in the membrane lipids, in order to maintain the membrane fluidity in response to changes in environmental temperature. Increased proportion of unsaturated fatty acids is thought to be the main response to low-temperature acclimation, which is mostly achieved by fatty acid desaturases. Genome analysis of the ciliate Tetrahymena thermophila and a gene knockout approach has allowed us to identify one Δ12 FAD and to study its activity in the original host and in a yeast heterologous expression system. The "PUFA index" -relative content of polyunsaturated fatty acids compared to the sum of saturated and monounsaturated fatty acid content- was ~57% lower at 15 °C and 35 °C in the Δ12 FAD gene knockout strain (KOΔ12) compared to WT strain. We characterized the role of T. thermophila Δ12 FAD on homeoviscous adaptation and analyzed its involvement in cellular growth, cold stress response, and membrane fluidity, as well as its expression pattern during temperature shifts. Although these alterations allowed normal growth in the KOΔ12 strain at 30 °C or higher temperatures, growth was impaired at temperatures of 20 °C or lower, where homeoviscous adaptation is impaired. These results stress the importance of Δ12 FAD in the regulation of cold adaptation processes, as well as the suitability of T. thermophila as a valuable model to investigate the regulation of membrane lipids and evolutionary conservation and divergence of the underlying mechanisms.
Collapse
Affiliation(s)
- Maria L Sanchez Granel
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Nanobiotecnología (NANOBIOTEC), Facultad de Farmacia y Bioquímica, Junín, 956, C1113AAD Ciudad Autónoma de Buenos Aires, Argentina
| | - Camila Cánepa
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Biomédicas en Retrovirus y SIDA, Facultad de Medicina, Paraguay 2155, C1121ABG Ciudad Autónoma de Buenos Aires, Argentina
| | - Nicolas G Cid
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Nanobiotecnología (NANOBIOTEC), Facultad de Farmacia y Bioquímica, Junín, 956, C1113AAD Ciudad Autónoma de Buenos Aires, Argentina
| | - Juan C Navarro
- Instituto de Acuicultura Torre de la Sal, CSIC (IATS-CSIC), Ribera de Cabanes, 12595, Castellón, Spain
| | - Óscar Monroig
- Instituto de Acuicultura Torre de la Sal, CSIC (IATS-CSIC), Ribera de Cabanes, 12595, Castellón, Spain
| | - Sandra V Verstraeten
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Facultad de Farmacia y Bioquímica, Paraguay 2155, C1121ABG Ciudad Autónoma de Buenos Aires, Argentina
| | - Clara B Nudel
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Nanobiotecnología (NANOBIOTEC), Facultad de Farmacia y Bioquímica, Junín, 956, C1113AAD Ciudad Autónoma de Buenos Aires, Argentina
| | - Alejandro D Nusblat
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Nanobiotecnología (NANOBIOTEC), Facultad de Farmacia y Bioquímica, Junín, 956, C1113AAD Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
255
|
There Is Treasure Everywhere: Reductive Plastid Evolution in Apicomplexa in Light of Their Close Relatives. Biomolecules 2019; 9:biom9080378. [PMID: 31430853 PMCID: PMC6722601 DOI: 10.3390/biom9080378] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/16/2019] [Accepted: 08/16/2019] [Indexed: 02/05/2023] Open
Abstract
The phylum Apicomplexa (Alveolates) comprises a group of host-associated protists, predominately intracellular parasites, including devastating parasites like Plasmodium falciparum, the causative agent of malaria. One of the more fascinating characteristics of Apicomplexa is their highly reduced (and occasionally lost) remnant plastid, termed the apicoplast. Four core metabolic pathways are retained in the apicoplast: heme synthesis, iron–sulfur cluster synthesis, isoprenoid synthesis, and fatty acid synthesis. It has been suggested that one or more of these pathways are essential for plastid and plastid genome retention. The past decade has witnessed the discovery of several apicomplexan relatives, and next-generation sequencing efforts are revealing that they retain variable plastid metabolic capacities. These data are providing clues about the core genes and pathways of reduced plastids, while at the same time further confounding our view on the evolutionary history of the apicoplast. Here, we examine the evolutionary history of the apicoplast, explore plastid metabolism in Apicomplexa and their close relatives, and propose that the differences among reduced plastids result from a game of endosymbiotic roulette. Continued exploration of the Apicomplexa and their relatives is sure to provide new insights into the evolution of the apicoplast and apicomplexans as a whole.
Collapse
|
256
|
De la Fuente IM, Bringas C, Malaina I, Fedetz M, Carrasco-Pujante J, Morales M, Knafo S, Martínez L, Pérez-Samartín A, López JI, Pérez-Yarza G, Boyano MD. Evidence of conditioned behavior in amoebae. Nat Commun 2019; 10:3690. [PMID: 31417086 PMCID: PMC6695432 DOI: 10.1038/s41467-019-11677-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 07/26/2019] [Indexed: 01/05/2023] Open
Abstract
Associative memory is the main type of learning by which complex organisms endowed with evolved nervous systems respond efficiently to certain environmental stimuli. It has been found in different multicellular species, from cephalopods to humans, but never in individual cells. Here we describe a motility pattern consistent with associative conditioned behavior in the microorganism Amoeba proteus. We use a controlled direct-current electric field as the conditioned stimulus, and a specific chemotactic peptide as the unconditioned stimulus. The amoebae are capable of linking two independent past events, generating persistent locomotion movements that can prevail for 44 min on average. We confirm a similar behavior in a related species, Metamoeba leningradensis. Thus, our results indicate that unicellular organisms can modify their behavior during migration by associative conditioning.
Collapse
Affiliation(s)
- Ildefonso M De la Fuente
- Department of Nutrition, CEBAS-CSIC Institute, Espinardo University Campus, Murcia, 30100, Spain.
- Department of Mathematics, Faculty of Science and Technology, University of the Basque Country, UPV/EHU, Leioa, 48940, Spain.
| | - Carlos Bringas
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country, UPV/EHU, Leioa, 48940, Spain
| | - Iker Malaina
- Department of Mathematics, Faculty of Science and Technology, University of the Basque Country, UPV/EHU, Leioa, 48940, Spain
| | - María Fedetz
- Department of Cell Biology and Immunology, Institute of Parasitology and Biomedicine "López-Neyra", CSIC, Granada, 18016, Spain
| | - Jose Carrasco-Pujante
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country, UPV/EHU, Leioa, 48940, Spain
| | - Miguel Morales
- Biophysics Institute, CSIC-UPV/EHU, University of the Basque Country (UPV/EHU), Leioa, 48940, Spain
| | - Shira Knafo
- Biophysics Institute, CSIC-UPV/EHU, University of the Basque Country (UPV/EHU), Leioa, 48940, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, 48013, Spain
- Department of Physiology and Cell Biology, Faculty of Health Sciences, and The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Luis Martínez
- Department of Mathematics, Faculty of Science and Technology, University of the Basque Country, UPV/EHU, Leioa, 48940, Spain
- Basque Center of Applied Mathematics (BCAM), Bilbao, 48009, Spain
| | - Alberto Pérez-Samartín
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country, UPV/EHU, Leioa, 48940, Spain
| | - José I López
- Department of Pathology, Cruces University Hospital, Biocruces-Bizkaia Health Research Institute, University of the Basque Country (UPV/EHU), Barakaldo, 48903, Spain
| | - Gorka Pérez-Yarza
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country, UPV/EHU, Leioa, 48940, Spain
| | - María Dolores Boyano
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country, UPV/EHU, Leioa, 48940, Spain
| |
Collapse
|
257
|
Zhang T, Yuan D, Xie J, Lei Y, Li J, Fang G, Tian L, Liu J, Cui Y, Zhang M, Xiao Y, Xu Y, Zhang J, Zhu M, Zhan S, Li S. Evolution of the cholesterol biosynthesis pathway in animals. Mol Biol Evol 2019; 36:2548-2556. [PMID: 31397867 DOI: 10.1093/molbev/msz167] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/10/2019] [Accepted: 07/03/2019] [Indexed: 01/11/2023] Open
Abstract
Cholesterol plays essential roles in animal development and disease progression. Here, we characterize the evolutionary pattern of the canonical cholesterol biosynthesis pathway (CBP) in the animal kingdom using both genome-wide analyses and functional experiments. CBP genes in the basal metazoans were inherited from their last common eukaryotic ancestor and evolutionarily conserved for cholesterol biosynthesis. The genomes of both the basal metazoans and deuterostomes retain almost the full set of CBP genes, while Cnidaria and many protostomes have independently experienced multiple massive losses of CBP genes that might be due to the geologic events during the Ediacaran period, such as the appearance of an exogenous sterol supply and the frequent perturbation of ocean oxygenation. Meanwhile, the indispensable utilization processes of cholesterol potentially strengthened the maintenance of the complete set of CBP genes in vertebrates. These results strengthen both biotic and abiotic roles in the macroevolution of a biosynthesis pathway in animals.
Collapse
Affiliation(s)
- Tingting Zhang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China.,Research Institute of Applied Biology, Shanxi University, Taiyuan, China.,CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Dongwei Yuan
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China.,CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jun Xie
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Yongxing Lei
- University of Chinese Academy of Sciences, Beijing, China.,Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Jianguo Li
- Institute of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Gangqi Fang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Ling Tian
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding/Guangdong Provincial Sericulture and Mulberry Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jiacheng Liu
- University of Chinese Academy of Sciences, Beijing, China.,The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Yingying Cui
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Min Zhang
- Research Institute of Applied Biology, Shanxi University, Taiyuan, China
| | - Youli Xiao
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Yongzhen Xu
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Jianzhen Zhang
- Research Institute of Applied Biology, Shanxi University, Taiyuan, China
| | - Maoyan Zhu
- State Key Laboratory of Paleobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing, China
| | - Shuai Zhan
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Sheng Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| |
Collapse
|
258
|
Gornik SG, Hu I, Lassadi I, Waller RF. The Biochemistry and Evolution of the Dinoflagellate Nucleus. Microorganisms 2019; 7:microorganisms7080245. [PMID: 31398798 PMCID: PMC6723414 DOI: 10.3390/microorganisms7080245] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/05/2019] [Accepted: 08/07/2019] [Indexed: 12/14/2022] Open
Abstract
Dinoflagellates are known to possess a highly aberrant nucleus-the so-called dinokaryon-that exhibits a multitude of exceptional biological features. These include: (1) Permanently condensed chromosomes; (2) DNA in a cholesteric liquid crystalline state, (3) extremely large DNA content (up to 200 pg); and, perhaps most strikingly, (4) a deficit of histones-the canonical building blocks of all eukaryotic chromatin. Dinoflagellates belong to the Alveolata clade (dinoflagellates, apicomplexans, and ciliates) and, therefore, the biological oddities observed in dinoflagellate nuclei are derived character states. Understanding the sequence of changes that led to the dinokaryon has been difficult in the past with poor resolution of dinoflagellate phylogeny. Moreover, lack of knowledge of their molecular composition has constrained our understanding of the molecular properties of these derived nuclei. However, recent advances in the resolution of the phylogeny of dinoflagellates, particularly of the early branching taxa; the realization that divergent histone genes are present; and the discovery of dinoflagellate-specific nuclear proteins that were acquired early in dinoflagellate evolution have all thrown new light nature and evolution of the dinokaryon.
Collapse
Affiliation(s)
- Sebastian G Gornik
- Centre for Organismal Studies (COS), Universität Heidelberg, 69120 Heidelberg, Germany.
| | - Ian Hu
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | - Imen Lassadi
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | - Ross F Waller
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| |
Collapse
|
259
|
Mylnikov AP, Tikhonenkov DV, Karpov SA, Wylezich C. Microscopical Studies on Ministeria vibrans Tong, 1997 (Filasterea) Highlight the Cytoskeletal Structure of the Common Ancestor of Filasterea, Metazoa and Choanoflagellata. Protist 2019; 170:385-396. [DOI: 10.1016/j.protis.2019.07.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 06/22/2019] [Accepted: 07/23/2019] [Indexed: 01/06/2023]
|
260
|
Alternative splicing is required for stage differentiation in malaria parasites. Genome Biol 2019; 20:151. [PMID: 31370870 PMCID: PMC6669979 DOI: 10.1186/s13059-019-1756-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 07/08/2019] [Indexed: 11/10/2022] Open
Abstract
Background In multicellular organisms, alternative splicing is central to tissue differentiation and identity. Unicellular protists lack multicellular tissue but differentiate into variable cell types during their life cycles. The role of alternative splicing in transitions between cell types and establishing cellular identity is currently unknown in any unicellular organism. Results To test whether alternative splicing in unicellular protists plays a role in cellular differentiation, we conduct RNA-seq to compare splicing in female and male sexual stages to asexual intraerythrocytic stages in the rodent malaria parasite Plasmodium berghei. We find extensive changes in alternative splicing between stages and a role for alternative splicing in sexual differentiation. Previously, general gametocyte differentiation was shown to be modulated by specific transcription factors. Here, we show that alternative splicing establishes a subsequent layer of regulation, controlling genes relating to consequent sex-specific differentiation of gametocytes. Conclusions We demonstrate that alternative splicing is reprogrammed during cellular differentiation of a unicellular protist. Disruption of an alternative splicing factor, PbSR-MG, perturbs sex-specific alternative splicing and decreases the ability of the parasites to differentiate into male gametes and oocysts, thereby reducing transmission between vertebrate and insect hosts. Our results reveal alternative splicing as an integral, stage-specific phenomenon in these protists and as a regulator of cellular differentiation that arose early in eukaryotic evolution. Electronic supplementary material The online version of this article (10.1186/s13059-019-1756-6) contains supplementary material, which is available to authorized users.
Collapse
|
261
|
Reis H, Schwebs M, Dietz S, Janzen CJ, Butter F. TelAP1 links telomere complexes with developmental expression site silencing in African trypanosomes. Nucleic Acids Res 2019; 46:2820-2833. [PMID: 29385523 PMCID: PMC5888660 DOI: 10.1093/nar/gky028] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 01/25/2018] [Indexed: 11/14/2022] Open
Abstract
During its life cycle, Trypanosoma brucei shuttles between a mammalian host and the tsetse fly vector. In the mammalian host, immune evasion of T. brucei bloodstream form (BSF) cells relies on antigenic variation, which includes monoallelic expression and periodic switching of variant surface glycoprotein (VSG) genes. The active VSG is transcribed from only 1 of the 15 subtelomeric expression sites (ESs). During differentiation from BSF to the insect-resident procyclic form (PCF), the active ES is transcriptionally silenced. We used mass spectrometry-based interactomics to determine the composition of telomere protein complexes in T. brucei BSF and PCF stages to learn more about the structure and functions of telomeres in trypanosomes. Our data suggest a different telomere complex composition in the two forms of the parasite. One of the novel telomere-associated proteins, TelAP1, forms a complex with telomeric proteins TbTRF, TbRAP1 and TbTIF2 and influences ES silencing kinetics during developmental differentiation.
Collapse
Affiliation(s)
- Helena Reis
- Department of Cell & Developmental Biology, Biocenter University of Würzburg, Würzburg 97074, Germany
| | - Marie Schwebs
- Department of Cell & Developmental Biology, Biocenter University of Würzburg, Würzburg 97074, Germany
| | - Sabrina Dietz
- Quantitative Proteomics, Institute of Molecular Biology (IMB), Mainz 55128, Germany
| | - Christian J Janzen
- Department of Cell & Developmental Biology, Biocenter University of Würzburg, Würzburg 97074, Germany
| | - Falk Butter
- Quantitative Proteomics, Institute of Molecular Biology (IMB), Mainz 55128, Germany
| |
Collapse
|
262
|
Comparative Pathobiology of the Intestinal Protozoan Parasites Giardia lamblia, Entamoeba histolytica, and Cryptosporidium parvum. Pathogens 2019; 8:pathogens8030116. [PMID: 31362451 PMCID: PMC6789772 DOI: 10.3390/pathogens8030116] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/25/2019] [Accepted: 07/25/2019] [Indexed: 02/07/2023] Open
Abstract
Protozoan parasites can infect the human intestinal tract causing serious diseases. In the following article, we focused on the three most prominent intestinal protozoan pathogens, namely, Giardia lamblia, Entamoeba histolytica, and Cryptosporidium parvum. Both C. parvum and G. lamblia colonize the duodenum, jejunum, and ileum and are the most common causative agents of persistent diarrhea (i.e., cryptosporidiosis and giardiasis). Entamoeba histolytica colonizes the colon and, unlike the two former pathogens, may invade the colon wall and disseminate to other organs, mainly the liver, thereby causing life-threatening amebiasis. Here, we present condensed information concerning the pathobiology of these three diseases.
Collapse
|
263
|
Müller J, Müller N. Nitroreductases of bacterial origin in Giardia lamblia: Potential role in detoxification of xenobiotics. Microbiologyopen 2019; 8:e904. [PMID: 31343119 PMCID: PMC7938412 DOI: 10.1002/mbo3.904] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 06/19/2019] [Accepted: 06/19/2019] [Indexed: 11/05/2022] Open
Abstract
The anaerobic parasite Giardia lamblia, causative agent of persistent diarrhea, contains a family of nitroreductase genes most likely acquired by lateral transfer from anaerobic bacteria or archaebacteria. Two of these nitroreductases, containing a ferredoxin domain at their N-terminus, NR1, and NR2, have been characterized previously. Here, we present the characterization of a third member of this family, NR3. In functional assays, recombinant NR1 and NR3 reduced quinones like menadione and the antibiotic tetracycline, and-to much lesser extents-the nitro compound dinitrotoluene. Conversely, recombinant NR2 had no activity on tetracycline. Escherichia coli expressing NR3 were less susceptible to tetracycline, but more susceptible to the nitro compound metronidazole under semi-aerobic growth conditions. G. lamblia overexpressing NR1 and NR3, but not lines overexpressing NR2, are more susceptible to the nitro drug nitazoxanide. These findings suggest that NR3 is an active quinone reductase with a mode of action similar to NR1, but different from NR2. The biological function of this family of enzymes may reside in the use of xenobiotics as final electron acceptors. Thereby, these enzymes may provide at least two evolutionary advantages namely a higher potential to recycle NAD(P) as electron acceptors for the (fermentative) energy and intermediary metabolism, and the possibility to inactivate toxic xenobiotics produced by microorganisms living in concurrence inside the intestinal habitat.
Collapse
Affiliation(s)
- Joachim Müller
- Vetsuisse Faculty, Institute of Parasitology, University of Berne, Berne, Switzerland
| | - Norbert Müller
- Vetsuisse Faculty, Institute of Parasitology, University of Berne, Berne, Switzerland
| |
Collapse
|
264
|
Higes M, García-Palencia P, Urbieta A, Nanetti A, Martín-Hernández R. Nosema apis and Nosema ceranae Tissue Tropism in Worker Honey Bees ( Apis mellifera). Vet Pathol 2019; 57:132-138. [PMID: 31342871 DOI: 10.1177/0300985819864302] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The microsporidia Nosema apis and Nosema ceranae are major honey bee pathogens that possess different characteristics in terms of the signs they produce, as well as disease development and transmission. Although the ventricular epithelium is generally considered the target tissue, indirect observations led to speculation that N. ceranae may also target other structures, possibly explaining at least some of the differences between these 2 species. To investigate the tropism of Nosema for honey bee tissues, we performed controlled laboratory infections by orally administering doses of 50 000 or 100 000 fresh mature spores of either species. The fat body was isolated from the infected bees, as well as organs from the digestive (esophagus, ventriculus, ileum, rectum), excretory (Malpighian tubules), circulatory (aorta, heart), respiratory (thoracic tracheas), exocrine (hypopharyngeal, mandibular and labial, cephalic, thoracic salivary glands), and sensory/nervous (brain, eyes and associated nerve structures, thoracic nerve ganglia) systems. Tissues were examined by light and electron microscopy at 7, 10, and 15 days postinfection. Both Nosema species were found to infect epithelial cells and clusters of regenerative cells in the ventriculus, and while the ileum and rectum contained spores of the microsporidia in the lumen, these structures did not show overt lesions. No stages of the parasites or cellular lesions were detected in the other organs tested, confirming the high tropism of both species for the ventricular epithelium cells. Thus, these direct histopathological observations indicate that neither of these 2 Nosema species exhibit tropism for honey bee organs other than the ventriculus.
Collapse
Affiliation(s)
- Mariano Higes
- Centro de Investigación Apícola y Agroambiental (CIAPA), Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal (IRIAF), Honey Bee Pathology Laboratory, Marchamalo, Guadalajara, Spain
| | - Pilar García-Palencia
- Department of Veterinary Medicine and Surgery, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Almudena Urbieta
- Centro de Investigación Apícola y Agroambiental (CIAPA), Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal (IRIAF), Honey Bee Pathology Laboratory, Marchamalo, Guadalajara, Spain
| | - Antonio Nanetti
- CREA Research Centre for Agriculture and Environment, Bologna, Italy
| | - Raquel Martín-Hernández
- Centro de Investigación Apícola y Agroambiental (CIAPA), Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal (IRIAF), Honey Bee Pathology Laboratory, Marchamalo, Guadalajara, Spain.,Fundación Parque Científico y Tecnológico de Albacete, Instituto de Recursos Humanos para la Ciencia y la Tecnología (INCRECYT), Albacete, Spain
| |
Collapse
|
265
|
Zhang T, Fan X, Gao F, Al-Farraj SA, El-Serehy HA, Song W. Further analyses on the phylogeny of the subclass Scuticociliatia (Protozoa, Ciliophora) based on both nuclear and mitochondrial data. Mol Phylogenet Evol 2019; 139:106565. [PMID: 31326515 DOI: 10.1016/j.ympev.2019.106565] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 07/13/2019] [Accepted: 07/17/2019] [Indexed: 11/24/2022]
Abstract
So far, the phylogenetic studies on ciliated protists have mainly based on single locus, the nuclear ribosomal DNA (rDNA). In order to avoid the limitations of single gene/genome trees and to add more data to systematic analyses, information from mitochondrial DNA sequence has been increasingly used in different lineages of ciliates. The systematic relationships in the subclass Scuticociliatia are extremely confused and largely unresolved based on nuclear genes. In the present study, we have characterized 72 new sequences, including 40 mitochondrial cytochrome oxidase c subunit I (COI) sequences, 29 mitochondrial small subunit ribosomal DNA (mtSSU-rDNA) sequences and three nuclear small subunit ribosomal DNA (nSSU-rDNA) sequences from 47 isolates of 44 morphospecies. Phylogenetic analyses based on single gene as well as concatenated data were performed and revealed: (1) compared to mtSSU-rDNA, COI gene reveals more consistent relationships with those of nSSU-rDNA; (2) the secondary structures of mtSSU-rRNA V4 region are predicted and compared in scuticociliates, which can contribute to discrimination of closely related species; (3) neither nuclear nor mitochondrial data support the monophyly of the order Loxocephalida, which may represent some divergent and intermediate lineages between the subclass Scuticociliatia and Hymenostomatia; (4) the assignments of thigmotrichids to the order Pleuronematida and the confused taxon Sulcigera comosa to the genus Histiobalantium are confirmed by mitochondrial genes; (5) both nuclear and mitochondrial data reveal that the species in the family Peniculistomatidae always group in the genus Pleuronema, suggesting that peniculistomatids are more likely evolved from Pleuronema-like ancestors; (6) mitochondrial genes support the monophyly of the order Philasterida, but the relationships among families of the order Philasterida remain controversial due to the discrepancies between their morphological and molecular data.
Collapse
Affiliation(s)
- Tengteng Zhang
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, China
| | - Xinpeng Fan
- School of Life Sciences, East China Normal University, Shanghai 200241 China
| | - Feng Gao
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, China.
| | - Saleh A Al-Farraj
- Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Hamed A El-Serehy
- Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Weibo Song
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China.
| |
Collapse
|
266
|
Elguero ME, Tomazic ML, Montes MG, Florin-Christensen M, Schnittger L, Nusblat AD. The Cryptosporidium parvum gp60 glycoprotein expressed in the ciliate Tetrahymena thermophila is immunoreactive with sera of calves infected with Cryptosporidium oocysts. Vet Parasitol 2019; 271:45-50. [PMID: 31303202 DOI: 10.1016/j.vetpar.2019.06.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 06/07/2019] [Accepted: 06/10/2019] [Indexed: 11/27/2022]
Abstract
Cryptosporidium parvum is a protozoan parasite of the phylum Apicomplexa responsible for cryptosporidiosis in calves, a disease that causes significant diarrhea and impairs gain of body weight, generating important production losses. As to now, no effective drugs or vaccines are available for the treatment or prevention of bovine cryptosporidiosis. Several reports suggest that development of a vaccine to prevent cryptosporidiosis is feasible, but relatively few vaccine candidates have been characterized and tested. The most prominent C. parvum antigen is gp60, an O-glycosylated mucin-like protein tethered to the parasite membrane by a glycosylphosphatidylinositol (GPI) anchor. Gp60 has been shown to be involved in essential mechanisms for the survival of C. parvum, such as recognition, adhesion to, and invasion of host cells. This work was aimed at expressing gp60 in Tetrahymena thermophila, a ciliated protozoon with numerous advantages for the heterologous expression of eukaryotic proteins, as a first approach for the development of a recombinant vaccine for bovine cryptosporidiosis. T. thermophila-expressed gp60 localized to the protozoon cell surface and oral apparatus, and partitioned into the Triton X-114 detergent phase. This indicates that the protein entered the reticuloendothelial system of the ciliate, and suggests it contains a GPI-anchor. Homogenates of gp60-expressing T. thermophila cells were recognized by sera from calves naturally infected with C. parvum demonstrating their immunoreactivity. In summary, the heterologous expression of gp60, a C. parvum-encoded GPI-anchored protein, has been successfully demonstrated in the ciliate T. thermophila.
Collapse
Affiliation(s)
- María E Elguero
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Nanobiotecnología (NANOBIOTEC), Facultad de Farmacia y Bioquímica, Junín, 956 (C1113AAD), Ciudad Autónoma de Buenos Aires, Argentina
| | - Mariela L Tomazic
- Instituto Nacional de Tecnología Agropecuaria. CONICET. Instituto de Patobiología Veterinaria (IPVET), CICVyA, Hurlingham, Prov. de Buenos Aires, Argentina; CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - María G Montes
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Nanobiotecnología (NANOBIOTEC), Facultad de Farmacia y Bioquímica, Junín, 956 (C1113AAD), Ciudad Autónoma de Buenos Aires, Argentina
| | - Mónica Florin-Christensen
- Instituto Nacional de Tecnología Agropecuaria. CONICET. Instituto de Patobiología Veterinaria (IPVET), CICVyA, Hurlingham, Prov. de Buenos Aires, Argentina; CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - Leonhard Schnittger
- Instituto Nacional de Tecnología Agropecuaria. CONICET. Instituto de Patobiología Veterinaria (IPVET), CICVyA, Hurlingham, Prov. de Buenos Aires, Argentina; CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - Alejandro D Nusblat
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Nanobiotecnología (NANOBIOTEC), Facultad de Farmacia y Bioquímica, Junín, 956 (C1113AAD), Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
267
|
Garg J, Saettone A, Nabeel-Shah S, Cadorin M, Ponce M, Marquez S, Pu S, Greenblatt J, Lambert JP, Pearlman RE, Fillingham J. The Med31 Conserved Component of the Divergent Mediator Complex in Tetrahymena thermophila Participates in Developmental Regulation. Curr Biol 2019; 29:2371-2379.e6. [PMID: 31280994 DOI: 10.1016/j.cub.2019.06.052] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/18/2019] [Accepted: 06/18/2019] [Indexed: 11/24/2022]
Abstract
Mediator is a large protein complex required for basal and regulated expression of most RNA polymerase II (RNAP II)-transcribed genes, in part due to its interaction with and phosphorylation of the conserved C-terminal domain (CTD) of Rpb1 [1, 2]. Mediator has been implicated in many aspects of gene expression including chromatin looping [3], higher-order chromatin folding [4], mRNA processing [5] and export [6], and transcriptional memory [7]. Mediator is thought to have played a major role during eukaryotic diversification [8, 9], although its function remains unknown in evolutionarily deep branching eukaryotes lacking canonical CTD heptad repeats. We used the ciliate protozoan Tetrahymena thermophila as a model organism whose genome encodes a highly divergent Rpb1 lacking canonical CTD heptad repeats. We endogenously tagged the Med31 subunit of the Mediator complex and performed affinity purification coupled with mass spectrometry (AP-MS) to identify Mediator subunits. We found that Med31 physically interacts with a large number of proteins (>20), several of which share similarities to canonical Mediator subunits in yeast and humans as well as Tetrahymena-specific proteins. Furthermore, Med31 ChIP-seq analysis suggested a global role for Mediator in transcription regulation. We demonstrated that MED31 knockdown in growing Tetrahymena results in the ectopic expression of developmental genes important for programmed DNA rearrangements. In addition, indirect immunofluorescence revealed Med31 localization in meiotic micronuclei, implicating Mediator in RNAPII-dependent ncRNA transcription. Our results reveal structural and functional insights and implicate Mediator as an ancient cellular machinery for transcription regulation with a possible involvement in global transcription of ncRNAs.
Collapse
Affiliation(s)
- Jyoti Garg
- Department of Biology, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada
| | - Alejandro Saettone
- Department of Chemistry and Biology, Ryerson University, 350 Victoria Street, Toronto, ON M5B 2K3, Canada
| | - Syed Nabeel-Shah
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Matthew Cadorin
- Department of Chemistry and Biology, Ryerson University, 350 Victoria Street, Toronto, ON M5B 2K3, Canada
| | - Marcelo Ponce
- SciNet HPC Consortium, University of Toronto, 661 University Avenue, Suite 1140, Toronto, ON M5G 1M1, Canada
| | - Susanna Marquez
- Department of Biology, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada
| | - Shuye Pu
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Jack Greenblatt
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Jean-Philippe Lambert
- Department of Molecular Medicine and Cancer Research Centre, Université Laval, Quebec, QC, Canada; CHU de Québec Research Center, CHUL, 2705 Laurier Boulevard, Quebec, QC G1V 4G2, Canada
| | - Ronald E Pearlman
- Department of Biology, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada
| | - Jeffrey Fillingham
- Department of Chemistry and Biology, Ryerson University, 350 Victoria Street, Toronto, ON M5B 2K3, Canada.
| |
Collapse
|
268
|
Ashraf K, Nabeel-Shah S, Garg J, Saettone A, Derynck J, Gingras AC, Lambert JP, Pearlman RE, Fillingham J. Proteomic Analysis of Histones H2A/H2B and Variant Hv1 in Tetrahymena thermophila Reveals an Ancient Network of Chaperones. Mol Biol Evol 2019; 36:1037-1055. [PMID: 30796450 PMCID: PMC6502085 DOI: 10.1093/molbev/msz039] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Epigenetic information, which can be passed on independently of the DNA sequence, is stored in part in the form of histone posttranslational modifications and specific histone variants. Although complexes necessary for deposition have been identified for canonical and variant histones, information regarding the chromatin assembly pathways outside of the Opisthokonts remains limited. Tetrahymena thermophila, a ciliated protozoan, is particularly suitable to study and unravel the chromatin regulatory layers due to its unique physical separation of chromatin states in the form of two distinct nuclei present within the same cell. Using a functional proteomics pipeline, we carried out affinity purification followed by mass spectrometry of endogenously tagged T. thermophila histones H2A, H2B and variant Hv1.We identified a set of interacting proteins shared among the three analyzed histones that includes the FACT-complex, as well as H2A- or Hv1-specific chaperones. We find that putative subunits of T. thermophila versions of SWR- and INO80-complexes, as well as transcription-related histone chaperone Spt6Tt specifically copurify with Hv1. We also identified importin β6 and the T. thermophila ortholog of nucleoplasmin 1 (cNpl1Tt) as H2A–H2B interacting partners. Our results further implicate Poly [ADP-ribose] polymerases in histone metabolism. Molecular evolutionary analysis, reciprocal affinity purification coupled to mass spectrometry experiments, and indirect immunofluorescence studies using endogenously tagged Spt16Tt (FACT-complex subunit), cNpl1Tt, and PARP6Tt underscore the validity of our approach and offer mechanistic insights. Our results reveal a highly conserved regulatory network for H2A (Hv1)–H2B concerning their nuclear import and assembly into chromatin.
Collapse
Affiliation(s)
- Kanwal Ashraf
- Department of Biology, York University, Toronto, ON, Canada
| | - Syed Nabeel-Shah
- Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada.,Donnelly Centre, University of Toronto, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Jyoti Garg
- Department of Biology, York University, Toronto, ON, Canada
| | - Alejandro Saettone
- Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada
| | - Joanna Derynck
- Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada
| | - Anne-Claude Gingras
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.,Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Jean-Philippe Lambert
- Department of Molecular Medicine and Cancer Research Centre, Université Laval, Québec, QC, Canada.,CHU de Québec Research Center, CHUL, Québec, QC, Canada
| | | | - Jeffrey Fillingham
- Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada
| |
Collapse
|
269
|
Garavito MF, Narvaez-Ortiz HY, Pulido DC, Löffler M, Judelson HS, Restrepo S, Zimmermann BH. Phytophthora infestans Dihydroorotate Dehydrogenase Is a Potential Target for Chemical Control - A Comparison With the Enzyme From Solanum tuberosum. Front Microbiol 2019; 10:1479. [PMID: 31316493 PMCID: PMC6611227 DOI: 10.3389/fmicb.2019.01479] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 06/13/2019] [Indexed: 01/04/2023] Open
Abstract
The oomycete Phytophthora infestans is the causal agent of tomato and potato late blight, a disease that causes tremendous economic losses in the production of solanaceous crops. The similarities between oomycetes and the apicomplexa led us to hypothesize that dihydroorotate dehydrogenase (DHODH), the enzyme catalyzing the fourth step in pyrimidine biosynthetic pathway, and a validated drug target in treatment of malaria, could be a potential target for controlling P. infestans growth. In eukaryotes, class 2 DHODHs are mitochondrially associated ubiquinone-linked enzymes that catalyze the fourth, and only redox step of de novo pyrimidine biosynthesis. We characterized the enzymes from both the pathogen and a host, Solanum tuberosum. Plant DHODHs are known to be class 2 enzymes. Sequence analysis suggested that the pathogen enzyme (PiDHODHs) also belongs to this class. We confirmed the mitochondrial localization of GFP-PiDHODH showing colocalization with mCherry-labeled ATPase in a transgenic pathogen. N-terminally truncated versions of the two DHODHs were overproduced in E. coli, purified, and kinetically characterized. StDHODH exhibited a apparent specific activity of 41 ± 1 μmol min-1 mg-1, a kcatapp of 30 ± 1 s-1, and a Kmapp of 20 ± 1 μM for L-dihydroorotate, and a Kmapp= 30 ± 3 μM for decylubiquinone (Qd). PiDHODH exhibited an apparent specific activity of 104 ± 1 μmol min-1 mg-1, a kcatapp of 75 ± 1 s-1, and a Kmapp of 57 ± 3 μM for L-dihydroorotate, and a Kmapp of 15 ± 1 μM for Qd. The two enzymes exhibited different activities with different quinones and napthoquinone derivatives, and different sensitivities to compounds known to cause inhibition of DHODHs from other organisms. The IC50 for A77 1726, a nanomolar inhibitor of human DHODH, was 2.9 ± 0.6 mM for StDHODH, and 79 ± 1 μM for PiDHODH. In vivo, 0.5 mM A77 1726 decreased mycelial growth by approximately 50%, after 92 h. Collectively, our findings suggest that the PiDHODH could be a target for selective inhibitors and we provide a biochemical background for the development of compounds that could be helpful for the control of the pathogen, opening the way to protein crystallization.
Collapse
Affiliation(s)
- Manuel F Garavito
- Departamento de Ciencias Biológicas, Universidad de los Andes, Bogotá, Colombia.,Laboratorio de Micología y Fitopatología, Universidad de los Andes, Bogotá, Colombia
| | | | - Dania Camila Pulido
- Departamento de Ciencias Biológicas, Universidad de los Andes, Bogotá, Colombia
| | - Monika Löffler
- Faculty of Medicine, Department of Biology, University of Marburg, Marburg, Germany
| | - Howard S Judelson
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA, United States
| | - Silvia Restrepo
- Laboratorio de Micología y Fitopatología, Universidad de los Andes, Bogotá, Colombia
| | | |
Collapse
|
270
|
Vacek V, Novák LVF, Treitli SC, Táborský P, Cepicka I, Kolísko M, Keeling PJ, Hampl V. Fe-S Cluster Assembly in Oxymonads and Related Protists. Mol Biol Evol 2019; 35:2712-2718. [PMID: 30184127 PMCID: PMC6231488 DOI: 10.1093/molbev/msy168] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The oxymonad Monocercomonoides exilis was recently reported to be the first eukaryote that has completely lost the mitochondrial compartment. It was proposed that an important prerequisite for such a radical evolutionary step was the acquisition of the SUF Fe–S cluster assembly pathway from prokaryotes, making the mitochondrial ISC pathway dispensable. We have investigated genomic and transcriptomic data from six oxymonad species and their relatives, composing the group Preaxostyla (Metamonada, Excavata), for the presence and absence of enzymes involved in Fe–S cluster biosynthesis. None possesses enzymes of mitochondrial ISC pathway and all apparently possess the SUF pathway, composed of SufB, C, D, S, and U proteins, altogether suggesting that the transition from ISC to SUF preceded their last common ancestor. Interestingly, we observed that SufDSU were fused in all three oxymonad genomes, and in the genome of Paratrimastix pyriformis. The donor of the SUF genes is not clear from phylogenetic analyses, but the enzyme composition of the pathway and the presence of SufDSU fusion suggests Firmicutes, Thermotogae, Spirochaetes, Proteobacteria, or Chloroflexi as donors. The inventory of the downstream CIA pathway enzymes is consistent with that of closely related species that retain ISC, indicating that the switch from ISC to SUF did not markedly affect the downstream process of maturation of cytosolic and nuclear Fe–S proteins.
Collapse
Affiliation(s)
- Vojtech Vacek
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Lukáš V F Novák
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Sebastian C Treitli
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Petr Táborský
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Ivan Cepicka
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Martin Kolísko
- Institute of Parasitology, Biology Centre, Czech Academy of Science, České Budějovice, Czech Republic.,Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Patrick J Keeling
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Vladimír Hampl
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| |
Collapse
|
271
|
Abstract
In trypanosomes, RNA polymerase II transcription is polycistronic and individual mRNAs are excised by trans-splicing and polyadenylation. The lack of individual gene transcription control is compensated by control of mRNA processing, translation and degradation. Although the basic mechanisms of mRNA decay and translation are evolutionarily conserved, there are also unique aspects, such as the existence of six cap-binding translation initiation factor homologues, a novel decapping enzyme and an mRNA stabilizing complex that is recruited by RNA-binding proteins. High-throughput analyses have identified nearly a hundred regulatory mRNA-binding proteins, making trypanosomes valuable as a model system to investigate post-transcriptional regulation.
Collapse
Affiliation(s)
- Christine Clayton
- University of Heidelberg Center for Molecular Biology (ZMBH), Im Neuenheimer Feld 282, D69120 Heidelberg, Germany
| |
Collapse
|
272
|
Forger LV, Woolf MS, Simmons TL, Swall JL, Singh B. A eukaryotic community succession based method for postmortem interval (PMI) estimation of decomposing porcine remains. Forensic Sci Int 2019; 302:109838. [PMID: 31233889 DOI: 10.1016/j.forsciint.2019.05.054] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/24/2019] [Accepted: 05/26/2019] [Indexed: 10/26/2022]
Abstract
Recent, short-term studies on porcine and human models (albeit with few replicates) demonstrated that the succession of the microbial community of remains may be used to estimate time since death. Using a porcine model (N=6) over an extended period of time (1703 ADD, or two months), this study characterized the eukaryote community of decomposing remains. Skin microbial samples were collected from the torso of each set of remains every day during the first week, on alternate days during the second week, and once a week for the remainder of the 60-day period; all collection intervals were recorded in accumulated degree days (ADD). The eukaryote community of each sample was determined using 18S ribosomal DNA (rDNA) MiSeq high throughput sequencing; data were analyzed in the Mothur pipeline (v1.39.5) and in IBM SPSS and R statistical packages. The relative abundance of eukaryote taxa across ADD/Days and an Analysis of Molecular Variance (AMOVA) indicated similarities between sequential ADD/Days, but significant differences in the eukaryote communities as broad stage 'milestones' of decomposition were reached. Fresh remains (0-57 ADD/0-2 Days; exhibiting a total body score (TBS) of 0-10) were characterized by the combined presence of Saccharomycetaceae, Debaryomycetaceae, Trichosporonaceae, Rhabditida, and Trichostomatia. During bloat and active decay (87-209 ADD/3-7 Days; exhibiting TBS of 11-20), Diptera was the most abundant eukaryotic taxa. During advanced decay stage (267-448 ADD/9-15 Days; exhibiting TBS of 21-25), Rhabditida was the most dominant eukaryote. Dry/skeletal remains (734-1703 ADD/26-61 Days; TBS≥26) were dominated by fungal families Dipodascaceae, Debaryomycetaceae, Trichosporonaceae, and Sporidiobolaceae. Using the family-level eukaryote taxonomic data for the entire study, random forest modelling explained 89.58% of the variation in ADD/Days, with a root mean square error (RMSE) of 177.55 ADD (≈6 days). Overall, these results highlight the importance of the microbial eukaryote community during the process of decomposition and in estimation of PMI.
Collapse
Affiliation(s)
- Luisa V Forger
- Department of Forensic Science, Virginia Commonwealth University, Richmond, VA, United States; Visiting Scientist Program, Oak Ridge Institute for Science and Education, Stafford, VA, United States
| | - Michael S Woolf
- Department of Forensic Science, Virginia Commonwealth University, Richmond, VA, United States; Department of Chemistry, University of Virginia, Charlottesville, VA, United States
| | - Tal L Simmons
- Department of Forensic Science, Virginia Commonwealth University, Richmond, VA, United States
| | - Jenise L Swall
- Department of Statistical Sciences and Operations Research, Virginia Commonwealth University, Richmond, VA, United States
| | - Baneshwar Singh
- Department of Forensic Science, Virginia Commonwealth University, Richmond, VA, United States.
| |
Collapse
|
273
|
Shchepin ON, Schnittler M, Erastova DA, Prikhodko IS, Borg Dahl M, Azarov DV, Chernyaeva EN, Novozhilov YK. Community of dark-spored myxomycetes in ground litter and soil of taiga forest (Nizhne-Svirskiy Reserve, Russia) revealed by DNA metabarcoding. FUNGAL ECOL 2019. [DOI: 10.1016/j.funeco.2018.11.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
274
|
Palmgren M, Østerberg JT, Nintemann SJ, Poulsen LR, López-Marqués RL. Evolution and a revised nomenclature of P4 ATPases, a eukaryotic family of lipid flippases. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:1135-1151. [DOI: 10.1016/j.bbamem.2019.02.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 02/15/2019] [Accepted: 02/17/2019] [Indexed: 12/15/2022]
|
275
|
Plasmodium pseudo-Tyrosine Kinase-like binds PP1 and SERA5 and is exported to host erythrocytes. Sci Rep 2019; 9:8120. [PMID: 31148576 PMCID: PMC6544628 DOI: 10.1038/s41598-019-44542-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 05/15/2019] [Indexed: 01/13/2023] Open
Abstract
Pseudokinases play key roles in many biological processes but they are poorly understood compared to active kinases. Eight putative pseudokinases have been predicted in Plasmodium species. We selected the unique pseudokinase belonging to tyrosine kinase like (TKL) family for detailed structural and functional analysis in P. falciparum and P. berghei. The primary structure of PfpTKL lacks residues critical for kinase activity, supporting its annotation as a pseudokinase. The recombinant pTKL pseudokinase domain was able to bind ATP, but lacked catalytic activity as predicted. The sterile alpha motif (SAM) and RVxF motifs of PfpTKL were found to interact with the P. falciparum proteins serine repeat antigen 5 (SERA5) and protein phosphatase type 1 (PP1) respectively, suggesting that pTKL has a scaffolding role. Furthermore, we found that PP1c activity in a heterologous model was modulated in an RVxF-dependent manner. During the trophozoite stages, PbpTKL was exported to infected erythrocytes where it formed complexes with proteins involved in cytoskeletal organization or host cell maturation and homeostasis. Finally, genetic analysis demonstrated that viable strains obtained by genomic deletion or knocking down PbpTKL did not affect the course of parasite intra-erythrocytic development or gametocyte emergence, indicating functional redundancy during these parasite stages.
Collapse
|
276
|
Barkia I, Saari N, Manning SR. Microalgae for High-Value Products Towards Human Health and Nutrition. Mar Drugs 2019; 17:E304. [PMID: 31137657 PMCID: PMC6562505 DOI: 10.3390/md17050304] [Citation(s) in RCA: 235] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 04/02/2019] [Indexed: 12/15/2022] Open
Abstract
Microalgae represent a potential source of renewable nutrition and there is growing interest in algae-based dietary supplements in the form of whole biomass, e.g., Chlorella and Arthrospira, or purified extracts containing omega-3 fatty acids and carotenoids. The commercial production of bioactive compounds from microalgae is currently challenged by the biorefinery process. This review focuses on the biochemical composition of microalgae, the complexities of mass cultivation, as well as potential therapeutic applications. The advantages of open and closed growth systems are discussed, including common problems encountered with large-scale growth systems. Several methods are used for the purification and isolation of bioactive compounds, and many products from microalgae have shown potential as antioxidants and treatments for hypertension, among other health conditions. However, there are many unknown algal metabolites and potential impurities that could cause harm, so more research is needed to characterize strains of interest, improve overall operation, and generate safe, functional products.
Collapse
Affiliation(s)
- Ines Barkia
- Department of Food Science, Universiti Putra Malaysia, Selangor 43400, Malaysia.
| | - Nazamid Saari
- Department of Food Science, Universiti Putra Malaysia, Selangor 43400, Malaysia.
| | - Schonna R Manning
- Department of Molecular Biosciences, UTEX Culture Collection of Algae, University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
277
|
Bornens M. [Cell polarity and the innovation of the primary cilium/centrosome organ in Metazoa]. Med Sci (Paris) 2019; 35:452-461. [PMID: 31115328 DOI: 10.1051/medsci/2019092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Cell-autonomous polarity in Metazoans is inherited from ancestral unicellular organisms. We assume that permanent polarity in unicellular eukaryotes is required for cell motion and sensory reception and that the integration of these two activities corresponds to an evolutionary constrained cell function. While conserving the ancestral flagellum, Metazoans have co-opted a primary cilium/centrosome organ from it, ensuring similar functions, but in different cells, or in the same cell at different moments. We propose that the remodeling necessary to reach a new higher-level unit of selection in multi-cellular organisms, has been triggered by conflicts among individual cell polarities to reach an organismic polarity. We shall provisionally conclude that beyond critical consequences for embryo development, the conservation of cell-autonomous polarity in Metazoans has far reaching implications for the evolution of individuality.
Collapse
Affiliation(s)
- Michel Bornens
- Institut Curie, Université de recherche Paris-Sciences-et-Lettres, CNRS - UMR 144, 26, rue d'Ulm, 75248 Paris Cedex 05, France
| |
Collapse
|
278
|
Jones EBG, Pang KL, Abdel-Wahab MA, Scholz B, Hyde KD, Boekhout T, Ebel R, Rateb ME, Henderson L, Sakayaroj J, Suetrong S, Dayarathne MC, Kumar V, Raghukumar S, Sridhar KR, Bahkali AHA, Gleason FH, Norphanphoun C. An online resource for marine fungi. FUNGAL DIVERS 2019. [DOI: 10.1007/s13225-019-00426-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
279
|
Flegontova O, Flegontov P, Malviya S, Poulain J, de Vargas C, Bowler C, Lukeš J, Horák A. Neobodonids are dominant kinetoplastids in the global ocean. Environ Microbiol 2019; 20:878-889. [PMID: 29266706 DOI: 10.1111/1462-2920.14034] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 12/01/2017] [Accepted: 12/17/2017] [Indexed: 11/29/2022]
Abstract
Kinetoplastid flagellates comprise basal mostly free-living bodonids and derived obligatory parasitic trypanosomatids, which belong to the best-studied protists. Due to their omnipresence in aquatic environments and soil, the bodonids are of ecological significance. Here, we present the first global survey of marine kinetoplastids and compare it with the strikingly different patterns of abundance and diversity in their sister clade, the diplonemids. Based on analysis of 18S rDNA V9 ribotypes obtained from 124 sites sampled during the Tara Oceans expedition, our results show generally low to moderate abundance and diversity of planktonic kinetoplastids. Although we have identified all major kinetoplastid lineages, 98% of kinetoplastid reads are represented by neobodonids, namely specimens of the Neobodo and Rhynchomonas genera, which make up 59% and 18% of all reads, respectively. Most kinetoplastids have small cell size (0.8-5 µm) and tend to be more abundant in the mesopelagic as compared to the euphotic zone. Some of the most abundant operational taxonomic units have distinct geographical distributions, and three novel putatively parasitic neobodonids were identified, along with their potential hosts.
Collapse
Affiliation(s)
- Olga Flegontova
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic.,Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Pavel Flegontov
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic.,Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Shruti Malviya
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India.,Ecole Normale Supérieure, PSL Research University, Institut de Biologie de l'Ecole Normale Supérieure (IBENS), CNRS UMR 8197, INSERM U1024, 46 rue d'Ulm, Paris F-75005, France
| | - Julie Poulain
- CEA - GENOSCOPE - Institut François Jacob, 2 rue Gaston Crémieux, 91057 Evry, France.,CNRS, UMR 8030, CP5706, Evry, France.,Université d'Evry, UMR 8030, CP5706, Evry, France
| | - Colomban de Vargas
- Station Biologique de Roscoff, Roscoff, France.,Sorbonne Universités, Paris, France
| | - Chris Bowler
- Ecole Normale Supérieure, PSL Research University, Institut de Biologie de l'Ecole Normale Supérieure (IBENS), CNRS UMR 8197, INSERM U1024, 46 rue d'Ulm, Paris F-75005, France
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic.,Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Aleš Horák
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic.,Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| |
Collapse
|
280
|
Ribeiro H, Martins A, Gonçalves M, Guedes M, Tomasino MP, Dias N, Dias A, Mucha AP, Carvalho MF, Almeida CMR, Ramos S, Almeida JM, Silva E, Magalhães C. Development of an autonomous biosampler to capture in situ aquatic microbiomes. PLoS One 2019; 14:e0216882. [PMID: 31091277 PMCID: PMC6519839 DOI: 10.1371/journal.pone.0216882] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 04/30/2019] [Indexed: 11/18/2022] Open
Abstract
The importance of planktonic microbial communities is well acknowledged, since they are fundamental for several natural processes of aquatic ecosystems. Microorganisms naturally control the flux of nutrients, and also degrade and recycle anthropogenic organic and inorganic contaminants. Nevertheless, climate change effects and/or the runoff of nutrients/pollutants can affect the equilibrium of natural microbial communities influencing the occurrence of microbial pathogens and/or microbial toxin producers, which can compromise ecosystem environmental status. Therefore, improved microbial plankton monitoring is essential to better understand how these communities respond to environmental shifts. The study of marine microbial communities typically involves highly cost and time-consuming sampling procedures, which can limit the frequency of sampling and data availability. In this context, we developed and validated an in situ autonomous biosampler (IS-ABS) able to collect/concentrate in situ planktonic communities of different size fractions (targeting prokaryotes and unicellular eukaryotes) for posterior genomic, metagenomic, and/or transcriptomic analysis at a home laboratory. The IS-ABS field prototype is a small size and compact system able to operate up to 150 m depth. Water is pumped by a micropump (TCS MG2000) through a hydraulic circuit that allows in situ filtration of environmental water in one or more Sterivex filters placed in a filter cartridge. The IS-ABS also includes an application to program sampling definitions, allowing pre-setting configuration of the sampling. The efficiency of the IS-ABS was tested against traditional laboratory filtration standardized protocols. Results showed a good performance in terms of DNA recovery, as well as prokaryotic (16S rDNA) and eukaryotic (18S rDNA) community diversity analysis, using either methodologies. The IS-ABS automates the process of collecting environmental DNA, and is suitable for integration in water observation systems, what will contribute to substantially increase biological surveillances. Also, the use of highly sensitive genomic approaches allows a further study of the diversity and functions of whole or specific microbial communities.
Collapse
Affiliation(s)
- Hugo Ribeiro
- CIIMAR–Interdisciplinary Center of Marine and Environmental Research, University of Porto, Av. General Norton de Matos s/n, Matosinhos, Portugal
- Institute of Biomedical Sciences Abel Salazar (ICBAS-UP), University of Porto, Porto, Portugal
- * E-mail:
| | - Alfredo Martins
- INESC TEC–INESC Technology and Science, Porto, Portugal
- ISEP–School of Engineering, Polytechnic Institute of Porto, Porto, Portugal
| | | | | | - Maria Paola Tomasino
- CIIMAR–Interdisciplinary Center of Marine and Environmental Research, University of Porto, Av. General Norton de Matos s/n, Matosinhos, Portugal
| | - Nuno Dias
- INESC TEC–INESC Technology and Science, Porto, Portugal
- ISEP–School of Engineering, Polytechnic Institute of Porto, Porto, Portugal
| | - André Dias
- INESC TEC–INESC Technology and Science, Porto, Portugal
- ISEP–School of Engineering, Polytechnic Institute of Porto, Porto, Portugal
| | - Ana Paula Mucha
- CIIMAR–Interdisciplinary Center of Marine and Environmental Research, University of Porto, Av. General Norton de Matos s/n, Matosinhos, Portugal
| | - Maria F. Carvalho
- CIIMAR–Interdisciplinary Center of Marine and Environmental Research, University of Porto, Av. General Norton de Matos s/n, Matosinhos, Portugal
| | - C. Marisa R. Almeida
- CIIMAR–Interdisciplinary Center of Marine and Environmental Research, University of Porto, Av. General Norton de Matos s/n, Matosinhos, Portugal
| | - Sandra Ramos
- CIIMAR–Interdisciplinary Center of Marine and Environmental Research, University of Porto, Av. General Norton de Matos s/n, Matosinhos, Portugal
- Institute of Estuarine and Coastal Studies, University of Hull, Hull, United Kingdom
| | - José Miguel Almeida
- INESC TEC–INESC Technology and Science, Porto, Portugal
- ISEP–School of Engineering, Polytechnic Institute of Porto, Porto, Portugal
| | - Eduardo Silva
- INESC TEC–INESC Technology and Science, Porto, Portugal
- ISEP–School of Engineering, Polytechnic Institute of Porto, Porto, Portugal
| | - Catarina Magalhães
- CIIMAR–Interdisciplinary Center of Marine and Environmental Research, University of Porto, Av. General Norton de Matos s/n, Matosinhos, Portugal
- FCUP–Faculty of Sciences of University of Porto, Porto, Portugal
| |
Collapse
|
281
|
Grattepanche JD, Juarez DL, Wood CC, McManus GB, Katz LA. Incubation and grazing effects on spirotrich ciliate diversity inferred from molecular analyses of microcosm experiments. PLoS One 2019; 14:e0215872. [PMID: 31059530 PMCID: PMC6502329 DOI: 10.1371/journal.pone.0215872] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 04/09/2019] [Indexed: 11/25/2022] Open
Abstract
We used an experimental approach of analyzing marine microcosms to evaluate the impact of both predation (top-down) and food resources (bottom-up) on spirotrich ciliate communities. To assess the diversity, we used two molecular methods–denaturing gradient gel electrophoresis (DGGE) and high-throughput sequencing (HTS). We carried out two types of experiments to measure top-down (adult copepods as predators) and bottom-up effects (phytoplankton as food resources) on the spirotrich ciliates. We observed both strong incubation effects (untreated controls departed from initial assessment of diversity) and high variability across replicates within treatments, particularly for the bottom-up experiments. This suggests a rapid community turn-over during incubation and differential susceptibility to the effects of experimental manipulation. Despite the variability, our analyses reveal some broad patterns such as (1) increasing adult copepod predator abundance had a greater impact on spirotrich ciliates than on other microbial eukaryotes; (2) there was no evidence for strong food selection by the dominant spirotrich ciliates.
Collapse
Affiliation(s)
- Jean-David Grattepanche
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, United States of America
- * E-mail: (JDG); (LAK)
| | - Doris L. Juarez
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, United States of America
| | - Cameah C. Wood
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, United States of America
| | - George B. McManus
- Department of Marine Sciences, University of Connecticut, Groton, Connecticut, United States of America
| | - Laura A. Katz
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, United States of America
- Program in Organismic and Evolutionary Biology, University of Massachusetts, Amherst, Massachusetts, United States of America
- * E-mail: (JDG); (LAK)
| |
Collapse
|
282
|
Al Quraishy S, Abdel-Gaber R, El Deeb N, Maher S, Al-Shaebi E, Abdel-Ghaffar F. Ultrastructure and phylogenetic characterization of the microsporidian parasite Heterosporis lessepsianus n. sp. (Microsporidia: Glugeidae) infecting the lizardfish Saurida lessepsianus (Pisces: Synodontidae) inhabiting the Red Sea. Microb Pathog 2019; 130:10-18. [DOI: 10.1016/j.micpath.2019.02.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 02/22/2019] [Accepted: 02/23/2019] [Indexed: 11/30/2022]
|
283
|
Yao C, Ketzis JK. Aberrant and accidental trichomonad flagellate infections: rare or underdiagnosed? Trans R Soc Trop Med Hyg 2019; 112:64-72. [PMID: 29608771 DOI: 10.1093/trstmh/try027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 03/01/2018] [Indexed: 11/14/2022] Open
Abstract
The clinical significance and frequency of human infections with trichomonad flagellates in aberrant locations (locations other than the predilection sites) and accidental infections (infections with non-human trichomonads) are unclear. The total number of case reports in the literature is low, with the identification of the infection largely the outcome of investigations for the cause of clinical signs. At least seven species have been identified in either aberrant or accidental infections, with these infections occurring worldwide. Results of prospective and retrospective surveys of adults with respiratory disease suggest that aberrant and accidental trichomonad infections are less rare than the number of case reports suggest, with Trichomonas tenax being the most frequent. Surveys of neonates and infants suggest that aberrant Trichomonas vaginalis infections can be higher and more serious than suggested by the few case reports. The density and location of infection might be as important, if not more so, than species in determining pathogenicity. Molecular diagnostic methods including DNA sequencing can be used to better diagnose infections and enable identification to assist in determining the clinical significance of different species. Raising awareness of these infections among clinicians and adding them to their differential lists are strongly suggested.
Collapse
Affiliation(s)
- Chaoqun Yao
- Department of Biomedical Sciences and One Health Center for Zoonoses and Tropical Veterinary Medicine, Ross University School of Veterinary Medicine, Basseterre, St. Kitts, West Indies
| | - Jennifer K Ketzis
- Department of Biomedical Sciences and One Health Center for Zoonoses and Tropical Veterinary Medicine, Ross University School of Veterinary Medicine, Basseterre, St. Kitts, West Indies
| |
Collapse
|
284
|
Bråte J, Fuss J, Mehrota S, Jakobsen KS, Klaveness D. Draft genome assembly and transcriptome sequencing of the golden algae Hydrurus foetidus (Chrysophyceae). F1000Res 2019; 8:401. [PMID: 31632652 PMCID: PMC6784874 DOI: 10.12688/f1000research.16734.3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/03/2019] [Indexed: 01/01/2023] Open
Abstract
Hydrurusfoetidus is a freshwater chrysophyte alga. It thrives in cold rivers in polar and high alpine regions. It has several morphological traits reminiscent of single-celled eukaryotes, but can also form macroscopic thalli. Despite its ability to produce polyunsaturated fatty acids, its life under cold conditions and its variable morphology, very little is known about its genome and transcriptome. Here, we present an extensive set of next-generation sequencing data, including genomic short reads from Illumina sequencing and long reads from Nanopore sequencing, as well as full length cDNAs from PacBio IsoSeq sequencing and a small RNA dataset (smaller than 200 bp) sequenced with Illumina. The genome sequences were combined to produce an assembly consisting of 5069 contigs, with a total assembly size of 171 Mb and a 77% BUSCO completeness. The new data generated here may contribute to a better understanding of the evolution and ecological roles of chrysophyte algae, as well as to resolve the branching patterns at a larger phylogenetic scale.
Collapse
Affiliation(s)
- Jon Bråte
- Section for Genetics and Evolutionary Biology (EVOGENE), Department of Biosciences, University of Oslo, Oslo, 0316, Norway
| | - Janina Fuss
- Institute of Clinical Molecular Biology, Christian-Albrechts-University Kiel, Kiel, 24118, Germany
| | - Shruti Mehrota
- Section for Genetics and Evolutionary Biology (EVOGENE), Department of Biosciences, University of Oslo, Oslo, 0316, Norway.,Section for Aquatic Biology and Toxicology (AQUA), Department of Biosciences, University of Oslo, Oslo, 0316, Norway
| | - Kjetill S Jakobsen
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, 0316, Norway
| | - Dag Klaveness
- Section for Aquatic Biology and Toxicology (AQUA), Department of Biosciences, University of Oslo, Oslo, 0316, Norway
| |
Collapse
|
285
|
Busch JMC, Erat MC, Blank ID, Musgaard M, Biggin PC, Vakonakis I. A dynamically interacting flexible loop assists oligomerisation of the Caenorhabditis elegans centriolar protein SAS-6. Sci Rep 2019; 9:3526. [PMID: 30837637 PMCID: PMC6401066 DOI: 10.1038/s41598-019-40294-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 02/11/2019] [Indexed: 01/12/2023] Open
Abstract
Centrioles are conserved organelles fundamental for the organisation of microtubules in animal cells. Oligomerisation of the spindle assembly abnormal protein 6 (SAS-6) is an essential step in the centriole assembly process and may act as trigger for the formation of these organelles. SAS-6 oligomerisation is driven by two independent interfaces, comprising an extended coiled coil and a dimeric N-terminal globular domain. However, how SAS-6 oligomerisation is controlled remains unclear. Here, we show that in the Caenorhabditis elegans SAS-6, a segment of the N-terminal globular domain, unresolved in crystallographic structures, comprises a flexible loop that assists SAS-6 oligomerisation. Atomistic molecular dynamics simulations and nuclear magnetic resonance experiments suggest that transient interactions of this loop across the N-terminal dimerisation interface stabilise the SAS-6 oligomer. We discuss the possibilities presented by such flexible SAS-6 segments for the control of centriole formation.
Collapse
Affiliation(s)
- Julia M C Busch
- University of Oxford, Department of Biochemistry, Oxford, OX1 3QU, United Kingdom
| | - Michèle C Erat
- University of Oxford, Department of Biochemistry, Oxford, OX1 3QU, United Kingdom
- University of Warwick, Mathematical Institute, Coventry, CV4 7AL, United Kingdom
| | - Iris D Blank
- University of Oxford, Department of Biochemistry, Oxford, OX1 3QU, United Kingdom
| | - Maria Musgaard
- University of Oxford, Department of Biochemistry, Oxford, OX1 3QU, United Kingdom
- University of Ottawa, Department of Chemistry and Biomolecular Sciences, Ottawa, ON, K1N 6N5, Canada
| | - Philip C Biggin
- University of Oxford, Department of Biochemistry, Oxford, OX1 3QU, United Kingdom
| | - Ioannis Vakonakis
- University of Oxford, Department of Biochemistry, Oxford, OX1 3QU, United Kingdom.
| |
Collapse
|
286
|
Evolutionary dynamics of the chromatophore genome in three photosynthetic Paulinella species. Sci Rep 2019; 9:2560. [PMID: 30796245 PMCID: PMC6384880 DOI: 10.1038/s41598-019-38621-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 01/04/2019] [Indexed: 11/21/2022] Open
Abstract
The thecate amoeba Paulinella is a valuable model for understanding plastid organellogenesis because this lineage has independently gained plastids (termed chromatophores) of alpha-cyanobacterial provenance. Plastid primary endosymbiosis in Paulinella occurred relatively recently (90–140 million years ago, Mya), whereas the origin of the canonical Archaeplastida plastid occurred >1,500 Mya. Therefore, these two events provide independent perspectives on plastid formation on vastly different timescales. Here we generated the complete chromatophore genome sequence from P. longichromatophora (979,356 bp, GC-content = 38.8%, 915 predicted genes) and P. micropora NZ27 (977,190 bp, GC-content = 39.9%, 911 predicted genes) and compared these data to that from existing chromatophore genomes. Our analysis suggests that when a basal split occurred among photosynthetic Paulinella species ca. 60 Mya, only 35% of the ancestral orthologous gene families from the cyanobacterial endosymbiont remained in chromatophore DNA. Following major gene losses during the early stages of endosymbiosis, this process slowed down significantly, resulting in a conserved gene content across extant taxa. Chromatophore genes faced relaxed selection when compared to homologs in free-living alpha-cyanobacteria, likely reflecting the homogeneous intracellular environment of the Paulinella host. Comparison of nucleotide substitution and insertion/deletion events among different P. micropora strains demonstrates that increases in AT-content and genome reduction are ongoing and dynamic processes in chromatophore evolution.
Collapse
|
287
|
Canela-Pérez I, López-Villaseñor I, Mendoza L, Cevallos AM, Hernández R. Nuclear localization signals in trypanosomal proteins. Mol Biochem Parasitol 2019; 229:15-23. [PMID: 30772422 DOI: 10.1016/j.molbiopara.2019.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 01/14/2019] [Accepted: 02/09/2019] [Indexed: 01/04/2023]
Abstract
The nuclear import of proteins in eukaryotic cells is a fundamental biological process. While it has been analysed to different extents in model eukaryotic organisms, this event has rarely been studied in the early divergent protozoa of the order Kinetoplastida. The work presented here represents an overview of nuclear import in these important species of human pathogens. Initially, an in silico study of classical nuclear localization signals within the published nuclear proteomes of Trypanosoma brucei and Trypanosoma cruzi was carried out. The basic amino acids that comprise the monopartite and bipartite classical nuclear localization signals (cNLS) in trypanosomal proteins are similar to the consensus sequences observed for the nuclear proteins of yeasts, animals and plants. In addition, a summarized description of published studies that experimentally address the NLS of nuclear proteins in trypanosomatids is presented, and the clear occurrence of non-classical NLS (NLS that lack the consensus motifs of basic amino acids) in the analysed reports indicate a complex scenario for the types of receptors in these species. In general, the information presented here agrees with the hypothetical appearance of mechanisms for the recognition of nuclear proteins in early eukaryotic evolution.
Collapse
Affiliation(s)
- Israel Canela-Pérez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, CP 04360, México
| | - Imelda López-Villaseñor
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, CP 04360, México
| | - Luis Mendoza
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, CP 04360, México
| | - Ana María Cevallos
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, CP 04360, México
| | - Roberto Hernández
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, CP 04360, México.
| |
Collapse
|
288
|
Katris NJ, Ke H, McFadden GI, van Dooren GG, Waller RF. Calcium negatively regulates secretion from dense granules in Toxoplasma gondii. Cell Microbiol 2019; 21:e13011. [PMID: 30673152 PMCID: PMC6563121 DOI: 10.1111/cmi.13011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 12/05/2018] [Accepted: 01/17/2019] [Indexed: 12/23/2022]
Abstract
Apicomplexan parasites including Toxoplasma gondii and Plasmodium spp. manufacture a complex arsenal of secreted proteins used to interact with and manipulate their host environment. These proteins are organised into three principle exocytotic compartment types according to their functions: micronemes for extracellular attachment and motility, rhoptries for host cell penetration, and dense granules for subsequent manipulation of the host intracellular environment. The order and timing of these events during the parasite's invasion cycle dictates when exocytosis from each compartment occurs. Tight control of compartment secretion is, therefore, an integral part of apicomplexan biology. Control of microneme exocytosis is best understood, where cytosolic intermediate molecular messengers cGMP and Ca2+ act as positive signals. The mechanisms for controlling secretion from rhoptries and dense granules, however, are virtually unknown. Here, we present evidence that dense granule exocytosis is negatively regulated by cytosolic Ca2+, and we show that this Ca2+‐mediated response is contingent on the function of calcium‐dependent protein kinases TgCDPK1 and TgCDPK3. Reciprocal control of micronemes and dense granules provides an elegant solution to the mutually exclusive functions of these exocytotic compartments in parasite invasion cycles and further demonstrates the central role that Ca2+ signalling plays in the invasion biology of apicomplexan parasites.
Collapse
Affiliation(s)
- Nicholas J Katris
- Department of Biochemistry, University of Cambridge, Cambridge, UK.,School of Biosciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Huiling Ke
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Geoffrey I McFadden
- School of Biosciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Giel G van Dooren
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Ross F Waller
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| |
Collapse
|
289
|
Schulz G, Schneider D, Brinkmann N, Edy N, Daniel R, Polle A, Scheu S, Krashevska V. Changes in Trophic Groups of Protists With Conversion of Rainforest Into Rubber and Oil Palm Plantations. Front Microbiol 2019; 10:240. [PMID: 30809219 PMCID: PMC6380168 DOI: 10.3389/fmicb.2019.00240] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 01/29/2019] [Indexed: 11/13/2022] Open
Abstract
Protists, abundant but enigmatic single-celled eukaryotes, are important soil microbiota providing numerous ecosystem functions. We employed high-throughput sequencing of environmental DNA, targeting the V4 region of the 18S rRNA gene, to characterize changes in their abundance, species richness, and community structure with conversion of lowland rainforest into rubber agroforest (jungle rubber), and rubber and oil palm plantations; typical agricultural systems in Sumatra, Indonesia. We identified 5,204 operational taxonomic units (OTUs) at 97% identity threshold of protists from 32 sites. Protists species richness was similar in rainforest, jungle rubber and oil palm plantations but significantly lower in rubber plantations. After standardization, 4,219 OTUs were assigned to five trophic groups, and inspected for effects of land-use change, and potential biotic and abiotic driving factors. The most abundant trophic group was phagotrophs (52%), followed by animal parasites (29%), photoautotrophs (12%), plant parasites (1%), and symbionts (<1%). However, the relative abundance and OTU richness of phagotrophs and photoautotrophs increased significantly with increasing land-use intensity. This was similar, but less pronounced, for the relative abundance of symbionts. Animal and plant parasites decreased significantly in abundance and species richness with increasing land-use intensity. Community compositions and factors affecting the structure of individual trophic groups differed between land-use systems. Parasites were presumably mainly driven by the abundance and species richness of their hosts, while phagotrophs by changes in soil pH and increase in Gram-positive bacteria, and photoautotrophs by light availability. Overall, the results show that relative species richness, relative abundance, and community composition of individual trophic groups of protists in tropical lowland rainforest significantly differ from that in converted ecosystems. This is likely associated with changes in ecosystem functioning. The study provides novel insight into protist communities and their changes with land-use intensity in tropical lowland ecosystems. We show, that trophic groups of protists are powerful indicators reflecting changes in the functioning of ecosystems with conversion of rainforest into monoculture plantations.
Collapse
Affiliation(s)
- Garvin Schulz
- Johann-Friedrich-Blumenbach Institute for Zoology and Anthropology, University of Göttingen, Göttingen, Germany
| | - Dominik Schneider
- Department of Genomic and Applied Microbiology and Göttingen Genomics Laboratory, University of Göttingen, Göttingen, Germany
| | - Nicole Brinkmann
- Department of Forest Botany and Tree Physiology, University of Göttingen, Göttingen, Germany
| | - Nur Edy
- Department of Forest Botany and Tree Physiology, University of Göttingen, Göttingen, Germany
- Department of Agrotechnology, Faculty of Agriculture, Tadulako University, Palu, Indonesia
| | - Rolf Daniel
- Department of Genomic and Applied Microbiology and Göttingen Genomics Laboratory, University of Göttingen, Göttingen, Germany
| | - Andrea Polle
- Department of Forest Botany and Tree Physiology, University of Göttingen, Göttingen, Germany
- Centre of Biodiversity and Sustainable Land Use, University of Göttingen, Göttingen, Germany
| | - Stefan Scheu
- Johann-Friedrich-Blumenbach Institute for Zoology and Anthropology, University of Göttingen, Göttingen, Germany
- Centre of Biodiversity and Sustainable Land Use, University of Göttingen, Göttingen, Germany
| | - Valentyna Krashevska
- Johann-Friedrich-Blumenbach Institute for Zoology and Anthropology, University of Göttingen, Göttingen, Germany
| |
Collapse
|
290
|
Mani R, Vilela R, Kettler N, Chilvers MI, Mendoza L. Identification of Pythium insidiosum complex by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Med Microbiol 2019; 68:574-584. [PMID: 30735118 DOI: 10.1099/jmm.0.000941] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
PURPOSE Pythiosis is an infection of humans and other animals caused by the fungal-like pathogen Pythium insidiosum. This pathogen causes life-threatening infection in the infected hosts. Culture, histopathology, serology and molecular tools are used to diagnose its infections. Successful management of pythiosis is directly linked to an early diagnosis. Thus, a rapid identification of putative cultures developing submerged sparsely septate hyphae is of extreme importance. However, few laboratories are familiar with the culture identification of this unique pathogen and its differential diagnosis with similar filamentous fungi. METHODOLOGY We have evaluated the use of matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF) on 53 isolates of P. insidiosum collected from cases of human and animal pythiosis in the USA and around the world. To assess the specificity of the approach, 18 pathogenic and saprotrophic filamentous fungal and fungal-like microbes were also tested. RESULTS MALDI-TOF in-house spectra correctly identified the 53 P. insidiosum isolates (score range 1.93-2.51). MALDI-TOF based identification within P. insidiosum isolates showed protein spectra variation between geographical diverse isolates. A mass spectrometry approach was able to discriminate P. insidiosum from the 18 filamentous fungal and fungal-like microbes in this study, including four Pythium spp. and Phytopythium litorale plant pathogenic species. CONCLUSION The data showed MALDI-TOF could be used for the accurate and rapid culture identification of P. insidiosum in the clinical laboratory.
Collapse
Affiliation(s)
- Rinosh Mani
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Michigan State University, Michigan, USA
| | - Raquel Vilela
- Faculty of Pharmacy, Federal University of Minas Gerais, Minas Gerais, Brazil.,Biomedical Laboratory Diagnostics, Michigan State University, Michigan, USA
| | - Niesa Kettler
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Michigan State University, Michigan, USA
| | - Martin I Chilvers
- Department of Plant, Soil and Microbial Sciences, Program in Ecology, Evolutionary Biology and Behavior, Michigan State University, Michigan, USA
| | - Leonel Mendoza
- Biomedical Laboratory Diagnostics, Michigan State University, Michigan, USA.,Microbiology and Molecular Genetics, Michigan State University, Michigan, USA
| |
Collapse
|
291
|
Ebenezer TE, Zoltner M, Burrell A, Nenarokova A, Novák Vanclová AMG, Prasad B, Soukal P, Santana-Molina C, O'Neill E, Nankissoor NN, Vadakedath N, Daiker V, Obado S, Silva-Pereira S, Jackson AP, Devos DP, Lukeš J, Lebert M, Vaughan S, Hampl V, Carrington M, Ginger ML, Dacks JB, Kelly S, Field MC. Transcriptome, proteome and draft genome of Euglena gracilis. BMC Biol 2019; 17:11. [PMID: 30732613 PMCID: PMC6366073 DOI: 10.1186/s12915-019-0626-8] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 01/08/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Photosynthetic euglenids are major contributors to fresh water ecosystems. Euglena gracilis in particular has noted metabolic flexibility, reflected by an ability to thrive in a range of harsh environments. E. gracilis has been a popular model organism and of considerable biotechnological interest, but the absence of a gene catalogue has hampered both basic research and translational efforts. RESULTS We report a detailed transcriptome and partial genome for E. gracilis Z1. The nuclear genome is estimated to be around 500 Mb in size, and the transcriptome encodes over 36,000 proteins and the genome possesses less than 1% coding sequence. Annotation of coding sequences indicates a highly sophisticated endomembrane system, RNA processing mechanisms and nuclear genome contributions from several photosynthetic lineages. Multiple gene families, including likely signal transduction components, have been massively expanded. Alterations in protein abundance are controlled post-transcriptionally between light and dark conditions, surprisingly similar to trypanosomatids. CONCLUSIONS Our data provide evidence that a range of photosynthetic eukaryotes contributed to the Euglena nuclear genome, evidence in support of the 'shopping bag' hypothesis for plastid acquisition. We also suggest that euglenids possess unique regulatory mechanisms for achieving extreme adaptability, through mechanisms of paralog expansion and gene acquisition.
Collapse
Affiliation(s)
- ThankGod E Ebenezer
- School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK.,Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QW, UK
| | - Martin Zoltner
- School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Alana Burrell
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Anna Nenarokova
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, and Faculty of Sciences, University of South Bohemia, 37005, České Budějovice, Czech Republic
| | - Anna M G Novák Vanclová
- Department of Parasitology, Faculty of Science,, Charles University, BIOCEV, 252 50, Vestec, Czech Republic
| | - Binod Prasad
- Cell Biology Division, Department of Biology, University of Erlangen-Nuremberg, 91058, Erlangen, Germany
| | - Petr Soukal
- Department of Parasitology, Faculty of Science,, Charles University, BIOCEV, 252 50, Vestec, Czech Republic
| | - Carlos Santana-Molina
- Centro Andaluz de Biología del Desarrollo (CABD)-CSIC, Pablo de Olavide University, Seville, Spain
| | - Ellis O'Neill
- Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB, UK
| | - Nerissa N Nankissoor
- Division of Infectious Disease, Department of Medicine, University of Alberta, Edmonton, Alberta, T6G, Canada
| | - Nithya Vadakedath
- Cell Biology Division, Department of Biology, University of Erlangen-Nuremberg, 91058, Erlangen, Germany
| | - Viktor Daiker
- Cell Biology Division, Department of Biology, University of Erlangen-Nuremberg, 91058, Erlangen, Germany
| | - Samson Obado
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY, 10065, USA
| | - Sara Silva-Pereira
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - Andrew P Jackson
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - Damien P Devos
- Centro Andaluz de Biología del Desarrollo (CABD)-CSIC, Pablo de Olavide University, Seville, Spain
| | - Julius Lukeš
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, and Faculty of Sciences, University of South Bohemia, 37005, České Budějovice, Czech Republic
| | - Michael Lebert
- Cell Biology Division, Department of Biology, University of Erlangen-Nuremberg, 91058, Erlangen, Germany
| | - Sue Vaughan
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Vladimίr Hampl
- Department of Parasitology, Faculty of Science,, Charles University, BIOCEV, 252 50, Vestec, Czech Republic
| | - Mark Carrington
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QW, UK
| | - Michael L Ginger
- Department of Biological and Geographical Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK
| | - Joel B Dacks
- Division of Infectious Disease, Department of Medicine, University of Alberta, Edmonton, Alberta, T6G, Canada. .,Department of Life Sciences, The Natural History Museum, Cromwell Road, London, SW7 5BD, UK.
| | - Steven Kelly
- Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB, UK.
| | - Mark C Field
- School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK. .,Biology Centre, Institute of Parasitology, Czech Academy of Sciences, and Faculty of Sciences, University of South Bohemia, 37005, České Budějovice, Czech Republic.
| |
Collapse
|
292
|
Suzuki Y, Suzuki T, Awai K, Shioi Y. Isolation and characterization of a tandem-repeated cysteine protease from the symbiotic dinoflagellate Symbiodinium sp. KB8. PLoS One 2019; 14:e0211534. [PMID: 30703144 PMCID: PMC6355014 DOI: 10.1371/journal.pone.0211534] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 01/16/2019] [Indexed: 11/18/2022] Open
Abstract
A cysteine protease belonging to peptidase C1A superfamily from the eukaryotic, symbiotic dinoflagellate, Symbiodinium sp. strain KB8, was characterized. The protease was purified to near homogeneity (566-fold) by (NH4)2SO4 fractionation, ultrafiltration, and column chromatography using a fluorescent peptide, butyloxycarbonyl-Val-Leu-Lys-4-methylcoumaryl-7-amide (Boc-VLK-MCA), as a substrate for assay purposes. The enzyme was termed VLKP (VLK protease), and its activity was strongly inhibited by cysteine protease inhibitors and activated by reducing agents. Based on the results for the amino acid sequence determined by liquid chromatography-coupled tandem mass spectrometry, a cDNA encoding VLKP was synthesized. VLKP was classified into the peptidase C1A superfamily of cysteine proteases (C1AP). The predicted amino acid sequence of VLKP indicated a tandem array of highly conserved precursors of C1AP with a molecular mass of approximately 71 kDa. The results of gel-filtration chromatography and SDS-PAGE suggested that VLKP exists as a monomer of 31-32 kDa, indicating that the tandem array is likely divided into two mass-equivalent halves that undergo equivalent posttranslational modifications. The VLKP precursor contains an inhibitor prodomain that might become activated after acidic autoprocessing at approximately pH 4. Both purified and recombinant VLKPs had a similar substrate specificity and kinetic parameters for common C1AP substrates. Most C1APs reside in acidic organelles such as the vacuole and lysosomes, and indeed VLKP was most active at pH 4.5. Since VLKP exhibited maximum activity during the late logarithmic growth phase, these attributes suggest that, VLKP is involved in the metabolism of proteins in acidic organelles.
Collapse
Affiliation(s)
- Yuya Suzuki
- Graduate School of Science, Shizuoka University, Shizuoka, Japan
| | - Tomohiro Suzuki
- Research Institute of Green Science and Technology, Shizuoka University, Shizuoka, Japan
| | - Koichiro Awai
- Graduate School of Science, Shizuoka University, Shizuoka, Japan
- Research Institute of Electronics, Shizuoka University, Hamamatsu, Japan
- PRESTO, JST, Kawaguchi, Japan
- * E-mail:
| | - Yuzo Shioi
- Graduate School of Science, Shizuoka University, Shizuoka, Japan
| |
Collapse
|
293
|
Mesentsev Y, Smirnov A. Thecamoeba cosmophorea n. sp. (Amoebozoa, Discosea, Thecamoebida) — An example of sibling species within the genus Thecamoeba. Eur J Protistol 2019; 67:132-141. [DOI: 10.1016/j.ejop.2018.12.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 10/29/2018] [Accepted: 12/11/2018] [Indexed: 10/27/2022]
|
294
|
Gao Z, Karlsson I, Geisen S, Kowalchuk G, Jousset A. Protists: Puppet Masters of the Rhizosphere Microbiome. TRENDS IN PLANT SCIENCE 2019; 24:165-176. [PMID: 30446306 DOI: 10.1016/j.tplants.2018.10.011] [Citation(s) in RCA: 145] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 10/15/2018] [Accepted: 10/18/2018] [Indexed: 05/18/2023]
Abstract
The rhizosphere microbiome is a central determinant of plant performance. Microbiome assembly has traditionally been investigated from a bottom-up perspective, assessing how resources such as root exudates drive microbiome assembly. However, the importance of predation as a driver of microbiome structure has to date largely remained overlooked. Here we review the importance of protists, a paraphyletic group of unicellular eukaryotes, as a key regulator of microbiome assembly. Protists can promote plant-beneficial functions within the microbiome, accelerate nutrient cycling, and remove pathogens. We conclude that protists form an essential component of the rhizosphere microbiome and that accounting for predator-prey interactions would greatly improve our ability to predict and manage microbiome function at the service of plant growth and health.
Collapse
Affiliation(s)
- Zhilei Gao
- Institute of Environmental Biology, Ecology & Biodiversity, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands; These authors contributed equally
| | - Ida Karlsson
- Institute of Environmental Biology, Ecology & Biodiversity, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands; Dept. of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Box 7026, 75007 Uppsala, Sweden; These authors contributed equally
| | - Stefan Geisen
- Department of Terrestrial Ecology, Netherlands Institute of Ecology, 6708 PB Wageningen, The Netherlands
| | - George Kowalchuk
- Institute of Environmental Biology, Ecology & Biodiversity, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Alexandre Jousset
- Institute of Environmental Biology, Ecology & Biodiversity, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| |
Collapse
|
295
|
Nutritional intake of Aplanochytrium (Labyrinthulea, Stramenopiles) from living diatoms revealed by culture experiments suggesting the new prey-predator interactions in the grazing food web of the marine ecosystem. PLoS One 2019; 14:e0208941. [PMID: 30625142 PMCID: PMC6326421 DOI: 10.1371/journal.pone.0208941] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 11/27/2018] [Indexed: 11/19/2022] Open
Abstract
Labyrinthuleans (Labyrinthulea, Stramenopiles) are recognized as decomposers in marine ecosystems but their nutrient sources are not fully understood. We conducted two-membered culture experiments with labyrinthuleans and diatoms to discover where labyrinthuleans obtain their nutrients from. The results showed that Aplanochytrium strains obtained nutrients by consuming living diatoms. Aplanochytrium cells did not release digestive enzymes into the medium, but adhered to diatom cells via the tip of their characteristic ectoplasmic net system to obtain nutrients from them. The chloroplast and cell contents of the diatoms shrank and were absorbed, and then the number of Aplanochytrium cells rapidly increased as multiple aplanospores were released. To estimate the effect of labyrinthulean organisms including Aplanochytrium on marine ecosystem, we explored the dataset generated by the Tara Oceans Project from a wide range of oceanic regions. The average proportion of all labyrinthulean sequences to diatom sequences at each station was about 10%, and labyrinthulids, oblongichytrids, and aplanochytrids were the major constituent genera, accounting for more than 80% of labyrinthuleans. Therefore, these groups are suggested to greatly affect the marine ecosystem. There were positive correlations between aplanochytrids and phototrophs, green algae, and diatoms. At many stations, relatively large proportions of aplanochytrid sequences were detected in the size fraction larger than their cell size. This implied that Aplanochytrium cells increased their particle size by adhering to each other and forming aggregates with diatoms that are captured by larger zooplankton in the environment, thereby bypassing the food web pathway via aplanochytrids to higher predators. The intake of nutrients from diatoms by aplanochytrids represents a newly recognized pathway in the grazing food chain in the marine ecosystem.
Collapse
|
296
|
Lagunas-Rangel FA, Bermúdez-Cruz RM. Epigenetics in the early divergent eukaryotic Giardia duodenalis: An update. Biochimie 2019; 156:123-128. [DOI: 10.1016/j.biochi.2018.10.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 10/12/2018] [Indexed: 11/29/2022]
|
297
|
Kramer S, McLennan AG. The complex enzymology of mRNA decapping: Enzymes of four classes cleave pyrophosphate bonds. WILEY INTERDISCIPLINARY REVIEWS. RNA 2019; 10:e1511. [PMID: 30345629 DOI: 10.1002/wrna.1511] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 09/26/2018] [Accepted: 09/27/2018] [Indexed: 12/16/2022]
Abstract
The 5' ends of most RNAs are chemically modified to enable protection from nucleases. In bacteria, this is often achieved by keeping the triphosphate terminus originating from transcriptional initiation, while most eukaryotic mRNAs and small nuclear RNAs have a 5'→5' linked N7 -methyl guanosine (m7 G) cap added. Several other chemical modifications have been described at RNA 5' ends. Common to all modifications is the presence of at least one pyrophosphate bond. To enable RNA turnover, these chemical modifications at the RNA 5' end need to be reversible. Dependent on the direction of the RNA decay pathway (5'→3' or 3'→5'), some enzymes cleave the 5'→5' cap linkage of intact RNAs to initiate decay, while others act as scavengers and hydrolyse the cap element of the remnants of the 3'→5' decay pathway. In eukaryotes, there is also a cap quality control pathway. Most enzymes involved in the cleavage of the RNA 5' ends are pyrophosphohydrolases, with only a few having (additional) 5' triphosphonucleotide hydrolase activities. Despite the identity of their enzyme activities, the enzymes belong to four different enzyme classes. Nudix hydrolases decap intact RNAs as part of the 5'→3' decay pathway, DXO family members mainly degrade faulty RNAs, members of the histidine triad (HIT) family are scavenger proteins, while an ApaH-like phosphatase is the major mRNA decay enzyme of trypanosomes, whose RNAs have a unique cap structure. Many novel cap structures and decapping enzymes have only recently been discovered, indicating that we are only beginning to understand the mechanisms of RNA decapping. This article is categorized under: RNA Turnover and Surveillance > Turnover/Surveillance Mechanisms RNA Turnover and Surveillance > Regulation of RNA Stability RNA Processing > Capping and 5' End Modifications.
Collapse
Affiliation(s)
- Susanne Kramer
- Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Alexander G McLennan
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| |
Collapse
|
298
|
Figueroa-Martinez F, Jackson C, Reyes-Prieto A. Plastid Genomes from Diverse Glaucophyte Genera Reveal a Largely Conserved Gene Content and Limited Architectural Diversity. Genome Biol Evol 2019; 11:174-188. [PMID: 30534986 PMCID: PMC6330054 DOI: 10.1093/gbe/evy268] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2018] [Indexed: 12/30/2022] Open
Abstract
Plastid genome (ptDNA) data of Glaucophyta have been limited for many years to the genus Cyanophora. Here, we sequenced the ptDNAs of Gloeochaete wittrockiana, Cyanoptyche gloeocystis, Glaucocystis incrassata, and Glaucocystis sp. BBH. The reported sequences are the first genome-scale plastid data available for these three poorly studied glaucophyte genera. Although the Glaucophyta plastids appear morphologically “ancestral,” they actually bear derived genomes not radically different from those of red algae or viridiplants. The glaucophyte plastid coding capacity is highly conserved (112 genes shared) and the architecture of the plastid chromosomes is relatively simple. Phylogenomic analyses recovered Glaucophyta as the earliest diverging Archaeplastida lineage, but the position of viridiplants as the first branching group was not rejected by the approximately unbiased test. Pairwise distances estimated from 19 different plastid genes revealed that the highest sequence divergence between glaucophyte genera is frequently higher than distances between species of different classes within red algae or viridiplants. Gene synteny and sequence similarity in the ptDNAs of the two Glaucocystis species analyzed is conserved. However, the ptDNA of Gla. incrassata contains a 7.9-kb insertion not detected in Glaucocystis sp. BBH. The insertion contains ten open reading frames that include four coding regions similar to bacterial serine recombinases (two open reading frames), DNA primases, and peptidoglycan aminohydrolases. These three enzymes, often encoded in bacterial plasmids and bacteriophage genomes, are known to participate in the mobilization and replication of DNA mobile elements. It is therefore plausible that the insertion in Gla. incrassata ptDNA is derived from a DNA mobile element.
Collapse
Affiliation(s)
- Francisco Figueroa-Martinez
- Department of Biology, University of New Brunswick, Fredericton, New Brunswick, Canada.,CONACyT-Universidad Autónoma Metropolitana Iztapalapa, Biotechnology Department, Mexico City, Mexico
| | - Christopher Jackson
- Department of Biology, University of New Brunswick, Fredericton, New Brunswick, Canada.,School of Biosciences, University of Melbourne, Melbourne, Australia
| | - Adrian Reyes-Prieto
- Department of Biology, University of New Brunswick, Fredericton, New Brunswick, Canada
| |
Collapse
|
299
|
Clark DP, Pazdernik NJ, McGehee MR. Cells and Organisms. Mol Biol 2019. [DOI: 10.1016/b978-0-12-813288-3.00001-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
300
|
Abstract
Organisms display astonishing levels of cell and molecular diversity, including genome size, shape, and architecture. In this chapter, we review how the genome can be viewed as both a structural and an informational unit of biological diversity and explicitly define our intended meaning of genetic information. A brief overview of the characteristic features of bacterial, archaeal, and eukaryotic cell types and viruses sets the stage for a review of the differences in organization, size, and packaging strategies of their genomes. We include a detailed review of genetic elements found outside the primary chromosomal structures, as these provide insights into how genomes are sometimes viewed as incomplete informational entities. Lastly, we reassess the definition of the genome in light of recent advancements in our understanding of the diversity of genomic structures and the mechanisms by which genetic information is expressed within the cell. Collectively, these topics comprise a good introduction to genome biology for the newcomer to the field and provide a valuable reference for those developing new statistical or computation methods in genomics. This review also prepares the reader for anticipated transformations in thinking as the field of genome biology progresses.
Collapse
|