251
|
He Z, Xu S, Shi S. Adaptive convergence at the genomic level-prevalent, uncommon or very rare? Natl Sci Rev 2020; 7:947-951. [PMID: 34692116 PMCID: PMC8289048 DOI: 10.1093/nsr/nwaa076] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 02/17/2020] [Accepted: 04/21/2020] [Indexed: 12/31/2022] Open
Affiliation(s)
- Ziwen He
- School of Life Sciences, Sun Yat-sen University, China
| | - Shaohua Xu
- School of Life Sciences, Sun Yat-sen University, China
| | - Suhua Shi
- School of Life Sciences, Sun Yat-sen University, China
| |
Collapse
|
252
|
Serio C, Raia P, Meloro C. Locomotory Adaptations in 3D Humerus Geometry of Xenarthra: Testing for Convergence. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00139] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
253
|
Aligning functional network constraint to evolutionary outcomes. BMC Evol Biol 2020; 20:58. [PMID: 32448114 PMCID: PMC7245893 DOI: 10.1186/s12862-020-01613-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 04/15/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Functional constraint through genomic architecture is suggested to be an important dimension of genome evolution, but quantitative evidence for this idea is rare. In this contribution, existing evidence and discussions on genomic architecture as constraint for convergent evolution, rapid adaptation, and genic adaptation are summarized into alternative, testable hypotheses. Network architecture statistics from protein-protein interaction networks are then used to calculate differences in evolutionary outcomes on the example of genomic evolution in yeast, and the results are used to evaluate statistical support for these longstanding hypotheses. RESULTS A discriminant function analysis lent statistical support to classifying the yeast interactome into hub, intermediate and peripheral nodes based on network neighborhood connectivity, betweenness centrality, and average shortest path length. Quantitative support for the existence of genomic architecture as a mechanistic basis for evolutionary constraint is then revealed through utilizing these statistical parameters of the protein-protein interaction network in combination with estimators of protein evolution. CONCLUSIONS As functional genetic networks are becoming increasingly available, it will now be possible to evaluate functional genetic network constraint against variables describing complex phenotypes and environments, for better understanding of commonly observed deterministic patterns of evolution in non-model organisms. The hypothesis framework and methodological approach outlined herein may help to quantify the extrinsic versus intrinsic dimensions of evolutionary constraint, and result in a better understanding of how fast, effectively, or deterministically organisms adapt.
Collapse
|
254
|
Buttimer SM, Stepanova N, Womack MC. Evolution of the Unique Anuran Pelvic and Hind limb Skeleton in Relation to Microhabitat, Locomotor Mode, and Jump Performance. Integr Comp Biol 2020; 60:1330-1345. [PMID: 32437511 DOI: 10.1093/icb/icaa043] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Anurans (frogs and toads) have a unique pelvic and hind limb skeleton among tetrapods. Although their distinct body plan is primarily associated with saltation, anuran species vary in their primary locomotor mode (e.g., walkers, hoppers, jumpers, and swimmers) and are found in a wide array of microhabitats (e.g., burrowing, terrestrial, arboreal, and aquatic) with varying functional demands. Given their largely conserved body plan, morphological adaptation to these diverse niches likely results from more fine-scale morphological change. Our study determines how shape differences in Anura's unique pelvic and hind limb skeletal structures vary with microhabitat, locomotor mode, and jumping ability. Using microCT scans of preserved specimens from museum collections, we added 3D landmarks to the pelvic and hind limb skeleton of 230 anuran species. In addition, we compiled microhabitat and locomotor data from the literature for these species that span 52 of the 55 families of frogs and ∼210 million years of anuran evolution. Using this robust dataset, we examine the relationship between pelvic and hind limb morphology and phylogenetic history, allometry, microhabitat, and locomotor mode. We find pelvic and hind limb changes associated with shifts in microhabitat ("ecomorphs") and locomotor mode ("locomorphs") and directly relate those morphological changes to the jumping ability of individual species. We also reveal how individual bones vary in evolutionary rate and their association with phylogeny, body size, microhabitat, and locomotor mode. Our findings uncover previously undocumented morphological variation related to anuran ecological and locomotor diversification and link that variation to differences in jumping ability among species.
Collapse
Affiliation(s)
- Shannon M Buttimer
- Museum of Vertebrate Zoology, University of California at Berkeley, 3101 Valley Life Sciences Building, Berkeley, CA 94720, USA
| | - Natasha Stepanova
- Department of Biology, Villanova University, 800 Lancaster Avenue, Villanova, PA 19085, USA
| | - Molly C Womack
- Department of Biology, Utah State University, Logan, UT, 84322, USA.,Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, USA
| |
Collapse
|
255
|
Tarkhnishvili D, Gabelaia M, Adriaens D. Phenotypic divergence, convergence and evolution of Caucasian rock lizards (Darevskia). Biol J Linn Soc Lond 2020. [DOI: 10.1093/biolinnean/blaa021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
AbstractPhenotypic evolution can cause either divergent or convergent phenotypic patterns. Even adaptation to the same environment may result in divergence of some elements of phenotype, whereas for other morphological traits it could cause phenotypic convergence. We hypothesize that at least some phenotypic characters diverge monotonically, hence they evolve irreversibly even in very closely related species, and this happens in spite of multiple convergent adaptive patterns. We studied the evolution of phenotype in 13 closely related Caucasian rock lizards (Darevskia), whose phylogenetic relationships are well known. We used head shape and the outlines of three important scales, using geometric morphometrics. We studied the association of the overall head shape, individual principal components of head shape and scale outlines with four predictors: phylogeny, habitat, sex and size. The overall head shape was not correlated with any of these predictors, whereas some principal components were correlated with habitat or phylogeny. Habitat type explained the highest fraction of variation in head shape and anal scale area. The relatedness inferred from the components of phenotype not correlated with habitat was congruent with the phylogenetic tree inferred from molecular data. Although adaptation to local environments may obscure the phylogenetic signal present in phenotype, there are components of phenotype whose evolution is irreversible.
Collapse
Affiliation(s)
- David Tarkhnishvili
- Ilia State University, Institute of Ecology, School of Natural Sciences and Engineering, Kakutsa Cholokashvili Ave 3/5, Tbilisi, Georgia
| | - Mariam Gabelaia
- Ilia State University, Institute of Ecology, School of Natural Sciences and Engineering, Kakutsa Cholokashvili Ave 3/5, Tbilisi, Georgia
| | - Dominique Adriaens
- Ghent University, Evolutionary Morphology of Vertebrates, K. L. Ledeganckstraat 35, Gent, Belgium
| |
Collapse
|
256
|
Knope ML, Bush AM, Frishkoff LO, Heim NA, Payne JL. Ecologically diverse clades dominate the oceans via extinction resistance. Science 2020; 367:1035-1038. [PMID: 32108111 DOI: 10.1126/science.aax6398] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 01/14/2020] [Indexed: 11/02/2022]
Abstract
Ecological differentiation is correlated with taxonomic diversity in many clades, and ecological divergence is often assumed to be a cause and/or consequence of high speciation rate. However, an analysis of 30,074 genera of living marine animals and 19,992 genera of fossil marine animals indicates that greater ecological differentiation in the modern oceans is actually associated with lower rates of origination over evolutionary time. Ecologically differentiated clades became taxonomically diverse over time because they were better buffered against extinction, particularly during mass extinctions, which primarily affected genus-rich, ecologically homogeneous clades. The relationship between ecological differentiation and taxonomic richness was weak early in the evolution of animals but has strengthened over geological time as successive extinction events reshaped the marine fauna.
Collapse
Affiliation(s)
- Matthew L Knope
- Department of Biology, University of Hawaii, Hilo, Hilo, HI 96720, USA.
| | - Andrew M Bush
- Department of Geosciences and Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Luke O Frishkoff
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Noel A Heim
- Department of Earth and Ocean Sciences, Tufts University, Medford, MA 02115, USA
| | - Jonathan L Payne
- Department of Geological Sciences, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
257
|
Smith SD, Pennell MW, Dunn CW, Edwards SV. Phylogenetics is the New Genetics (for Most of Biodiversity). Trends Ecol Evol 2020; 35:415-425. [DOI: 10.1016/j.tree.2020.01.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/15/2020] [Accepted: 01/20/2020] [Indexed: 12/15/2022]
|
258
|
Resource trait specialisation in an introduced fish population with reduced genetic diversity. Biol Invasions 2020. [DOI: 10.1007/s10530-020-02264-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
259
|
Levin BA, Simonov E, Dgebuadze YY, Levina M, Golubtsov AS. In the rivers: Multiple adaptive radiations of cyprinid fishes (Labeobarbus) in Ethiopian Highlands. Sci Rep 2020; 10:7192. [PMID: 32346059 PMCID: PMC7189375 DOI: 10.1038/s41598-020-64350-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 04/15/2020] [Indexed: 11/09/2022] Open
Abstract
Multiple repeated patterns of adaptive radiation were revealed in cyprinid fish inhabiting the compact geographic region of the Ethiopian Highlands. We found four independently evolved radiations in the evolutionary hexaploid (2n = 150) Labeobarbus lineage based on matrilineal relationships of >800 individuals. Each radiation displayed similar patterns of mouth phenotype diversification, and included ecomorphs/species of the generalized, lipped, scraping (one or two), and large-mouthed (one to three) types. All radiations were detected in geographically isolated rivers, and originated from different ancestral populations. This is the first documented case in which numerous parallel radiations of fishes occurred-via different ways-in a riverine environment. Some radiations are very recent and monophyletic, while others are older and include ecomorphs that originated in separate mini flocks and later combined into one. The diversification bursts among Ethiopian Labeobarbus were detected in the mid-upper reaches of rivers (1050-1550 m above sea level), which likely offer ecological opportunities that include diverse habitats yet poor fauna (i.e. lower competition and relaxed selection). This promising example of parallel evolution of adaptive radiation warrants further investigation.
Collapse
Affiliation(s)
- Boris A Levin
- Papanin Institute of Biology of Inland Waters, Russian Academy of Sciences, Borok, Russia. .,Cherepovets State University, Cherepovets, Russia.
| | - Evgeniy Simonov
- Institute of Environmental and Agricultural Biology (X-BIO), University of Tyumen, Tyumen, Russia.,Tomsk State University, Tomsk, Russia
| | - Yury Y Dgebuadze
- Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia
| | - Marina Levina
- Papanin Institute of Biology of Inland Waters, Russian Academy of Sciences, Borok, Russia
| | - Alexander S Golubtsov
- Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
260
|
From molecules to macroevolution: Venom as a model system for evolutionary biology across levels of life. Toxicon X 2020; 6:100034. [PMID: 32550589 PMCID: PMC7285901 DOI: 10.1016/j.toxcx.2020.100034] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 04/03/2020] [Indexed: 11/21/2022] Open
Abstract
Biological systems are inherently hierarchical. Consequently, any field which aims to understand an aspect of biology holistically requires investigations at each level of the hierarchy of life, and venom research is no exception. This article aims to illustrate the structure of the field in light of a ‘levels of life’ perspective. In doing so, I highlight how traditional fields and approaches fit into this structure as focussing on describing levels or investigating links between levels, and emphasise where implicit assumptions are made due to lack of direct information. Taking a ‘levels of life’ perspective to venom research enables us to understand the complementarity of different research programmes and identify avenues for future research. Moreover, it provides a broader view that, in itself, shows how new questions can be addressed. For instance, understanding how adaptations develop and function from molecular to organismal scales, and what the consequences are of those adaptations at scales from molecular to macroevolutionary, is a general question relevant to a great deal of biology. As a trait which is molecular in nature and has clearer and more direct links between genotype and phenotype than many other traits, venom provides a relatively simple system to address such questions. Furthermore, because venom is also diverse at each level of life, the complexity within the hierarchical structure provides variation that enables powerful analytical approaches to answering questions. As a result, venom provides an excellent model system for understanding big questions in evolutionary biology. Venom is a molecular trait used directly in fitness-relevant ecological interaction. Venom is consequently an ideal model system for evolutionary biology. A ‘levels of life’ perspective is well suited to research in venom biology. This structure of the field provides many advantages to guide future studies. Clinical implications can arise from studies of venom at all levels of life.
Collapse
|
261
|
Bergmann PJ, Mann SDW, Morinaga G, Freitas ES, Siler CD. Convergent Evolution of Elongate Forms in Craniates and of Locomotion in Elongate Squamate Reptiles. Integr Comp Biol 2020; 60:190-201. [DOI: 10.1093/icb/icaa015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
Synopsis Elongate, snake- or eel-like, body forms have evolved convergently many times in most major lineages of vertebrates. Despite studies of various clades with elongate species, we still lack an understanding of their evolutionary dynamics and distribution on the vertebrate tree of life. We also do not know whether this convergence in body form coincides with convergence at other biological levels. Here, we present the first craniate-wide analysis of how many times elongate body forms have evolved, as well as rates of its evolution and reversion to a non-elongate form. We then focus on five convergently elongate squamate species and test if they converged in vertebral number and shape, as well as their locomotor performance and kinematics. We compared each elongate species to closely related quadrupedal species and determined whether the direction of vertebral or locomotor change matched in each case. The five lineages examined are obscure species from remote locations, providing a valuable glimpse into their biology. They are the skink lizards Brachymeles lukbani, Lerista praepedita, and Isopachys anguinoides, the basal squamate Dibamus novaeguineae, and the basal snake Malayotyphlops cf. ruficaudus. Our results support convergence among these species in the number of trunk and caudal vertebrae, but not vertebral shape. We also find that the elongate species are relatively slower than their limbed counterparts and move with lower frequency and higher amplitude body undulations, with the exception of Isopachys. This is among the first evidence of locomotor convergence across distantly related, elongate species.
Collapse
Affiliation(s)
| | - Sara D W Mann
- Department of Biology, Clark University, Worcester, MA, USA
| | - Gen Morinaga
- Department of Biology, Clark University, Worcester, MA, USA
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK, USA
| | - Elyse S Freitas
- Department of Biology and Sam Noble Oklahoma Museum of Natural History, University of Oklahoma, Norman, OK, USA
| | - Cameron D Siler
- Department of Biology and Sam Noble Oklahoma Museum of Natural History, University of Oklahoma, Norman, OK, USA
| |
Collapse
|
262
|
Santangelo JS, Thompson KA, Cohan B, Syed J, Ness RW, Johnson MTJ. Predicting the strength of urban-rural clines in a Mendelian polymorphism along a latitudinal gradient. Evol Lett 2020; 4:212-225. [PMID: 32547782 PMCID: PMC7293085 DOI: 10.1002/evl3.163] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 12/19/2019] [Accepted: 02/02/2020] [Indexed: 11/07/2022] Open
Abstract
Cities are emerging as models for addressing the fundamental question of whether populations evolve in parallel to similar environments. Here, we examine the environmental factors that drive the evolution of parallel urban‐rural clines in a Mendelian trait—the cyanogenic antiherbivore defense of white clover (Trifolium repens). Previous work suggested urban‐rural gradients in frost and snow depth could drive the evolution of reduced hydrogen cyanide (HCN) frequencies in urban populations. Here, we sampled over 700 urban and rural clover populations across 16 cities along a latitudinal transect in eastern North America. In each population, we quantified changes in the frequency of genotypes that produce HCN, and in a subset of the cities we estimated the frequency of the alleles at the two genes (CYP79D15 and Li) that epistatically interact to produce HCN. We then tested the hypothesis that cold climatic conditions are necessary for the evolution of cyanogenesis clines by comparing the strength of clines among cities located along a latitudinal gradient of winter temperature and frost exposure. Overall, half of the cities exhibited urban‐rural clines in the frequency of HCN, whereby urban populations evolved lower HCN frequencies. Clines did not evolve in cities with the lowest temperatures and greatest snowfall, supporting the hypothesis that snow buffers plants against winter frost and constrains the formation of clines. By contrast, the strongest clines occurred in the warmest cities where snow and frost are rare, suggesting that alternative selective agents are maintaining clines in warmer cities. Some clines were driven by evolution at only CYP79D15, consistent with stronger and more consistent selection on this locus than on Li. Together, our results demonstrate that urban environments often select for similar phenotypes, but different selective agents and targets underlie the evolutionary response in different cities.
Collapse
Affiliation(s)
- James S Santangelo
- Department of Biology University of Toronto Mississauga Mississauga ON L5L 1C6 Canada.,Centre for Urban Environments University of Toronto Mississauga Mississauga ON L5L 1C6 Canada.,Department of Ecology and Evolutionary Biology University of Toronto Toronto ON M5S 3B2 Canada
| | - Ken A Thompson
- Department of Zoology and Biodiversity Research Centre University of British Columbia Vancouver BC V6T 1Z4 Canada
| | - Beata Cohan
- Department of Biology University of Toronto Mississauga Mississauga ON L5L 1C6 Canada
| | - Jibran Syed
- Department of Biology University of Toronto Mississauga Mississauga ON L5L 1C6 Canada
| | - Rob W Ness
- Department of Biology University of Toronto Mississauga Mississauga ON L5L 1C6 Canada.,Centre for Urban Environments University of Toronto Mississauga Mississauga ON L5L 1C6 Canada.,Department of Ecology and Evolutionary Biology University of Toronto Toronto ON M5S 3B2 Canada
| | - Marc T J Johnson
- Department of Biology University of Toronto Mississauga Mississauga ON L5L 1C6 Canada.,Centre for Urban Environments University of Toronto Mississauga Mississauga ON L5L 1C6 Canada.,Department of Ecology and Evolutionary Biology University of Toronto Toronto ON M5S 3B2 Canada
| |
Collapse
|
263
|
Effects of predation risk on egg steroid profiles across multiple populations of threespine stickleback. Sci Rep 2020; 10:5239. [PMID: 32251316 PMCID: PMC7090078 DOI: 10.1038/s41598-020-61412-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 02/24/2020] [Indexed: 11/16/2022] Open
Abstract
Predation often has consistent effects on prey behavior and morphology, but whether the physiological mechanisms underlying these effects show similarly consistent patterns across different populations remains an open question. In vertebrates, predation risk activates the hypothalamic-pituitary-adrenal (HPA) axis, and there is growing evidence that activation of the maternal HPA axis can have intergenerational consequences via, for example, maternally-derived steroids in eggs. Here, we investigated how predation risk affects a suite of maternally-derived steroids in threespine stickleback eggs across nine Alaskan lakes that vary in whether predatory trout are absent, native, or have been stocked within the last 25 years. Using liquid chromatography coupled with mass spectroscopy (LC-MS/MS), we detected 20 steroids within unfertilized eggs. Factor analysis suggests that steroids covary within and across steroid classes (i.e. glucocorticoids, progestogens, sex steroids), emphasizing the modularity and interconnectedness of the endocrine response. Surprisingly, egg steroid profiles were not significantly associated with predator regime, although they were more variable when predators were absent compared to when predators were present, with either native or stocked trout. Despite being the most abundant steroid, cortisol was not consistently associated with predation regime. Thus, while predators can affect steroids in adults, including mothers, the link between maternal stress and embryonic development is more complex than a simple one-to-one relationship between the population-level predation risk experienced by mothers and the steroids mothers transfer to their eggs.
Collapse
|
264
|
Card DC, Adams RH, Schield DR, Perry BW, Corbin AB, Pasquesi GIM, Row K, Van Kleeck MJ, Daza JM, Booth W, Montgomery CE, Boback SM, Castoe TA. Genomic Basis of Convergent Island Phenotypes in Boa Constrictors. Genome Biol Evol 2020; 11:3123-3143. [PMID: 31642474 PMCID: PMC6836717 DOI: 10.1093/gbe/evz226] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2019] [Indexed: 12/14/2022] Open
Abstract
Convergent evolution is often documented in organisms inhabiting isolated environments with distinct ecological conditions and similar selective regimes. Several Central America islands harbor dwarf Boa populations that are characterized by distinct differences in growth, mass, and craniofacial morphology, which are linked to the shared arboreal and feast-famine ecology of these island populations. Using high-density RADseq data, we inferred three dwarf island populations with independent origins and demonstrate that selection, along with genetic drift, has produced both divergent and convergent molecular evolution across island populations. Leveraging whole-genome resequencing data for 20 individuals and a newly annotated Boa genome, we identify four genes with evidence of phenotypically relevant protein-coding variation that differentiate island and mainland populations. The known roles of these genes involved in body growth (PTPRS, DMGDH, and ARSB), circulating fat and cholesterol levels (MYLIP), and craniofacial development (DMGDH and ARSB) in mammals link patterns of molecular evolution with the unique phenotypes of these island forms. Our results provide an important genome-wide example for quantifying expectations of selection and convergence in closely related populations. We also find evidence at several genomic loci that selection may be a prominent force of evolutionary change—even for small island populations for which drift is predicted to dominate. Overall, while phenotypically convergent island populations show relatively few loci under strong selection, infrequent patterns of molecular convergence are still apparent and implicate genes with strong connections to convergent phenotypes.
Collapse
Affiliation(s)
- Daren C Card
- Department of Biology, University of Texas Arlington.,Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts.,Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts
| | | | | | - Blair W Perry
- Department of Biology, University of Texas Arlington
| | | | | | | | | | - Juan M Daza
- Grupo Herpetológico de Antioquia, Instituto de Biología, Universidad de Antioquia, Medellín, Colombia
| | - Warren Booth
- Department of Biological Science, University of Tulsa, Oklahoma
| | | | - Scott M Boback
- Department of Biology, Dickinson College, Carlisle, Pennsylvania
| | - Todd A Castoe
- Department of Biology, University of Texas Arlington
| |
Collapse
|
265
|
Hart PB, Niemiller ML, Burress ED, Armbruster JW, Ludt WB, Chakrabarty P. Cave-adapted evolution in the North American amblyopsid fishes inferred using phylogenomics and geometric morphometrics. Evolution 2020; 74:936-949. [PMID: 32187649 DOI: 10.1111/evo.13958] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 02/23/2020] [Accepted: 02/27/2020] [Indexed: 11/30/2022]
Abstract
Cave adaptation has evolved repeatedly across the Tree of Life, famously leading to pigmentation and eye degeneration and loss, yet its macroevolutionary implications remain poorly understood. We use the North American amblyopsid fishes, a family spanning a wide degree of cave adaptation, to examine the impact of cave specialization on the modes and tempo of evolution. We reconstruct evolutionary relationships using ultraconserved element loci, estimate the ancestral histories of eye-state, and examine the impact of cave adaptation on body shape evolution. Our phylogenomic analyses provide a well-supported hypothesis for amblyopsid evolutionary relationships. The obligate blind cavefishes form a clade and the cave-facultative eyed spring cavefishes are nested within the obligate cavefishes. Using ancestral state reconstruction, we find support for at least two independent subterranean colonization events within the Amblyopsidae. Eyed and blind fishes have different body shapes, but not different rates of body shape evolution. North American amblyopsids highlight the complex nature of cave-adaptive evolution and the necessity to include multiple lines of evidence to uncover the underlying processes involved in the loss of complex traits.
Collapse
Affiliation(s)
- Pamela B Hart
- Museum of Natural Sciences and Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, 70803
| | - Matthew L Niemiller
- Department of Biological Sciences, The University of Alabama in Huntsville, Huntsville, Alabama, 35899
| | - Edward D Burress
- Department of Evolution and Ecology, University of California, Davis, California, 95616
| | - Jonathan W Armbruster
- Museum of Natural History and Department of Biological Sciences, Auburn University, Auburn, Alabama, 36830
| | - William B Ludt
- Department of Ichthyology, Natural History Museum of Los Angeles County, Los Angeles, California, 9007
| | - Prosanta Chakrabarty
- Museum of Natural Sciences and Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, 70803
| |
Collapse
|
266
|
Audino JA, Serb JM, Marian JEAR. Phylogeny and anatomy of marine mussels (Bivalvia: Mytilidae) reveal convergent evolution of siphon traits. Zool J Linn Soc 2020. [DOI: 10.1093/zoolinnean/zlaa011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Abstract
Convergent morphology is a strong indication of an adaptive trait. Marine mussels (Mytilidae) have long been studied for their ecology and economic importance. However, variation in lifestyle and phenotype also make them suitable models for studies focused on ecomorphological correlation and adaptation. The present study investigates mantle margin diversity and ecological transitions in the Mytilidae to identify macroevolutionary patterns and test for convergent evolution. A fossil-calibrated phylogenetic hypothesis of Mytilidae is inferred based on five genes for 33 species (19 genera). Morphological variation in the mantle margin is examined in 43 preserved species (25 genera) and four focal species are examined for detailed anatomy. Trait evolution is investigated by ancestral state estimation and correlation tests. Our phylogeny recovers two main clades derived from an epifaunal ancestor. Subsequently, different lineages convergently shifted to other lifestyles: semi-infaunal or boring into hard substrate. Such transitions are correlated with the development of long siphons in the posterior mantle region. Two independent origins are reconstructed for the posterior lobules on the inner fold, which are associated with intense mucociliary transport, suggesting an important cleansing role in epifaunal mussels. Our results reveal new examples of convergent morphological evolution associated with lifestyle transitions in marine mussels.
Collapse
Affiliation(s)
- Jorge A Audino
- Department of Zoology, University of São Paulo, Rua do Matão, Travessa 14, São Paulo, São Paulo, Brazil
| | - Jeanne M Serb
- Department of Ecology, Evolution & Organismal Biology, Iowa State University, 2200 Osborn Dr., Ames, IA, USA
| | - José Eduardo A R Marian
- Department of Zoology, University of São Paulo, Rua do Matão, Travessa 14, São Paulo, São Paulo, Brazil
| |
Collapse
|
267
|
VanKuren NW, Massardo D, Nallu S, Kronforst MR. Butterfly Mimicry Polymorphisms Highlight Phylogenetic Limits of Gene Reuse in the Evolution of Diverse Adaptations. Mol Biol Evol 2020; 36:2842-2853. [PMID: 31504750 DOI: 10.1093/molbev/msz194] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Some genes have repeatedly been found to control diverse adaptations in a wide variety of organisms. Such gene reuse reveals not only the diversity of phenotypes these unique genes control but also the composition of developmental gene networks and the genetic routes available to and taken by organisms during adaptation. However, the causes of gene reuse remain unclear. A small number of large-effect Mendelian loci control a huge diversity of mimetic butterfly wing color patterns, but reasons for their reuse are difficult to identify because the genetic basis of mimicry has primarily been studied in two systems with correlated factors: female-limited Batesian mimicry in Papilio swallowtails (Papilionidae) and non-sex-limited Müllerian mimicry in Heliconius longwings (Nymphalidae). Here, we break the correlation between phylogenetic relationship and sex-limited mimicry by identifying loci controlling female-limited mimicry polymorphism Hypolimnas misippus (Nymphalidae) and non-sex-limited mimicry polymorphism in Papilio clytia (Papilionidae). The Papilio clytia polymorphism is controlled by the genome region containing the gene cortex, the classic P supergene in Heliconius numata, and loci controlling color pattern variation across Lepidoptera. In contrast, female-limited mimicry polymorphism in Hypolimnas misippus is associated with a locus not previously implicated in color patterning. Thus, although many species repeatedly converged on cortex and its neighboring genes over 120 My of evolution of diverse color patterns, female-limited mimicry polymorphisms each evolved using a different gene. Our results support conclusions that gene reuse occurs mainly within ∼10 My and highlight the puzzling diversity of genes controlling seemingly complex female-limited mimicry polymorphisms.
Collapse
Affiliation(s)
| | - Darli Massardo
- Department of Ecology & Evolution, The University of Chicago, Chicago, IL
| | - Sumitha Nallu
- Department of Ecology & Evolution, The University of Chicago, Chicago, IL
| | - Marcus R Kronforst
- Department of Ecology & Evolution, The University of Chicago, Chicago, IL
| |
Collapse
|
268
|
Evolution of an inferior competitor increases resistance to biological invasion. Nat Ecol Evol 2020; 4:419-425. [PMID: 32066886 DOI: 10.1038/s41559-020-1105-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 01/02/2020] [Indexed: 01/24/2023]
Abstract
Biodiversity is imperilled by the spatial homogenization of life on Earth. As new species invade ecological communities, there is urgent need to understand when native species might resist or succumb to interactions with new species. In the California Floristic Province, a global biodiversity hotspot, we show that populations of a native grass (Vulpia microstachys) have evolved to resist the competitive impacts of a dominant European invader (Bromus hordeaceus). Contrary to classic theory, which predicts that competing species co-evolve to differentiate their niches, our evidence is instead most consistent with the native species having evolved to better compete for those resources used by the invader, curtailing the invader's spread. Evolution to resist an invader was achieved despite populations interacting within a diverse background community (22 species 0.5 m-2 on average), refuting the oft-cited hypothesis that high diversity precludes the evolution of pairwise species interactions. Lastly, unlike studies that have explored the demographic consequences of evolution under competition, ours does so with naturally evolved populations. Our study highlights evolution as an underappreciated coexistence mechanism, acting to buffer species from extinction in the face of biological invasion.
Collapse
|
269
|
Factors Facilitating Co-occurrence at the Range Boundary of Shenandoah and Red-Backed Salamanders. J HERPETOL 2020. [DOI: 10.1670/18-162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
270
|
Grossnickle DM. Feeding ecology has a stronger evolutionary influence on functional morphology than on body mass in mammals. Evolution 2020; 74:610-628. [PMID: 31967667 DOI: 10.1111/evo.13929] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 12/27/2019] [Accepted: 01/14/2020] [Indexed: 01/02/2023]
Abstract
Ecological specialization is a central driver of adaptive evolution. However, selective pressures may uniquely affect different ecomorphological traits (e.g., size and shape), complicating efforts to investigate the role of ecology in generating phenotypic diversity. Comparative studies can help remedy this issue by identifying specific relationships between ecologies and morphologies, thus elucidating functionally relevant traits. Jaw shape is a dietary correlate that offers considerable insight on mammalian evolution, but few studies have examined the influence of diet on jaw morphology across mammals. To this end, I apply phylogenetic comparative methods to mandibular measurements and dietary data for a diverse sample of mammals. Especially powerful predictors of diet are metrics that capture either the size of the angular process, which increases with greater herbivory, or the length of the posterior portion of the jaw, which decreases with greater herbivory. The size of the angular process likely reflects sizes of attached muscles that produce jaw movements needed to grind plant material. Further, I examine the impact of feeding ecology on body mass, an oft-used ecological surrogate in macroevolutionary studies. Although body mass commonly increases with evolutionary shifts to herbivory, it is outperformed by functional jaw morphology as a predictor of diet. Body mass is influenced by numerous factors beyond diet, and it may be evolutionarily labile relative to functional morphologies. This suggests that ecological diversification events may initially facilitate body mass diversification at smaller taxonomic and temporal scales, but sustained selective pressures will subsequently drive greater trait partitioning in functional morphologies.
Collapse
|
271
|
Rennison DJ, Delmore KE, Samuk K, Owens GL, Miller SE. Shared Patterns of Genome-Wide Differentiation Are More Strongly Predicted by Geography Than by Ecology. Am Nat 2020; 195:192-200. [DOI: 10.1086/706476] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
272
|
Van Etten M, Lee KM, Chang SM, Baucom RS. Parallel and nonparallel genomic responses contribute to herbicide resistance in Ipomoea purpurea, a common agricultural weed. PLoS Genet 2020; 16:e1008593. [PMID: 32012153 PMCID: PMC7018220 DOI: 10.1371/journal.pgen.1008593] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 02/13/2020] [Accepted: 01/03/2020] [Indexed: 12/30/2022] Open
Abstract
The repeated evolution of herbicide resistance has been cited as an example of genetic parallelism, wherein separate species or genetic lineages utilize the same genetic solution in response to selection. However, most studies that investigate the genetic basis of herbicide resistance examine the potential for changes in the protein targeted by the herbicide rather than considering genome-wide changes. We used a population genomics screen and targeted exome re-sequencing to uncover the potential genetic basis of glyphosate resistance in the common morning glory, Ipomoea purpurea, and to determine if genetic parallelism underlies the repeated evolution of resistance across replicate resistant populations. We found no evidence for changes in 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), glyphosate's target protein, that were associated with resistance, and instead identified five genomic regions that showed evidence of selection. Within these regions, genes involved in herbicide detoxification-cytochrome P450s, ABC transporters, and glycosyltransferases-are enriched and exhibit signs of selective sweeps. One region under selection shows parallel changes across all assayed resistant populations whereas other regions exhibit signs of divergence. Thus, while it appears that the physiological mechanism of resistance in this species is likely the same among resistant populations, we find patterns of both similar and divergent selection across separate resistant populations at particular loci.
Collapse
Affiliation(s)
- Megan Van Etten
- Biology Department, Penn State-Scranton, Dunmore, Pennsylvania, United States of America
| | - Kristin M. Lee
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
| | - Shu-Mei Chang
- Plant Biology Department, University of Georgia, Athens, Georgia, United States of America
| | - Regina S. Baucom
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
273
|
Mammola S, Arnedo MA, Fišer C, Cardoso P, Dejanaz AJ, Isaia M. Environmental filtering and convergent evolution determine the ecological specialization of subterranean spiders. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13527] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Stefano Mammola
- Molecular Ecology Group (MEG) IRSA—Water Research Institute National Research Council Verbania Pallanza Italy
- Laboratory for Integrative Biodiversity Research (LIBRe) Finnish Museum of Natural History (LUOMUS) University of Helsinki Helsinki Finland
- Department of Life Sciences and Systems Biology University of Turin Turin Italy
| | - Miquel A. Arnedo
- Department of Evolutionary Biology, Ecology and Environmental Sciences & Biodiversity Research Institute University of Barcelona Barcelona Spain
| | - Cene Fišer
- Department of Biology Biotechnical Faculty University of Ljubljana Ljubljana Slovenia
| | - Pedro Cardoso
- Laboratory for Integrative Biodiversity Research (LIBRe) Finnish Museum of Natural History (LUOMUS) University of Helsinki Helsinki Finland
| | - Andrea J. Dejanaz
- Department of Life Sciences and Systems Biology University of Turin Turin Italy
| | - Marco Isaia
- Department of Life Sciences and Systems Biology University of Turin Turin Italy
| |
Collapse
|
274
|
Reynolds RG, Kolbe JJ, Glor RE, López-Darias M, Gómez Pourroy CV, Harrison AS, de Queiroz K, Revell LJ, Losos JB. Phylogeographic and phenotypic outcomes of brown anole colonization across the Caribbean provide insight into the beginning stages of an adaptive radiation. J Evol Biol 2020; 33:468-494. [PMID: 31872929 DOI: 10.1111/jeb.13581] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 12/18/2019] [Indexed: 01/15/2023]
Abstract
Some of the most important insights into the ecological and evolutionary processes of diversification and speciation have come from studies of island adaptive radiations, yet relatively little research has examined how these radiations initiate. We suggest that Anolis sagrei is a candidate for understanding the origins of the Caribbean Anolis adaptive radiation and how a colonizing anole species begins to undergo allopatric diversification, phenotypic divergence and, potentially, speciation. We undertook a genomic and morphological analysis of representative populations across the entire native range of A. sagrei, finding that the species originated in the early Pliocene, with the deepest divergence occurring between western and eastern Cuba. Lineages from these two regions subsequently colonized the northern Caribbean. We find that at the broadest scale, populations colonizing areas with fewer closely related competitors tend to evolve larger body size and more lamellae on their toepads. This trend follows expectations for post-colonization divergence from progenitors and convergence in allopatry, whereby populations freed from competition with close relatives evolve towards common morphological and ecological optima. Taken together, our results show a complex history of ancient and recent Cuban diaspora with populations on competitor-poor islands evolving away from their ancestral Cuban populations regardless of their phylogenetic relationships, thus providing insight into the original diversification of colonist anoles at the beginning of the radiation. Our research also supplies an evolutionary framework for the many studies of this increasingly important species in ecological and evolutionary research.
Collapse
Affiliation(s)
| | - Jason J Kolbe
- Department of Biological Sciences, University of Rhode Island, Kingston, RI, USA
| | - Richard E Glor
- Herpetology Division, Biodiversity Institute and Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KA, USA
| | | | | | - Alexis S Harrison
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Kevin de Queiroz
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Liam J Revell
- Department of Biology, University of Massachusetts Boston, Boston, MA, USA.,Departamento de Ecología, Facultad de Ciencias, Universidad Católica de la Santísima Concepción, Concepción, Chile
| | - Jonathan B Losos
- Department of Biology, Washington University in Saint Louis, Saint Louis, MO, USA
| |
Collapse
|
275
|
Macroevolutionary convergence connects morphological form to ecological function in birds. Nat Ecol Evol 2020; 4:230-239. [PMID: 31932703 DOI: 10.1038/s41559-019-1070-4] [Citation(s) in RCA: 199] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 11/20/2019] [Indexed: 11/08/2022]
Abstract
Animals have diversified into a bewildering variety of morphological forms exploiting a complex configuration of trophic niches. Their morphological diversity is widely used as an index of ecosystem function, but the extent to which animal traits predict trophic niches and associated ecological processes is unclear. Here we use the measurements of nine key morphological traits for >99% bird species to show that avian trophic diversity is described by a trait space with four dimensions. The position of species within this space maps with 70-85% accuracy onto major niche axes, including trophic level, dietary resource type and finer-scale variation in foraging behaviour. Phylogenetic analyses reveal that these form-function associations reflect convergence towards predictable trait combinations, indicating that morphological variation is organized into a limited set of dimensions by evolutionary adaptation. Our results establish the minimum dimensionality required for avian functional traits to predict subtle variation in trophic niches and provide a global framework for exploring the origin, function and conservation of bird diversity.
Collapse
|
276
|
A Novel cis Element Achieves the Same Solution as an Ancestral cis Element During Thiamine Starvation in Candida glabrata. G3-GENES GENOMES GENETICS 2020; 10:321-331. [PMID: 31732505 PMCID: PMC6945020 DOI: 10.1534/g3.119.400897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Regulatory networks often converge on very similar cis sequences to drive transcriptional programs due to constraints on what transcription factors are present. To determine the role of constraint loss on cis element evolution, we examined the recent appearance of a thiamine starvation regulated promoter in Candida glabrata. This species lacks the ancestral transcription factor Thi2, but still has the transcription factor Pdc2, which regulates thiamine starvation genes, allowing us to determine the effect of constraint change on a new promoter. We identified two different cis elements in C. glabrata - one present in the evolutionarily recent gene called CgPMU3, and the other element present in the other thiamine (THI) regulated genes. Reciprocal swaps of the cis elements and incorporation of the S. cerevisiaeThi2 transcription factor-binding site into these promoters demonstrate that the two elements are functionally different from one another. Thus, this loss of an imposed constraint on promoter function has generated a novel cis sequence, suggesting that loss of trans constraints can generate a non-convergent pathway with the same output.
Collapse
|
277
|
Huie JM, Thacker CE, Tornabene L. Co-evolution of cleaning and feeding morphology in western Atlantic and eastern Pacific gobies. Evolution 2019; 74:419-433. [PMID: 31876289 DOI: 10.1111/evo.13904] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 11/22/2019] [Accepted: 11/25/2019] [Indexed: 11/30/2022]
Abstract
Cleaning symbioses are mutualistic relationships where cleaners remove and consume ectoparasites from their clients. Cleaning behavior is rare in fishes and is a highly specialized feeding strategy only observed in around 200 species. Cleaner fishes vary in their degree of specialization, ranging from species that clean as juveniles or facultatively as adults, to nearly obligate or dedicated cleaners. Here, we investigate whether these different levels of trophic specialization correspond with similar changes in feeding morphology. Specifically, we model the evolution of cleaning behavior across the family Gobiidae, which contains the most speciose radiation of dedicated and facultative cleaner fishes. We compared the cranial morphology and dentition of cleaners and non-cleaners across the phylogeny of cleaning gobies and found that facultative cleaners independently evolved four times and have converged on an intermediate morphology relative to that of dedicated cleaners and non-cleaning generalists. This is consistent with their more flexible feeding habits. Cleaner gobies also possess a distinct tooth morphology, which suggests they are adapted for scraping parasites off their clients and show little similarity to other cleaner clades. We propose that evolutionary history and pre-adaptation underlie the morphological and ecological diversification of cleaner fishes.
Collapse
Affiliation(s)
- Jonathan M Huie
- School of Aquatic and Fishery Sciences, University of Washington, 1122 NE Boat St, Seattle, Washington, 98195
| | - Christine E Thacker
- Santa Barbara Museum of Natural History, 2559 Puesta del Sol, Santa Barbara, California, 93105.,Natural History Museum of Los Angeles County, 900 Exposition Blvd, Los Angeles, California, 90007
| | - Luke Tornabene
- School of Aquatic and Fishery Sciences, University of Washington, 1122 NE Boat St, Seattle, Washington, 98195.,Burke Museum of Natural History and Culture, 4300 15th Ave NE, Seattle, Washington, 98105
| |
Collapse
|
278
|
A new, fast method to search for morphological convergence with shape data. PLoS One 2019; 14:e0226949. [PMID: 31881075 PMCID: PMC6934287 DOI: 10.1371/journal.pone.0226949] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 12/09/2019] [Indexed: 12/04/2022] Open
Abstract
Morphological convergence is an intensely studied macroevolutionary phenomenon. It refers to the morphological resemblance between phylogenetically distant taxa. Currently available methods to explore evolutionary convergence either: rely on the analysis of the phenotypic resemblance between sister clades as compared to their ancestor, fit different evolutionary regimes to different parts of the tree to see whether the same regime explains phenotypic evolution in phylogenetically distant clades, or assess deviations from the congruence between phylogenetic and phenotypic distances. We introduce a new test for morphological convergence working directly with non-ultrametric (i.e. paleontological) as well as ultrametric phylogenies and multivariate data. The method (developed as the function search.conv within the R package RRphylo) tests whether unrelated clades are morphologically more similar to each other than expected by their phylogenetic distance. It additionally permits using known phenotypes as the most recent common ancestors of clades, taking full advantage of fossil information. We assessed the power of search.conv and the incidence of false positives by means of simulations, and then applied it to three well-known and long-discussed cases of (purported) morphological convergence: the evolution of grazing adaptation in the mandible of ungulates with high-crowned molars, the evolution of mandibular shape in sabertooth cats, and the evolution of discrete ecomorphs among anoles of Caribbean islands. The search.conv method was found to be powerful, correctly identifying simulated cases of convergent morphological evolution in 95% of the cases. Type I error rate is as low as 4–6%. We found search.conv is some three orders of magnitude faster than a competing method for testing convergence.
Collapse
|
279
|
Riesch R, Martin RA, Langerhans RB. Multiple traits and multifarious environments: integrated divergence of morphology and life history. OIKOS 2019. [DOI: 10.1111/oik.06344] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Rüdiger Riesch
- School of Biological Sciences, Centre for Ecology, Evolution and Behaviour, Royal Holloway, Univ. of London Egham Surrey TW20 0EX UK
| | - Ryan A. Martin
- Dept of Biology, DeGrace Hall, Case Western Reserve Univ. Cleveland OH USA
| | - R. Brian Langerhans
- Dept of Biological Sciences & W. M. Keck Center for Behavioral Biology, North Carolina State Univ. Raleigh NC USA
| |
Collapse
|
280
|
Keates C, Conradie W, Greenbaum E, Edwards S. A snake in the grass: Genetic structuring of the widespread African grass snake (
Psammophylax
Fitzinger 1843), with the description of a new genus and a new species. J ZOOL SYST EVOL RES 2019. [DOI: 10.1111/jzs.12337] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Chad Keates
- Zoology and Entomology Molecular Lab Department of Zoology and Entomology Rhodes University Grahamstown South Africa
| | - Werner Conradie
- Port Elizabeth Museum (Bayworld) Humewood South Africa
- School of Natural Resource Management Nelson Mandela University George Campus George South Africa
- National Geographic Okavango Wilderness Project, Wild Bird Trust Hogsback South Africa
| | - Eli Greenbaum
- Department of Biological Sciences University of Texas at El Paso El Paso TX USA
| | - Shelley Edwards
- Zoology and Entomology Molecular Lab Department of Zoology and Entomology Rhodes University Grahamstown South Africa
| |
Collapse
|
281
|
de Sá FP, Haddad CFB, Gray MM, Verdade VK, Thomé MTC, Rodrigues MT, Zamudio KR. Male-male competition and repeated evolution of terrestrial breeding in Atlantic Coastal Forest frogs. Evolution 2019; 74:459-475. [PMID: 31710098 DOI: 10.1111/evo.13879] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 10/09/2019] [Accepted: 10/17/2019] [Indexed: 11/28/2022]
Abstract
Terrestrial breeding is a derived condition in frogs, with multiple transitions from an aquatic ancestor. Shifts in reproductive mode often involve changes in habitat use, and these are typically associated with diversification in body plans, with repeated transitions imposing similar selective pressures. We examine the diversification of reproductive modes, male and female body sizes, and sexual size dimorphism (SSD) in the Neotropical frog genera Cycloramphus and Zachaenus, both endemic to the Atlantic rainforest of Brazil. Species in this clade either breed in rocky streams (saxicolous) or in terrestrial environments, allowing us to investigate reproductive habitat shifts. We constructed a multilocus molecular phylogeny and inferred evolutionary histories of reproductive habitats, body sizes, and SSD. The common ancestor was small, saxicolous, and had low SSD. Terrestrial breeding evolved independently three times and we found a significant association between reproductive habitat and SSD, with shifts to terrestrial breeding evolving in correlation with decreases in male body size, but not female body size. Terrestrial breeding increases the availability of breeding sites and results in concealment of amplexus, egg-laying, and parental care, therefore reducing male-male competition at all stages of reproduction. We conclude that correlated evolution of terrestrial reproduction and small males is due to release from intense male-male competition that is typical of exposed saxicolous breeding.
Collapse
Affiliation(s)
- Fábio P de Sá
- Departamento de Zoologia and Centro de Aquicultura (CAUNESP), Instituto de Biociências, UNESP - Universidade Estadual Paulista, Rio Claro, 13506-900, São Paulo, Brazil
| | - Célio F B Haddad
- Departamento de Zoologia and Centro de Aquicultura (CAUNESP), Instituto de Biociências, UNESP - Universidade Estadual Paulista, Rio Claro, 13506-900, São Paulo, Brazil
| | - Miranda M Gray
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, 14853
| | - Vanessa K Verdade
- Centro de Ciências Naturais e Humanas, UFABC - Universidade Federal do ABC, Santo André, 09210-580, São Paulo, Brazil
| | - Maria Tereza C Thomé
- Departamento de Zoologia and Centro de Aquicultura (CAUNESP), Instituto de Biociências, UNESP - Universidade Estadual Paulista, Rio Claro, 13506-900, São Paulo, Brazil
| | - Miguel T Rodrigues
- Departamento de Zoologia, Instituto de Biociências, USP - Universidade de São Paulo, 05508-090, São Paulo, São Paulo, Brazil
| | - Kelly R Zamudio
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, 14853
| |
Collapse
|
282
|
Baeckens S, Goeyers C, Van Damme R. Convergent Evolution of Claw Shape in a Transcontinental Lizard Radiation. Integr Comp Biol 2019; 60:10-23. [DOI: 10.1093/icb/icz151] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
AbstractSpecies occupying similar selective environments often share similar phenotypes as the result of natural selection. Recent discoveries, however, have led to the understanding that phenotypes may also converge for other reasons than recurring selection. We argue that the vertebrate claw system constitutes a promising but understudied model system for testing the adaptive nature of phenotypic, functional, and genetic convergence. In this study, we combine basic morphometrics and advanced techniques in form analysis to examine claw shape divergence in a transcontinental lizard radiation (Lacertidae). We find substantial interspecific variation in claw morphology and phylogenetic comparative statistics reveal a strong correlation with structural habitat use: ground-dwelling species living in open areas are equipped with long, thick, weakly curved, slender-bodied claws, whereas climbing species carry high, short, strongly curved, full-bodied claws. Species occupying densely vegetated habitats tend to carry intermediately shaped claws. Evolutionary models suggest that claw shape evolves toward multiple adaptive peaks, with structural habitat use pulling species toward a specific selective optimum. Contrary to findings in several other vertebrate taxa, our analyses indicate that environmental pressures, not phylogenetic relatedness, drive convergent evolution of similarly shaped claws in lacertids. Overall, our study suggests that lacertids independently evolved similarly shaped claws as an adaptation to similar structural environments in order to cope with the specific locomotory challenges posed by the habitat. Future biomechanical studies that link form and function in combination with genomic and development research will prove valuable in better understanding the adaptive significance of claw shape divergence.
Collapse
Affiliation(s)
- Simon Baeckens
- Functional Morphology Lab, Department of Biology, University of Antwerp, Wilrijk, Belgium
- Department of Biological Sciences, Macquarie University, Sydney, Australia
| | - Charlotte Goeyers
- Functional Morphology Lab, Department of Biology, University of Antwerp, Wilrijk, Belgium
| | - Raoul Van Damme
- Functional Morphology Lab, Department of Biology, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
283
|
Roycroft EJ, Nations JA, Rowe KC. Environment predicts repeated body size shifts in a recent radiation of Australian mammals. Evolution 2019; 74:671-680. [PMID: 31595503 DOI: 10.1111/evo.13859] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 09/19/2019] [Accepted: 09/19/2019] [Indexed: 12/22/2022]
Abstract
Closely related species that occur across steep environmental gradients often display clear body size differences, and examining this pattern is crucial to understanding how environmental variation shapes diversity. Australian endemic rodents in the Pseudomys Division (Muridae: Murinae) have repeatedly colonized the arid, monsoon, and mesic biomes over the last 5 million years. Using occurrence records, body mass data, and Bayesian phylogenetic models, we test whether body mass of 31 species in the Pseudomys Division can be predicted by their biome association. We also model the effect of eight environmental variables on body mass. Despite high phylogenetic signal in body mass evolution across the phylogeny, we find that mass predictably increases in the mesic biome and decreases in arid and monsoon biomes. As per Bergmann's rule, temperature is strongly correlated with body mass, as well as several other variables. Our results highlight two important findings. First, body size in Australian rodents has tracked with climate through the Pleistocene, likely due to several environmental variables rather than a single factor. Second, support for both Brownian motion and predictable change at different taxonomic levels in the Pseudomys Division phylogeny demonstrates how the level at which we test hypotheses can alter interpretation of evolutionary processes.
Collapse
Affiliation(s)
- Emily J Roycroft
- School of BioSciences, The University of Melbourne, Parkville, Victoria, 3010, Australia.,Sciences Department, Museums Victoria, GPO Box 666, Melbourne, Victoria, 3001, Australia
| | - Jonathan A Nations
- Museum of Natural Sciences, Louisiana State University, Baton Rouge, Louisiana, 70803.,Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, 70803
| | - Kevin C Rowe
- School of BioSciences, The University of Melbourne, Parkville, Victoria, 3010, Australia.,Sciences Department, Museums Victoria, GPO Box 666, Melbourne, Victoria, 3001, Australia
| |
Collapse
|
284
|
Gray JA, Sherratt E, Hutchinson MN, Jones MEH. Evolution of cranial shape in a continental‐scale evolutionary radiation of Australian lizards. Evolution 2019; 73:2216-2229. [DOI: 10.1111/evo.13851] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 07/31/2019] [Accepted: 09/26/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Jaimi A. Gray
- School of Biological Science, Thomas BuildingUniversity of Auckland Auckland 1142 New Zealand
| | - Emma Sherratt
- Department of Ecology and Evolutionary Biology, School of Biological SciencesUniversity of Adelaide North Terrace Adelaide South Australia 5005 Australia
- South Australian Museum Kintore Avenue Adelaide South Australia 5000 Australia
| | - Mark N. Hutchinson
- Department of Ecology and Evolutionary Biology, School of Biological SciencesUniversity of Adelaide North Terrace Adelaide South Australia 5005 Australia
- South Australian Museum Kintore Avenue Adelaide South Australia 5000 Australia
| | - Marc E. H. Jones
- Earth SciencesNatural History Museum London SW7 5BD United Kingdom
| |
Collapse
|
285
|
Blankers T, Oh KP, Shaw KL. Parallel genomic architecture underlies repeated sexual signal divergence in Hawaiian Laupala crickets. Proc Biol Sci 2019; 286:20191479. [PMID: 31594503 PMCID: PMC6790767 DOI: 10.1098/rspb.2019.1479] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 09/13/2019] [Indexed: 12/13/2022] Open
Abstract
When the same phenotype evolves repeatedly, we can explore the predictability of genetic changes underlying phenotypic evolution. Theory suggests that genetic parallelism is less likely when phenotypic changes are governed by many small-effect loci compared to few of major effect, because different combinations of genetic changes can result in the same quantitative outcome. However, some genetic trajectories might be favoured over others, making a shared genetic basis to repeated polygenic evolution more likely. To examine this, we studied the genetics of parallel male mating song evolution in the Hawaiian cricket Laupala. We compared quantitative trait loci (QTL) underlying song divergence in three species pairs varying in phenotypic distance. We tested whether replicated song divergence between species involves the same QTL and whether the likelihood of QTL sharing is related to QTL effect size. Contrary to theoretical predictions, we find substantial parallelism in polygenic genetic architectures underlying repeated song divergence. QTL overlapped more frequently than expected based on simulated QTL analyses. Interestingly, QTL effect size did not predict QTL sharing, but did correlate with magnitude of phenotypic divergence. We highlight potential mechanisms driving these constraints on cricket song evolution and discuss a scenario that consolidates empirical quantitative genetic observations with micro-mutational theory.
Collapse
|
286
|
Wölfer J, Nyakatura JA. Weighing homoplasy against alternative scenarios with the help of macroevolutionary modeling: A case study on limb bones of fossorial sciuromorph rodents. Ecol Evol 2019; 9:11025-11039. [PMID: 31641452 PMCID: PMC6802075 DOI: 10.1002/ece3.5592] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 07/30/2019] [Indexed: 11/29/2022] Open
Abstract
Homoplasy is a strong indicator of a phenotypic trait's adaptive significance when it can be linked to a similar function. We assessed homoplasy in functionally relevant scapular and femoral traits of Marmotini and Xerini, two sciuromorph rodent clades that independently acquired a fossorial lifestyle from an arboreal ancestor. We studied 125 species in the scapular dataset and 123 species in the femoral dataset. Pairwise evolutionary model comparison was used to evaluate whether homoplasy of trait optima is more likely than other plausible scenarios. The most likely trend of trait evolution among all traits was assessed via likelihood scoring of all considered models. The homoplasy hypothesis could never be confirmed as the single most likely model. Regarding likelihood scoring, scapular traits most frequently did not differ among Marmotini, Xerini, and arboreal species. For the majority of femoral traits, results indicate that Marmotini, but not Xerini, evolved away from the ancestral arboreal condition. We conclude on the basis of the scapular results that the forelimbs of fossorial and arboreal sciuromorphs share mostly similar functional demands, whereas the results on the femur indicate that the hind limb morphology is less constrained, perhaps depending on the specific fossorial habitat.
Collapse
Affiliation(s)
- Jan Wölfer
- AG Morphologie und FormengeschichteInstitut für BiologieHumboldt‐Universität zu BerlinBerlinGermany
- Bild Wissen Gestaltung, Ein Interdisziplinäres LaborHumboldt‐Universität zu BerlinBerlinGermany
| | - John A. Nyakatura
- AG Morphologie und FormengeschichteInstitut für BiologieHumboldt‐Universität zu BerlinBerlinGermany
- Bild Wissen Gestaltung, Ein Interdisziplinäres LaborHumboldt‐Universität zu BerlinBerlinGermany
| |
Collapse
|
287
|
Moen DS. What Determines the Distinct Morphology of Species with a Particular Ecology? The Roles of Many-to-One Mapping and Trade-Offs in the Evolution of Frog Ecomorphology and Performance. Am Nat 2019; 194:E81-E95. [DOI: 10.1086/704736] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
288
|
Godoy PL. Crocodylomorph cranial shape evolution and its relationship with body size and ecology. J Evol Biol 2019; 33:4-21. [DOI: 10.1111/jeb.13540] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/23/2019] [Accepted: 09/05/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Pedro L. Godoy
- Department of Anatomical Sciences Stony Brook University Stony Brook NY USA
| |
Collapse
|
289
|
Rougeux C, Gagnaire P, Praebel K, Seehausen O, Bernatchez L. Polygenic selection drives the evolution of convergent transcriptomic landscapes across continents within a Nearctic sister species complex. Mol Ecol 2019; 28:4388-4403. [DOI: 10.1111/mec.15226] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 08/06/2019] [Accepted: 08/08/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Clément Rougeux
- Département de biologie Institut de Biologie Intégrative et des Systèmes (IBIS) Université Laval Québec City QC Canada
| | | | - Kim Praebel
- Norwegian College of Fishery Science UiT The Arctic University of Norway Tromsø Norway
| | - Ole Seehausen
- Aquatic Ecology and Evolution Institute of Ecology & Evolution University of Bern Bern Switzerland
| | - Louis Bernatchez
- Département de biologie Institut de Biologie Intégrative et des Systèmes (IBIS) Université Laval Québec City QC Canada
| |
Collapse
|
290
|
Sansalone G, Colangelo P, Loy A, Raia P, Wroe S, Piras P. Impact of transition to a subterranean lifestyle on morphological disparity and integration in talpid moles (Mammalia, Talpidae). BMC Evol Biol 2019; 19:179. [PMID: 31510915 PMCID: PMC6739959 DOI: 10.1186/s12862-019-1506-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 08/30/2019] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Understanding the mechanisms promoting or constraining morphological diversification within clades is a central topic in evolutionary biology. Ecological transitions are of particular interest because of their influence upon the selective forces and factors involved in phenotypic evolution. Here we focused on the humerus and mandibles of talpid moles to test whether the transition to the subterranean lifestyle impacted morphological disparity and phenotypic traits covariation between these two structures. RESULTS Our results indicate non-subterranean species occupy a significantly larger portion of the talpid moles morphospace. However, there is no difference between subterranean and non-subterranean moles in terms of the strength and direction of phenotypic integration. CONCLUSIONS Our study shows that the transition to a subterranean lifestyle significantly reduced morphological variability in talpid moles. However, this reduced disparity was not accompanied by changes in the pattern of traits covariation between the humerus and the mandible, suggesting the presence of strong phylogenetic conservatism within this pattern.
Collapse
Affiliation(s)
- Gabriele Sansalone
- Form, Evolution and Anatomy Research Laboratory, Zoology, School of Environmental and Rural Sciences, University of New England, Armidale, NSW 2351 Australia
- Department of Sciences, Roma Tre University, Largo San Leonardo Murialdo 1, I-00146 Rome, Italy
| | - Paolo Colangelo
- National Research Council, Institute of Research on Terrestrial Ecosystems, Via Salaria km 29.300, 00015 Monterotondo (Rome), Italy
| | - Anna Loy
- Environmetrics Lab, Dipartimento STAT, Università del Molise, I-86090 Pesche, Italy
| | - Pasquale Raia
- Università degli Studi di Napoli Federico II, Department of Earth Sciences, Environment and Resources, L.go San Marcellino 10, 80138 Naples, Italy
| | - Stephen Wroe
- Form, Evolution and Anatomy Research Laboratory, Zoology, School of Environmental and Rural Sciences, University of New England, Armidale, NSW 2351 Australia
| | - Paolo Piras
- Dipartimento di Scienze Cardiovascolari,Respiratorie, Nefrologiche, Anestesiologiche e Geriatriche, “Sapienza”, Università di Roma, Via del Policlinico 155, 00161 Rome, Italy
- Dipartimento di Ingegneria Strutturale e Geotecnica, Sapienza, Università di Roma, Via Eudossiana 18, 00100 Rome, Italy
| |
Collapse
|
291
|
Lin Y, Lin R, Braby MF, Hsu Y. Evolution and losses of spines in slug caterpillars (Lepidoptera: Limacodidae). Ecol Evol 2019; 9:9827-9840. [PMID: 31534697 PMCID: PMC6745677 DOI: 10.1002/ece3.5524] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 07/14/2019] [Accepted: 07/17/2019] [Indexed: 12/18/2022] Open
Abstract
Larvae of the cosmopolitan family Limacodidae, commonly known as "slug" caterpillars, are well known because of the widespread occurrence of spines with urticating properties, a morpho-chemical adaptive trait that has been demonstrated to protect the larvae from natural enemies. However, while most species are armed with rows of spines ("nettle" caterpillars), slug caterpillars are morphologically diverse with some species lacking spines and thus are nonstinging. It has been demonstrated that the evolution of spines in slug caterpillars may have a single origin and that this trait is possibly derived from nonstinging slug caterpillars, but these conclusions were based on limited sampling of mainly New World taxa; thus, the evolution of spines and other traits within the family remains unresolved. Here, we analyze morphological variation in slug caterpillars within an evolutionary framework to determine character evolution of spines with samples from Asia, Australia, North America, and South America. The phylogeny of the Limacodidae was reconstructed based on a multigene dataset comprising five molecular markers (5.6 Kbp: COI, 28S, 18S, EF-1α, and wingless) representing 45 species from 40 genera and eight outgroups. Based on this phylogeny, we infer that limacodids evolved from a common ancestor in which the larval type possessed spines, and then slug caterpillars without spines evolved independently multiple times in different continents. While larvae with spines are well adapted to avoiding generalist predators, our results imply that larvae without spines may be suited to different ecological niches. Systematic relationships of our dataset indicate six major lineages, several of which have not previously been identified.
Collapse
Affiliation(s)
- Yu‐Chi Lin
- Department of Life ScienceNational Taiwan Normal UniversityTaipeiTaiwan
| | - Rung‐Juen Lin
- Department of Life ScienceNational Taiwan Normal UniversityTaipeiTaiwan
| | - Michael F. Braby
- Division of Ecology and EvolutionResearch School of BiologyThe Australian National UniversityActonACTAustralia
- The Australian National Insect CollectionNational Research Collections AustraliaCanberraACTAustralia
| | - Yu‐Feng Hsu
- Department of Life ScienceNational Taiwan Normal UniversityTaipeiTaiwan
| |
Collapse
|
292
|
Capshaw G, Soares D, Carr CE. Bony labyrinth morphometry reveals hidden diversity in lungless salamanders (Family Plethodontidae): Structural correlates of ecology, development, and vision in the inner ear. Evolution 2019; 73:2135-2150. [PMID: 31436320 DOI: 10.1111/evo.13837] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 07/29/2019] [Accepted: 08/09/2019] [Indexed: 01/05/2023]
Abstract
Lungless salamanders (Family Plethodontidae) form a highly speciose group that has undergone spectacular adaptive radiation to colonize a multitude of habitats. Substantial morphological variation in the otic region coupled with great ecological diversity within this clade make plethodontids an excellent model for exploring the ecomorphology of the amphibian ear. We examined the influence of habitat, development, and vision on inner ear morphology in 52 plethodontid species. We collected traditional and 3D geometric morphometric measurements to characterize variation in size and shape of the otic endocast and peripheral structures of the salamander ear. Phylogenetic comparative analyses demonstrate structural convergence in the inner ear across ecologically similar species. Species that dwell in spatially complex microhabitats exhibit robust, highly curved semicircular canals suggesting enhanced vestibular sense, whereas species with reduced visual systems demonstrate reduced canal curvature indicative of relaxed selection on the vestibulo-ocular reflex. Cave specialists show parallel enlargement of auditory-associated structures. The morphological correlates of ecology among diverse species reveal underlying evidence of habitat specialization in the inner ear and suggest that there exists physiological variation in the function of the salamander ear even in the apparent absence of selective pressures on the auditory system to support acoustic behavior.
Collapse
Affiliation(s)
- Grace Capshaw
- Department of Biology, University of Maryland, College Park, MD, 20742
| | - Daphne Soares
- Department of Biological Sciences, New Jersey Institute of Technology, Newark, NJ, 07102
| | - Catherine E Carr
- Department of Biology, University of Maryland, College Park, MD, 20742
| |
Collapse
|
293
|
Lele A, Ottenburghs J. Digest: A single genetic origin and a role for bone development pathways in repeated losses of flight in steamer ducks. Evolution 2019; 73:2030-2032. [PMID: 31429934 DOI: 10.1111/evo.13827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 07/16/2019] [Indexed: 02/03/2023]
Abstract
Is there evidence for convergence in the molecular mechanisms underlying the loss of flight in the avian evolutionary tree? Campagna et al. used genomic data to investigate the genetic basis of flightlessness in steamer ducks, a recently diverged clade that is polymorphic with respect to flight. They found an association between morphological changes related to flightlessness and several genes, one of which is involved in growth and bone development, providing evidence for a single genetic origin for flightlessness.
Collapse
Affiliation(s)
- Abhimanyu Lele
- Committee on Evolutionary Biology, University of Chicago, 5801 S Ellis Ave, Chicago, Illinois, 60637
| | - Jente Ottenburghs
- Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, 75236, Uppsala, Sweden
| |
Collapse
|
294
|
Yudin N, Larkin DM. Shared Signatures of Selection Related to Adaptation and Acclimation in Local Cattle and Sheep Breeds from Russia. RUSS J GENET+ 2019. [DOI: 10.1134/s1022795419070159] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
295
|
Simões P, Fragata I, Santos J, Santos MA, Santos M, Rose MR, Matos M. How phenotypic convergence arises in experimental evolution. Evolution 2019; 73:1839-1849. [DOI: 10.1111/evo.13806] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 06/12/2019] [Accepted: 06/15/2019] [Indexed: 12/29/2022]
Affiliation(s)
- Pedro Simões
- cE3c—Centre for Ecology, Evolution and Environmental Changes, Faculdade de CiênciasUniversidade de Lisboa Campo Grande 1749‐016 Lisboa Portugal
| | - Inês Fragata
- cE3c—Centre for Ecology, Evolution and Environmental Changes, Faculdade de CiênciasUniversidade de Lisboa Campo Grande 1749‐016 Lisboa Portugal
| | - Josiane Santos
- cE3c—Centre for Ecology, Evolution and Environmental Changes, Faculdade de CiênciasUniversidade de Lisboa Campo Grande 1749‐016 Lisboa Portugal
| | - Marta A. Santos
- cE3c—Centre for Ecology, Evolution and Environmental Changes, Faculdade de CiênciasUniversidade de Lisboa Campo Grande 1749‐016 Lisboa Portugal
| | - Mauro Santos
- Departament de Genètica i de Microbiologia, Grup de Genòmica, Bioinformàtica i Biologia Evolutiva (GGBE)Universitat Autonòma de Barcelona 08193 Barcelona Spain
| | - Michael R. Rose
- Department of Ecology and Evolutionary BiologyUniversity of California, Irvine Irvine California 92697
| | - Margarida Matos
- cE3c—Centre for Ecology, Evolution and Environmental Changes, Faculdade de CiênciasUniversidade de Lisboa Campo Grande 1749‐016 Lisboa Portugal
| |
Collapse
|
296
|
Lamichhaney S, Card DC, Grayson P, Tonini JFR, Bravo GA, Näpflin K, Termignoni-Garcia F, Torres C, Burbrink F, Clarke JA, Sackton TB, Edwards SV. Integrating natural history collections and comparative genomics to study the genetic architecture of convergent evolution. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180248. [PMID: 31154982 PMCID: PMC6560268 DOI: 10.1098/rstb.2018.0248] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/25/2019] [Indexed: 12/20/2022] Open
Abstract
Evolutionary convergence has been long considered primary evidence of adaptation driven by natural selection and provides opportunities to explore evolutionary repeatability and predictability. In recent years, there has been increased interest in exploring the genetic mechanisms underlying convergent evolution, in part, owing to the advent of genomic techniques. However, the current 'genomics gold rush' in studies of convergence has overshadowed the reality that most trait classifications are quite broadly defined, resulting in incomplete or potentially biased interpretations of results. Genomic studies of convergence would be greatly improved by integrating deep 'vertical', natural history knowledge with 'horizontal' knowledge focusing on the breadth of taxonomic diversity. Natural history collections have and continue to be best positioned for increasing our comprehensive understanding of phenotypic diversity, with modern practices of digitization and databasing of morphological traits providing exciting improvements in our ability to evaluate the degree of morphological convergence. Combining more detailed phenotypic data with the well-established field of genomics will enable scientists to make progress on an important goal in biology: to understand the degree to which genetic or molecular convergence is associated with phenotypic convergence. Although the fields of comparative biology or comparative genomics alone can separately reveal important insights into convergent evolution, here we suggest that the synergistic and complementary roles of natural history collection-derived phenomic data and comparative genomics methods can be particularly powerful in together elucidating the genomic basis of convergent evolution among higher taxa. This article is part of the theme issue 'Convergent evolution in the genomics era: new insights and directions'.
Collapse
Affiliation(s)
- Sangeet Lamichhaney
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| | - Daren C. Card
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
- Department of Biology, University of Texas Arlington, Arlington, TX 76019, USA
| | - Phil Grayson
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| | - João F. R. Tonini
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| | - Gustavo A. Bravo
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| | - Kathrin Näpflin
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| | - Flavia Termignoni-Garcia
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| | - Christopher Torres
- Department of Biology, The University of Texas at Austin, Austin, MA 78712, USA
- Department of Geological Sciences, The University of Texas at Austin, Austin, MA 78712, USA
| | - Frank Burbrink
- Department of Herpetology, The American Museum of Natural History, New York, NY 10024, USA
| | - Julia A. Clarke
- Department of Biology, The University of Texas at Austin, Austin, MA 78712, USA
- Department of Geological Sciences, The University of Texas at Austin, Austin, MA 78712, USA
| | | | - Scott V. Edwards
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
297
|
Lee KM, Coop G. Population genomics perspectives on convergent adaptation. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180236. [PMID: 31154979 PMCID: PMC6560269 DOI: 10.1098/rstb.2018.0236] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2018] [Indexed: 01/12/2023] Open
Abstract
Convergent adaptation is the independent evolution of similar traits conferring a fitness advantage in two or more lineages. Cases of convergent adaptation inform our ideas about the ecological and molecular basis of adaptation. In judging the degree to which putative cases of convergent adaptation provide an independent replication of the process of adaptation, it is necessary to establish the degree to which the evolutionary change is unexpected under null models and to show that selection has repeatedly, independently driven these changes. Here, we discuss the issues that arise from these questions particularly for closely related populations, where gene flow and standing variation add additional layers of complexity. We outline a conceptual framework to guide intuition as to the extent to which evolutionary change represents the independent gain of information owing to selection and show that this is a measure of how surprised we should be by convergence. Additionally, we summarize the ways population and quantitative genetics and genomics may help us address questions related to convergent adaptation, as well as open new questions and avenues of research. This article is part of the theme issue 'Convergent evolution in the genomics era: new insights and directions'.
Collapse
Affiliation(s)
- Kristin M. Lee
- Center for Population Biology, University of California, Davis, CA 95616, USA
- Department of Evolution and Ecology, University of California, Davis, CA 95616, USA
| | - Graham Coop
- Center for Population Biology, University of California, Davis, CA 95616, USA
- Department of Evolution and Ecology, University of California, Davis, CA 95616, USA
| |
Collapse
|
298
|
Liu A, He F, Zhou J, Zou Y, Su Z, Gu X. Comparative Transcriptome Analyses Reveal the Role of Conserved Function in Electric Organ Convergence Across Electric Fishes. Front Genet 2019; 10:664. [PMID: 31379927 PMCID: PMC6657706 DOI: 10.3389/fgene.2019.00664] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 06/25/2019] [Indexed: 11/24/2022] Open
Abstract
The independent origins of multiple electric organs (EOs) of fish are fascinating examples of convergent evolution. However, comparative transcriptomics of different electric fish lineages are scarce. In this study, we found that the gene expression of EOs and skeletal muscles from three lineages (Mormyroidea, Siluriformes, and Gymnotiformes) tended to cluster together based on the species of origin, irrespective of the organ from which they are derived. A pairwise comparison of differentially expressed genes (DEGs) revealed that no less than half of shared DEGs exhibited parallel expression differentiation, indicating conserved directionality of differential expression either in or between lineages, but only a few shared DEGs were identified across all focal species. Nevertheless, the functional enrichment analysis of DEGs indicated that there were more parallel gene expression changes at the level of pathways and biological functions. Therefore, we may conclude that there is no parallel evolution of the entire transcriptomes of EOs among different lineages. Further, our results support the hypothesis that it is not different genes but conserved biological functions that play a crucial role in the convergence of complex phenotypes. This study provides insight into the genetic basis underlying the EO convergent evolution; however, more studies in different cases will be needed to demonstrate whether this pattern can be extended to other cases to derive a general rule for convergent evolution.
Collapse
Affiliation(s)
- Ake Liu
- Faculty of Biology Sciences and Technology, Changzhi University, Changzhi, China.,School of Life Sciences, Fudan University, Shanghai, China
| | - Funan He
- School of Life Sciences, Fudan University, Shanghai, China
| | - Jingqi Zhou
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yangyun Zou
- School of Life Sciences, Fudan University, Shanghai, China
| | - Zhixi Su
- School of Life Sciences, Fudan University, Shanghai, China.,Singlera Genomics Inc., Shanghai, China
| | - Xun Gu
- Department of GDC Biology, Iowa State University, Ames, IA, United States.,Fudan Human Phenome Institute, Shanghai, China
| |
Collapse
|
299
|
Emerson BC, Salces-Castellano A, Arribas P. Dispersal limitation: Evolutionary origins and consequences in arthropods. Mol Ecol 2019; 28:3137-3140. [PMID: 31313423 DOI: 10.1111/mec.15152] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 06/19/2019] [Indexed: 11/26/2022]
Abstract
Niche and dispersal ability are key traits for explaining the geographical structuring of species into discrete populations, and its evolutionary significance. Beyond their individual effects, the interplay between species niche and its geographic limits, together with the evolutionary lability of dispersal ability, can underpin trait diversification and speciation when exposed to gradients of selection. In this issue of Molecular Ecology, two complementary papers demonstrate how evolutionary lability for dispersal ability linked to niche shift can drive such a model in a context that includes selection. Both papers investigate the evolution of dispersal limitation in arthropods across altitudinal gradients, but using taxa with contrasting ecologies. McCulloch et al. (2019) investigate the evolution of wing loss at higher altitudes in stoneflies, a taxon inhabiting freshwater systems. Suzuki et al. (2019) report a similar phenomenon, but involving wing reduction at higher altitudes in scorpionflies, a taxon associated with moist terrestrial habitats. Here, we compare and contrast the results of both studies to explore their broader implications for understanding diversification and speciation within arthropods.
Collapse
Affiliation(s)
- Brent C Emerson
- Island Ecology and Evolution Research Group, Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), San Cristóbal de La Laguna, Santa Cruz de Tenerife, Spain
| | - Antonia Salces-Castellano
- Island Ecology and Evolution Research Group, Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), San Cristóbal de La Laguna, Santa Cruz de Tenerife, Spain
| | - Paula Arribas
- Island Ecology and Evolution Research Group, Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), San Cristóbal de La Laguna, Santa Cruz de Tenerife, Spain
| |
Collapse
|
300
|
Thacker CE, Gkenas C. Morphometric convergence among European sand gobies in freshwater (Gobiiformes: Gobionellidae). Ecol Evol 2019; 9:8087-8103. [PMID: 31380073 PMCID: PMC6662260 DOI: 10.1002/ece3.5375] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 05/23/2019] [Accepted: 05/23/2019] [Indexed: 11/12/2022] Open
Abstract
The five genera of sand gobies inhabit the seas and freshwaters of Europe and western Asia and occupy habitats ranging from fully marine to exclusively freshwater. In this study, we use geometric morphometrics to quantify body shape among sand gobies, in order to investigate how shape has evolved and how it is related to habitat. We also compare body shape between preserved museum specimens and fresh specimens, to determine whether or not fixation and storage in ethanol introduce detectable bias. We confirm that the fixed specimens exhibit significant shape changes as compared to fresh specimens, and so, we perform the bulk of our analyses exclusively on fixed specimens. We find that Economidichthys, Orsinigobius, and Pomatoschistus occupy distinct regions of morphospace. Knipowitschia and Ninnigobius have intermediate forms that overlap with Pomatoschistus and Orsinigobius, but not Economidichthys. This pattern is also in rough accordance with their habitats: Pomatoschistus is fully marine, Economidichthys fully freshwater, and the others fresh with some brackish tolerance. We augment a recent phylogeny of sand gobies with data for P. quagga and interpret morphometric shape change on that tree. We then evaluate convergence in form among disparate lineages of freshwater species by constructing a phylomorphospace and applying pattern-based (convevol) measures of convergence. We find that freshwater taxa occupy a mostly separate region of morphospace from marine taxa and exhibit significant convergence in form. Freshwater taxa are characterized by relatively larger heads and stockier bodies than their marine relatives, potentially due to a common pattern of heterochronic size reduction.
Collapse
Affiliation(s)
- Christine E. Thacker
- Vertebrate Zoology, Collections and ResearchSanta Barbara Museum of Natural HistorySanta BarbaraCalifornia
- Research and Collections, Section of IchthyologyNatural History Museum of Los Angeles CountyLos AngelesCalifornia
| | - Christos Gkenas
- Faculdade de CiênciasMARE, Centro de Ciências do Mar e do AmbienteUniversidade de LisboaLisboaPortugal
- Laboratory of ZoologyDepartment of Biological Applications and TechnologyUniversity of IoanninaIoanninaGreece
| |
Collapse
|