251
|
Zhang KY, Yu Q, Wei H, Liu S, Zhao Q, Huang W. Long-Lived Emissive Probes for Time-Resolved Photoluminescence Bioimaging and Biosensing. Chem Rev 2018; 118:1770-1839. [DOI: 10.1021/acs.chemrev.7b00425] [Citation(s) in RCA: 479] [Impact Index Per Article: 68.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Kenneth Yin Zhang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
| | - Qi Yu
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
| | - Huanjie Wei
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
| | - Shujuan Liu
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
| | - Qiang Zhao
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
| | - Wei Huang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
- Shaanxi
Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), Xi’an 710072, P. R. China
- Key
Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced
Materials (IAM), Jiangsu National Synergetic Innovation Center for
Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), Nanjing 211800, P. R. China
| |
Collapse
|
252
|
Wu ZJ, Tang FR, Ma ZW, Peng XC, Xiang Y, Zhang Y, Kang J, Ji J, Liu XQ, Wang XW, Xin HW, Ren BX. Oncolytic Viruses for Tumor Precision Imaging and Radiotherapy. Hum Gene Ther 2018; 29:204-222. [PMID: 29179583 DOI: 10.1089/hum.2017.189] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In 2003 in China, Peng et al. invented the recombinant adenovirus expressing p53 (Gendicine) for clinical tumor virotherapy. This was the first clinically approved gene therapy and tumor virotherapy drug in the world. An oncolytic herpes simplex virus expressing granulocyte-macrophage colony-stimulating factor (Talimogene laherparepvec) was approved for melanoma treatment in the United States in 2015. Since then, oncolytic viruses have been attracting more and more attention in the field of oncology, and may become novel significant modalities of tumor precision imaging and radiotherapy after further improvement. Oncolytic viruses carrying reporter genes can replicate and express genes of interest selectively in tumor cells, thus improving in vivo noninvasive precision molecular imaging and radiotherapy. Here, the latest developments and molecular mechanisms of tumor imaging and radiotherapy using oncolytic viruses are reviewed, and perspectives are given for further research. Various types of tumors are discussed, and special attention is paid to gastrointestinal tumors.
Collapse
Affiliation(s)
- Zi J Wu
- 1 Laboratory of Oncology, Center for Molecular Medicine, Yangtze University , Jingzhou, China
- 2 Department of Medical Imaging, School of Medicine, Yangtze University , Jingzhou, China
- 3 The Second School of Clinical Medicine, Yangtze University , Jingzhou, China
| | - Feng R Tang
- 4 Radiation Physiology Laboratory, Singapore Nuclear Research and Safety Initiative, National University of Singapore , Create Tower, Singapore
| | - Zhao-Wu Ma
- 1 Laboratory of Oncology, Center for Molecular Medicine, Yangtze University , Jingzhou, China
| | - Xiao-Chun Peng
- 1 Laboratory of Oncology, Center for Molecular Medicine, Yangtze University , Jingzhou, China
| | - Ying Xiang
- 1 Laboratory of Oncology, Center for Molecular Medicine, Yangtze University , Jingzhou, China
| | - Yanling Zhang
- 5 Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine , Guangzhou, China
- 6 School of Biotechnology, Southern Medical University , Guangzhou, China
| | - Jingbo Kang
- 7 The Navy General Hospital Tumor Diagnosis and Treatment Center , Beijing, China
| | - Jiafu Ji
- 8 Department of Gastrointestinal Surgery, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute , Beijing, China
| | - Xiao Q Liu
- 1 Laboratory of Oncology, Center for Molecular Medicine, Yangtze University , Jingzhou, China
- 2 Department of Medical Imaging, School of Medicine, Yangtze University , Jingzhou, China
- 3 The Second School of Clinical Medicine, Yangtze University , Jingzhou, China
| | - Xian-Wang Wang
- 1 Laboratory of Oncology, Center for Molecular Medicine, Yangtze University , Jingzhou, China
| | - Hong-Wu Xin
- 1 Laboratory of Oncology, Center for Molecular Medicine, Yangtze University , Jingzhou, China
| | - Bo X Ren
- 2 Department of Medical Imaging, School of Medicine, Yangtze University , Jingzhou, China
- 3 The Second School of Clinical Medicine, Yangtze University , Jingzhou, China
| |
Collapse
|
253
|
Han Y, An Y, Jia G, Wang X, He C, Ding Y, Tang Q. Facile assembly of upconversion nanoparticle-based micelles for active targeted dual-mode imaging in pancreatic cancer. J Nanobiotechnology 2018; 16:7. [PMID: 29378593 PMCID: PMC5787929 DOI: 10.1186/s12951-018-0335-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 01/19/2018] [Indexed: 01/11/2023] Open
Abstract
Background Pancreatic cancer remains the leading cause of cancer-related deaths, the existence of cancer stem cells and lack of highly efficient early detection may account for the poor survival rate. Gadolinium ion-doped upconversion nanoparticles (UCNPs) provide opportunities for combining fluorescent with magnetic resonance imaging, and they can improve the diagnostic efficacy of early pancreatic cancer. In addition, as one transmembrane glycoprotein overexpressed on the pancreatic cancer stem cells, CD326 may act as a promising target. In this study, we developed a facile strategy for developing anti-human CD326-grafted UCNPs-based micelles and performed the corresponding characterizations. After conducting in vitro and vivo toxicology experiments, we also examined the active targeting capability of the micelles upon dual-mode imaging in vivo. Results We found that the micelles owned superior imaging properties and long-time stability based on multiple characterizations. By performing in vitro and vivo toxicology assay, the micelles had good biocompatibility. We observed more cellular uptake of the micelles with the help of anti-human CD326 grafted onto the micelles. Furthermore, we successfully concluded that CD326-conjugated micelles endowed promising active targeting ability by conducting dual-mode imaging in human pancreatic cancer xenograft mouse model. Conclusions With good biocompatibility and excellent imaging properties of the micelles, our results uncover efficient active homing of those micelles after intravenous injection, and undoubtedly demonstrate the as-obtained micelles holds great potential for early pancreatic cancer diagnosis in the future and would pave the way for the following biomedical applications.
Collapse
Affiliation(s)
- Yong Han
- Medical School of Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, China
| | - Yanli An
- Affiliated Zhongda Hospital of Southeast University, Nanjing, 210009, China
| | - Gang Jia
- Medical School of Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, China
| | - Xihui Wang
- Medical School of Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, China
| | - Chen He
- Medical School of Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, China
| | - Yinan Ding
- Medical School of Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, China
| | - Qiusha Tang
- Medical School of Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, China.
| |
Collapse
|
254
|
Bao X, Yang Z, Wang S, Zheng Y, Wang M, Gu B, Zhang J, Zhang Y, Zhang Y. The preclinical study of predicting radiosensitivity in human nasopharyngeal carcinoma xenografts by 18F-ML-10 animal- PET/CT imaging. Oncotarget 2018; 7:20743-52. [PMID: 26942701 PMCID: PMC4991489 DOI: 10.18632/oncotarget.7868] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 02/16/2016] [Indexed: 11/25/2022] Open
Abstract
Previous studies have reported that the radiosensitivity is associated with apoptosis. Hereby, we aimed to investigate the value of 18F-ML-10 PET/CT, which selectively targeted cells undergoing apoptosis, in predicting radiosensitivity of human nasopharyngeal carcinoma (NPC) xenografts. We used CNE1 (highly differentiated) and CNE2 (poorly differentiated) NPC cell lines to construct tumor models, which had very different radiosensitivities. After irradiation, the volumes of CNE2 tumors decreased significantly while those of CNE1 tumors increased. In 18F-ML-10 imaging, the values of tumor/muscle (T/M) between CNE1 and CNE2 mice were statistically different at both 24 h and 48 h after irradiation. Besides, ΔT/M1-0 and ΔT/M2-0 of CNE2 mice were higher than those of CNE1 mice, demonstrating obvious discrepancy. Furthermore, we observed obvious changes of radioactive distribution in CNE2 group. On the contrary, T/M of 18F-FDG in irradiation group revealed no obvious change in both CNE1 and CNE2 groups. In conclusion, 18F-ML-10 animal PET/CT showed its potential to predict radiosensitivity in NPC.
Collapse
Affiliation(s)
- Xiao Bao
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Center for Biomedical Imaging, Fudan University, Shanghai 200032, China.,Shanghai Engineering Research Center for Molecular Imaging Probes, Shanghai 200032, China
| | - Zhongyi Yang
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Center for Biomedical Imaging, Fudan University, Shanghai 200032, China.,Shanghai Engineering Research Center for Molecular Imaging Probes, Shanghai 200032, China
| | - Siyang Wang
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Center for Biomedical Imaging, Fudan University, Shanghai 200032, China.,Shanghai Engineering Research Center for Molecular Imaging Probes, Shanghai 200032, China
| | - Yujia Zheng
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Center for Biomedical Imaging, Fudan University, Shanghai 200032, China.,Shanghai Engineering Research Center for Molecular Imaging Probes, Shanghai 200032, China
| | - Mingwei Wang
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Center for Biomedical Imaging, Fudan University, Shanghai 200032, China.,Shanghai Engineering Research Center for Molecular Imaging Probes, Shanghai 200032, China
| | - Bingxin Gu
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Center for Biomedical Imaging, Fudan University, Shanghai 200032, China.,Shanghai Engineering Research Center for Molecular Imaging Probes, Shanghai 200032, China
| | - Jianping Zhang
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Center for Biomedical Imaging, Fudan University, Shanghai 200032, China.,Shanghai Engineering Research Center for Molecular Imaging Probes, Shanghai 200032, China
| | - Yongping Zhang
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Center for Biomedical Imaging, Fudan University, Shanghai 200032, China.,Shanghai Engineering Research Center for Molecular Imaging Probes, Shanghai 200032, China
| | - Yingjian Zhang
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Center for Biomedical Imaging, Fudan University, Shanghai 200032, China.,Shanghai Engineering Research Center for Molecular Imaging Probes, Shanghai 200032, China
| |
Collapse
|
255
|
Jang SC, Kang SM, Lee JY, Oh SY, Vilian AE, Lee I, Han YK, Park JH, Cho WS, Roh C, Huh YS. Nano-graphene oxide composite for in vivo imaging. Int J Nanomedicine 2018; 13:221-234. [PMID: 29379283 PMCID: PMC5757201 DOI: 10.2147/ijn.s148211] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Introduction Positron emission tomography (PET) tracers has the potential to revolutionize cancer imaging and diagnosis. PET tracers offer non-invasive quantitative imaging in biotechnology and biomedical applications, but it requires radioisotopes as radioactive imaging tracers or radiopharmaceuticals. Method This paper reports the synthesis of 18F-nGO-PEG by covalently functionalizing PEG with nano-graphene oxide, and its excellent stability in physiological solutions. Using a green synthesis route, nGO is then functionalized with a biocompatible PEG polymer to acquire high stability in PBS and DMEM. Results and discussion The radiochemical safety of 18F-nGO-PEG was measured by a reactive oxygen species and cell viability test. The biodistribution of 18F-nGO-PEG could be observed easily by PET, which suggested the significantly high sensitivity tumor uptake of 18F-nGO-PEG and in a tumor bearing CT-26 mouse compared to the control. 18F-nGO-PEG was applied successfully as an efficient radiotracer or drug agent in vivo using PET imaging. This article is expected to assist many researchers in the fabrication of 18F-labeled graphene-based bio-conjugates with high reproducibility for applications in the biomedicine field.
Collapse
Affiliation(s)
- Sung-Chan Jang
- Department of Biological Engineering, Biohybrid Systems Research Center (BSRC), Inha University, Incheon.,Biotechnology Research Division
| | - Sung-Min Kang
- Department of Biological Engineering, Biohybrid Systems Research Center (BSRC), Inha University, Incheon
| | - Jun Young Lee
- Radiation Instrumentation Research Division, Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute (KAERI), Jeongeup
| | - Seo Yeong Oh
- Department of Biological Engineering, Biohybrid Systems Research Center (BSRC), Inha University, Incheon
| | - At Ezhil Vilian
- Department of Energy and Materials Engineering, Dongguk University, Seoul
| | - Ilsong Lee
- Department of Biological Engineering, Biohybrid Systems Research Center (BSRC), Inha University, Incheon.,Biotechnology Research Division
| | - Young-Kyu Han
- Department of Energy and Materials Engineering, Dongguk University, Seoul
| | - Jeong Hoon Park
- Radiation Instrumentation Research Division, Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute (KAERI), Jeongeup
| | - Wan-Seob Cho
- Laboratory of Toxicology, Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan
| | - Changhyun Roh
- Biotechnology Research Division.,Radiation Biotechnology and Applied Radioisotope Science, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Yun Suk Huh
- Department of Biological Engineering, Biohybrid Systems Research Center (BSRC), Inha University, Incheon
| |
Collapse
|
256
|
Isago H, Fujita H, Sugimori T. Amphoteric phosphorous(V)-phthalocyanines as proton-driven switchable fluorescers toward deep-tissue bio-imaging. J Inorg Biochem 2018; 180:222-229. [PMID: 29290391 DOI: 10.1016/j.jinorgbio.2017.12.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 12/11/2017] [Accepted: 12/20/2017] [Indexed: 12/01/2022]
Abstract
Spectral (optical absorption and emission) properties of three amphoteric phosphorous(V)-phthalocyanine derivatives, [P(Pc)(O)OH], where Pc=tetra(tert-butyl)phthalocyaninate (tbpc), tetrakis(2',6'-dimethylphenoxy)phthalocyaninate (tppc), and octakis(4'-tert-butylphenoxy)phthalocyaninate (obppc), have been investigated in ethanolic solutions. Spectral changes upon protonation/deprotonation (the reaction sites have been determined to be their axial ligands by magnetic circular dichroism study) are drastic and rapid. All the initial ([P(Pc)(O)OH]), protonated ([P(Pc)(OH)2]+), and deprotonated ([P(Pc)(O)2]-) species are possessed with sufficient brightness (defined as the product of their molar extinction coefficient, ε (inM-1cm-1), and fluorescence quantum yield, ΦF) in bio-imaging window (650-900nm). For example, spectral characteristics of the tbpc derivatives have been determined as follows: ε=1.65×105 (absorption maximum 676nm) and ΦF=0.80 (emission maximum 686nm) for [P(tbpc)(O)(OH)] while ε=1.45×105 (697nm) and ΦF=0.27 (714nm) for [P(tbpc)(OH)2]+, and ε=2.25×105 (662nm) and ΦF=0.90 (667nm) for [P(tbpc)(O)2]-. Emission of tppc and obppc derivatives behave in essentially the same manner irrespective of nature of the peripheral substituents and hence ΦF values are greater with increasing emission peak wavenumbers in line with the "energy gap law". These characteristics make these compounds promising candidates as chemical probes for deep-tissue bio-imaging.
Collapse
Affiliation(s)
- Hiroaki Isago
- National Institute for Materials Science, 1-2-1, Sengen, Tsukuba, Ibaraki 305-0047, Japan.
| | - Harumi Fujita
- National Institute for Materials Science, 1-2-1, Sengen, Tsukuba, Ibaraki 305-0047, Japan
| | - Tamotsu Sugimori
- Graduate School of Medicine and Pharmaceutical Sciences, Univ. of Toyama, 2630, Sugitani, Toyama 930-0194, Japan
| |
Collapse
|
257
|
García MF, Gallazzi F, Junqueira MDS, Fernández M, Camacho X, Mororó JDS, Faria D, Carneiro CDG, Couto M, Carrión F, Pritsch O, Chammas R, Quinn T, Cabral P, Cerecetto H. Synthesis of hydrophilic HYNIC-[1,2,4,5]tetrazine conjugates and their use in antibody pretargeting with99mTc. Org Biomol Chem 2018; 16:5275-5285. [DOI: 10.1039/c8ob01255e] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Pretargeted imaging is shown to be an attractive strategy to overcome disadvantages associated with traditional radioimmunoconjugates.
Collapse
|
258
|
Thambiraj S, Hema S, Ravi Shankaran D. Functionalized gold nanoparticles for drug delivery applications. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.matpr.2018.06.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
259
|
Luo D, Goel S, Liu HJ, Carter KA, Jiang D, Geng J, Kutyreff CJ, Engle JW, Huang WC, Shao S, Fang C, Cai W, Lovell JF. Intrabilayer 64Cu Labeling of Photoactivatable, Doxorubicin-Loaded Stealth Liposomes. ACS NANO 2017; 11:12482-12491. [PMID: 29195037 PMCID: PMC6004286 DOI: 10.1021/acsnano.7b06578] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Doxorubicin (Dox)-loaded stealth liposomes (similar to those in clinical use) can incorporate small amounts of porphyrin-phospholipid (PoP) to enable chemophototherapy (CPT). PoP is also an intrinsic and intrabilayer 64Cu chelator, although how radiolabeling impacts drug delivery has not yet been assessed. Here, we show that 64Cu can radiolabel the stable bilayer of preformed Dox-loaded PoP liposomes with inclusion of 1% ethanol without inducing drug leakage. Dox-PoP liposomes labeled with intrabilayer copper behaved nearly identically to unlabeled ones in vitro and in vivo with respect to physical parameters, pharmacokinetics, and CPT efficacy. Positron emission tomography and near-infrared fluorescence imaging visualized orthotopic mammary tumors in mice with passive liposome accumulation following administration. A single CPT treatment with 665 nm light (200 J/cm2) strongly inhibited primary tumor growth. Liposomes accumulated in lung metastases, based on NIR imaging. These results establish the feasibility of CPT interventions guided by intrinsic multimodal imaging of Dox-loaded stealth PoP liposomes.
Collapse
Affiliation(s)
- Dandan Luo
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, New York 14260, United States
| | - Shreya Goel
- Department of Materials Science and Engineering, University of Wisconsin—Madison, Madison, Wisconsin 53705, United States
| | - Hai-Jun Liu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital and Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine (SJTU-SM), 280 South Chongqing Road, Shanghai 200025, China
| | - Kevin A. Carter
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, New York 14260, United States
| | - Dawei Jiang
- Department of Radiology, University of Wisconsin—Madison, Madison, Wisconsin 53705, United States
| | - Jumin Geng
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, New York 14260, United States
| | - Christopher J. Kutyreff
- Department of Medical Physics, University of Wisconsin—Madison, Madison, Wisconsin 53705, United States
| | - Jonathan W. Engle
- Department of Medical Physics, University of Wisconsin—Madison, Madison, Wisconsin 53705, United States
| | | | - Shuai Shao
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, New York 14260, United States
| | - Chao Fang
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital and Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine (SJTU-SM), 280 South Chongqing Road, Shanghai 200025, China
- Corresponding Authors: , ,
| | - Weibo Cai
- Department of Materials Science and Engineering, University of Wisconsin—Madison, Madison, Wisconsin 53705, United States
- Department of Radiology, University of Wisconsin—Madison, Madison, Wisconsin 53705, United States
- Department of Medical Physics, University of Wisconsin—Madison, Madison, Wisconsin 53705, United States
- University of Wisconsin Carbone Cancer Center, University of Wisconsin—Madison, Madison, Wisconsin 53705, United States
- Corresponding Authors: , ,
| | - Jonathan F. Lovell
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, New York 14260, United States
- Corresponding Authors: , ,
| |
Collapse
|
260
|
Liang J, Sun Z, Zhang D, Jin Q, Cai L, Ma L, Liu W, Ni Y, Zhang J, Yin Z. First Evaluation of Radioiodinated Flavonoids as Necrosis-Avid Agents and Application in Early Assessment of Tumor Necrosis. Mol Pharm 2017; 15:207-215. [PMID: 29226682 DOI: 10.1021/acs.molpharmaceut.7b00781] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jiajia Liang
- Department of Natural Medicinal Chemistry & Jiangsu Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 210009, P.R. China
- Laboratories
of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu 210028, P.R. China
- Affiliated
Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210028, P.R. China
| | - Ziping Sun
- Radiation
Medical Institute, Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| | - Dongjian Zhang
- Laboratories
of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu 210028, P.R. China
- Affiliated
Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210028, P.R. China
| | - Qiaomei Jin
- Laboratories
of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu 210028, P.R. China
- Affiliated
Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210028, P.R. China
| | - Lingqiao Cai
- Laboratories
of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu 210028, P.R. China
- Affiliated
Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210028, P.R. China
| | - Lin Ma
- Department of Natural Medicinal Chemistry & Jiangsu Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 210009, P.R. China
- Laboratories
of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu 210028, P.R. China
- Affiliated
Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210028, P.R. China
| | - Wei Liu
- Department
of Nuclear Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yicheng Ni
- Laboratories
of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu 210028, P.R. China
- Affiliated
Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210028, P.R. China
- Theragnostic
Laboratory, Campus Gasthuisberg, KU Leuven, 3000 Leuven, Belgium
| | - Jian Zhang
- Laboratories
of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu 210028, P.R. China
- Affiliated
Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210028, P.R. China
| | - Zhiqi Yin
- Department of Natural Medicinal Chemistry & Jiangsu Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 210009, P.R. China
| |
Collapse
|
261
|
Alibakhshi A, Abarghooi Kahaki F, Ahangarzadeh S, Yaghoobi H, Yarian F, Arezumand R, Ranjbari J, Mokhtarzadeh A, de la Guardia M. Targeted cancer therapy through antibody fragments-decorated nanomedicines. J Control Release 2017; 268:323-334. [DOI: 10.1016/j.jconrel.2017.10.036] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 10/22/2017] [Accepted: 10/24/2017] [Indexed: 01/10/2023]
|
262
|
Gural N, Mancio-Silva L, He J, Bhatia SN. Engineered Livers for Infectious Diseases. Cell Mol Gastroenterol Hepatol 2017; 5:131-144. [PMID: 29322086 PMCID: PMC5756057 DOI: 10.1016/j.jcmgh.2017.11.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 11/02/2017] [Indexed: 01/18/2023]
Abstract
Engineered liver systems come in a variety of platform models, from 2-dimensional cocultures of primary human hepatocytes and stem cell-derived progeny, to 3-dimensional organoids and humanized mice. Because of the species-specificity of many human hepatropic pathogens, these engineered systems have been essential tools for biologic discovery and therapeutic agent development in the context of liver-dependent infectious diseases. Although improvement of existing models is always beneficial, and the addition of a robust immune component is a particular need, at present, considerable progress has been made using this combination of research platforms. We highlight advances in the study of hepatitis B and C viruses and malaria-causing Plasmodium falciparum and Plasmodium vivax parasites, and underscore the importance of pairing the most appropriate model system and readout modality with the particular experimental question at hand, without always requiring a platform that recapitulates human physiology in its entirety.
Collapse
Key Words
- 2D, 2-dimensional
- 3D
- 3D, 3-dimensional
- EBOV, Ebola virus
- Falciparum
- HBC, hepatitis C virus
- HBV
- HBV, hepatitis B virus
- HCV
- HLC, hepatocyte-like cells
- Hepatotropic
- LASV, Lassa virus
- Liver
- Liver Models
- MPCC, micropatterned coculture system
- Malaria
- PCR, polymerase chain reaction
- Pathogen
- SACC, self-assembling coculture
- Vivax
- iHLC, induced pluripotent stem cell–derived hepatocyte-like cells
- in vitro
- in vivo
Collapse
Affiliation(s)
- Nil Gural
- Harvard-MIT Department of Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Boston, Massachusetts,Koch Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Liliana Mancio-Silva
- Koch Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts,Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Jiang He
- Koch Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts,Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Sangeeta N. Bhatia
- Koch Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts,Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts,Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts,Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts,Broad Institute, Cambridge, Massachusetts,Howard Hughes Medical Institute, Chevy Chase, Maryland,Correspondence Address correspondence to: Sangeeta N. Bhatia, MD, PhD, Koch Institute for Integrative Cancer, Research at MIT, Building 76, Room 473, 500 Main Street, Cambridge, Massachusetts 02142.
| |
Collapse
|
263
|
Roth-Konforti ME, Bauer CR, Shabat D. Unprecedented Sensitivity in a Probe for Monitoring Cathepsin B: Chemiluminescence Microscopy Cell-Imaging of a Natively Expressed Enzyme. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201709347] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
| | | | - Doron Shabat
- School of Chemistry, Faculty of Exact Sciences; Tel Aviv University; Tel Aviv 69978 Israel
| |
Collapse
|
264
|
Roth-Konforti ME, Bauer CR, Shabat D. Unprecedented Sensitivity in a Probe for Monitoring Cathepsin B: Chemiluminescence Microscopy Cell-Imaging of a Natively Expressed Enzyme. Angew Chem Int Ed Engl 2017; 56:15633-15638. [DOI: 10.1002/anie.201709347] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Indexed: 12/16/2022]
Affiliation(s)
| | | | - Doron Shabat
- School of Chemistry, Faculty of Exact Sciences; Tel Aviv University; Tel Aviv 69978 Israel
| |
Collapse
|
265
|
Affiliation(s)
- Lingzhou Zhao
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Xiangyang Shi
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, People’s Republic of China
- CQM-Centro de Química da Madeira, Universidade da Madeira, Funchal, Portugal
| | - Jinhua Zhao
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| |
Collapse
|
266
|
Ryu S, Hayashi M, Aikawa H, Okamoto I, Fujiwara Y, Hamada A. Heterogeneous distribution of alectinib in neuroblastoma xenografts revealed by matrix-assisted laser desorption ionization mass spectrometry imaging: a pilot study. Br J Pharmacol 2017; 175:29-37. [PMID: 29027209 DOI: 10.1111/bph.14067] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 08/07/2017] [Accepted: 09/27/2017] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND AND PURPOSE The penetration of the anaplastic lymphoma kinase (ALK) inhibitor alectinib in neuroblastomas and the relationship between alectinib and ALK expression are unknown. The aim of this study was to perform a quantitative investigation of the inter- and intra-tumoural distribution of alectinib in different neuroblastoma xenograft models using matrix-assisted laser desorption ionization MS imaging (MALDI-MSI). EXPERIMENTAL APPROACH The distribution of alectinib in NB1 (ALK amplification) and SK-N-FI (ALK wild-type) xenograft tissues was analysed using MALDI-MSI. The abundance of alectinib in tumours and intra-tumoural areas was quantified using ion signal intensities from MALDI-MSI after normalization by correlation with LC-MS/MS. KEY RESULTS The distribution of alectinib was heterogeneous in neuroblastomas. The penetration of alectinib was not significantly different between ALK amplification and ALK wide-type tissues using both LC-MS/MS concentrations and MSI intensities. Normalization with an internal standard increased the quantitative property of MSI by adjusting for the ion suppression effect. The distribution of alectinib in different intra-tumoural areas can alternatively be quantified from MS images by correlation with LC-MS/MS. CONCLUSION AND IMPLICATIONS The penetration of alectinib into tumour tissues may not be homogenous or influenced by ALK expression in the early period after single-dose administration. MALDI-MSI may prove to be a valuable pharmaceutical method for elucidating the mechanism of action of drugs by clarifying their microscopic distribution in heterogeneous tissues.
Collapse
Affiliation(s)
- Shoraku Ryu
- Division of Molecular Pharmacology, National Cancer Center Research Institute, Tokyo, Japan.,Department of Pharmacology and Therapeutics, Fundamental Innovative Oncology Core, National Cancer Center Research Institute, Tokyo, Japan
| | - Mitsuhiro Hayashi
- Division of Molecular Pharmacology, National Cancer Center Research Institute, Tokyo, Japan.,Division of Clinical Pharmacology and Translational Research Exploratory Oncology Research and Clinical Trial Center National Cancer Center, Tokyo, Japan
| | - Hiroaki Aikawa
- Division of Molecular Pharmacology, National Cancer Center Research Institute, Tokyo, Japan.,Division of Clinical Pharmacology and Translational Research Exploratory Oncology Research and Clinical Trial Center National Cancer Center, Tokyo, Japan
| | - Isamu Okamoto
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | - Akinobu Hamada
- Division of Molecular Pharmacology, National Cancer Center Research Institute, Tokyo, Japan.,Division of Clinical Pharmacology and Translational Research Exploratory Oncology Research and Clinical Trial Center National Cancer Center, Tokyo, Japan.,Department of Pharmacology and Therapeutics, Fundamental Innovative Oncology Core, National Cancer Center Research Institute, Tokyo, Japan.,Department of Medical Oncology and Translational Research, Graduate school of Medical Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
267
|
Gao Z, Li G, Li X, Zhou J, Duan X, Chen J, Joshi BP, Kuick R, Khoury B, Thomas DG, Fields T, Sabel MS, Appelman HD, Zhou Q, Li H, Kozloff K, Wang TD. In vivo near-infrared imaging of ErbB2 expressing breast tumors with dual-axes confocal endomicroscopy using a targeted peptide. Sci Rep 2017; 7:14404. [PMID: 29089571 PMCID: PMC5663926 DOI: 10.1038/s41598-017-13735-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 09/27/2017] [Indexed: 02/08/2023] Open
Abstract
ErbB2 expression in early breast cancer can predict tumor aggressiveness and clinical outcomes in large patient populations. Accurate assessment with physical biopsy and conventional pathology can be limited by tumor heterogeneity. We aim to demonstrate real-time optical sectioning using a near-infrared labeled ErbB2 peptide that generates tumor-specific contrast in human xenograft breast tumors in vivo. We used IRDye800CW as the fluorophore, validated performance characteristics for specific peptide binding to cells in vitro, and investigated peak peptide uptake in tumors using photoacoustic tomography. We performed real-time optical imaging using a handheld dual-axes confocal fluorescence endomicroscope that collects light off-axis to reduce tissue scattering for greater imaging depths. Optical sections in either the vertical or horizontal plane were collected with sub-cellular resolution. Also, we found significantly greater peptide binding to pre-clinical xenograft breast cancer in vivo and to human specimens of invasive ductal carcinoma that express ErbB2 ex vivo. We used a scrambled peptide for control. Peptide biodistribution showed high tumor uptake by comparison with other organs to support safety. This novel integrated imaging strategy is promising for visualizing ErbB2 expression in breast tumors and serve as an adjunct during surgery to improve diagnostic accuracy, identify tumor margins, and stage early cancers.
Collapse
MESH Headings
- Animals
- Biomarkers, Tumor/metabolism
- Breast Neoplasms/diagnostic imaging
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Carcinoma, Ductal, Breast/diagnostic imaging
- Carcinoma, Ductal, Breast/metabolism
- Carcinoma, Ductal, Breast/pathology
- Cell Line, Tumor
- Female
- Fluorescent Dyes/chemistry
- Mice, Nude
- Microscopy, Confocal/methods
- Neoplasm Transplantation
- Optical Imaging/methods
- Peptides/chemistry
- Photoacoustic Techniques/methods
- Receptor, ErbB-2/chemistry
- Receptor, ErbB-2/metabolism
- Tomography/methods
Collapse
Affiliation(s)
- Zhenghong Gao
- Dept of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Gaoming Li
- Dept of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Xue Li
- Dept of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Juan Zhou
- Dept of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Xiyu Duan
- Dept of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Jing Chen
- Dept of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Bishnu P Joshi
- Dept of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Rork Kuick
- Dept of Biostatistics, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Basma Khoury
- Dept of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, United States
- Dept of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Dafydd G Thomas
- Dept of Pathology, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Tina Fields
- Dept of Pathology, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Michael S Sabel
- Dept of Surgery, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Henry D Appelman
- Dept of Pathology, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Quan Zhou
- Dept of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Haijun Li
- Dept of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Ken Kozloff
- Dept of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, United States
- Dept of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Thomas D Wang
- Dept of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, United States.
- Dept of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, United States.
- Dept of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, United States.
| |
Collapse
|
268
|
Xue Y, Chen S, Qin J, Liu Y, Huang B, Chen H. Application of Deep Learning in Automated Analysis of Molecular Images in Cancer: A Survey. CONTRAST MEDIA & MOLECULAR IMAGING 2017; 2017:9512370. [PMID: 29114182 PMCID: PMC5661078 DOI: 10.1155/2017/9512370] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 09/06/2017] [Indexed: 11/17/2022]
Abstract
Molecular imaging enables the visualization and quantitative analysis of the alterations of biological procedures at molecular and/or cellular level, which is of great significance for early detection of cancer. In recent years, deep leaning has been widely used in medical imaging analysis, as it overcomes the limitations of visual assessment and traditional machine learning techniques by extracting hierarchical features with powerful representation capability. Research on cancer molecular images using deep learning techniques is also increasing dynamically. Hence, in this paper, we review the applications of deep learning in molecular imaging in terms of tumor lesion segmentation, tumor classification, and survival prediction. We also outline some future directions in which researchers may develop more powerful deep learning models for better performance in the applications in cancer molecular imaging.
Collapse
Affiliation(s)
- Yong Xue
- Guangzhou Panyu Central Hospital, Guangzhou, China
- Medical Imaging Institute of Panyu, Guangzhou, China
| | - Shihui Chen
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Centre, Shenzhen University, Shenzhen, China
| | - Jing Qin
- School of Nursing, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Yong Liu
- Intensive Care Unit, Southern Medical University Shenzhen Hospital, Shenzhen, China
| | - Bingsheng Huang
- Medical Imaging Institute of Panyu, Guangzhou, China
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Centre, Shenzhen University, Shenzhen, China
| | - Hanwei Chen
- Guangzhou Panyu Central Hospital, Guangzhou, China
- Medical Imaging Institute of Panyu, Guangzhou, China
| |
Collapse
|
269
|
D'Olieslaeger L, Braeken Y, Cheruku S, Smits J, Ameloot M, Vanderzande D, Maes W, Ethirajan A. Tuning the optical properties of poly(p-phenylene ethynylene) nanoparticles as bio-imaging probes by side chain functionalization. J Colloid Interface Sci 2017; 504:527-537. [DOI: 10.1016/j.jcis.2017.05.072] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 05/09/2017] [Accepted: 05/21/2017] [Indexed: 12/01/2022]
|
270
|
Shi X, Yu CYY, Su H, Kwok RTK, Jiang M, He Z, Lam JWY, Tang BZ. A red-emissive antibody-AIEgen conjugate for turn-on and wash-free imaging of specific cancer cells. Chem Sci 2017; 8:7014-7024. [PMID: 30155197 PMCID: PMC6103257 DOI: 10.1039/c7sc01054k] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 08/07/2017] [Indexed: 12/27/2022] Open
Abstract
An antibody-AIEgen conjugate is designed and developed as a "turn-on" fluorescent probe for wash-free specific cancer cell imaging. The cetuximab-conjugated AIEgen shows red fluorescence only when it is internalized and accumulated in cancer cells with overexpressed epidermal growth factor receptor through endocytosis. The probe first lights up the lysosomes. After hydrolysis, its residue is accumulated in mitochondria, making them highly emissive with a long cell retention time. Compared with conventional "always-on" fluorescent probes, the antibody-AIEgen conjugate exhibits a very good image contrast during wash-free cancer cell imaging and less interference from normal cells. To the best of our knowledge, this is the first time "turn-on" antibody-AIEgen conjugates have been reported. This new strategy can be further extended to many proteins and water-soluble AIEgens, and many of their potential applications such as real-time tracking of cell dynamics and cancer theranostics will be explored. The present work is expected to inspire more marvellous research in the fields of AIE and cancer imaging.
Collapse
Affiliation(s)
- Xiujuan Shi
- Department of Chemical and Biological Engineering , Department of Chemistry , Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction , State Key Laboratory of Molecular Neuroscience , Institute of Molecular Functional Materials , Division of Life Science , The Hong Kong University of Science & Technology (HKUST) , Clear Water Bay , Kowloon , Hong Kong , China
- HKUST-Shenzhen Research Institute , No. 9 Yuexing 1st RD, South Area, Hi-Tech Park, Nanshan , Shenzhen 518057 , China
| | - Chris Y Y Yu
- Department of Chemical and Biological Engineering , Department of Chemistry , Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction , State Key Laboratory of Molecular Neuroscience , Institute of Molecular Functional Materials , Division of Life Science , The Hong Kong University of Science & Technology (HKUST) , Clear Water Bay , Kowloon , Hong Kong , China
- HKUST-Shenzhen Research Institute , No. 9 Yuexing 1st RD, South Area, Hi-Tech Park, Nanshan , Shenzhen 518057 , China
| | - Huifang Su
- Department of Chemical and Biological Engineering , Department of Chemistry , Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction , State Key Laboratory of Molecular Neuroscience , Institute of Molecular Functional Materials , Division of Life Science , The Hong Kong University of Science & Technology (HKUST) , Clear Water Bay , Kowloon , Hong Kong , China
- HKUST-Shenzhen Research Institute , No. 9 Yuexing 1st RD, South Area, Hi-Tech Park, Nanshan , Shenzhen 518057 , China
| | - Ryan T K Kwok
- Department of Chemical and Biological Engineering , Department of Chemistry , Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction , State Key Laboratory of Molecular Neuroscience , Institute of Molecular Functional Materials , Division of Life Science , The Hong Kong University of Science & Technology (HKUST) , Clear Water Bay , Kowloon , Hong Kong , China
- HKUST-Shenzhen Research Institute , No. 9 Yuexing 1st RD, South Area, Hi-Tech Park, Nanshan , Shenzhen 518057 , China
| | - Meijuan Jiang
- Department of Chemical and Biological Engineering , Department of Chemistry , Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction , State Key Laboratory of Molecular Neuroscience , Institute of Molecular Functional Materials , Division of Life Science , The Hong Kong University of Science & Technology (HKUST) , Clear Water Bay , Kowloon , Hong Kong , China
- HKUST-Shenzhen Research Institute , No. 9 Yuexing 1st RD, South Area, Hi-Tech Park, Nanshan , Shenzhen 518057 , China
| | - Zikai He
- Department of Chemical and Biological Engineering , Department of Chemistry , Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction , State Key Laboratory of Molecular Neuroscience , Institute of Molecular Functional Materials , Division of Life Science , The Hong Kong University of Science & Technology (HKUST) , Clear Water Bay , Kowloon , Hong Kong , China
- HKUST-Shenzhen Research Institute , No. 9 Yuexing 1st RD, South Area, Hi-Tech Park, Nanshan , Shenzhen 518057 , China
| | - Jacky W Y Lam
- Department of Chemical and Biological Engineering , Department of Chemistry , Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction , State Key Laboratory of Molecular Neuroscience , Institute of Molecular Functional Materials , Division of Life Science , The Hong Kong University of Science & Technology (HKUST) , Clear Water Bay , Kowloon , Hong Kong , China
- HKUST-Shenzhen Research Institute , No. 9 Yuexing 1st RD, South Area, Hi-Tech Park, Nanshan , Shenzhen 518057 , China
| | - Ben Zhong Tang
- Department of Chemical and Biological Engineering , Department of Chemistry , Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction , State Key Laboratory of Molecular Neuroscience , Institute of Molecular Functional Materials , Division of Life Science , The Hong Kong University of Science & Technology (HKUST) , Clear Water Bay , Kowloon , Hong Kong , China
- HKUST-Shenzhen Research Institute , No. 9 Yuexing 1st RD, South Area, Hi-Tech Park, Nanshan , Shenzhen 518057 , China
- Guangdong Innovative Research Team , SCUT-HKUST Joint Research Laboratory , State Key Laboratory of Luminescent Materials and Devices , South China University of Technology , Guangzhou 510640 , China
| |
Collapse
|
271
|
Li S, Chen T, Wang Y, Liu L, Lv F, Li Z, Huang Y, Schanze KS, Wang S. Conjugated Polymer with Intrinsic Alkyne Units for Synergistically Enhanced Raman Imaging in Living Cells. Angew Chem Int Ed Engl 2017; 56:13455-13458. [DOI: 10.1002/anie.201707042] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Indexed: 01/22/2023]
Affiliation(s)
- Shengliang Li
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Organic Solids; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P. R. China
| | - Tao Chen
- Biodynamic Optical Imaging Center; College of Engineering; Peking University; Beijing 100871 P. R. China
| | - Yunxia Wang
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Organic Solids; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P. R. China
| | - Libing Liu
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Organic Solids; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P. R. China
| | - Fengting Lv
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Organic Solids; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P. R. China
| | - Zhiliang Li
- Department of Chemistry; University of Texas at San Antonio; San Antonio TX 78249 USA
| | - Yanyi Huang
- Biodynamic Optical Imaging Center; College of Engineering; Peking University; Beijing 100871 P. R. China
| | - Kirk S. Schanze
- Department of Chemistry; University of Texas at San Antonio; San Antonio TX 78249 USA
| | - Shu Wang
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Organic Solids; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P. R. China
| |
Collapse
|
272
|
Li S, Chen T, Wang Y, Liu L, Lv F, Li Z, Huang Y, Schanze KS, Wang S. Conjugated Polymer with Intrinsic Alkyne Units for Synergistically Enhanced Raman Imaging in Living Cells. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201707042] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Shengliang Li
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Organic Solids; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P. R. China
| | - Tao Chen
- Biodynamic Optical Imaging Center; College of Engineering; Peking University; Beijing 100871 P. R. China
| | - Yunxia Wang
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Organic Solids; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P. R. China
| | - Libing Liu
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Organic Solids; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P. R. China
| | - Fengting Lv
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Organic Solids; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P. R. China
| | - Zhiliang Li
- Department of Chemistry; University of Texas at San Antonio; San Antonio TX 78249 USA
| | - Yanyi Huang
- Biodynamic Optical Imaging Center; College of Engineering; Peking University; Beijing 100871 P. R. China
| | - Kirk S. Schanze
- Department of Chemistry; University of Texas at San Antonio; San Antonio TX 78249 USA
| | - Shu Wang
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Organic Solids; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P. R. China
| |
Collapse
|
273
|
Sharmiladevi P, Haribabu V, Girigoswami K, Sulaiman Farook A, Girigoswami A. Effect of Mesoporous Nano Water Reservoir on MR Relaxivity. Sci Rep 2017; 7:11179. [PMID: 28894269 PMCID: PMC5593907 DOI: 10.1038/s41598-017-11710-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 08/30/2017] [Indexed: 01/19/2023] Open
Abstract
In the present work, an attempt was made to engineer a mesoporous silica coated magnetic nanoparticles (MNF@mSiO2) for twin mode contrast in magnetic resonance imaging (MRI) with reduced toxicity. Superparamagnetic manganese ferrite nanoparticles were synthesized with variable mesoporous silica shell thickness to control the water molecules interacting with metal oxide core. 178 nm was the optimum hydrodynamic diameter of mesoporous ferrite core-shell nanoparticles that showed maximum longitudinal relaxation time (T1) and transverse relaxation time (T2) in MRI due to the storage of water molecules in mesoporous silica coating. Besides the major role of mesoporous silica in controlling relaxivity, mesoporous silica shell also reduces the toxicity and enhances the bioavailability of superparamagnetic manganese ferrite nanoparticles. The in vitro toxicity assessment using HepG2 liver carcinoma cells shows that the mesoporous silica coating over ferrite nanoparticles could exert less toxicity compared to the uncoated particle.
Collapse
Affiliation(s)
- Palani Sharmiladevi
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research & Education (CARE), Kelambakkam, Chennai, 603 103, India
| | - Viswanathan Haribabu
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research & Education (CARE), Kelambakkam, Chennai, 603 103, India
| | - Koyeli Girigoswami
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research & Education (CARE), Kelambakkam, Chennai, 603 103, India
| | - Abubacker Sulaiman Farook
- Department of Radiology, Chettinad Hospital and Research Institute (CHRI), Kelambakkam, Chennai, 603 103, India
| | - Agnishwar Girigoswami
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research & Education (CARE), Kelambakkam, Chennai, 603 103, India.
| |
Collapse
|
274
|
Gao Y, Chen M, Wu J, Zhou Y, Cai C, Wang D, Luo J. Facilitating in vivo tumor localization by principal component analysis based on dynamic fluorescence molecular imaging. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:1-9. [PMID: 28929642 DOI: 10.1117/1.jbo.22.9.096010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Accepted: 08/29/2017] [Indexed: 05/09/2023]
Abstract
Fluorescence molecular imaging has been used to target tumors in mice with xenograft tumors. However, tumor imaging is largely distorted by the aggregation of fluorescent probes in the liver. A principal component analysis (PCA)-based strategy was applied on the in vivo dynamic fluorescence imaging results of three mice with xenograft tumors to facilitate tumor imaging, with the help of a tumor-specific fluorescent probe. Tumor-relevant features were extracted from the original images by PCA and represented by the principal component (PC) maps. The second principal component (PC2) map represented the tumor-related features, and the first principal component (PC1) map retained the original pharmacokinetic profiles, especially of the liver. The distribution patterns of the PC2 map of the tumor-bearing mice were in good agreement with the actual tumor location. The tumor-to-liver ratio and contrast-to-noise ratio were significantly higher on the PC2 map than on the original images, thus distinguishing the tumor from its nearby fluorescence noise of liver. The results suggest that the PC2 map could serve as a bioimaging marker to facilitate in vivo tumor localization, and dynamic fluorescence molecular imaging with PCA could be a valuable tool for future studies of in vivo tumor metabolism and progression.
Collapse
Affiliation(s)
- Yang Gao
- Tsinghua University, School of Medicine, Department of Biomedical Engineering, Beijing, China
| | - Maomao Chen
- Tsinghua University, School of Medicine, Department of Biomedical Engineering, Beijing, China
| | - Junyu Wu
- Tsinghua University, School of Medicine, Department of Basic Medical Sciences, Beijing, China
| | - Yuan Zhou
- Tsinghua University, School of Medicine, Department of Biomedical Engineering, Beijing, China
| | - Chuangjian Cai
- Tsinghua University, School of Medicine, Department of Biomedical Engineering, Beijing, China
| | - Daliang Wang
- Tsinghua University, School of Medicine, Department of Basic Medical Sciences, Beijing, China
| | - Jianwen Luo
- Tsinghua University, School of Medicine, Department of Biomedical Engineering, Beijing, China
- Tsinghua University, Center for Biomedical Imaging Research, Beijing, China
| |
Collapse
|
275
|
Zhao L, Zhu M, Li Y, Xing Y, Zhao J. Radiolabeled Dendrimers for Nuclear Medicine Applications. Molecules 2017; 22:E1350. [PMID: 28841180 PMCID: PMC6151832 DOI: 10.3390/molecules22091350] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 08/10/2017] [Accepted: 08/10/2017] [Indexed: 12/11/2022] Open
Abstract
Recent advances in nuclear medicine have explored nanoscale carriers for targeted delivery of various radionuclides in specific manners to improve the effect of diagnosis and therapy of diseases. Due to the unique molecular architecture allowing facile attachment of targeting ligands and radionuclides, dendrimers provide versatile platforms in this filed to build abundant multifunctional radiolabeled nanoparticles for nuclear medicine applications. This review gives special focus to recent advances in dendrimer-based nuclear medicine agents for the imaging and treatment of cancer, cardiovascular and other diseases. Radiolabeling strategies for different radionuclides and several challenges involved in clinical translation of radiolabeled dendrimers are extensively discussed.
Collapse
Affiliation(s)
- Lingzhou Zhao
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.
| | - Meilin Zhu
- Basic Medical College, Ningxia Medical University, Yinchuan 750004, Ningxia, China.
| | - Yujie Li
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.
| | - Yan Xing
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.
| | - Jinhua Zhao
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.
| |
Collapse
|
276
|
Tang P, Jiang X, Wang Y, Chen H, Zhang YS, Gao P, Wang H, Li X, Zhou J. Plasmonic Nanoprobe of (Gold Triangular Nanoprism Core)/(Polyaniline Shell) for Real-Time Three-Dimensional pH Imaging of Anterior Chamber. Anal Chem 2017; 89:9758-9766. [PMID: 28809545 DOI: 10.1021/acs.analchem.7b01623] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Three-dimensional (3D) molecular imaging enables the study of biological processes in both living and nonviable systems at the molecular level and has a high potential on early diagnosis. In conjunction with specific molecular probes, optical coherent tomography (OCT) is a promising imaging modality to provide 3D molecular features at the tissue level. In this study, we introduced (gold triangular nanoprism core)/(polyaniline shell) nanoparticles (GTNPs@PANI) as an OCT contrast agent and pH-responsive nanoprobe for 3D imaging of pH distribution. These core/shell nanoparticles possessed significantly different extinction and scattering properties in acidic and basic microenvironments. The switch of the optical features of the nanoparticles upon pH change was reversible, and the response time was less than 1.0 s. The nanoprobe successfully indicated the acid regions of a mimic tumor from the basic region in a gelatin-based phantom under OCT imaging. As a demonstration of practical applications, real-time 3D OCT imaging of pH and lactic acid in the anterior chamber of a fish eye was realized by GTNPs@PANI nanoparticles. Using GTNPs@PANI nanoparticles as the contrast probes for OCT imaging, noninvasive and real-time molecular imaging in both living and nonviable systems at the microscale can be achieved.
Collapse
Affiliation(s)
| | | | | | | | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School , Cambridge, Massachusetts 02139, United States
| | | | | | | | | |
Collapse
|
277
|
Zhong L, Li C, Ren Y, Wu D. Prognostic value of 18F-fluorodeoxyglucose PET parameters and inflammation in patients with nasopharyngeal carcinoma. Oncol Lett 2017; 14:5004-5012. [PMID: 29085513 DOI: 10.3892/ol.2017.6816] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 01/31/2017] [Indexed: 12/30/2022] Open
Abstract
The aim of the present study was to investigate the association between positron emission tomography (PET) parameters and peripheral inflammatory markers, and assess their prognostic value in nasopharyngeal carcinoma (NPC). A total of 121 patients with non-disseminated NPC were recruited. Pretreatment maximum standardized uptake values (SUVmax) of PET and peripheral inflammatory factors (leukocyte, neutrophil and monocyte counts) were recorded. Kaplan-Meier and multivariate analyses were used to identify predictors for progression-free survival (PFS), overall survival (OS), distant metastasis-free survival (DMFS) and locoregional recurrence-free survival (LRFS). The results of the present study revealed that SUVmax at the primary tumor was positively correlated with leukocytes (P=0.025), neutrophils (P=0.009) and monocytes (P=0.043). SUVmax at regional lymph nodes (SUVmax-N) was significantly associated with monocytes (P=0.024). Kaplan-Meier analysis demonstrated that SUVmax-N (>10.15) significantly predicted PFS (P=0.004) and DMFS (P=0.003). In addition, neutrophils (>5.18) were significantly associated with PFS (P=0.001), DMFS (P=0.013) and LRFS (P<0.001). Multivariate analysis revealed that SUVmax-N and neutrophils retained independent prognostic significance for PFS (SUVmax-N, P=0.026; and neutrophils, P=0.033) and DMFS (SUVmax-N, P=0.026; and neutrophils, P=0.032). Furthermore, patients with SUVmax-N ≤10.15 and neutrophils ≤5.18 had significantly improved prognosis in PFS (96.4 vs. 58.5%, P<0.001), OS (95.7 vs. 81.1%, P=0.044), DMFS (96.4 vs. 67.0%, P<0.001) and LRFS (100 vs. 90.2%, P=0.036) compared with those with SUVmax-N >10.15 or neutrophils >5.18. In conclusion, SUVmax may be significantly associated with cancer-associated inflammation. SUVmax-N and neutrophils were independent prognostic indicators for PFS and DMFS. Combined assessment of SUVmax-N and neutrophils may lead to refinement of risk stratification in NPC.
Collapse
Affiliation(s)
- Liting Zhong
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Chunming Li
- Department of Oncology, Jiangmen Central Hospital, Jiangmen, Guangdong 529000, P.R. China
| | - Yunyan Ren
- Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Dehua Wu
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
278
|
Ding F, Chen S, Zhang W, Tu Y, Sun Y. UPAR targeted molecular imaging of cancers with small molecule-based probes. Bioorg Med Chem 2017; 25:5179-5184. [PMID: 28869084 DOI: 10.1016/j.bmc.2017.08.034] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 07/31/2017] [Accepted: 08/20/2017] [Indexed: 01/05/2023]
Abstract
Molecular imaging can allow the non-invasive characterization and measurement of biological and biochemical processes at the molecular and cellular levels in living subjects. The imaging of specific molecular targets that are associated with cancers could allow for the earlier diagnosis and better treatment of diseases. Small molecule-based probes play prominent roles in biomedical research and have high clinical translation ability. Here, with an emphasis on small molecule-based probes, we review some recent developments in biomarkers, imaging techniques and multimodal imaging in molecular imaging and highlight the successful applications for molecular imaging of cancers.
Collapse
Affiliation(s)
- Feng Ding
- Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Seng Chen
- Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Wanshu Zhang
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Yufeng Tu
- Department of Cardiology, The Shanghai Ninth People's Hospital Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Yao Sun
- Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| |
Collapse
|
279
|
Komatsu T. Potential of Enzymomics Methodologies to Characterize Disease-Related Protein Functions. Chem Pharm Bull (Tokyo) 2017; 65:605-610. [PMID: 28674330 DOI: 10.1248/cpb.c17-00144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Enzymatic functions are often altered during disease onset and progression, and therefore chemical-biological studies, which utilize chemical knowledge to discover novel protein functions, are often employed to find proteins with functions closely related to disease phenotypes. Such studies are known as forward chemical-biological approaches and form part of the emerging field of enzymomics (omics of enzymes). This review provides an overview of methodologies available for discovering and characterizing disease-related alterations of enzymatic functions and prospects for the future.
Collapse
Affiliation(s)
- Toru Komatsu
- The University of Tokyo Graduate School of Pharmaceutical Sciences.,Precursory Research for Embryonic Science and Technology (PRESTO) Investigator
| |
Collapse
|
280
|
Polasek M, Yang Y, Schühle DT, Yaseen MA, Kim YR, Sung YS, Guimaraes AR, Caravan P. Molecular MR imaging of fibrosis in a mouse model of pancreatic cancer. Sci Rep 2017; 7:8114. [PMID: 28808290 PMCID: PMC5556073 DOI: 10.1038/s41598-017-08838-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 07/13/2017] [Indexed: 02/07/2023] Open
Abstract
Fibrosis with excessive amounts of type I collagen is a hallmark of many solid tumours, and fibrosis is a promising target in cancer therapy, but tools for its non-invasive quantification are missing. Here we used magnetic resonance imaging with a gadolinium-based probe targeted to type I collagen (EP-3533) to image and quantify fibrosis in pancreatic ductal adenocarcinoma. An orthotopic syngeneic mouse model resulted in tumours with 2.3-fold higher collagen level compared to healthy pancreas. Animals were scanned at 4.7 T before, during and up to 60 min after i.v. injection of EP-3533, or of its non-binding isomer EP-3612. Ex-vivo quantification of gadolinium showed significantly higher uptake of EP-3533 compared to EP-3612 in tumours, but not in surrounding tissue (blood, muscle). Uptake of EP-3533 visualized in T1-weighted MRI correlated well with spatial distribution of collagen determined by second harmonic generation imaging. Differences in the tumour pharmacokinetic profiles of EP-3533 and EP-3612 were utilized to distinguish specific binding to tumour collagen from non-specific uptake. A model-free pharmacokinetic measurement based on area under the curve was identified as a robust imaging biomarker of fibrosis. Collagen-targeted molecular MRI with EP-3533 represents a new tool for non-invasive visualization and quantification of fibrosis in tumour tissue.
Collapse
Affiliation(s)
- Miloslav Polasek
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 149 Thirteenth St., Suite 2301, Charlestown, MA, 02129, USA
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2, 16610, Prague 6, Czech Republic
| | - Yan Yang
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 149 Thirteenth St., Suite 2301, Charlestown, MA, 02129, USA
| | - Daniel T Schühle
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 149 Thirteenth St., Suite 2301, Charlestown, MA, 02129, USA
| | - Mohammad A Yaseen
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 149 Thirteenth St., Suite 2301, Charlestown, MA, 02129, USA
| | - Young R Kim
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 149 Thirteenth St., Suite 2301, Charlestown, MA, 02129, USA
| | - Yu Sub Sung
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 149 Thirteenth St., Suite 2301, Charlestown, MA, 02129, USA
| | - Alexander R Guimaraes
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 149 Thirteenth St., Suite 2301, Charlestown, MA, 02129, USA
| | - Peter Caravan
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 149 Thirteenth St., Suite 2301, Charlestown, MA, 02129, USA.
| |
Collapse
|
281
|
Metastatic cancer cell and tissue-specific fluorescence imaging using a new DNA aptamer developed by Cell-SELEX. Talanta 2017; 170:56-62. [DOI: 10.1016/j.talanta.2017.03.094] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 03/24/2017] [Accepted: 03/29/2017] [Indexed: 02/07/2023]
|
282
|
Xiong H, Zuo H, Yan Y, Occhialini G, Zhou K, Wan Y, Siegwart DJ. High-Contrast Fluorescence Detection of Metastatic Breast Cancer Including Bone and Liver Micrometastases via Size-Controlled pH-Activatable Water-Soluble Probes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1700131. [PMID: 28563903 DOI: 10.1002/adma.201700131] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 04/19/2017] [Indexed: 06/07/2023]
Abstract
Breast cancer metastasis is the major cause of cancer death in women worldwide. Early detection would save many lives, but current fluorescence imaging probes are limited in their detection ability, particularly of bone and liver micrometastases. Herein, probes that are capable of imaging tiny (<1 mm) micrometastases in the liver, lung, pancreas, kidneys, and bone, that have disseminated from the primary site, are reported. The influence of the poly(ethylene glycol) (PEG) chain length on the performance of water-soluble, pH-responsive, near-infrared 4,4'-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) probes is systematically investigated to demonstrate that PEG tuning can provide control over micrometastasis tracking with high tumor-to-background contrast (up to 12/1). Optimized probes can effectively visualize tumor boundaries and successfully detect micrometastases with diameters <1 mm. The bone-metastasis-targeting ability of these probes is further enhanced by covalent functionalization with bisphosphonate. This improved detection of both bone and liver micrometastases (<2 mm) with excellent tumor-to-normal contrast (5.2/1). A versatile method is thus introduced to directly synthesize modular water-soluble probes with broad potential utility. Through a single intravenous injection, these materials can image micrometastases in multiple organs with spatiotemporal resolution. They thus hold promise for metastasis diagnosis, image-guided surgery, and theranostic PEGylated drug therapies.
Collapse
Affiliation(s)
- Hu Xiong
- Simmons Comprehensive Cancer Center, Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Hao Zuo
- Department of Pharmacology, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Yunfeng Yan
- Simmons Comprehensive Cancer Center, Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Gino Occhialini
- Simmons Comprehensive Cancer Center, Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Kejin Zhou
- Simmons Comprehensive Cancer Center, Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Yihong Wan
- Department of Pharmacology, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Daniel J Siegwart
- Simmons Comprehensive Cancer Center, Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| |
Collapse
|
283
|
Li X, Kim CY, Lee S, Lee D, Chung HM, Kim G, Heo SH, Kim C, Hong KS, Yoon J. Nanostructured Phthalocyanine Assemblies with Protein-Driven Switchable Photoactivities for Biophotonic Imaging and Therapy. J Am Chem Soc 2017; 139:10880-10886. [DOI: 10.1021/jacs.7b05916] [Citation(s) in RCA: 253] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Xingshu Li
- Department
of Chemistry and Nano Science, Ewha Womans University, Seoul 120-750, Korea
| | - C-yoon Kim
- Department
of Medicine, School of Medicine, Konkuk University, Seoul 143-701, Korea
| | - Seunghyun Lee
- Department
of Electrical Engineering and Creative IT Engineering, POSTECH, Pohang 37673, Korea
| | - Dayoung Lee
- Department
of Chemistry and Nano Science, Ewha Womans University, Seoul 120-750, Korea
| | - Hyung-Min Chung
- Department
of Medicine, School of Medicine, Konkuk University, Seoul 143-701, Korea
| | - Gyoungmi Kim
- Department
of Chemistry and Nano Science, Ewha Womans University, Seoul 120-750, Korea
| | - Si-Hyun Heo
- Department
of Medicine, School of Medicine, Konkuk University, Seoul 143-701, Korea
| | - Chulhong Kim
- Department
of Electrical Engineering and Creative IT Engineering, POSTECH, Pohang 37673, Korea
| | - Ki-Sung Hong
- Department
of Medicine, School of Medicine, Konkuk University, Seoul 143-701, Korea
| | - Juyoung Yoon
- Department
of Chemistry and Nano Science, Ewha Womans University, Seoul 120-750, Korea
| |
Collapse
|
284
|
Skovgaard D, Persson M, Kjaer A. Urokinase Plasminogen Activator Receptor–PET with 68 Ga-NOTA-AE105. PET Clin 2017; 12:311-319. [DOI: 10.1016/j.cpet.2017.02.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
285
|
Zhou Z, Bai R, Munasinghe J, Nie L, Chen X. T 1-T 2 Dual-Modal Magnetic Resonance Imaging: From Molecular Basis to Contrast Agents. ACS NANO 2017; 11:5227-5232. [PMID: 28613821 PMCID: PMC9617470 DOI: 10.1021/acsnano.7b03075] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Multimodal imaging strategies integrating manifold images have improved our ability to diagnose, to guide therapy, and to predict outcomes. Magnetic resonance imaging (MRI) is among the most widely used imaging technique in the clinic and can enable multiparameter anatomical demonstration of diagnosis. Due to the inherent black-and-white production of MR images, however, MRI detection is largely hampered by the occurrence of false-positive diagnoses. In this Perspective, we introduce the paradigm of manipulating the multiparameter MRI, T1-T2 dual-modal MRI, along with enhancement by specific contrast agents. We hope this discussion will promote emerging research interest in T1-T2 dual-modal MRI and provoke the rational design of contrast agents for sophisticated MRI applications.
Collapse
Affiliation(s)
- Zijian Zhou
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health
| | - Ruiliang Bai
- Section on Quantitative Imaging and Tissue Science, National Institute of Child Health and Human Development, National Institutes of Health
| | - Jeeva Munasinghe
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Liming Nie
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
- Corresponding Authors: Xiaoyuan Chen: , Liming Nie:
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health
- Corresponding Authors: Xiaoyuan Chen: , Liming Nie:
| |
Collapse
|
286
|
CD44v6-Targeted Imaging of Head and Neck Squamous Cell Carcinoma: Antibody-Based Approaches. CONTRAST MEDIA & MOLECULAR IMAGING 2017; 2017:2709547. [PMID: 29097914 PMCID: PMC5612744 DOI: 10.1155/2017/2709547] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 04/23/2017] [Accepted: 05/21/2017] [Indexed: 12/11/2022]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a common and severe cancer with low survival rate in advanced stages. Noninvasive imaging of prognostic and therapeutic biomarkers could provide valuable information for planning and monitoring of the different therapy options. Thus, there is a major interest in development of new tracers towards cancer-specific molecular targets to improve diagnostic imaging and treatment. CD44v6, an oncogenic variant of the cell surface molecule CD44, is a promising molecular target since it exhibits a unique expression pattern in HNSCC and is associated with drug- and radio-resistance. In this review we summarize results from preclinical and clinical investigations of radiolabeled anti-CD44v6 antibody-based tracers: full-length antibodies, Fab, F(ab′)2 fragments, and scFvs with particular focus on the engineering of various antibody formats and choice of radiolabel for the use as molecular imaging agents in HNSCC. We conclude that the current evidence points to CD44v6 imaging being a promising approach for providing more specific and sensitive diagnostic tools, leading to customized treatment decisions and functional diagnosis. Improved imaging tools hold promise to enable more effective treatment for head and neck cancer patients.
Collapse
|
287
|
Ma YY, Jin KT, Wang SB, Wang HJ, Tong XM, Huang DS, Mou XZ. Molecular Imaging of Cancer with Nanoparticle-Based Theranostic Probes. CONTRAST MEDIA & MOLECULAR IMAGING 2017; 2017:1026270. [PMID: 29097909 PMCID: PMC5612740 DOI: 10.1155/2017/1026270] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 05/16/2017] [Indexed: 11/18/2022]
Abstract
Although advancements in medical technology supporting cancer diagnosis and treatment have improved survival, these technologies still have limitations. Recently, the application of noninvasive imaging for cancer diagnosis and therapy has become an indispensable component in clinical practice. However, current imaging contrasts and tracers, which are in widespread clinical use, have their intrinsic limitations and disadvantages. Nanotechnologies, which have improved in vivo detection and enhanced targeting efficiency for cancer, may overcome some of the limitations of cancer diagnosis and therapy. Theranostic nanoparticles have great potential as a therapeutic model, which possesses the ability of their nanoplatforms to load targeted molecule for both imaging and therapeutic functions. The resulting nanosystem will likely be critical with the growth of personalized medicine because of their diagnostic potential, effectiveness as a drug delivery vehicle, and ability to oversee patient response to therapy. In this review, we discuss the achievements of modern nanoparticles with the goal of accurate tumor imaging and effective treatment and discuss the future prospects.
Collapse
Affiliation(s)
- Ying-Yu Ma
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Hangzhou 310014, China
- Key Laboratory of Cancer Molecular Diagnosis and Individualized Therapy of Zhejiang Province, Hangzhou 310014, China
| | - Ke-Tao Jin
- Department of Gastrointestinal Surgery, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing 312000, China
| | - Shi-Bing Wang
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Hangzhou 310014, China
- Key Laboratory of Cancer Molecular Diagnosis and Individualized Therapy of Zhejiang Province, Hangzhou 310014, China
| | - Hui-Ju Wang
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Hangzhou 310014, China
- Key Laboratory of Cancer Molecular Diagnosis and Individualized Therapy of Zhejiang Province, Hangzhou 310014, China
| | - Xiang-Min Tong
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Hangzhou 310014, China
- Key Laboratory of Cancer Molecular Diagnosis and Individualized Therapy of Zhejiang Province, Hangzhou 310014, China
| | - Dong-Sheng Huang
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Hangzhou 310014, China
- Key Laboratory of Cancer Molecular Diagnosis and Individualized Therapy of Zhejiang Province, Hangzhou 310014, China
| | - Xiao-Zhou Mou
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Hangzhou 310014, China
- Key Laboratory of Cancer Molecular Diagnosis and Individualized Therapy of Zhejiang Province, Hangzhou 310014, China
- School of Basic Medical Sciences, Hangzhou Medical College, Hangzhou 310053, China
| |
Collapse
|
288
|
Khaniabadi PM, Majid AMS, Asif M, Khaniabadi BM, Shahbazi-Gahrouei D, Jaafar MS. Breast cancer cell targeted MR molecular imaging probe: Anti-MUC1 antibody-based magnetic nanoparticles. ACTA ACUST UNITED AC 2017. [DOI: 10.1088/1742-6596/851/1/012014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
289
|
A pH-triggered charge reversal and self-fluorescent micelle as a smart nanocarrier for doxorubicin controlled release. JOURNAL OF POLYMER RESEARCH 2017. [DOI: 10.1007/s10965-017-1255-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
290
|
Wen S, Zhao L, Zhao Q, Li D, Liu C, Yu Z, Shen M, Majoral JP, Mignani S, Zhao J, Shi X. A promising dual mode SPECT/CT imaging platform based on 99mTc-labeled multifunctional dendrimer-entrapped gold nanoparticles. J Mater Chem B 2017; 5:3810-3815. [PMID: 32264242 DOI: 10.1039/c7tb00543a] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Multifunctional 99mTc-labeled dendrimer-entrapped gold nanoparticles (99mTc-Au DENPs) were designed and synthesized. Our results show that the type of surface groups (acetyl or hydroxyl) significantly impact the biodistribution profile of the 99mTc-Au DENPs, thereby allowing for preferential SPECT/CT imaging of different organs.
Collapse
Affiliation(s)
- Shihui Wen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
291
|
Zhao W, Lee HG, Buchwald SL, Hooker JM. Direct 11CN-Labeling of Unprotected Peptides via Palladium-Mediated Sequential Cross-Coupling Reactions. J Am Chem Soc 2017; 139:7152-7155. [PMID: 28502164 DOI: 10.1021/jacs.7b02761] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A practical procedure for 11CN-labeling of unprotected peptides has been developed. The method was shown to be highly chemoselective for cysteine over other potentially nucleophilic residues, and the radiolabeled products were synthesized and purified in less than 15 min. Appropriate for biomedical applications, the method could be used on an extremely small scale (20 nmol) with a high radiochemical yield. The success of the protocol stems from the use of a Pd-reagent based on a dihaloarene, which enables direct "nucleophile-nucleophile" coupling of the peptide and [11C]cyanide by temporal separation of nucleophile addition.
Collapse
Affiliation(s)
- Wenjun Zhao
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital , Boston, Massachusetts 02114, United States.,Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School , Charlestown, Massachusetts 02129, United States
| | - Hong Geun Lee
- Massachusetts Institute of Technology , 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Stephen L Buchwald
- Massachusetts Institute of Technology , 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Jacob M Hooker
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital , Boston, Massachusetts 02114, United States.,Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School , Charlestown, Massachusetts 02129, United States
| |
Collapse
|
292
|
Enzyme activity of α-chymotrypsin: Deactivation by gold nano-cluster and reactivation by glutathione. J Colloid Interface Sci 2017; 494:74-81. [DOI: 10.1016/j.jcis.2017.01.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 01/07/2017] [Accepted: 01/09/2017] [Indexed: 11/15/2022]
|
293
|
Abrego J, Gunda V, Vernucci E, Shukla SK, King RJ, Dasgupta A, Goode G, Murthy D, Yu F, Singh PK. GOT1-mediated anaplerotic glutamine metabolism regulates chronic acidosis stress in pancreatic cancer cells. Cancer Lett 2017; 400:37-46. [PMID: 28455244 DOI: 10.1016/j.canlet.2017.04.029] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 04/12/2017] [Accepted: 04/14/2017] [Indexed: 02/07/2023]
Abstract
The increased rate of glycolysis and reduced oxidative metabolism are the principal biochemical phenotypes observed in pancreatic ductal adenocarcinoma (PDAC) that lead to the development of an acidic tumor microenvironment. The pH of most epithelial cell-derived tumors is reported to be lower than that of plasma. However, little is known regarding the physiology and metabolism of cancer cells enduring chronic acidosis. Here, we cultured PDAC cells in chronic acidosis (pH 6.9-7.0) and observed that cells cultured in low pH had reduced clonogenic capacity. However, our physiological and metabolomics analysis showed that cells in low pH deviate from glycolytic metabolism and rely more on oxidative metabolism. The increased expression of the transaminase enzyme GOT1 fuels oxidative metabolism of cells cultured in low pH by enhancing the non-canonical glutamine metabolic pathway. Survival in low pH is reduced upon depletion of GOT1 due to increased intracellular ROS levels. Thus, GOT1 plays an important role in energy metabolism and ROS balance in chronic acidosis stress. Our studies suggest that targeting anaplerotic glutamine metabolism may serve as an important therapeutic target in PDAC.
Collapse
Affiliation(s)
- Jaime Abrego
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Venugopal Gunda
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Enza Vernucci
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Surendra K Shukla
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Ryan J King
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Aneesha Dasgupta
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Gennifer Goode
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Divya Murthy
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Fang Yu
- Department of Biostatistics, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Pankaj K Singh
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA; Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA; Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA; Department of Genetics Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
294
|
Wang Z, Chen L, Huang C, Huang Y, Jia N. Albumin-mediated platinum nanocrystals for in vivo enhanced computed tomography imaging. J Mater Chem B 2017; 5:3498-3510. [PMID: 32264286 DOI: 10.1039/c7tb00561j] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Contrast agents play a vital role in the enhanced examination of computed tomography (CT) imaging. However, traditional clinical small-molecule agents face a variety of drawbacks, such as low blood circulating time, difficult modification and potential toxic and side effects. Herein, a simple albumin-directed fabrication of platinum (Pt) nanocrystals was achieved for exploring the utilization in CT imaging. Ultrasmall nanoagents with a mean core size of 2.1 nm were obtained through a facile one-pot synthesis by the reduction of chloroplatinic acid hexahydrate (H2PtCl6·6H2O) using bovine serum albumin (BSA) as the biotemplate under room temperature. These synthesized well-dispersed nanocrystals exhibited good haemocompatibility and biocompatibility. Interestingly, it was demonstrated that the nanocrystals could serve as potential new and potent CT contrast agents, especially vital for in vivo imaging with prominent enhancement and metabolizable behaviours due to the combination of the higher X-ray attenuation property and prolonged imaging time, perhaps caused by the BSA modification. Furthermore, such ultrasmall platinum nanocrystals obtained from a feasible mild aqueous synthetic route for CT imaging has not been reported before. Thereby, this work also gives new insights for the protein-templated growth of biocompatible nanoparticulate contrast agents in future nanomedicines.
Collapse
Affiliation(s)
- Zhiming Wang
- The Education Ministry Key Laboratory of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials and Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Department of Chemistry, Shanghai Normal University, Shanghai 200234, China.
| | | | | | | | | |
Collapse
|
295
|
Cao Y, Xu L, Kuang Y, Xiong D, Pei R. Gadolinium-based nanoscale MRI contrast agents for tumor imaging. J Mater Chem B 2017; 5:3431-3461. [PMID: 32264282 DOI: 10.1039/c7tb00382j] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Gadolinium-based nanoscale magnetic resonance imaging (MRI) contrast agents (CAs) have gained significant momentum as a promising nanoplatform for detecting tumor tissue in medical diagnosis, due to their favorable capability of enhancing the longitudinal relaxivity (r1) of individual gadolinium ions, delivering to the region of interest a large number of gadolinium ions, and incorporating different functionalities. This mini-review highlights the latest developments and applications, and simultaneously gives some perspectives for their future development.
Collapse
Affiliation(s)
- Yi Cao
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | | | | | | | | |
Collapse
|
296
|
Deng T, Peng Y, Zhang R, Wang J, Zhang J, Gu Y, Huang D, Deng D. Water-Solubilizing Hydrophobic ZnAgInSe/ZnS QDs with Tumor-Targeted cRGD-Sulfobetaine-PIMA-Histamine Ligands via a Self-Assembly Strategy for Bioimaging. ACS APPLIED MATERIALS & INTERFACES 2017; 9:11405-11414. [PMID: 28293947 DOI: 10.1021/acsami.6b16639] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Exploring the organic-to-aqueous phase transfer of quantum dots (QDs) is significant for achieving their versatile applications in biomedical fields. In this thematic issue, surface modification, size control, and biocompatibility of QDs and QDs-based nanocomposites are core problems. Herein, the new highly fluorescent tumor-targeted QDs-clusters consisting of ZnAgInSe/ZnS (ZAISe/ZnS) QDs and sulfobetaine-PIMA-histamine (SPH) polymer with the ανβ3 integrin receptor cyclic RGD (c-RGD) were developed via ligand exchange and an accompanying self-assembly process. It was found that the structure of RGD-SPH QDs-clusters was propitious to reduce the capture of reticulo-endothelial system (RES) in virtue of external stealth ligands, and benefit to selectively accumulate at the tumor site after intravenous injection via active tumor targeting cooperated with the enhanced permeability and retention (EPR) effect. In the meantime, those clusters also recognized and enriched the cell surface when cocultured with the ανβ3 integrin receptor overexpressed malignant cells (U87MG tumor). On the basis of the results, fabricating mutil-functional nanocomposites integrated with the long-term circulation and dual-targeting effects should be an interesting strategy for imaging cancer in vitro and in vivo.
Collapse
Affiliation(s)
- Tao Deng
- Department of Pharmaceutical Engineering, and ‡Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University , Nanjing 210009, China
| | - Yanan Peng
- Department of Pharmaceutical Engineering, and ‡Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University , Nanjing 210009, China
| | - Rong Zhang
- Department of Pharmaceutical Engineering, and ‡Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University , Nanjing 210009, China
| | - Jie Wang
- Department of Pharmaceutical Engineering, and ‡Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University , Nanjing 210009, China
| | - Jie Zhang
- Department of Pharmaceutical Engineering, and ‡Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University , Nanjing 210009, China
| | - Yueqing Gu
- Department of Pharmaceutical Engineering, and ‡Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University , Nanjing 210009, China
| | - Dechun Huang
- Department of Pharmaceutical Engineering, and ‡Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University , Nanjing 210009, China
| | - Dawei Deng
- Department of Pharmaceutical Engineering, and ‡Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University , Nanjing 210009, China
| |
Collapse
|
297
|
Abstract
Molecular imaging allows for the visualization of changes at the cellular level in diseases such as cancer. A successful molecular imaging agent must rely on disease-selective targets and ligands that specifically interact with those targets. Unfortunately, the translation of novel target-specific ligands into the clinic has been frustratingly slow with limitations including the complex design and screening approaches for ligand identification, as well as their subsequent optimization into useful imaging agents. This review focuses on combinatorial library approaches towards addressing these two challenges, with particular focus on phage display and one-bead one-compound (OBOC) libraries. Both of these peptide-based techniques have proven successful in identifying new ligands for cancer-specific targets and some of the success stories will be highlighted. New developments in screening methodology and sequencing technology have pushed the bounds of phage display and OBOC even further, allowing for even faster and more robust discovery of novel ligands. The combination of multiple high-throughput technologies will not only allow for more accurate identification, but also faster affinity maturation, while overall streamlining the process of translating novel ligands into clinical imaging agents.
Collapse
|
298
|
Parvanian S, Mostafavi SM, Aghashiri M. Multifunctional nanoparticle developments in cancer diagnosis and treatment. SENSING AND BIO-SENSING RESEARCH 2017. [DOI: 10.1016/j.sbsr.2016.08.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
299
|
Zhou Z, Lu ZR. Molecular imaging of the tumor microenvironment. Adv Drug Deliv Rev 2017; 113:24-48. [PMID: 27497513 DOI: 10.1016/j.addr.2016.07.012] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 07/28/2016] [Indexed: 12/19/2022]
Abstract
The tumor microenvironment plays a critical role in tumor initiation, progression, metastasis, and resistance to therapy. It is different from normal tissue in the extracellular matrix, vascular and lymphatic networks, as well as physiologic conditions. Molecular imaging of the tumor microenvironment provides a better understanding of its function in cancer biology, and thus allowing for the design of new diagnostics and therapeutics for early cancer diagnosis and treatment. The clinical translation of cancer molecular imaging is often hampered by the high cost of commercialization of targeted imaging agents as well as the limited clinical applications and small market size of some of the agents. Because many different cancer types share similar tumor microenvironment features, the ability to target these biomarkers has the potential to provide clinically translatable molecular imaging technologies for a spectrum of cancers and broad clinical applications. There has been significant progress in targeting the tumor microenvironment for cancer molecular imaging. In this review, we summarize the principles and strategies of recent advances made in molecular imaging of the tumor microenvironment, using various imaging modalities for early detection and diagnosis of cancer.
Collapse
|
300
|
Goel S, England CG, Chen F, Cai W. Positron emission tomography and nanotechnology: A dynamic duo for cancer theranostics. Adv Drug Deliv Rev 2017; 113:157-176. [PMID: 27521055 PMCID: PMC5299094 DOI: 10.1016/j.addr.2016.08.001] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/29/2016] [Accepted: 08/03/2016] [Indexed: 12/18/2022]
Abstract
Development of novel imaging probes for cancer diagnosis is critical for early disease detection and management. The past two decades have witnessed a surge in the development and evolution of radiolabeled nanoparticles as a new frontier in personalized cancer nanomedicine. The dynamic synergism of positron emission tomography (PET) and nanotechnology combines the sensitivity and quantitative nature of PET with the multifunctionality and tunability of nanomaterials, which can help overcome certain key challenges in the field. In this review, we discuss the recent advances in radionanomedicine, exemplifying the ability to tailor the physicochemical properties of nanomaterials to achieve optimal in vivo pharmacokinetics and targeted molecular imaging in living subjects. Innovations in development of facile and robust radiolabeling strategies and biomedical applications of such radionanoprobes in cancer theranostics are highlighted. Imminent issues in clinical translation of radiolabeled nanomaterials are also discussed, with emphasis on multidisciplinary efforts needed to quickly move these promising agents from bench to bedside.
Collapse
Affiliation(s)
- Shreya Goel
- Materials Science Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Christopher G England
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Feng Chen
- Department of Radiology, University of Wisconsin-Madison, Madison, WI 53792, USA.
| | - Weibo Cai
- Materials Science Program, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Medical Physics, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Radiology, University of Wisconsin-Madison, Madison, WI 53792, USA; University of Wisconsin Carbone Cancer Center, Madison, WI 53792, USA.
| |
Collapse
|