251
|
Li H, Aggarwal A, Toro P, Fu P, Badve SS, Cuzick J, Madabhushi A, Thorat MA. A prognostic and predictive computational pathology immune signature for ductal carcinoma in situ: retrospective results from a cohort within the UK/ANZ DCIS trial. Lancet Digit Health 2024; 6:e562-e569. [PMID: 38987116 DOI: 10.1016/s2589-7500(24)00116-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/21/2024] [Accepted: 05/23/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND The density of tumour-infiltrating lymphocytes (TILs) could be prognostic in ductal carcinoma in situ (DCIS). However, manual TIL quantification is time-consuming and suffers from interobserver and intraobserver variability. In this study, we developed a TIL-based computational pathology biomarker and evaluated its association with the risk of recurrence and benefit of adjuvant treatment in a clinical trial cohort. METHODS In this retrospective cohort study, a computational pathology pipeline was developed to generate a TIL-based biomarker (CPath TIL categories). Subsequently, the signature underwent a masked independent validation on H&E-stained whole-section images of 755 patients with DCIS from the UK/ANZ DCIS randomised controlled trial. Specifically, continuous biomarker CPath TIL score was calculated as the average TIL density in the DCIS microenvironment and dichotomised into binary biomarker CPath TIL categories (CPath TIL-high vs CPath TIL-low) using the median value as a cutoff. The primary outcome was ipsilateral breast event (IBE; either recurrence of DCIS [DCIS-IBE] or invasive progression [I-IBE]). The Cox proportional hazards model was used to estimate the hazard ratio (HR). FINDINGS CPath TIL-score was evaluable in 718 (95%) of 755 patients (151 IBEs). Patients with CPath TIL-high DCIS had a greater risk of IBE than those with CPath TIL-low DCIS (HR 2·10 [95% CI 1·39-3·18]; p=0·0004). The risk of I-IBE was greater in patients with CPath TIL-high DCIS than those with CPath TIL-low DCIS (3·09 [1·56-6·14]; p=0·0013), and the risk of DCIS-IBE was non-significantly higher in those with CPath TIL-high DCIS (1·61 [0·95-2·72]; p=0·077). A significant interaction (pinteraction=0·025) between CPath TIL categories and radiotherapy was observed with a greater magnitude of radiotherapy benefit in preventing IBE in CPath TIL-high DCIS (0·32 [0·19-0·54]) than CPath TIL-low DCIS (0·40 [0·20-0·81]). INTERPRETATION High TIL density is associated with higher recurrence risk-particularly of invasive recurrence-and greater radiotherapy benefit in patients with DCIS. Our TIL-based computational pathology signature has a prognostic and predictive role in DCIS. FUNDING National Cancer Institute under award number U01CA269181, Cancer Research UK (C569/A12061; C569/A16891), and the Breast Cancer Research Foundation, New York (NY, USA).
Collapse
Affiliation(s)
- Haojia Li
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Arpit Aggarwal
- Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, USA
| | - Paula Toro
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Pingfu Fu
- Department of Population and Quantitative Health Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Sunil S Badve
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA; Winship Cancer Institute, Atlanta, GA, USA
| | - Jack Cuzick
- Centre for Cancer Screening, Prevention and Early Diagnosis, Wolfson Institute of Population Health, Queen Mary University of London, London, UK
| | - Anant Madabhushi
- Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, USA; Joseph Maxwell Cleland Atlanta VA Medical Center, Atlanta, GA, USA.
| | - Mangesh A Thorat
- Centre for Cancer Screening, Prevention and Early Diagnosis, Wolfson Institute of Population Health, Queen Mary University of London, London, UK; School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, London, UK; Breast Surgery, Homerton University Hospital, London, UK; Breast Surgery, Guy's Hospital, Great Maze Pond, London, UK.
| |
Collapse
|
252
|
Zekeridou A. Paraneoplastic Neurologic Disorders. Continuum (Minneap Minn) 2024; 30:1021-1051. [PMID: 39088287 DOI: 10.1212/con.0000000000001449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2024]
Abstract
OBJECTIVE This article reviews the clinical presentations, neural antibody associations, and oncologic accompaniments of paraneoplastic neurologic syndromes and neurologic autoimmunity in the context of immune checkpoint inhibitor (ICI) cancer immunotherapy. LATEST DEVELOPMENTS Neural antibody discovery has improved the diagnosis of paraneoplastic neurologic syndromes. Neural antibodies also delineate the underlying disease pathophysiology and thus inform outcomes and treatments. Neural antibodies specific for extracellular proteins have pathogenic potential, whereas antibodies specific for intracellular targets are biomarkers of a cytotoxic T-cell immune response. A recent update in paraneoplastic neurologic syndrome criteria suggests high- and intermediate-risk phenotypes as well as neural antibodies to improve diagnostic accuracy in patients with paraneoplastic neurologic syndromes; a score was created based on this categorization. The introduction of ICI cancer immunotherapy has led to an increase in cancer-related neurologic autoimmunity with distinct clinical phenotypes. ESSENTIAL POINTS Paraneoplastic neurologic syndromes reflect an ongoing immunologic response to cancer mediated by effector T cells or antibodies. Paraneoplastic neurologic syndromes can present with manifestations at any level of the neuraxis, and neural antibodies aid diagnosis, focus cancer screening, and inform prognosis and therapy. In patients with high clinical suspicion of a paraneoplastic neurologic syndrome, cancer screening and treatment should be undertaken, regardless of the presence of a neural antibody. ICI therapy has led to immune-mediated neurologic complications. Recognition and treatment lead to improved outcomes.
Collapse
|
253
|
Luo Y, Lu J, Lei Z, Zhu H, Rao D, Wang T, Fu C, Zhang Z, Xia L, Huang W. Lysine methylation modifications in tumor immunomodulation and immunotherapy: regulatory mechanisms and perspectives. Biomark Res 2024; 12:74. [PMID: 39080807 PMCID: PMC11289998 DOI: 10.1186/s40364-024-00621-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 07/17/2024] [Indexed: 08/02/2024] Open
Abstract
Lysine methylation is a crucial post-translational modification (PTM) that significantly impacts gene expression regulation. This modification not only influences cancer development directly but also has significant implications for the immune system. Lysine methylation modulates immune cell functions and shapes the anti-tumor immune response, highlighting its dual role in both tumor progression and immune regulation. In this review, we provide a comprehensive overview of the intrinsic role of lysine methylation in the activation and function of immune cells, detailing how these modifications affect cellular processes and signaling pathways. We delve into the mechanisms by which lysine methylation contributes to tumor immune evasion, allowing cancer cells to escape immune surveillance and thrive. Furthermore, we discuss the therapeutic potential of targeting lysine methylation in cancer immunotherapy. Emerging strategies, such as immune checkpoint inhibitors (ICIs) and chimeric antigen receptor T-cell (CAR-T) therapy, are being explored for their efficacy in modulating lysine methylation to enhance anti-tumor immune responses. By targeting these modifications, we can potentially improve the effectiveness of existing treatments and develop novel therapeutic approaches to combat cancer more effectively.
Collapse
Affiliation(s)
- Yiming Luo
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Junli Lu
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Zhen Lei
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - He Zhu
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Dean Rao
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Tiantian Wang
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Chenan Fu
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Zhiwei Zhang
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, 430030, Hubei, China
| | - Limin Xia
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| | - Wenjie Huang
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
- Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, 430030, Hubei, China.
| |
Collapse
|
254
|
Zhang T, Zhang X, Chen J, Zhang X, Zhang Y. Harnessing microbial antigens as cancer antigens: a promising avenue for cancer immunotherapy. Front Immunol 2024; 15:1411490. [PMID: 39139570 PMCID: PMC11319170 DOI: 10.3389/fimmu.2024.1411490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/16/2024] [Indexed: 08/15/2024] Open
Abstract
Immunotherapy has revolutionized cancer treatment by leveraging the immune system's innate capabilities to combat malignancies. Despite the promise of tumor antigens in stimulating anti-tumor immune responses, their clinical utility is hampered by limitations in eliciting robust and durable immune reactions, exacerbated by tumor heterogeneity and immune evasion mechanisms. Recent insights into the immunogenic properties of host homologous microbial antigens have sparked interest in their potential for augmenting anti-tumor immunity while minimizing off-target effects. This review explores the therapeutic potential of microbial antigen peptides in tumor immunotherapy, beginning with an overview of tumor antigens and their challenges in clinical translation. We further explore the intricate relationship between microorganisms and tumor development, elucidating the concept of molecular mimicry and its implications for immune recognition of tumor-associated antigens. Finally, we discuss methodologies for identifying and characterizing microbial antigen peptides, highlighting their immunogenicity and prospects for therapeutic application.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
- Department of Biomedical Engineering, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China
| | - Xilong Zhang
- Department of Burns and Plastic Surgery, First People’s Hospital of Xuzhou City, Xuzhou, China
| | - Jianquan Chen
- Central Laboratory, Translational Medicine Research Center, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Xiuwei Zhang
- Department of Burns and Plastic Surgery, First People’s Hospital of Xuzhou City, Xuzhou, China
| | - Yunlei Zhang
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
- Department of Biomedical Engineering, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China
- Central Laboratory, Translational Medicine Research Center, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
255
|
Zhao R, Sukocheva O, Tse E, Neganova M, Aleksandrova Y, Zheng Y, Gu H, Zhao D, Madhunapantula SV, Zhu X, Liu J, Fan R. Cuproptosis, the novel type of oxidation-induced cell death in thoracic cancers: can it enhance the success of immunotherapy? Cell Commun Signal 2024; 22:379. [PMID: 39068453 PMCID: PMC11282696 DOI: 10.1186/s12964-024-01743-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 07/08/2024] [Indexed: 07/30/2024] Open
Abstract
Copper is an important metal micronutrient, required for the balanced growth and normal physiological functions of human organism. Copper-related toxicity and dysbalanced metabolism were associated with the disruption of intracellular respiration and the development of various diseases, including cancer. Notably, copper-induced cell death was defined as cuproptosis which was also observed in malignant cells, representing an attractive anti-cancer instrument. Excess of intracellular copper leads to the aggregation of lipoylation proteins and toxic stress, ultimately resulting in the activation of cell death. Differential expression of cuproptosis-related genes was detected in normal and malignant tissues. Cuproptosis-related genes were also linked to the regulation of oxidative stress, immune cell responses, and composition of tumor microenvironment. Activation of cuproptosis was associated with increased expression of redox-metabolism-regulating genes, such as ferredoxin 1 (FDX1), lipoic acid synthetase (LIAS), lipoyltransferase 1 (LIPT1), dihydrolipoamide dehydrogenase (DLD), drolipoamide S-acetyltransferase (DLAT), pyruvate dehydrogenase E1 subunit alpha 1 (PDHA1), and pyruvate dehydrogenase E1 subunit beta (PDHB)). Accordingly, copper-activated network was suggested as an attractive target in cancer therapy. Mechanisms of cuproptosis and regulation of cuproptosis-related genes in different cancers and tumor microenvironment are discussed in this study. The analysis of current findings indicates that therapeutic regulation of copper signaling, and activation of cuproptosis-related targets may provide an effective tool for the improvement of immunotherapy regimens.
Collapse
Affiliation(s)
- Ruiwen Zhao
- The Department of Radiation Oncology & Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Olga Sukocheva
- Department of Gastroenterology and Hepatology, Royal Adelaide Hospital, Port Rd, Adelaide, SA, 5000, Australia.
| | - Edmund Tse
- Department of Gastroenterology and Hepatology, Royal Adelaide Hospital, Port Rd, Adelaide, SA, 5000, Australia
| | - Margarita Neganova
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Yulia Aleksandrova
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Yufei Zheng
- The Department of Radiation Oncology & Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Hao Gu
- The Department of Radiation Oncology & Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Deyao Zhao
- The Department of Radiation Oncology & Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - SabbaRao V Madhunapantula
- Special Interest Group in Cancer Biology and Cancer Stem Cells (SIG-CBCSC), Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research, Mysuru, Karnataka, 570015, India
| | - Xiaorong Zhu
- The Department of Radiation Oncology & Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Junqi Liu
- The Department of Radiation Oncology & Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Ruitai Fan
- The Department of Radiation Oncology & Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
256
|
Lalonde E, Li D, Ewens K, Shields CL, Ganguly A. Genome-Wide Methylation Patterns in Primary Uveal Melanoma: Development of MethylSig-UM, an Epigenomic Prognostic Signature to Improve Patient Stratification. Cancers (Basel) 2024; 16:2650. [PMID: 39123378 PMCID: PMC11312132 DOI: 10.3390/cancers16152650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Despite studies highlighting the prognostic utility of DNA methylation in primary uveal melanoma (pUM), it has not been translated into a clinically useful tool. We sought to define a methylation signature to identify newly diagnosed individuals at high risk for developing metastasis. Methylation profiling was performed on 41 patients with pUM with stage T2-T4 and at least three years of follow-up using the Illumina Infinium HumanMethylation450K BeadChip (N = 24) and the EPIC BeadChip (N = 17). Findings were validated in the TCGA cohort with known metastatic outcome (N = 69). Differentially methylated probes were identified in patients who developed metastasis. Unsupervised consensus clustering revealed three epigenomic subtypes associated with metastasis. To identify a prognostic signature, recursive feature elimination and random forest models were utilized within repeated cross-validation iterations. The 250 most commonly selected probes comprised the final signature, named MethylSig-UM. MethylSig-UM could distinguish individuals with pUM at diagnosis who develop future metastasis with an area under the curve of ~81% in the independent validation cohort, and remained significant in Cox proportional hazard models when combined with clinical features and established genomic biomarkers. Altered expression of immune-modulating genes were detected in MethylSig-UM positive tumors, providing clues for pUM resistance to immunotherapy. The MethylSig-UM model is available to enable additional validation in larger cohort sizes including T1 tumors.
Collapse
Affiliation(s)
- Emilie Lalonde
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Schulich School Medicine & Dentistry, Western University, London, ON N6A 5C1, Canada
| | - Dong Li
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kathryn Ewens
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Carol L. Shields
- Oncology Services, Wills Eye Hospital, Thomas Jefferson University, Philadelphia, PA 19144, USA
| | - Arupa Ganguly
- Department of Pathology and Laboratory Medicine, Schulich School Medicine & Dentistry, Western University, London, ON N6A 5C1, Canada
| |
Collapse
|
257
|
Lanza G, Mogavero MP, Salemi M, Ferri R. The Triad of Sleep, Immunity, and Cancer: A Mediating Perspective. Cells 2024; 13:1246. [PMID: 39120277 PMCID: PMC11311741 DOI: 10.3390/cells13151246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/18/2024] [Accepted: 07/23/2024] [Indexed: 08/10/2024] Open
Abstract
The triadic interplay between sleep, immunity, and cancer represents a growing area of biomedical research with significant clinical implications. This review synthesizes the current knowledge on how sleep influences immune function, the immune system's role in cancer dynamics, and the direct connections between sleep patterns and cancer risk. After a comprehensive overview of the interrelationships among these three domains, the mechanisms of sleep in immune function are described, detailing how sleep regulates the immune system, the effects of sleep duration and quality on immune responses, and the underlying molecular and cellular mechanisms. Also, the complex relationship between immunity and cancer is explored, highlighting the immune system's role in cancer prevention and progression, immune surveillance, tumor microenvironment, and the implications of immunodeficiency and immune modulation on cancer risk. The direct connections between sleep and cancer are then described, presenting epidemiological evidence linking sleep patterns to cancer risk, biological mechanisms that influence cancer development, and the role of sleep disorders in cancer prognosis. The mediating role of sleep between immunity and cancer is highlighted, proposing hypothesized pathways, summarizing evidence from experimental and clinical studies, and evaluating the impact of sleep interventions on immune function and cancer outcomes. This review concludes by discussing the clinical implications and future directions, emphasizing the potential for sleep-based interventions in cancer prevention and treatment, the integration of sleep management in oncology and immunotherapy, and outlining a future research agenda. This agenda includes understanding the mechanisms of the sleep-immunity-cancer interplay, conducting epidemiological studies on sleep and cancer risk, assessing the impact of sleep management in cancer treatment protocols, exploring sleep and tumor microenvironment interactions, and considering policy and public health implications. Through a detailed examination of these interconnected pathways, this review underscores the critical importance of sleep in modulating immune function and cancer outcomes, advocating for interdisciplinary research and clinical strategies to harness this knowledge for improved health outcomes.
Collapse
Affiliation(s)
- Giuseppe Lanza
- Oasi Research Institute—IRCCS, 94018 Troina, Italy; (G.L.); (M.S.)
- Department of Surgery and Medical–Surgical Specialties, University of Catania, 95100 Catania, Italy
| | - Maria P. Mogavero
- Vita-Salute San Raffaele University, 20132 Milan, Italy;
- Division of Neuroscience, Sleep Disorders Center, San Raffaele Scientific Institute, 20127 Milan, Italy
| | - Michele Salemi
- Oasi Research Institute—IRCCS, 94018 Troina, Italy; (G.L.); (M.S.)
| | - Raffaele Ferri
- Oasi Research Institute—IRCCS, 94018 Troina, Italy; (G.L.); (M.S.)
| |
Collapse
|
258
|
Papadakos SP, Chatzikalil E, Vakadaris G, Reppas L, Arvanitakis K, Koufakis T, Siakavellas SI, Manolakopoulos S, Germanidis G, Theocharis S. Exploring the Role of GITR/GITRL Signaling: From Liver Disease to Hepatocellular Carcinoma. Cancers (Basel) 2024; 16:2609. [PMID: 39061246 PMCID: PMC11275207 DOI: 10.3390/cancers16142609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver cancer and presents a continuously growing incidence and high mortality rates worldwide. Besides advances in diagnosis and promising results of pre-clinical studies, established curative therapeutic options for HCC are not currently available. Recent progress in understanding the tumor microenvironment (TME) interactions has turned the scientific interest to immunotherapy, revolutionizing the treatment of patients with advanced HCC. However, the limited number of HCC patients who benefit from current immunotherapeutic options creates the need to explore novel targets associated with improved patient response rates and potentially establish them as a part of novel combinatorial treatment options. Glucocorticoid-induced TNFR-related protein (GITR) belongs to the TNFR superfamily (TNFRSF) and promotes CD8+ and CD4+ effector T-cell function with simultaneous inhibition of Tregs function, when activated by its ligand, GITRL. GITR is currently considered a potential immunotherapy target in various kinds of neoplasms, especially with the concomitant use of programmed cell-death protein-1 (PD-1) blockade. Regarding liver disease, a high GITR expression in liver progenitor cells has been observed, associated with impaired hepatocyte differentiation, and decreased progenitor cell-mediated liver regeneration. Considering real-world data proving its anti-tumor effect and recently published evidence in pre-clinical models proving its involvement in pre-cancerous liver disease, the idea of its inclusion in HCC therapeutic options theoretically arises. In this review, we aim to summarize the current evidence supporting targeting GITR/GITRL signaling as a potential treatment strategy for advanced HCC.
Collapse
Affiliation(s)
- Stavros P. Papadakos
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.P.P.); (E.C.)
| | - Elena Chatzikalil
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.P.P.); (E.C.)
| | - Georgios Vakadaris
- First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (G.V.); (K.A.)
- Basic and Translational Research Unit (BTRU), Special Unit for Biomedical Research and Education (BRESU), Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Lampros Reppas
- 4th Department of Internal Medicine, Attikon University Hospital, National and Kapodistrian University of Athens Medical School, 11527 Athens, Greece;
| | - Konstantinos Arvanitakis
- First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (G.V.); (K.A.)
- Basic and Translational Research Unit (BTRU), Special Unit for Biomedical Research and Education (BRESU), Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Theocharis Koufakis
- 2nd Propedeutic Department of Internal Medicine, Aristotle University of Thessaloniki, Hippokration General Hospital, 54642 Thessaloniki, Greece;
| | - Spyros I. Siakavellas
- 2nd Academic Department of Internal Medicine, Liver-GI Unit, General Hospital of Athens “Hippocration”, National and Kapodistrian University of Athens, 114 Vas. Sofias str, 11527 Athens, Greece; (S.I.S.); (S.M.)
| | - Spilios Manolakopoulos
- 2nd Academic Department of Internal Medicine, Liver-GI Unit, General Hospital of Athens “Hippocration”, National and Kapodistrian University of Athens, 114 Vas. Sofias str, 11527 Athens, Greece; (S.I.S.); (S.M.)
| | - Georgios Germanidis
- First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (G.V.); (K.A.)
- Basic and Translational Research Unit (BTRU), Special Unit for Biomedical Research and Education (BRESU), Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Stamatios Theocharis
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.P.P.); (E.C.)
| |
Collapse
|
259
|
Li K, Wang H, Jiang B, Jin X. TRIM28 in cancer and cancer therapy. Front Genet 2024; 15:1431564. [PMID: 39100077 PMCID: PMC11294089 DOI: 10.3389/fgene.2024.1431564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 07/01/2024] [Indexed: 08/06/2024] Open
Abstract
TRIM28 (tripartite motif protein 28) was initially believed to be a transcription inhibitor that plays an important role in DNA damage repair (DDR) and in maintaining cancer cellular stemness. As research has continued to deepen, several studies have found that TRIM28 not only has ubiquitin E3 ligase activity to promote degradation of substrates, but also can promote SUMOylation of substrates. Although TRIM28 is highly expressed in various cancer tissues and has oncogenic effects, there are still a few studies indicating that TRIM28 has certain anticancer effects. Additionally, TRIM28 is subject to complex upstream regulation. In this review, we have elaborated on the structure and regulation of TRIM28. At the same time, highlighting the functional role of TRIM28 in tumor development and emphasizing its impact on cancer treatment provides a new direction for future clinical antitumor treatment.
Collapse
Affiliation(s)
- Kailang Li
- Department of Oncology and Hematology, Beilun District People’s Hospital, Ningbo, China
| | - Haifeng Wang
- Department of Oncology and Hematology, Beilun District People’s Hospital, Ningbo, China
| | - Bitao Jiang
- Department of Oncology and Hematology, Beilun District People’s Hospital, Ningbo, China
| | - Xiaofeng Jin
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathphysiology, Medical School of Ningbo University, Ningbo, China
| |
Collapse
|
260
|
Pesini C, Artal L, Paúl Bernal J, Sánchez Martinez D, Pardo J, Ramírez-Labrada A. In-depth analysis of the interplay between oncogenic mutations and NK cell-mediated cancer surveillance in solid tumors. Oncoimmunology 2024; 13:2379062. [PMID: 39036370 PMCID: PMC11259085 DOI: 10.1080/2162402x.2024.2379062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/08/2024] [Indexed: 07/23/2024] Open
Abstract
Natural killer (NK) cells play a crucial role in antitumoral and antiviral responses. Yet, cancer cells can alter themselves or the microenvironment through the secretion of cytokines or other factors, hindering NK cell activation and promoting a less cytotoxic phenotype. These resistance mechanisms, often referred to as the "hallmarks of cancer" are significantly influenced by the activation of oncogenes, impacting most, if not all, of the described hallmarks. Along with oncogenes, other types of genes, the tumor suppressor genes are frequently mutated or modified during cancer. Traditionally, these genes have been associated with uncontrollable tumor growth and apoptosis resistance. Recent evidence suggests oncogenic mutations extend beyond modulating cell death/proliferation programs, influencing cancer immunosurveillance. While T cells have been more studied, the results obtained highlight NK cells as emerging key protagonists for enhancing tumor cell elimination by modulating oncogenic activity. A few recent studies highlight the crucial role of oncogenic mutations in NK cell-mediated cancer recognition, impacting angiogenesis, stress ligands, and signaling balance within the tumor microenvironment. This review will critically examine recent discoveries correlating oncogenic mutations to NK cell-mediated cancer immunosurveillance, a relatively underexplored area, particularly in the era dominated by immune checkpoint inhibitors and CAR-T cells. Building on these insights, we will explore opportunities to improve NK cell-based immunotherapies, which are increasingly recognized as promising alternatives for treating low-antigenic tumors, offering significant advantages in terms of safety and manufacturing suitability.
Collapse
Affiliation(s)
- Cecilia Pesini
- Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
- Center for Biomedical Research in the Network of Infectious Diseases (CIBERINFEC), Carlos III Health Institute, Zaragoza, Spain
- Department of Microbiology, Radiology, Pediatry and Public Health, University of Zaragoza, Zaragoza, Spain
| | - Laura Artal
- Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
- Institute of Carbochemistry (ICB-CSIC), Zaragoza, Spain
| | - Jorge Paúl Bernal
- Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
| | - Diego Sánchez Martinez
- Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
- Aragón I + D Foundation (ARAID), Government of Aragon, Zaragoza, Spain
| | - Julián Pardo
- Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
- Center for Biomedical Research in the Network of Infectious Diseases (CIBERINFEC), Carlos III Health Institute, Zaragoza, Spain
- Department of Microbiology, Radiology, Pediatry and Public Health, University of Zaragoza, Zaragoza, Spain
| | - Ariel Ramírez-Labrada
- Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
- Center for Biomedical Research in the Network of Infectious Diseases (CIBERINFEC), Carlos III Health Institute, Zaragoza, Spain
| |
Collapse
|
261
|
Yuan W, Zhang R, Lyu H, Xiao S, Guo D, Zhang Q, Ali DW, Michalak M, Chen XZ, Zhou C, Tang J. Dysregulation of tRNA methylation in cancer: Mechanisms and targeting therapeutic strategies. Cell Death Discov 2024; 10:327. [PMID: 39019857 PMCID: PMC11254935 DOI: 10.1038/s41420-024-02097-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/04/2024] [Accepted: 07/09/2024] [Indexed: 07/19/2024] Open
Abstract
tRNA is the RNA type that undergoes the most modifications among known RNA, and in recent years, tRNA methylation has emerged as a crucial process in regulating gene translation. Dysregulation of tRNA abundance occurs in cancer cells, along with increased expression and activity of tRNA methyltransferases to raise the level of tRNA modification and stability. This leads to hijacking of translation and synthesis of multiple proteins associated with tumor proliferation, metastasis, invasion, autophagy, chemotherapy resistance, and metabolic reprogramming. In this review, we provide an overview of current research on tRNA methylation in cancer to clarify its involvement in human malignancies and establish a theoretical framework for future therapeutic interventions targeting tRNA methylation processes.
Collapse
Affiliation(s)
- Wenbin Yuan
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, Wuhan, China
| | - Rui Zhang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, Wuhan, China
| | - Hao Lyu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, Wuhan, China
| | - Shuai Xiao
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, Wuhan, China
| | - Dong Guo
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, Wuhan, China
| | - Qi Zhang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, Wuhan, China
| | - Declan William Ali
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Marek Michalak
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Xing-Zhen Chen
- Membrane Protein Disease Research Group, Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Cefan Zhou
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, Wuhan, China.
| | - Jingfeng Tang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, Wuhan, China.
| |
Collapse
|
262
|
Xu DM, Chen LX, Zhuang XY, Han H, Mo M. Advances in molecular basis of response to immunotherapy for penile cancer: better screening of responders. Front Oncol 2024; 14:1394260. [PMID: 39087027 PMCID: PMC11288821 DOI: 10.3389/fonc.2024.1394260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/05/2024] [Indexed: 08/02/2024] Open
Abstract
Penile cancer is a rare malignant tumor of the male urinary system. The treatment benefit of standard first-line chemotherapy is not ideal for patients with locally advanced or metastatic lymph nodes. Immunotherapy has brought new treatment strategies and opportunities for patients with penile cancer. At present, clinical studies on immunotherapy for penile cancer have been reported, and the results show that it is effective but not conclusive. With the development of immunotherapy and the progress of molecular research technology, we can better screen the immunotherapy response population and explore new combination treatment regimens to evaluate the best combination regimen and obtain the optimal treatment options, which is also an important research direction for the immunotherapy of penile cancer in the future.
Collapse
Affiliation(s)
- Da-Ming Xu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ling-Xiao Chen
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiao-Yu Zhuang
- Department of Anesthesiology, Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Hui Han
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Miao Mo
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
263
|
Yu X, Pan M, Ye J, Hathaway CA, Tworoger SS, Lea J, Li B. Quantifiable TCR repertoire changes in prediagnostic blood specimens among patients with high-grade ovarian cancer. Cell Rep Med 2024; 5:101612. [PMID: 38878776 PMCID: PMC11293308 DOI: 10.1016/j.xcrm.2024.101612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/16/2024] [Accepted: 05/20/2024] [Indexed: 06/25/2024]
Abstract
High-grade ovarian cancer (HGOC) is a major cause of death in women. Early detection of HGOC usually leads to a cure, yet it remains a clinical challenge with over 90% HGOCs diagnosed at advanced stages. This is mainly because conventional biomarkers are not sensitive enough to detect the microscopic yet metastatic early lesions. In this study, we sequence the blood T cell receptor (TCR) repertoires of 466 patients with ovarian cancer and controls and systematically investigate the immune repertoire signatures in HGOCs. We observe quantifiable changes of selected TCRs in HGOCs that are reproducible in multiple independent cohorts. Importantly, these changes are stronger during stage I. Using pre-diagnostic patient blood samples from the Nurses' Health Study, we confirm that HGOC signals can be detected in the blood TCR repertoire up to 4 years preceding conventional diagnosis. Our findings may provide the basis for future immune-based HGOC early detection criteria.
Collapse
Affiliation(s)
- Xuexin Yu
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pathology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mingyao Pan
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pathology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jianfeng Ye
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | | | - Shelley S Tworoger
- Knight Cancer Institute and Division of Oncological Sciences, Oregon Health & Science University, Portland, OR 97239, USA
| | - Jayanthi Lea
- Department of Gynecology, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Bo Li
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pathology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
264
|
Purnomo AF, Nurkolis F, Syahputra RA, Moon S, Lee D, Taslim NA, Park MN, Daryanto B, Seputra KP, Satyagraha P, Lutfiana NC, Wisnu Tirtayasa PM, Kim B. Elucidating the nexus between onco-immunology and kidney transplantation: An insight from precision medicine perspective. Heliyon 2024; 10:e33751. [PMID: 39040404 PMCID: PMC11261886 DOI: 10.1016/j.heliyon.2024.e33751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/12/2024] [Accepted: 06/26/2024] [Indexed: 07/24/2024] Open
Abstract
The interplay of onco-immunology and kidney transplantation heralds a transformative era in medical science. This integration, while promising, presents significant challenges. Chief among these is the dichotomy of immunosuppression-boosting immunity against malignancies while suppressing it for graft survival. Additionally, limited clinical data on novel therapies, genetic variations influencing responses, economic concerns, and the narrow therapeutic window for post-transplant malignancies necessitate strategic addressal. Conversely, opportunities abound, including personalized immune monitoring, targeted therapies, minimized immunosuppression, and improved patient quality of life. Emphasizing collaborative research and interdisciplinary cooperation, the merging of these fields offers the potential for enhanced graft survival and reduced post-transplant malignancy risks. As we harness modern technology and promote patient-centric care, the vision for the future of kidney transplantation becomes increasingly hopeful, paving the way for more personalized and effective treatments. The article aims to elucidate the critical challenge of balancing immunosuppression to simultaneously combat malignancies and ensure graft survival. It addresses the scarcity of clinical data on novel therapies, the impact of genetic variations on treatment responses, and the economic and therapeutic concerns in managing post-transplant malignancies. Furthermore, it explores the opportunities precision medicine offers, such as personalized immune monitoring, targeted therapies, and reduced immunosuppression, which could significantly improve patient outcomes. Highlighting the importance of collaborative research and interdisciplinary efforts, the article seeks to demonstrate the potential for enhanced graft survival and reduced post-transplant malignancy risks. By leveraging modern technology and prioritizing patient-centric care, it envisions a future where kidney transplantation is more personalized and effective, offering hope for advancements in this field.
Collapse
Affiliation(s)
- Athaya Febriantyo Purnomo
- Department of Oncology, University of Oxford, Oxford, OX3 7DQ, United Kingdom
- Department of Urology, Faculty of Medicine Universitas Brawijaya–Saiful Anwar General Hospital, Malang, 65142, Indonesia
| | - Fahrul Nurkolis
- Department of Biological Sciences, State Islamic University of Sunan Kalijaga (UIN Sunan Kalijaga), Yogyakarta, 55281, Indonesia
| | - Rony Abdi Syahputra
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Seungjoon Moon
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemun-gu, Seoul, 02447, Republic of Korea
- Chansol Hospital of Korean Medicine, 290, Buheung-ro, Bupyeong-gu, Incheon, South Korea, 21390, Republic of Korea
| | - Dain Lee
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemun-gu, Seoul, 02447, Republic of Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Nurpudji Astuti Taslim
- Division of Clinical Nutrition, Department of Nutrition, Faculty of Medicine, Hasanuddin University, Makassar, 90245, Indonesia
| | - Moon Nyeo Park
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemun-gu, Seoul, 02447, Republic of Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Besut Daryanto
- Department of Urology, Faculty of Medicine Universitas Brawijaya–Saiful Anwar General Hospital, Malang, 65142, Indonesia
| | - Kurnia Penta Seputra
- Department of Urology, Faculty of Medicine Universitas Brawijaya–Saiful Anwar General Hospital, Malang, 65142, Indonesia
| | - Paksi Satyagraha
- Department of Urology, Faculty of Medicine Universitas Brawijaya–Saiful Anwar General Hospital, Malang, 65142, Indonesia
| | - Nurul Cholifah Lutfiana
- Department of Biochemistry and Biomedicine, Faculty of Medicine, Universitas Muhammadiyah Surabaya, Surabaya, Indonesia
| | - Pande Made Wisnu Tirtayasa
- Department of Urology, Faculty of Medicine, Universitas Udayana, Universitas Udayana Teaching Hospital, Bali, 80361, Indonesia
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemun-gu, Seoul, 02447, Republic of Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| |
Collapse
|
265
|
Xue Y, Zhai J. Strategy of combining CDK4/6 inhibitors with other therapies and mechanisms of resistance. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2024; 17:189-207. [PMID: 39114502 PMCID: PMC11301413 DOI: 10.62347/hgni4903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/29/2023] [Indexed: 08/10/2024]
Abstract
Cell cycle-dependent protein kinase 4/6 (CDK4/6) is a crucial kinase that regulates the cell cycle, essential for cell division and proliferation. Hence, combining CDK4/6 inhibitors with other anti-tumor drugs is a pivotal clinical strategy. This strategy can efficiently inhibit the growth and division of tumor cells, reduce the side effects, and improve the quality of life of patients by reducing the dosage of combined anticancer drugs. Furthermore, the combination therapy strategy of CDK4/6 inhibitors could ameliorate the drug resistance of combined drugs and overcome the CDK4/6 resistance caused by CDK4/6 inhibitors. Various tumor treatment strategies combined with CDK4/6 inhibitors have entered the clinical trial stage, demonstrating their substantial clinical potential. This study reviews the research progress of CDK4/6 inhibitors from 2018 to 2022, the related resistance mechanism of CDK4/6 inhibitors, and the strategy of combination medication.
Collapse
Affiliation(s)
- Yingfei Xue
- Tianjin University, School of Pharmaceutical Science and Technology (SPST)Tianjin 300072, China
| | - Jie Zhai
- Department of Breast Surgical Oncology, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of SciencesHangzhou 310022, Zhejiang, China
| |
Collapse
|
266
|
Lalić N, Bojović M, Bursać D, Bokan D, Čeriman Krstić V, Kuhajda I, Parapid B, Tomić S, Šipka A. The efficacy outcomes in non-small cell lung cancer patients treated with PD axis inhibitor agents - a population-based study of the Vojvodina region. Pathol Oncol Res 2024; 30:1611717. [PMID: 39071547 PMCID: PMC11272951 DOI: 10.3389/pore.2024.1611717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 06/24/2024] [Indexed: 07/30/2024]
Abstract
Background: By 2021, the FDA approved the use of the drugs pembrolizumab and atezolizumab in the first-line treatment of patients with high positivity of programmed death ligand-1 (PD-L1) in locally advanced and metastatic non-small-cell-lung cancer (NSCLC). This approval was the result of statistically significant evidence from international, multicentric clinical studies that all reported increasing progression-free survival (PFS) and overall survival (OS) in these patients. Methods: In our study, we reported the demographic and clinical characteristics of 79 patients diagnosed with NSCLC with expression of PD-L1 ≥50% from January 2019 to December 2022 at the Institute for Pulmonary Diseases of Vojvodina, who received pembrolizumab therapy as the first-line treatment. Patients were divided according to the histological type of lung cancer as adenocarcinoma (ADC) or squamous cell carcinoma (SCC) of the lung. In 52 of the 79 patients, PFS and in 32 of them overall survival (censored OS) was shown according to the histological type of tumor, the tumor proportion score (TPS) of PDL-1 expression, and the metastatic status within the Tumor Nodes Metastasis (TNM) disease classification. Independent factors of death outcome were shown by multivariable proportional hazard regression analysis. Results: The study included 79 patients diagnosed with NSCLC with an expression of PD-L1 ≥50%, 50 (63.3%) patients with ADC, and 29 (36.7%) patients with SCC, whose 55 (69.6%) PDL-1 expression was obtained from broncho biopsy (BB). The majority of patients, 49 (62%), had a TPS PD-L1 score of 51%-79%. Median, PFS for adenocarcinoma was 22 months and censored OS was 27 months, while for squamous cell carcinoma, median PFS was 12 months, and censored OS was 21 months. M1b disease stage, which was the most common in patients, had a PFS of 16 months and a censored OS of 18 months. Conclusion: Pembrolizumab monotherapy in patients with NSCLC in the fourth stage of the disease and with the positivity of the immune checkpoint protein TPS PD-L1 above 50% represents a safe therapy that allows a satisfactory period without disease progression and overall survival with acceptable treatment complications.
Collapse
Affiliation(s)
- Nensi Lalić
- Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
- Institute for Pulmonary Diseases of Vojvodina, Sremska Kamenica, Serbia
| | - Marko Bojović
- Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
- Oncology Institute of Vojvodina, Sremska Kamenica, Serbia
| | - Daliborka Bursać
- Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
- Institute for Pulmonary Diseases of Vojvodina, Sremska Kamenica, Serbia
| | - Darijo Bokan
- Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
- Institute for Pulmonary Diseases of Vojvodina, Sremska Kamenica, Serbia
| | - Vesna Čeriman Krstić
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
- University Clinical Center of Serbia, Belgrade, Serbia
| | - Ivan Kuhajda
- Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
- Institute for Pulmonary Diseases of Vojvodina, Sremska Kamenica, Serbia
| | - Biljana Parapid
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
- University Clinical Center of Serbia, Belgrade, Serbia
| | - Sanja Tomić
- Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - Aleksandar Šipka
- Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
- Oncology Institute of Vojvodina, Sremska Kamenica, Serbia
| |
Collapse
|
267
|
Li D, Zhang T, Guo Y, Bi C, Liu M, Wang G. Biological impact and therapeutic implication of tumor-associated macrophages in hepatocellular carcinoma. Cell Death Dis 2024; 15:498. [PMID: 38997297 PMCID: PMC11245522 DOI: 10.1038/s41419-024-06888-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/26/2024] [Accepted: 07/02/2024] [Indexed: 07/14/2024]
Abstract
The tumor microenvironment is a complex space comprised of normal, cancer and immune cells. The macrophages are considered as the most abundant immune cells in tumor microenvironment and their function in tumorigenesis is interesting. Macrophages can be present as M1 and M2 polarization that show anti-cancer and oncogenic activities, respectively. Tumor-associated macrophages (TAMs) mainly have M2 polarization and they increase tumorigenesis due to secretion of factors, cytokines and affecting molecular pathways. Hepatocellular carcinoma (HCC) is among predominant tumors of liver that in spite of understanding its pathogenesis, the role of tumor microenvironment in its progression still requires more attention. The presence of TAMs in HCC causes an increase in growth and invasion of HCC cells and one of the reasons is induction of glycolysis that such metabolic reprogramming makes HCC distinct from normal cells and promotes its malignancy. Since M2 polarization of TAMs stimulates tumorigenesis in HCC, molecular networks regulating M2 to M1 conversion have been highlighted and moreover, drugs and compounds with the ability of targeting TAMs and suppressing their M2 phenotypes or at least their tumorigenesis activity have been utilized. TAMs increase aggressive behavior and biological functions of HCC cells that can result in development of therapy resistance. Macrophages can provide cell-cell communication in HCC by secreting exosomes having various types of biomolecules that transfer among cells and change their activity. Finally, non-coding RNA transcripts can mainly affect polarization of TAMs in HCC.
Collapse
Affiliation(s)
- Deming Li
- Department of Anesthesiology, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, PR China
| | - Ting Zhang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Shenyang, 110001, PR China
| | - Ye Guo
- Department of Intervention, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, PR China
| | - Cong Bi
- Department of Radiology, The First Hospital of China Medical University, Shenyang, 110001, PR China.
| | - Ming Liu
- Department of Oral Radiology, School of Stomatology, China Medical University, Shenyang, Liaoning, 110002, PR China.
| | - Gang Wang
- Department of Intervention, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, PR China.
| |
Collapse
|
268
|
Zhang J, Du B, Wang Y, Cui Y, Wang S, Zhao Y, Li Y, Li X. The role of CD8 PET imaging in guiding cancer immunotherapy. Front Immunol 2024; 15:1428541. [PMID: 39072335 PMCID: PMC11272484 DOI: 10.3389/fimmu.2024.1428541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/27/2024] [Indexed: 07/30/2024] Open
Abstract
Currently, immunotherapy is being widely used for treating cancers. However, the significant heterogeneity in patient responses is a major challenge for its successful application. CD8-positive T cells (CD8+ T cells) play a critical role in immunotherapy. Both their infiltration and functional status in tumors contribute to treatment outcomes. Therefore, accurate monitoring of CD8+ T cells, a potential biomarker, may improve therapeutic strategy. Positron emission tomography (PET) is an optimal option which can provide molecular imaging with enhanced specificity. This review summarizes the mechanism of action of CD8+ T cells in immunotherapy, and highlights the recent advancements in PET-based tracers that can visualize CD8+ T cells and discusses their clinical applications to elucidate their potential role in cancer immunotherapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yaming Li
- Department of Nuclear Medicine, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xuena Li
- Department of Nuclear Medicine, The First Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
269
|
Uher O, Hadrava Vanova K, Taïeb D, Calsina B, Robledo M, Clifton-Bligh R, Pacak K. The Immune Landscape of Pheochromocytoma and Paraganglioma: Current Advances and Perspectives. Endocr Rev 2024; 45:521-552. [PMID: 38377172 PMCID: PMC11244254 DOI: 10.1210/endrev/bnae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/19/2023] [Accepted: 02/02/2024] [Indexed: 02/22/2024]
Abstract
Pheochromocytomas and paragangliomas (PPGLs) are rare neuroendocrine tumors derived from neural crest cells from adrenal medullary chromaffin tissues and extra-adrenal paraganglia, respectively. Although the current treatment for PPGLs is surgery, optimal treatment options for advanced and metastatic cases have been limited. Hence, understanding the role of the immune system in PPGL tumorigenesis can provide essential knowledge for the development of better therapeutic and tumor management strategies, especially for those with advanced and metastatic PPGLs. The first part of this review outlines the fundamental principles of the immune system and tumor microenvironment, and their role in cancer immunoediting, particularly emphasizing PPGLs. We focus on how the unique pathophysiology of PPGLs, such as their high molecular, biochemical, and imaging heterogeneity and production of several oncometabolites, creates a tumor-specific microenvironment and immunologically "cold" tumors. Thereafter, we discuss recently published studies related to the reclustering of PPGLs based on their immune signature. The second part of this review discusses future perspectives in PPGL management, including immunodiagnostic and promising immunotherapeutic approaches for converting "cold" tumors into immunologically active or "hot" tumors known for their better immunotherapy response and patient outcomes. Special emphasis is placed on potent immune-related imaging strategies and immune signatures that could be used for the reclassification, prognostication, and management of these tumors to improve patient care and prognosis. Furthermore, we introduce currently available immunotherapies and their possible combinations with other available therapies as an emerging treatment for PPGLs that targets hostile tumor environments.
Collapse
Affiliation(s)
- Ondrej Uher
- Section of Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-1109, USA
| | - Katerina Hadrava Vanova
- Section of Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-1109, USA
| | - David Taïeb
- Department of Nuclear Medicine, CHU de La Timone, Marseille 13005, France
| | - Bruna Calsina
- Hereditary Endocrine Cancer Group, Human Cancer Genetics Program, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
- Familiar Cancer Clinical Unit, Human Cancer Genetics Program, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - Mercedes Robledo
- Hereditary Endocrine Cancer Group, Human Cancer Genetics Program, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Institute of Health Carlos III (ISCIII), Madrid 28029, Spain
| | - Roderick Clifton-Bligh
- Department of Endocrinology, Royal North Shore Hospital, Sydney 2065, NSW, Australia
- Cancer Genetics Laboratory, Kolling Institute, University of Sydney, Sydney 2065, NSW, Australia
| | - Karel Pacak
- Section of Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-1109, USA
| |
Collapse
|
270
|
Tsutsumi E, Macy AM, LoBello J, Hastings KT, Kim S. Tumor immune microenvironment permissive to metastatic progression of ING4-deficient breast cancer. PLoS One 2024; 19:e0304194. [PMID: 38968186 PMCID: PMC11226078 DOI: 10.1371/journal.pone.0304194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/20/2024] [Indexed: 07/07/2024] Open
Abstract
Deficiencies in the ING4 tumor suppressor are associated with advanced stage tumors and poor patient survival in cancer. ING4 was shown to inhibit NF-kB in several cancers. As NF-kB is a key mediator of immune response, the ING4/NF-kB axis is likely to manifest in tumor-immune modulation but has not been investigated. To characterize the tumor immune microenvironment associated with ING4-deficient tumors, three approaches were employed in this study: First, tissue microarrays composed of 246 primary breast tumors including 97 ING4-deficient tumors were evaluated for the presence of selective immune markers, CD68, CD4, CD8, and PD-1, using immunohistochemical staining. Second, an immune-competent mouse model of ING4-deficient breast cancer was devised utilizing CRISPR-mediated deletion of Ing4 in a Tp53 deletion-derived mammary tumor cell line; mammary tumors were evaluated for immune markers using flow cytometry. Lastly, the METABRIC gene expression dataset was evaluated for patient survival related to the immune markers associated with Ing4-deleted tumors. The results showed that CD68, CD4, CD8, or PD-1, was not significantly associated with ING4-deficient breast tumors, indicating no enrichment of macrophages, T cells, or exhausted T cell types. In mice, Ing4-deleted mammary tumors had a growth rate comparable to Ing4-intact tumors but showed increased tumor penetrance and metastasis. Immune marker analyses of Ing4-deleted tumors revealed a significant increase in tumor-associated macrophages (Gr-1loCD11b+F4/80+) and a decrease in granzyme B-positive (GzmB+) CD4+ T cells, indicating a suppressive and/or less tumoricidal immune microenvironment. The METABRIC data analyses showed that low expression of GZMB was significantly associated with poor patient survival, as was ING4-low expression, in the basal subtype of breast cancer. Patients with GZMB-low/ING4-low tumors had the worst survival outcomes (HR = 2.80, 95% CI 1.36-5.75, p = 0.0004), supportive of the idea that the GZMB-low immune environment contributes to ING4-deficient tumor progression. Collectively, the study results demonstrate that ING4-deficient tumors harbor a microenvironment that contributes to immune evasion and metastasis.
Collapse
Affiliation(s)
- Emily Tsutsumi
- Department of Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, Arizona, United States of America
- Cancer and Cell Biology Division, Translational Genomic Research Institute, Phoenix, Arizona, United States of America
| | - Anne M. Macy
- Department of Dermatology, University of Arizona College of Medicine-Phoenix, Phoenix, Arizona, United States of America
- Phoenix Veterans Affairs Health Care System, Phoenix, Arizona, United States of America
| | - Janine LoBello
- Cancer Genomics Division, Translational Genomics Research Institute, Phoenix, Arizona, United States of America
| | - Karen T. Hastings
- Department of Dermatology, University of Arizona College of Medicine-Phoenix, Phoenix, Arizona, United States of America
- Phoenix Veterans Affairs Health Care System, Phoenix, Arizona, United States of America
| | - Suwon Kim
- Department of Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, Arizona, United States of America
- Cancer and Cell Biology Division, Translational Genomic Research Institute, Phoenix, Arizona, United States of America
| |
Collapse
|
271
|
Pourbagheri-Sigaroodi A, Momeny M, Rezaei N, Fallah F, Bashash D. Immune landscape of hepatocellular carcinoma: From dysregulation of the immune responses to the potential immunotherapies. Cell Biochem Funct 2024; 42:e4098. [PMID: 39034646 DOI: 10.1002/cbf.4098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/03/2024] [Accepted: 07/10/2024] [Indexed: 07/23/2024]
Abstract
Hepatocellular carcinoma (HCC) presents a considerable global health burden due to its late diagnosis and high morbidity. The liver's specific anatomical and physiological features expose it to various antigens, requiring precise immune regulation. To the best of our knowledge, this is the first time that a comprehensive overview of the interactions between the immune system and gut microbiota in the development of HCC, as well as the relevant therapeutic approaches are discussed. Dysregulation of immune compartments within the liver microenvironment drives HCC pathogenesis, characterized by elevated regulatory cells such as regulatory T cells (Tregs), myeloid-derived suppressor cells, and M2 macrophages as well as suppressive molecules, alongside reduced number of effector cells like T cells, natural killer cells, and M1 macrophages. Dysbiosis of gut microbiota also contributes to HCC by disrupting intestinal barrier integrity and triggering overactivated immune responses. Immunotherapy approaches, particularly immune checkpoint inhibitors, have exhibited promise in HCC management, yet adoptive cell therapy and cancer vaccination research are in the early steps with relatively less favorable outcomes. Further understanding of immune dysregulation, gut microbiota involvement, and therapeutic combination strategies are essential for advancing precision immunotherapy in HCC.
Collapse
Affiliation(s)
- Atieh Pourbagheri-Sigaroodi
- Pediatric Infections Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Majid Momeny
- Hematology, Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Fallah
- Pediatric Infections Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
272
|
Liang X, Li X, Wu R, He T, Liu F, Li L, Zhang Y, Gong S, Zhang M, Kou X, Chen T, You Y, Shen M, Wu Q, Gong C. Breaking the Tumor Chronic Inflammation Balance with a Programmable Release and Multi-Stimulation Engineering Scaffold for Potent Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401377. [PMID: 38760901 PMCID: PMC11267263 DOI: 10.1002/advs.202401377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/26/2024] [Indexed: 05/20/2024]
Abstract
Tumor-associated chronic inflammation severely restricts the efficacy of immunotherapy in cold tumors. Here, a programmable release hydrogel-based engineering scaffold with multi-stimulation and reactive oxygen species (ROS)-response (PHOENIX) is demonstrated to break the chronic inflammatory balance in cold tumors to induce potent immunity. PHOENIX can undergo programmable release of resiquimod and anti-OX40 under ROS. Resiquimod is first released, leading to antigen-presenting cell maturation and the transformation of myeloid-derived suppressor cells and M2 macrophages into an antitumor immune phenotype. Subsequently, anti-OX40 is transported into the tumor microenvironment, leading to effector T-cell activation and inhibition of Treg function. PHOENIX consequently breaks the chronic inflammation in the tumor microenvironment and leads to a potent immune response. In mice bearing subcutaneous triple-negative breast cancer and metastasis models, PHOENIX effectively inhibited 80% and 60% of tumor growth, respectively. Moreover, PHOENIX protected 100% of the mice against TNBC tumor rechallenge by electing a robust long-term antigen-specific immune response. An excellent inhibition and prolonged survival in PHOENIX-treated mice with colorectal cancer and melanoma is also observed. This work presents a potent therapeutic scaffold to improve immunotherapy efficiency, representing a generalizable and facile regimen for cold tumors.
Collapse
Affiliation(s)
- Xiuqi Liang
- Department of BiotherapyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - Xinchao Li
- Department of BiotherapyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - Rui Wu
- Department of BiotherapyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - Tao He
- Department of BiotherapyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - Furong Liu
- Department of BiotherapyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - Lu Li
- Department of BiotherapyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - Yi Zhang
- Department of AnesthesiologyShengjing Hospital of China Medical UniversityShenyangChina
| | - Songlin Gong
- Department of BiotherapyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - Miaomiao Zhang
- Department of BiotherapyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - Xiaorong Kou
- Department of BiotherapyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - Tao Chen
- Department of BiotherapyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - Yanjie You
- Department of GastroenterologyPeople's Hospital of Ningxia Hui Autonomous RegionYinchuan750002China
| | - Meiling Shen
- Department of BiotherapyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - Qinjie Wu
- Department of BiotherapyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - Changyang Gong
- Department of BiotherapyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| |
Collapse
|
273
|
Garlisi B, Lauks S, Aitken C, Ogilvie LM, Lockington C, Petrik D, Eichhorn JS, Petrik J. The Complex Tumor Microenvironment in Ovarian Cancer: Therapeutic Challenges and Opportunities. Curr Oncol 2024; 31:3826-3844. [PMID: 39057155 PMCID: PMC11275383 DOI: 10.3390/curroncol31070283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
The tumor microenvironment (TME) in ovarian cancer (OC) has much greater complexity than previously understood. In response to aggressive pro-angiogenic stimulus, blood vessels form rapidly and are dysfunctional, resulting in poor perfusion, tissue hypoxia, and leakiness, which leads to increased interstitial fluid pressure (IFP). Decreased perfusion and high IFP significantly inhibit the uptake of therapies into the tumor. Within the TME, there are numerous inhibitor cells, such as myeloid-derived suppressor cells (MDSCs), tumor association macrophages (TAMs), regulatory T cells (Tregs), and cancer-associated fibroblasts (CAFs) that secrete high numbers of immunosuppressive cytokines. This immunosuppressive environment is thought to contribute to the lack of success of immunotherapies such as immune checkpoint inhibitor (ICI) treatment. This review discusses the components of the TME in OC, how these characteristics impede therapeutic efficacy, and some strategies to alleviate this inhibition.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jim Petrik
- Department of Biomedical Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (B.G.); (S.L.); (C.A.); (L.M.O.); (C.L.); (D.P.); (J.S.E.)
| |
Collapse
|
274
|
Sarova P, Mosleh B, Zehetmayer S, Oberndorfer F, Widder J, Prosch H, Aigner C, Idzko M, Hoda MA, Gompelmann D. PD-L1 expression in patients with non-small-cell lung cancer is associated with sex and genetic alterations: A retrospective study within the Caucasian population. Thorac Cancer 2024; 15:1598-1606. [PMID: 38860475 PMCID: PMC11246784 DOI: 10.1111/1759-7714.15336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/21/2024] [Accepted: 05/01/2024] [Indexed: 06/12/2024] Open
Abstract
BACKGROUND Programmed cell death-ligand 1 (PD-L1) expression is a well-established biomarker for predicting responses to immune checkpoint inhibitors and certain targeted therapies. As a result, treatment strategies for patients vary based on their PD-L1 expression status. Understanding the clinical features of patients with distinct PD-L1 levels is crucial for personalized treatment approaches. METHODS Demographic and clinicopathological characteristics of 227 patients (54% male, mean age 67 ± 9.9 years) newly diagnosed with non-small-cell lung cancer (NSCLC) between April 2020 and December 2022 were retrospectively compared among three groups based on the PD-L1 expression: PD-L1 Tumor Proportion Score (TPS) negative, 1-50%, and ≥50%. Logistic regression analysis was performed to evaluate predictors for high PD-L1 expression ≥50%. RESULTS PD-L1 expression levels were distributed as follows: negative in 29% of patients, between 1% and 50% in 41%, and greater than 50% (high) in 29%. In comparison to negative PD-L1 expression, low and high PD-L1 expression was associated with female sex (32.9% vs. 52.7% vs. 50.7%, p = 0.031), with the absence of epidermal growth factor receptor (EGFR) mutations (83.6% vs. 91.1% vs. 98.1% p = 0.029), and with the absence of ERBB2 (HER2) tyrosine kinase mutations (90.9% vs. 100% vs. 98.1% p = 0.007), respectively. Age, smoking status, histological subtype, and disease stage showed no significant differences among the three patient groups. In the univariate logistic regression, EGFR mutation appeared to be the only predictor for PD-L1 expression, although it did not reach statistical significance (p = 0.06). CONCLUSION Although sex and genomic alterations are associated with PD-L1 expression in patients with NSCLC, no clinical characteristics seem to predict PD-L1 expression significantly.
Collapse
Affiliation(s)
- P Sarova
- Division of Pulmonology, Department of Internal Medicine II, Comprehensive Cancer Center Vienna, Medical University of Vienna, Vienna, Austria
| | - B Mosleh
- Department of Thoracic Surgery, Comprehensive Cancer Center Vienna, Medical University of Vienna, Vienna, Austria
| | - S Zehetmayer
- Center for Medical Data Science, Medical University of Vienna, Vienna, Austria
| | - F Oberndorfer
- Department of Pathology, Comprehensive Cancer Center Vienna, Medical University of Vienna, Vienna, Austria
| | - J Widder
- Department of Radiation Oncology, Comprehensive Cancer Center Vienna, Medical University of Vienna, Vienna, Austria
| | - H Prosch
- Department of Biomedical Imaging and Image-guided Therapy, Comprehensive Cancer Center Vienna, Medical University of Vienna, Vienna, Austria
| | - C Aigner
- Department of Thoracic Surgery, Comprehensive Cancer Center Vienna, Medical University of Vienna, Vienna, Austria
| | - M Idzko
- Division of Pulmonology, Department of Internal Medicine II, Comprehensive Cancer Center Vienna, Medical University of Vienna, Vienna, Austria
| | - M A Hoda
- Department of Thoracic Surgery, Comprehensive Cancer Center Vienna, Medical University of Vienna, Vienna, Austria
| | - D Gompelmann
- Division of Pulmonology, Department of Internal Medicine II, Comprehensive Cancer Center Vienna, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
275
|
Li Y, Zhang Y, Feng S, Zhu H, Xing Y, Xiong X, Chen Q. Multicenter integration analysis of TRP channels revealed potential mechanisms of immunosuppressive microenvironment activation and identified a machine learning-derived signature for improving outcomes in gliomas. CNS Neurosci Ther 2024; 30:e14816. [PMID: 38948951 PMCID: PMC11215471 DOI: 10.1111/cns.14816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/20/2024] [Accepted: 06/06/2024] [Indexed: 07/02/2024] Open
Abstract
AIM This study aimed to explore the mechanisms of transient receptor potential (TRP) channels on the immune microenvironment and develop a TRP-related signature for predicting prognosis, immunotherapy response, and drug sensitivity in gliomas. METHODS Based on the unsupervised clustering algorithm, we identified novel TRP channel clusters and investigated their biological function, immune microenvironment, and genomic heterogeneity. In vitro and in vivo experiments revealed the association between TRPV2 and macrophages. Subsequently, based on 96 machine learning algorithms and six independent glioma cohorts, we constructed a machine learning-based TRP channel signature (MLTS). The performance of the MLTS in predicting prognosis, immunotherapy response, and drug sensitivity was evaluated. RESULTS Patients with high expression levels of TRP channel genes had worse prognoses, higher tumor mutation burden, and more activated immunosuppressive microenvironment. Meanwhile, TRPV2 was identified as the most essential regulator in TRP channels. TRPV2 activation could promote macrophages migration toward malignant cells and alleviate glioma prognosis. Furthermore, MLTS could work independently of common clinical features and present stable and superior prediction performance. CONCLUSION This study investigated the comprehensive effect of TRP channel genes in gliomas and provided a promising tool for designing effective, precise treatment strategies.
Collapse
Affiliation(s)
- Yuntao Li
- Department of NeurosurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Yonggang Zhang
- Department of NeurosurgeryRenmin Hospital of Wuhan UniversityWuhanChina
- Central LaboratoryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Shi Feng
- Department of NeurosurgeryRenmin Hospital of Wuhan UniversityWuhanChina
- Department of Gastroenterology, 72nd Group Army HospitalHuzhou UniversityHuzhouZhejiangChina
| | - Hua Zhu
- Department of NeurosurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Ying Xing
- Department of Gastroenterology, 72nd Group Army HospitalHuzhou UniversityHuzhouZhejiangChina
| | - Xiaoxing Xiong
- Department of NeurosurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Qianxue Chen
- Department of NeurosurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| |
Collapse
|
276
|
Mamand DR, Bazaz S, Mohammad DK, Liang X, Pavlova S, Mim C, Gabrielsson S, Nordin JZ, Wiklander OPB, Abedi‐Valugerdi M, EL‐Andaloussi S. Extracellular vesicles originating from melanoma cells promote dysregulation in haematopoiesis as a component of cancer immunoediting. J Extracell Vesicles 2024; 13:e12471. [PMID: 38944672 PMCID: PMC11214607 DOI: 10.1002/jev2.12471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 05/17/2024] [Accepted: 06/13/2024] [Indexed: 07/01/2024] Open
Abstract
Haematopoiesis dysregulation with the presence of immature myeloid and erythroid immunosuppressive cells are key characteristics of the immune escape phase of tumour development. Here, the role of in vitro generated B16F10 tumour cell-derived extracellular vesicles (tEVs) as indirect cellular communicators, participating in tumour-induced dysregulation of haematopoiesis, was explored. The isolated tEVs displayed features of small EVs with a size range of 100-200 nm, expressed the common EV markers CD63, CD9, and Alix, and had a spherical shape with a lipid bilayer membrane. Proteomic profiling revealed significant levels of angiogenic factors, particularly vascular endothelial growth factor (VEGF), osteopontin, and tissue factor, associated with the tEVs. Systemic administration of these tEVs in syngeneic mice induced splenomegaly and disrupted haematopoiesis, leading to extramedullary haematopoiesis, expansion of splenic immature erythroid progenitors, reduced bone marrow cellularity, medullary expansion of granulocytic myeloid suppressor cells, and the development of anaemia. These effects closely mirrored those observed in tumour-bearing mice and were not seen after heat inactivating the tEVs. In vitro studies demonstrated that tEVs independently induced the expansion of bone marrow granulocytic myeloid suppressor cells and B cells while reducing the frequency of cells in the erythropoietic lineage. These effects of tEVs were significantly abrogated by the blockade of VEGF or heat inactivation. Our findings underscore the important role of tEVs in dysregulating haematopoiesis during the immune escape phase of cancer immunoediting, suggesting their potential as targets for addressing immune evasion and reinstating normal hematopoietic processes.
Collapse
Affiliation(s)
- Doste R. Mamand
- Biomolecular and Cellular Medicine (BCM), Department of Laboratory MedicineKarolinska InstitutetHuddingeSweden
- Breast Center, Karolinska Comprehensive Cancer Center, Karolinska University Hospital, Stockholm, SwedenKarolinska InstituteStockholmSweden
| | - Safa Bazaz
- Biomolecular and Cellular Medicine (BCM), Department of Laboratory MedicineKarolinska InstitutetHuddingeSweden
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST)Karolinska University Hospital Huddinge and Karolinska Comprehensive Cancer CenterStockholmSweden
| | - Dara K. Mohammad
- Center for Hematology and Regenerative Medicine (HERM), Department of Medicine HuddingeKarolinska InstitutetStockholmSweden
- College of Agricultural Engineering SciencesSalahaddin University‐ErbilErbilIraq
| | - Xiuming Liang
- Biomolecular and Cellular Medicine (BCM), Department of Laboratory MedicineKarolinska InstitutetHuddingeSweden
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST)Karolinska University Hospital Huddinge and Karolinska Comprehensive Cancer CenterStockholmSweden
- Karolinska ATMP Center, ANA Futura, Huddinge, SwedenKarolinska InstituteStockholmSweden
| | - Svetlana Pavlova
- Biomolecular and Cellular Medicine (BCM), Department of Laboratory MedicineKarolinska InstitutetHuddingeSweden
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST)Karolinska University Hospital Huddinge and Karolinska Comprehensive Cancer CenterStockholmSweden
- Karolinska ATMP Center, ANA Futura, Huddinge, SwedenKarolinska InstituteStockholmSweden
| | - Carsten Mim
- Department of Protein ScienceKTH Royal Institute of TechnologyStockholmSweden
| | - Susanne Gabrielsson
- Division of Immunology and Allergy, Department of Medicine SolnaKarolinska InstitutetSolnaSweden
| | - Joel Z. Nordin
- Biomolecular and Cellular Medicine (BCM), Department of Laboratory MedicineKarolinska InstitutetHuddingeSweden
- Department of Clinical Immunology and Transfusion Medicine (KITM)Karolinska University HospitalStockholmSweden
- Karolinska ATMP Center, ANA Futura, Huddinge, SwedenKarolinska InstituteStockholmSweden
| | - Oscar P. B. Wiklander
- Biomolecular and Cellular Medicine (BCM), Department of Laboratory MedicineKarolinska InstitutetHuddingeSweden
- Breast Center, Karolinska Comprehensive Cancer Center, Karolinska University Hospital, Stockholm, SwedenKarolinska InstituteStockholmSweden
- Karolinska ATMP Center, ANA Futura, Huddinge, SwedenKarolinska InstituteStockholmSweden
| | - Manuchehr Abedi‐Valugerdi
- Biomolecular and Cellular Medicine (BCM), Department of Laboratory MedicineKarolinska InstitutetHuddingeSweden
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST)Karolinska University Hospital Huddinge and Karolinska Comprehensive Cancer CenterStockholmSweden
| | - Samir EL‐Andaloussi
- Biomolecular and Cellular Medicine (BCM), Department of Laboratory MedicineKarolinska InstitutetHuddingeSweden
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST)Karolinska University Hospital Huddinge and Karolinska Comprehensive Cancer CenterStockholmSweden
- Karolinska ATMP Center, ANA Futura, Huddinge, SwedenKarolinska InstituteStockholmSweden
| |
Collapse
|
277
|
Yang J, Tang C, Li C, Li X, Yang W. Construction of an immune-related gene prognostic model with experimental validation and analysis of immune cell infiltration in lung adenocarcinoma. Oncol Lett 2024; 28:297. [PMID: 38751753 PMCID: PMC11094586 DOI: 10.3892/ol.2024.14430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/15/2024] [Indexed: 05/18/2024] Open
Abstract
There is a correlation between tumors and immunity with the degree of immune cell infiltration in tumors being closely related to tumor growth and progression. Therefore, the present study identified immune-related prognostic genes and evaluated the immune infiltration level in lung adenocarcinoma (LUAD). This study performed Kyoto Encyclopedia of Genes and Genomes, Gene Ontology, and Gene Set Enrichment Analysis (GSEA) enrichment analyses on differential immune-associated genes. A risk model was created and validated using six immune-related prognostic genes. Reverse transcription-quantitative PCR was used to assess the prognostic gene expression in non-small cell lung cancer cells. Immune cell infiltration in LUAD was analyzed using the CIBERSORT method. Single sample GSEA was used to compare Tumor Immune Dysfunction and Exclusion (TIDE) scores between high and low-risk groups and to assess the activation of thirteen immune-related pathways. Multifactor Cox proportional hazards model analysis identified six prognostic risk genes (S100A16, FURIN, FGF2, LGR4, TNFRSF11A and VIPR1) to construct a risk model. The survival and receiver operating characteristic curves indicated that patients with higher risk scores had lower overall survival rates. The expression levels of prognostic genes S100A16, FURIN, LGR4, TNFRSF11A and VIPR1 were significantly increased in LUAD. B cells naive, plasma cells, T cells CD4 memory activated, T cells follicular helper, T cells regulatory, NK cells activated, macrophages M1, macrophages M2, and Dendritic cells resting cells showed elevated expression in LUAD. The prognostic genes were differentially associated with individual immune cells. Immune-related function scores, such as those for antigen presenting cell (APC) co-stimulation, APC co-inhibition, check-point, Cytolytic-activity, chemokine receptor, parainflammation, major histocompatibility complex-class-I, type-I-IFN-reponse and T-cell-co-inhibition, were higher in the high-risk group compared with the low-risk group. Furthermore, the TIDE score of the high-risk group was significantly lower than the low-risk group. This immune-related gene prognostic model has the potential to predict the prognosis of LUAD patients, supporting the development of a personalized clinical diagnosis and treatment plan.
Collapse
Affiliation(s)
- Jialei Yang
- Institute for Cancer Medicine, School of Basic Medicine Sciences, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
- Department of Medical Laboratory Medicine, Dehong Prefecture People's Hospital of Yunnan Province, Mangshi, Yunnan 678400, P.R. China
| | - Chao Tang
- Institute for Cancer Medicine, School of Basic Medicine Sciences, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Chengxia Li
- Institute for Cancer Medicine, School of Basic Medicine Sciences, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Xuesen Li
- Institute for Cancer Medicine, School of Basic Medicine Sciences, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Wenli Yang
- Institute for Cancer Medicine, School of Basic Medicine Sciences, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine Sciences, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| |
Collapse
|
278
|
Bonis A, Verzeletti V, Lunardi F, Lione L, Cannone G, Faccioli E, Mammana M, Nicotra S, Calabrese F, Dell'Amore A, Rea F. Tumor inflammatory microenvironment contribution to survival in resected upstaged adenocarcinomas. EUROPEAN JOURNAL OF SURGICAL ONCOLOGY 2024; 50:108444. [PMID: 38824816 DOI: 10.1016/j.ejso.2024.108444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/18/2024] [Accepted: 05/26/2024] [Indexed: 06/04/2024]
Abstract
INTRODUCTION Tumor Inflammatory microenvironment (TIME) encompasses several immune pathways modulating cancer development and escape that are not entirely uncoded. The results achieved with immunotherapy elicited the scientific debate on TIME also in non-small cell lung cancer (NSCLC). We aimed to investigate whether TIME (in terms of PD-L1 expression and/or Tumor Infiltrating Lymphocytes - TILs) played a separate role in terms of survival (OS) in resected upstaged lung adenocarcinomas (ADCs), excluding other perioperative variables as confounders. MATERIALS AND METHODS This retrospective study included 50 patients with a clinically resectable lung ADC, undergoing surgery (lobectomy or segmentectomy) at the Thoracic Unit of Padova University Hospital between 2016 and 2022 and receiving an unexpected pathological upstaging (IIB or higher). RESULTS Despite microscopical variables increasing from IIB to IIIB, survival was not significantly related to them. OS was better in TIME-active patients (defined as the presence of positive PD-L1 and/or TILs>10 %) than double negatives (PD-L1-/TILs-) (p = 0.01). In IIB or higher ADCs, TIME-active patients showed an improved survival compared to double negatives, merging the current TIME theories. CONCLUSION TIME seems to be associated with survival independently from other microscopical parameter, even in case of resected upstaged adenocarcinomas.
Collapse
Affiliation(s)
- Alessandro Bonis
- Thoracic Surgery Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health - DSCTV, University of Padova, 35128, Italy.
| | - Vincenzo Verzeletti
- Thoracic Surgery Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health - DSCTV, University of Padova, 35128, Italy
| | - Francesca Lunardi
- Pathology Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health- DSCTV, University of Padova, 35121, Padova, Italy
| | - Luigi Lione
- Thoracic Surgery Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health - DSCTV, University of Padova, 35128, Italy
| | - Giorgio Cannone
- Thoracic Surgery Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health - DSCTV, University of Padova, 35128, Italy
| | - Eleonora Faccioli
- Thoracic Surgery Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health - DSCTV, University of Padova, 35128, Italy
| | - Marco Mammana
- Thoracic Surgery Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health - DSCTV, University of Padova, 35128, Italy
| | - Samuele Nicotra
- Thoracic Surgery Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health - DSCTV, University of Padova, 35128, Italy
| | - Fiorella Calabrese
- Pathology Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health- DSCTV, University of Padova, 35121, Padova, Italy
| | - Andrea Dell'Amore
- Thoracic Surgery Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health - DSCTV, University of Padova, 35128, Italy
| | - Federico Rea
- Thoracic Surgery Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health - DSCTV, University of Padova, 35128, Italy
| |
Collapse
|
279
|
Huang Q, Liang H, Shi S, Ke Y, Wang J. Identification of TNFAIP6 as a reliable prognostic indicator of low-grade glioma. Heliyon 2024; 10:e33030. [PMID: 38948040 PMCID: PMC11211890 DOI: 10.1016/j.heliyon.2024.e33030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 07/02/2024] Open
Abstract
Glioma is the most common primary malignant tumor in the brain, characterizing by high disability rate and high recurrence rate. Although low-grade glioma (LGG) has a relative benign biological behavior, the prognosis of LGG patients still varies greatly. Glioma stem cells (GSCs) are considered as the chief offenders of glioma cell proliferation, invasion and resistance to therapies. Our study screened a series of glioma stem cell-related genes (GSCRG) based on mDNAsi and WCGNA, and finally established a reliable single-gene prognostic model through 101 combinations of 10 machine learning methods. Our result suggested that the expression level of TNFAIP6 is negatively correlated with the prognosis of LGG patients, which may be the result of pro-cancer signaling pathways activation and immunosuppression. In general, this study revealed that TNFAIP6 is a robust and valuable prognostic factor in LGG, and may be a new target for LGG treatment.
Collapse
Affiliation(s)
| | | | - Shenbao Shi
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yiquan Ke
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jihui Wang
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
280
|
Xu W, Ye J, Cao Z, Zhao Y, Zhu Y, Li L. Glucocorticoids in lung cancer: Navigating the balance between immunosuppression and therapeutic efficacy. Heliyon 2024; 10:e32357. [PMID: 39022002 PMCID: PMC11252876 DOI: 10.1016/j.heliyon.2024.e32357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/03/2024] [Accepted: 06/03/2024] [Indexed: 07/20/2024] Open
Abstract
Glucocorticoids (GCs), a class of hormones secreted by the adrenal glands, are released into the bloodstream to maintain homeostasis and modulate responses to various stressors. These hormones function by binding to the widely expressed GC receptor (GR), thereby regulating a wide range of pathophysiological processes, especially in metabolism and immunity. The role of GCs in the tumor immune microenvironment (TIME) of lung cancer (LC) has been a focal point of research. As immunosuppressive agents, GCs exert a crucial impact on the occurrence, progression, and treatment of LC. In the TIME of LC, GCs act as a constantly swinging pendulum, simultaneously offering tumor-suppressive properties while diminishing the efficacy of immune-based therapies. The present study reviews the role and mechanisms of GCs in the TIME of LC.
Collapse
Affiliation(s)
| | | | - Zhendong Cao
- Department of Respiration, The Second Affiliated Hospital of Nanjing University of Traditional Chinese Medicine (Jiangsu Second Hospital of Traditional Chinese Medicine), Nanjing, Jiangsu, 210017, China
| | - Yupei Zhao
- Department of Respiration, The Second Affiliated Hospital of Nanjing University of Traditional Chinese Medicine (Jiangsu Second Hospital of Traditional Chinese Medicine), Nanjing, Jiangsu, 210017, China
| | - Yimin Zhu
- Department of Respiration, The Second Affiliated Hospital of Nanjing University of Traditional Chinese Medicine (Jiangsu Second Hospital of Traditional Chinese Medicine), Nanjing, Jiangsu, 210017, China
| | - Lei Li
- Department of Respiration, The Second Affiliated Hospital of Nanjing University of Traditional Chinese Medicine (Jiangsu Second Hospital of Traditional Chinese Medicine), Nanjing, Jiangsu, 210017, China
| |
Collapse
|
281
|
Luo Y, Luo X, Ru Y, Zhou X, Liu D, Huang Q, Linghu M, Wu Y, Lv Z, Chen M, Ma Y, Huang Y, Wang J. Copper(II)-Based Nano-Regulator Correlates Cuproptosis Burst and Sequential Immunogenic Cell Death for Synergistic Cancer Immunotherapy. Biomater Res 2024; 28:0039. [PMID: 38938647 PMCID: PMC11208873 DOI: 10.34133/bmr.0039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 05/08/2024] [Indexed: 06/29/2024] Open
Abstract
Immunogenic cell death (ICD) of tumor cells serves as a crucial initial signal in the activation of anti-tumor immune responses, holding marked promise in the field of tumor immunotherapy. However, low immunogenicity tumors pose challenges in achieving complete induction of ICD, thereby limiting the response rates of immunotherapy in clinical patients. The emergence of cuproptosis as a new form of regulated cell death has presented a promising strategy for enhanced immunotherapy of low immunogenic tumors. To trigger cuproptosis, copper-ionophore elesclomol (ES) had to be employed for the copper-transporting-mediated process. Herein, we proposed a copper(II)-based metal-organic framework nanoplatform (Cu-MOF) to facilitate a cooperative delivery of encapsulated ES and copper (ES-Cu-MOF) to induce cuproptosis burst and enhance ICD of fibrosarcoma. Our results showed that the ES-Cu-MOF nano-regulator could effectively release Cu2+ and ES in response to the intracellular environment, resulting in elevated mitochondrial ROS generation and initiated cuproptosis of tumor cells. Furthermore, sequential ICDs were significantly triggered via the ES-Cu-MOF nano-regulator to activate the anti-tumor immune response. The results of tumor inhibition experiment indicated that the nano-regulator of ES-Cu-MOF obviously accumulated in the tumor site, inducing ICD for dendritic cell activation. This enabled an increased infiltration of cytotoxic CD8+ T cells and consequently enhanced antitumor immune responses for successfully suppressing fibrosarcoma growth. Thus, the copper(II)-based metal-organic framework nano-regulator offered a promising approach for inducing cuproptosis and cuproptosis-stimulated ICD for cancer immunotherapy.
Collapse
Affiliation(s)
- Yingli Luo
- Wuxi School of Medicine,
Jiangnan University, Wuxi, Jiangsu 214122, PR China
- Affiliated Hospital of Jiangnan University,
Jiangnan University, Wuxi, Jiangsu 214062, PR China
| | - Xianyu Luo
- Wuxi School of Medicine,
Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Yi Ru
- Wuxi School of Medicine,
Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Xinru Zhou
- Wuxi School of Medicine,
Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Didi Liu
- Wuxi School of Medicine,
Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Qian Huang
- Wuxi School of Medicine,
Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Maoyuan Linghu
- Wuxi School of Medicine,
Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Yuhang Wu
- Wuxi School of Medicine,
Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Zicheng Lv
- Wuxi School of Medicine,
Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Meimei Chen
- Wuxi School of Medicine,
Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Yinchu Ma
- Wuxi School of Medicine,
Jiangnan University, Wuxi, Jiangsu 214122, PR China
- Affiliated Hospital of Jiangnan University,
Jiangnan University, Wuxi, Jiangsu 214062, PR China
| | - Yi Huang
- Wuxi School of Medicine,
Jiangnan University, Wuxi, Jiangsu 214122, PR China
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei 230601, China
| | - Jilong Wang
- Joint Centre of Translational Medicine, Wenzhou Institute,
University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, PR China
| |
Collapse
|
282
|
Minici R, Venturini M, Guzzardi G, Fontana F, Coppola A, Piacentino F, Torre F, Spinetta M, Maglio P, Guerriero P, Ammendola M, MGJR Research Team, Brunese L, Laganà D. Prognostic Role of Lymphocyte-to-Monocyte Ratio (LMR) in Patients with Intermediate-Stage Hepatocellular Carcinoma (HCC) Undergoing Chemoembolizations (DEM-TACE or cTACE) of the Liver: Exploring the Link between Tumor Microenvironment and Interventional Radiology. Diseases 2024; 12:137. [PMID: 39057108 PMCID: PMC11275864 DOI: 10.3390/diseases12070137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/13/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
Inflammation-based scores are biomarkers of the crosstalk between the tumor microenvironment and the immune response. Investigating the intricate relationship between the tumor stromal microenvironment, biomarkers, and the response to transcatheter arterial chemoembolization (TACE) is essential for early identification of TACE refractoriness or failure, providing insights into tumor biology and facilitating personalized therapeutic interventions. This study addresses a dearth of recent literature exploring the prognostic significance of the preoperative LMR in individuals from western countries diagnosed with stage B hepatocellular carcinoma (HCC) undergoing drug eluting microspheres TACE (DEM-TACE) or conventional TACE (cTACE). This international multi-center retrospective analysis included consecutive patients with stage B HCC who underwent TACE from January 2017 to June 2023. The study evaluated the ability of the preoperative LMR to predict complete response (CR), objective response (OR), sustained response duration (SRD) exceeding 6 months, successful downstaging at 6 months, progression-free survival (PFS) at 6 months, and overall survival (OS) at 6 months. The study population included 109 HCC patients and it was divided into low LMR (LMR < 2.24) and high LMR (LMR ≥ 2.24) groups, according to ROC curve analysis to select the optimal LMR cut-off value. High LMR was associated with lower Hepatitis C prevalence, higher absolute lymphocyte count, and a trend toward lower alpha-fetoprotein. The group with high LMRs exhibited superior CR rates (14.9% vs. 0%), overall OR (43.2% vs. 14.3%), and better PFS at 6 months (75.7% vs. 45.7%). The LMR, specifically categorized as <2.24 and ≥2.24, emerged as a robust predictor for treatment response and short-term outcomes in patients with stage B HCC undergoing DEM- or c-TACE.
Collapse
Affiliation(s)
- Roberto Minici
- Radiology Unit, University Hospital Dulbecco, 88100 Catanzaro, Italy;
| | - Massimo Venturini
- Diagnostic and Interventional Radiology Unit, ASST Settelaghi, Insubria University, 21100 Varese, Italy; (M.V.); (F.F.); (A.C.); (F.P.)
| | - Giuseppe Guzzardi
- Imagerie Vasculaire et Interventionnelle, Centre Hospitalier Princesse Grace, 98000 Monaco, Monaco; (G.G.); (F.T.)
| | - Federico Fontana
- Diagnostic and Interventional Radiology Unit, ASST Settelaghi, Insubria University, 21100 Varese, Italy; (M.V.); (F.F.); (A.C.); (F.P.)
| | - Andrea Coppola
- Diagnostic and Interventional Radiology Unit, ASST Settelaghi, Insubria University, 21100 Varese, Italy; (M.V.); (F.F.); (A.C.); (F.P.)
| | - Filippo Piacentino
- Diagnostic and Interventional Radiology Unit, ASST Settelaghi, Insubria University, 21100 Varese, Italy; (M.V.); (F.F.); (A.C.); (F.P.)
| | - Federico Torre
- Imagerie Vasculaire et Interventionnelle, Centre Hospitalier Princesse Grace, 98000 Monaco, Monaco; (G.G.); (F.T.)
| | - Marco Spinetta
- Radiology Unit, Maggiore della Carità University Hospital, 28100 Novara, Italy;
| | - Pietro Maglio
- Pain Management Unit, University Hospital Dulbecco, 88100 Catanzaro, Italy;
| | - Pasquale Guerriero
- Department of Medicine and Health Sciences, University of Molise, 86100 Campobasso, Italy; (P.G.); (L.B.)
| | - Michele Ammendola
- Digestive Surgery Unit, University Hospital Dulbecco, 88100 Catanzaro, Italy;
| | | | - Luca Brunese
- Department of Medicine and Health Sciences, University of Molise, 86100 Campobasso, Italy; (P.G.); (L.B.)
| | - Domenico Laganà
- Radiology Unit, University Hospital Dulbecco, 88100 Catanzaro, Italy;
| |
Collapse
|
283
|
Feldman L. Hypoxia within the glioblastoma tumor microenvironment: a master saboteur of novel treatments. Front Immunol 2024; 15:1384249. [PMID: 38994360 PMCID: PMC11238147 DOI: 10.3389/fimmu.2024.1384249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 06/10/2024] [Indexed: 07/13/2024] Open
Abstract
Glioblastoma (GBM) tumors are the most aggressive primary brain tumors in adults that, despite maximum treatment, carry a dismal prognosis. GBM tumors exhibit tissue hypoxia, which promotes tumor aggressiveness and maintenance of glioma stem cells and creates an overall immunosuppressive landscape. This article reviews how hypoxic conditions overlap with inflammatory responses, favoring the proliferation of immunosuppressive cells and inhibiting cytotoxic T cell development. Immunotherapies, including vaccines, immune checkpoint inhibitors, and CAR-T cell therapy, represent promising avenues for GBM treatment. However, challenges such as tumor heterogeneity, immunosuppressive TME, and BBB restrictiveness hinder their effectiveness. Strategies to address these challenges, including combination therapies and targeting hypoxia, are actively being explored to improve outcomes for GBM patients. Targeting hypoxia in combination with immunotherapy represents a potential strategy to enhance treatment efficacy.
Collapse
Affiliation(s)
- Lisa Feldman
- Division of Neurosurgery, City of Hope National Medical Center, Duarte, CA, United States
| |
Collapse
|
284
|
Amissah HA, Combs SE, Shevtsov M. Tumor Dormancy and Reactivation: The Role of Heat Shock Proteins. Cells 2024; 13:1087. [PMID: 38994941 PMCID: PMC11240553 DOI: 10.3390/cells13131087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/13/2024] Open
Abstract
Tumors are a heterogeneous group of cell masses originating in various organs or tissues. The cellular composition of the tumor cell mass interacts in an intricate manner, influenced by humoral, genetic, molecular, and tumor microenvironment cues that dictate tumor growth or suppression. As a result, tumors undergo a period of a dormant state before their clinically discernible stage, which surpasses the clinical dormancy threshold. Moreover, as a genetically imprinted strategy, early-seeder cells, a distinct population of tumor cells, break off to dock nearby or extravasate into blood vessels to secondary tissues, where they form disseminated solitary dormant tumor cells with reversible capacity. Among the various mechanisms underlying the dormant tumor mass and dormant tumor cell formation, heat shock proteins (HSPs) might play one of the most important roles in how the dormancy program plays out. It is known that numerous aberrant cellular processes, such as malignant transformation, cancer cell stemness, tumor invasion, metastasis, angiogenesis, and signaling pathway maintenance, are influenced by the HSPs. An accumulating body of knowledge suggests that HSPs may be involved in the angiogenic switch, immune editing, and extracellular matrix (ECM) remodeling cascades, crucial genetically imprinted strategies important to the tumor dormancy initiation and dormancy maintenance program. In this review, we highlight the biological events that orchestrate the dormancy state and the body of work that has been conducted on the dynamics of HSPs in a tumor mass, as well as tumor cell dormancy and reactivation. Additionally, we propose a conceptual framework that could possibly underlie dormant tumor reactivation in metastatic relapse.
Collapse
Affiliation(s)
- Haneef Ahmed Amissah
- Institute of Life Sciences and Biomedicine, Department of Medical Biology and Medical Biology, FEFU Campus, Far Eastern Federal University, 690922 Vladivostok, Russia;
- Diagnostics Laboratory Department, Trauma and Specialist Hospital, CE-122-2486, Central Region, Winneba P.O. Box 326, Ghana
| | - Stephanie E. Combs
- Department of Radiation Oncology, Technische Universität München (TUM), Klinikum Rechts der Isar, 81675 Munich, Germany;
| | - Maxim Shevtsov
- Department of Radiation Oncology, Technische Universität München (TUM), Klinikum Rechts der Isar, 81675 Munich, Germany;
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences (RAS), 194064 Saint Petersburg, Russia
- Personalized Medicine Centre, Almazov National Medical Research Centre, 197341 Saint Petersburg, Russia
| |
Collapse
|
285
|
Bezu L, Akçal Öksüz D, Bell M, Buggy D, Diaz-Cambronero O, Enlund M, Forget P, Gupta A, Hollmann MW, Ionescu D, Kirac I, Ma D, Mokini Z, Piegeler T, Pranzitelli G, Smith L, The EuroPeriscope Group. Perioperative Immunosuppressive Factors during Cancer Surgery: An Updated Review. Cancers (Basel) 2024; 16:2304. [PMID: 39001366 PMCID: PMC11240822 DOI: 10.3390/cancers16132304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/16/2024] Open
Abstract
Surgical excision of the primary tumor represents the most frequent and curative procedure for solid malignancies. Compelling evidence suggests that, despite its beneficial effects, surgery may impair immunosurveillance by triggering an immunosuppressive inflammatory stress response and favor recurrence by stimulating minimal residual disease. In addition, many factors interfere with the immune effectors before and after cancer procedures, such as malnutrition, anemia, or subsequent transfusion. Thus, the perioperative period plays a key role in determining oncological outcomes and represents a short phase to circumvent anesthetic and surgical deleterious factors by supporting the immune system through the use of synergistic pharmacological and non-pharmacological approaches. In line with this, accumulating studies indicate that anesthetic agents could drive both protumor or antitumor signaling pathways during or after cancer surgery. While preclinical investigations focusing on anesthetics' impact on the behavior of cancer cells are quite convincing, limited clinical trials studying the consequences on survival and recurrences remain inconclusive. Herein, we highlight the main factors occurring during the perioperative period of cancer surgery and their potential impact on immunomodulation and cancer progression. We also discuss patient management prior to and during surgery, taking into consideration the latest advances in the literature.
Collapse
Affiliation(s)
- Lucillia Bezu
- EuroPeriscope, ESA-IC Onco-Anaesthesiology Research Group, B-1000 Brussels, Belgium
- Département d'Anesthésie, Chirurgie et Interventionnel, Gustave Roussy, 94805 Villejuif, France
- U1138 Metabolism, Cancer and Immunity, Gustave Roussy, 94805 Villejuif, France
- Department of Anesthesiology, Perioperative and Pain Medicine, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Dilara Akçal Öksüz
- EuroPeriscope, ESA-IC Onco-Anaesthesiology Research Group, B-1000 Brussels, Belgium
- Clinic for Anesthesiology, Intensive Care, Emergency Medicine, Pain Therapy and Palliative Medicine, Marienhaus Klinikum Hetzelstift, 67434 Neustadt an der Weinstrasse, Germany
- ESAIC Mentorship Program, BE-1000 Brussels, Belgium
| | - Max Bell
- EuroPeriscope, ESA-IC Onco-Anaesthesiology Research Group, B-1000 Brussels, Belgium
- Department of Perioperative Medicine and Intensive Care (PMI), Karolinska University Hospital, Solna, 17176 Stockholm, Sweden
- Department of Physiology and Pharmacology, Karolinska Institute, 17176 Stockholm, Sweden
| | - Donal Buggy
- EuroPeriscope, ESA-IC Onco-Anaesthesiology Research Group, B-1000 Brussels, Belgium
- Division of Anaesthesiology, Mater Misericordiae University Hospital, D07 WKW8 Dublin, Ireland
- School of Medicine, University College, D04 V1W8 Dublin, Ireland
| | - Oscar Diaz-Cambronero
- EuroPeriscope, ESA-IC Onco-Anaesthesiology Research Group, B-1000 Brussels, Belgium
- Department of Anesthesiology, Hospital Universitario y Politécnico la Fe, 46026 Valencia, Spain
- Perioperative Medicine Research, Health Research Institute Hospital la Fe, 46026 Valencia, Spain
- Faculty of Medicine, Department of Surgery, University of Valencia, 46010 Valencia, Spain
| | - Mats Enlund
- EuroPeriscope, ESA-IC Onco-Anaesthesiology Research Group, B-1000 Brussels, Belgium
- Center for Clinical Research, Uppsala University, SE-72189 Västerås, Sweden
- Department of Anesthesia & Intensive Care, Västmanland Hospital, SE-72189 Västerås, Sweden
| | - Patrice Forget
- EuroPeriscope, ESA-IC Onco-Anaesthesiology Research Group, B-1000 Brussels, Belgium
- Aberdeen Centre for Arthritis and Musculoskeletal Health (Epidemiology Group), Institute of Applied Health Sciences, Epidemiology Group, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZN, UK
- Department of Anaesthesia, NHS Grampian, University of Aberdeen, Aberdeen AB25 2ZN, UK
- Pain and Opioids after Surgery (PANDOS) ESAIC Research Group, European Society of Anaesthesiology and Intensive Care, 1000 Brussels, Belgium
- IMAGINE UR UM 103, Anesthesia Critical Care, Emergency and Pain Medicine Division, Nîmes University Hospital, Montpellier University, 30900 Nîmes, France
| | - Anil Gupta
- EuroPeriscope, ESA-IC Onco-Anaesthesiology Research Group, B-1000 Brussels, Belgium
- Department of Physiology and Pharmacology, Karolinska Institute, 17176 Stockholm, Sweden
| | - Markus W Hollmann
- EuroPeriscope, ESA-IC Onco-Anaesthesiology Research Group, B-1000 Brussels, Belgium
- Department of Anesthesiology, Amsterdam UMC, 1100 DD Amsterdam, The Netherlands
| | - Daniela Ionescu
- EuroPeriscope, ESA-IC Onco-Anaesthesiology Research Group, B-1000 Brussels, Belgium
- Department of Anesthesia and Intensive Care, University of Medicine and Pharmacy "Iuliu Hatieganu", 400012 Cluj-Napoca, Romania
- Outcome Research Consortium, Cleveland, OH 44195, USA
| | - Iva Kirac
- EuroPeriscope, ESA-IC Onco-Anaesthesiology Research Group, B-1000 Brussels, Belgium
- Genetic Counselling Unit, University Hospital for Tumors, Sestre Milosrdnice University Hospital Centre, 10000 Zagreb, Croatia
| | - Daqing Ma
- EuroPeriscope, ESA-IC Onco-Anaesthesiology Research Group, B-1000 Brussels, Belgium
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London SW10 9NH, UK
- Department of Anesthesiology, Perioperative and Systems Medicine Laboratory, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Zhirajr Mokini
- EuroPeriscope, ESA-IC Onco-Anaesthesiology Research Group, B-1000 Brussels, Belgium
- ESAIC Mentorship Program, BE-1000 Brussels, Belgium
- Clinique du Pays de Seine, 77590 Bois le Roi, France
| | - Tobias Piegeler
- EuroPeriscope, ESA-IC Onco-Anaesthesiology Research Group, B-1000 Brussels, Belgium
- Department of Anesthesiology and Intensive Care, University of Leipzig Medical Center, 04275 Leipzig, Germany
| | - Giuseppe Pranzitelli
- EuroPeriscope, ESA-IC Onco-Anaesthesiology Research Group, B-1000 Brussels, Belgium
- Department of Anesthesiology and Intensive Care, San Timoteo Hospital, 86039 Termoli, Italy
| | - Laura Smith
- EuroPeriscope, ESA-IC Onco-Anaesthesiology Research Group, B-1000 Brussels, Belgium
- Department of Anaesthesia, NHS Grampian, University of Aberdeen, Aberdeen AB25 2ZN, UK
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZN, UK
| | | |
Collapse
|
286
|
Bai W. Protocol to detect immune levels, abnormal metabolism, and signaling pathways in tumor tissue based on scRNA-seq obtained from patient databases. STAR Protoc 2024; 5:103065. [PMID: 38753488 PMCID: PMC11109287 DOI: 10.1016/j.xpro.2024.103065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/17/2024] [Accepted: 04/24/2024] [Indexed: 05/18/2024] Open
Abstract
Malignant tumor cells are typically more active in terms of metabolism and signal transduction compared to immune and normal cells. Here, we present a protocol to evaluate immune levels, abnormal metabolism, and signaling pathways in tumor tissue based on single-cell sequencing based on patient data obtained from the GEO database. We describe steps for tumor immune microenvironment (TIME)-based evaluation, tumor purity assessment, and identification of abnormal signal transduction and metabolic pathways. We then detail procedures for screening hub genes. For complete details on the use and execution of this protocol, please refer to Bai et al.1.
Collapse
Affiliation(s)
- Weiyu Bai
- Center for Life Sciences, School of Life Sciences, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China.
| |
Collapse
|
287
|
Patel D, McElroy JP, Weng DY, Sahar K, Reisinger SA, Freudenheim JL, Wewers MD, Shields PG, Song MA. Sex-related DNA methylation is associated with inflammation and gene expression in the lungs of healthy individuals. Sci Rep 2024; 14:14280. [PMID: 38902313 PMCID: PMC11190195 DOI: 10.1038/s41598-024-65027-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024] Open
Abstract
Lung cancer exhibits sex-biased molecular characteristics and epidemiological trends, suggesting a need for sex-specific approaches to understanding its etiology and treatment. DNA methylation alterations play critical roles in lung carcinogenesis and may serve as valuable biomarkers for precision medicine strategies. We employed the Infinium MethylationEPIC array to identify autosomal sex-related differentially methylated CpG sites (DM-CpGs) in lung epithelium of healthy individuals (32 females and 37 males) while controlling for age, BMI, and tobacco use. We correlated DM-CpGs with gene expression in lung epithelium and immune responses in bronchoalveolar lavage. We validated these DM-CpGs in lung tumors and adjacent normal tissue from The Cancer Genome Atlas (TCGA). Among 522 identified DM-CpGs, 61% were hypermethylated in females, predominantly located in promoter regions. These DM genes were implicated in cell-to-cell signaling, cellular function, transport, and lipid metabolism. Correlation analysis revealed sex-specific patterns between DM-CpGs and gene expression. Additionally, several DM-CpGs were correlated significantly with cytokines (IL-1β, IL-4, IL-12p70, and IFN-γ), macrophage, and lymphocyte counts. Also, some DM-CpGs were observed in TCGA lung adenocarcinoma, squamous cell carcinoma, and adjacent normal tissues. Our findings highlight sex-specific DNA methylation patterns in healthy lung epithelium and their associations with lung gene expression and lung immune biomarkers. These findings underscore the potential role of lung sex-related CpGs as epigenetic predispositions influencing sex disparities in lung cancer risk and outcomes, warranting further investigation for personalized lung cancer management strategies.
Collapse
Affiliation(s)
- Devki Patel
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, OH, USA
| | - Joseph P McElroy
- Comprehensive Cancer Center, The Ohio State University and James Cancer Hospital, Columbus, OH, USA
| | - Daniel Y Weng
- Comprehensive Cancer Center, The Ohio State University and James Cancer Hospital, Columbus, OH, USA
| | - Kamel Sahar
- Comprehensive Cancer Center, The Ohio State University and James Cancer Hospital, Columbus, OH, USA
| | - Sarah A Reisinger
- Comprehensive Cancer Center, The Ohio State University and James Cancer Hospital, Columbus, OH, USA
| | - Jo L Freudenheim
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, USA
| | - Mark D Wewers
- Pulmonary and Critical Care Medicine, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Peter G Shields
- Comprehensive Cancer Center, The Ohio State University and James Cancer Hospital, Columbus, OH, USA.
- Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| | - Min-Ae Song
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
288
|
Du YN, Zhao JW. GDF15: Immunomodulatory Role in Hepatocellular Carcinoma Pathogenesis and Therapeutic Implications. J Hepatocell Carcinoma 2024; 11:1171-1183. [PMID: 38911292 PMCID: PMC11193986 DOI: 10.2147/jhc.s471239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/07/2024] [Indexed: 06/25/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related deaths globally and the sixth most common cancer worldwide. Evidence shows that growth differentiation factor 15 (GDF15) contributes to hepatocarcinogenesis through various mechanisms. This paper reviews the latest insights into the role of GDF15 in the development of HCC, its role in the immune microenvironment of HCC, and its molecular mechanisms in metabolic dysfunction associated steatohepatitis (MASH) and metabolic associated fatty liver disease (MAFLD)-related HCC. Additionally, as a serum biomarker for HCC, diagnostic and prognostic value of GDF15 for HCC is summarized. The article elaborates on the immunological effects of GDF15, elucidating its effects on hepatic stellate cells (HSCs), liver fibrosis, as well as its role in HCC metastasis and tumor angiogenesis, and its interactions with anticancer drugs. Based on the impact of GDF15 on the immune response in HCC, future research should identify its signaling pathways, affected immune cells, and tumor microenvironment interactions. Clinical studies correlating GDF15 levels with patient outcomes can aid personalized treatment. Additionally, exploring GDF15-targeted therapies with immunotherapies could improve anti-tumor responses and patient outcomes.
Collapse
Affiliation(s)
- Yi-Ning Du
- Department of Medical Sciences, Li Ka-shing School of Medicine, University of Hong Kong, Hong Kong, People’s Republic of China
| | - Jin-Wei Zhao
- Department of Hepatopancreatobiliary Surgery, Second Hospital of Jilin University, Jilin University, Changchun, Jilin Province, People’s Republic of China
| |
Collapse
|
289
|
Jiang Y, Li H. The effect of smoking on tumor immunoediting: Friend or foe? Tob Induc Dis 2024; 22:TID-22-108. [PMID: 38887597 PMCID: PMC11181014 DOI: 10.18332/tid/189302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 05/15/2024] [Accepted: 05/25/2024] [Indexed: 06/20/2024] Open
Abstract
The recognition of smoking as an independent risk factor for lung cancer has become a widely accepted within the realm of respiratory medicine. The emergence of tumor immunotherapy has notably enhanced the prognosis for numerous late-stage cancer patients. Nevertheless, some studies have noted a tendency for lung cancer patients who smoke to derive greater benefit from immunotherapy. This observation has sparked increased interest in the interaction between smoking and the immune response to tumors in lung cancer. The concept of cancer immunoediting has shed light on the intricate and nuanced relationship between the immune system and tumors. Starting from the perspectives of immune surveillance, immune equilibrium, and immune evasion, this narrative review explores how smoking undermines the immune response against tumor cells and induces the generation of tumor neoantigens, and examines other behaviors that trigger tumor immune evasion. By elucidating these aspects, the review concludes that smoking is not conducive to tumor immunoediting.
Collapse
Affiliation(s)
- Yixia Jiang
- Department of Respiratory Diseases, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Hequan Li
- Department of Respiratory Diseases, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
290
|
Bharadwaj S, Groza Y, Mierzwicka JM, Malý P. Current understanding on TREM-2 molecular biology and physiopathological functions. Int Immunopharmacol 2024; 134:112042. [PMID: 38703564 DOI: 10.1016/j.intimp.2024.112042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/05/2024] [Accepted: 04/05/2024] [Indexed: 05/06/2024]
Abstract
Triggering receptor expressed on myeloid cells 2 (TREM-2), a glycosylated receptor belonging to the immunoglobin superfamily and especially expressed in the myeloid cell lineage, is frequently explained as a reminiscent receptor for both adaptive and innate immunity regulation. TREM-2 is also acknowledged to influence NK cell differentiation via the PI3K and PLCγ signaling pathways, as well as the partial activation or direct inhibition of T cells. Additionally, TREM-2 overexpression is substantially linked to cell-specific functions, such as enhanced phagocytosis, reduced toll-like receptor (TLR)-mediated inflammatory cytokine production, increased transcription of anti-inflammatory cytokines, and reshaped T cell function. Whereas TREM-2-deficient cells exhibit diminished phagocytic function and enhanced proinflammatory cytokines production, proceeding to inflammatory injuries and an immunosuppressive environment for disease progression. Despite the growing literature supporting TREM-2+ cells in various diseases, such as neurodegenerative disorders and cancer, substantial facets of TREM-2-mediated signaling remain inadequately understood relevant to pathophysiology conditions. In this direction, herein, we have summarized the current knowledge on TREM-2 biology and cell-specific TREM-2 expression, particularly in the modulation of pivotal TREM-2-dependent functions under physiopathological conditions. Furthermore, molecular regulation and generic biological relevance of TREM-2 are also discussed, which might provide an alternative approach for preventing or reducing TREM-2-associated deformities. At last, we discussed the TREM-2 function in supporting an immunosuppressive cancer environment and as a potential drug target for cancer immunotherapy. Hence, summarized knowledge of TREM-2 might provide a window to overcome challenges in clinically effective therapies for TREM-2-induced diseases in humans.
Collapse
Affiliation(s)
- Shiv Bharadwaj
- Laboratory of Ligand Engineering, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV Research Center, Průmyslová 595, 252 50 Vestec, Czech Republic.
| | - Yaroslava Groza
- Laboratory of Ligand Engineering, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV Research Center, Průmyslová 595, 252 50 Vestec, Czech Republic
| | - Joanna M Mierzwicka
- Laboratory of Ligand Engineering, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV Research Center, Průmyslová 595, 252 50 Vestec, Czech Republic
| | - Petr Malý
- Laboratory of Ligand Engineering, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV Research Center, Průmyslová 595, 252 50 Vestec, Czech Republic.
| |
Collapse
|
291
|
Huang XW, Li Y, Jiang LN, Zhao BK, Liu YS, Chen C, Zhao D, Zhang XL, Li ML, Jiang YY, Liu SH, Zhu L, Zhao JM. Comprehensive pan-cancer investigation of carnosine dipeptidase 1 and its prospective prognostic significance in hepatocellular carcinoma. Open Med (Wars) 2024; 19:20240982. [PMID: 38883336 PMCID: PMC11179385 DOI: 10.1515/med-2024-0982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/18/2024] [Accepted: 05/21/2024] [Indexed: 06/18/2024] Open
Abstract
Carnosine dipeptidase 1 (CNDP1), an enzyme integral to the hydrolysis of dipeptides containing histidine, plays an indispensable role in myriad physiological processes, including hydrolysis of proteins, maturation of specific biochemical functionalities within proteins, tissue regeneration, and regulation of cell cycle. However, the implications of CNDP1 in oncogenesis and its prognostic value are not yet fully elucidated. Initially, we procured the GSE40367 dataset from the Gene Expression Omnibus and established a protein-protein interaction network. Thereafter, we conducted functional and pathway enrichment analyses utilizing GO, KEGG, and GSEA. Moreover, we undertook an association analysis concerning the expression of CNDP1 with immune infiltration, along with survival analysis across various cancers and specifically in hepatocellular carcinoma (HCC). Our study uncovered a total of 2,248 differentially expressed genes, with a down-regulation of CNDP1 in HCC and other cancers. Our explorations into the relationship between CNDP1 and immune infiltration disclosed a negative correlation between CNDP1 expression and the presence of immune cells in HCC. Survival analyses revealed that diminished expression of CNDP1 correlates with an adverse prognosis in HCC and several other types of cancer. These observations intimate that CNDP1 holds promise as a novel prognostic biomarker for both pan-cancer and HCC.
Collapse
Affiliation(s)
- Xiao-Wen Huang
- Medical School of Chinese PLA, Beijing, China
- Department of Pathology and Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Yan Li
- Department of Pathology and Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Li-Na Jiang
- Department of Pathology and Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Bo-Kang Zhao
- Department of Hepatology, Center of Infectious Diseases and Pathogen Biology, The First Hospital of Jilin University, Changchun, China
| | - Yi-Si Liu
- First Department of Liver Disease Center, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Chun Chen
- Senior Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Dan Zhao
- Department of Pathology and Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Xue-Li Zhang
- Medical School of Chinese PLA, Beijing, China
- Department of Pathology and Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Mei-Ling Li
- Department of Pathology and Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Yi-Yun Jiang
- Department of Pathology and Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Shu-Hong Liu
- Department of Pathology and Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Li Zhu
- Department of Pathology and Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Jing-Min Zhao
- Medical School of Chinese PLA, Beijing, China
- Department of Pathology and Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| |
Collapse
|
292
|
Zaakouk M, Longworth A, Hunter K, Jiman S, Kearns D, El-Deftar M, Shaaban AM. Detailed Profiling of the Tumor Microenvironment in Ethnic Breast Cancer, Using Tissue Microarrays and Multiplex Immunofluorescence. Int J Mol Sci 2024; 25:6501. [PMID: 38928207 PMCID: PMC11203983 DOI: 10.3390/ijms25126501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/04/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Breast cancer poses a global health challenge, yet the influence of ethnicity on the tumor microenvironment (TME) remains understudied. In this investigation, we examined immune cell infiltration in 230 breast cancer samples, emphasizing diverse ethnic populations. Leveraging tissue microarrays (TMAs) and core samples, we applied multiplex immunofluorescence (mIF) to dissect immune cell subtypes across TME regions. Our analysis revealed distinct immune cell distribution patterns, particularly enriched in aggressive molecular subtypes triple-negative and HER2-positive tumors. We observed significant correlations between immune cell abundance and key clinicopathological parameters, including tumor size, lymph node involvement, and patient overall survival. Notably, immune cell location within different TME regions showed varying correlations with clinicopathologic parameters. Additionally, ethnicities exhibited diverse distributions of cells, with certain ethnicities showing higher abundance compared to others. In TMA samples, patients of Chinese and Caribbean origin displayed significantly lower numbers of B cells, TAMs, and FOXP3-positive cells. These findings highlight the intricate interplay between immune cells and breast cancer progression, with implications for personalized treatment strategies. Moving forward, integrating advanced imaging techniques, and exploring immune cell heterogeneity in diverse ethnic cohorts can uncover novel immune signatures and guide tailored immunotherapeutic interventions, ultimately improving breast cancer management.
Collapse
Affiliation(s)
- Mohamed Zaakouk
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK; (M.Z.); (K.H.)
- Department of Cellular Pathology, Queen Elizabeth Hospital Birmingham, Birmingham B15 2GW, UK; (A.L.); (S.J.); (D.K.)
- Cancer Pathology Department, National Cancer Institute, Cairo University, Cairo 11796, Egypt;
| | - Aisling Longworth
- Department of Cellular Pathology, Queen Elizabeth Hospital Birmingham, Birmingham B15 2GW, UK; (A.L.); (S.J.); (D.K.)
| | - Kelly Hunter
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK; (M.Z.); (K.H.)
| | - Suhaib Jiman
- Department of Cellular Pathology, Queen Elizabeth Hospital Birmingham, Birmingham B15 2GW, UK; (A.L.); (S.J.); (D.K.)
| | - Daniel Kearns
- Department of Cellular Pathology, Queen Elizabeth Hospital Birmingham, Birmingham B15 2GW, UK; (A.L.); (S.J.); (D.K.)
| | - Mervat El-Deftar
- Cancer Pathology Department, National Cancer Institute, Cairo University, Cairo 11796, Egypt;
| | - Abeer M Shaaban
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK; (M.Z.); (K.H.)
- Department of Cellular Pathology, Queen Elizabeth Hospital Birmingham, Birmingham B15 2GW, UK; (A.L.); (S.J.); (D.K.)
| |
Collapse
|
293
|
Sierra-Murguía M, Guevara-Sanginés ML, Navarro-Contreras G, Peralta-Castillo G, Padilla-Rico A, González-Alcocer L, Padrós-Blázquez F. Relationship between Thought Style, Emotional Response, Post-Traumatic Growth (PTG), and Biomarkers in Cancer Patients. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:763. [PMID: 38929009 PMCID: PMC11203421 DOI: 10.3390/ijerph21060763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/21/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024]
Abstract
(1) Introduction: Cancer diagnosis has been related to depression, anxiety, and distress, as well as to post-traumatic growth (PTG). One of the mediating variables for emotional response is thought style (rumination, cognitive avoidance, and cognitive engagement). (2) Aim: To identify the relationship between thought style and emotional responses to cancer. A secondary aim was to identify the relationship between emotional responses and inflammatory immunological biomarkers. (3) Method: A total of 115 patients with cancer were included in the study. Before initiating cancer treatment, patients were assessed using the Hospital Anxiety and Depression Scale (HADS), distress thermometer, and Post-Traumatic Growth Inventory (PTGI). Patients provided their most recent blood biometry. (4) Results: Rumination correlated with anxiety, depression, and distress. Cognitive avoidance correlated with PTG (-0.240) and distress (-0.209). Cognitive engagement correlated with PTG (0.393). Regarding thought style and biomarkers, a negative correlation was observed for absolute neutrophils with cognitive avoidance (-0.271) and rumination (0.305). Regarding biomarkers and emotional responses, there was a negative correlation between PTG and absolute lymphocytes (-0.291). There was also a correlation between PTG and neutrophils (0.357) and neutrophil-to-lymphocyte ratio (NLR) (0.295). (5) Conclusions: Thought style is related to the emotional response to a cancer diagnosis; rumination is related to depression, distress, and anxiety; and cognitive engagement is related to PTG. PTG is related to inflammation and immunological biomarkers.
Collapse
Affiliation(s)
- Mariana Sierra-Murguía
- Cancer Center Tec100, Ignacio Zaragoza 263 H16, Col. Centro, Querétaro 76000, QE, Mexico; (G.P.-C.); (A.P.-R.); (L.G.-A.)
| | - Martha L. Guevara-Sanginés
- Economic Administrative Science Division, University of Guanajuato, Fraccionamiento 1, Col. El Establo S/N, Guanajuato 36250, GJ, Mexico;
| | - Gabriela Navarro-Contreras
- Health Science Division, University of Guanajuato, Blvd. Puente Milenio #1001, Fracción del Predio San Carlos, León 37670, GJ, Mexico;
| | - Guillermo Peralta-Castillo
- Cancer Center Tec100, Ignacio Zaragoza 263 H16, Col. Centro, Querétaro 76000, QE, Mexico; (G.P.-C.); (A.P.-R.); (L.G.-A.)
| | - Amalia Padilla-Rico
- Cancer Center Tec100, Ignacio Zaragoza 263 H16, Col. Centro, Querétaro 76000, QE, Mexico; (G.P.-C.); (A.P.-R.); (L.G.-A.)
| | - Lucía González-Alcocer
- Cancer Center Tec100, Ignacio Zaragoza 263 H16, Col. Centro, Querétaro 76000, QE, Mexico; (G.P.-C.); (A.P.-R.); (L.G.-A.)
| | - Ferrán Padrós-Blázquez
- Psychology Faculty, Universidad Michoacana San Nicolás de Hidalgo, Francisco Villa 450, Col. Dr. Miguel Silva, Morelia 58120, MC, Mexico;
| |
Collapse
|
294
|
Kim JH, Schulte AJ, Sarver AL, Lee D, Angelos MG, Frantz AM, Forster CL, O'Brien TD, Cornax I, O'Sullivan MG, Cheng N, Lewellen M, Oseth L, Kumar S, Bullman S, Pedamallu CS, Goyal SM, Meyerson M, Lund TC, Breen M, Lindblad-Toh K, Dickerson EB, Kaufman DS, Modiano JF. Hemangiosarcoma Cells Promote Conserved Host-derived Hematopoietic Expansion. CANCER RESEARCH COMMUNICATIONS 2024; 4:1467-1480. [PMID: 38757809 PMCID: PMC11166094 DOI: 10.1158/2767-9764.crc-23-0441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/29/2024] [Accepted: 05/10/2024] [Indexed: 05/18/2024]
Abstract
Hemangiosarcoma and angiosarcoma are soft-tissue sarcomas of blood vessel-forming cells in dogs and humans, respectively. These vasoformative sarcomas are aggressive and highly metastatic, with disorganized, irregular blood-filled vascular spaces. Our objective was to define molecular programs which support the niche that enables progression of canine hemangiosarcoma and human angiosarcoma. Dog-in-mouse hemangiosarcoma xenografts recapitulated the vasoformative and highly angiogenic morphology and molecular characteristics of primary tumors. Blood vessels in the tumors were complex and disorganized, and they were lined by both donor and host cells. In a series of xenografts, we observed that the transplanted hemangiosarcoma cells created exuberant myeloid hyperplasia and gave rise to lymphoproliferative tumors of mouse origin. Our functional analyses indicate that hemangiosarcoma cells generate a microenvironment that supports expansion and differentiation of hematopoietic progenitor populations. Furthermore, gene expression profiling data revealed hemangiosarcoma cells expressed a repertoire of hematopoietic cytokines capable of regulating the surrounding stromal cells. We conclude that canine hemangiosarcomas, and possibly human angiosarcomas, maintain molecular properties that provide hematopoietic support and facilitate stromal reactions, suggesting their potential involvement in promoting the growth of hematopoietic tumors. SIGNIFICANCE We demonstrate that hemangiosarcomas regulate molecular programs supporting hematopoietic expansion and differentiation, providing insights into their potential roles in creating a permissive stromal-immune environment for tumor progression.
Collapse
Affiliation(s)
- Jong Hyuk Kim
- Animal Cancer Care and Research Program, University of Minnesota, St Paul, Minnesota
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St Paul, Minnesota
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida
- University of Florida Health Cancer Center, University of Florida, Gainesville, Florida
- Intelligent Critical Care Center, University of Florida, Gainesville, Florida
- Artificial Intelligence Academic Initiative (AI) Center, University of Florida, Gainesville, Florida
| | - Ashley J. Schulte
- Animal Cancer Care and Research Program, University of Minnesota, St Paul, Minnesota
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St Paul, Minnesota
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Aaron L. Sarver
- Animal Cancer Care and Research Program, University of Minnesota, St Paul, Minnesota
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
- Institute for Health Informatics, University of Minnesota, Minneapolis, Minnesota
| | - Donghee Lee
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida
| | - Mathew G. Angelos
- Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota
- Department of Medicine (Division of Hematology, Oncology, and Transplantation), Medical School, University of Minnesota, Minneapolis, Minnesota
- Microbiology, Immunology and Cancer Biology (MICaB) Graduate Program, University of Minnesota, Minneapolis, Minnesota
- Department of Medicine, Division of Hematology and Oncology, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Aric M. Frantz
- Animal Cancer Care and Research Program, University of Minnesota, St Paul, Minnesota
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St Paul, Minnesota
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
- Capstan Therapeutics, San Diego, California
| | - Colleen L. Forster
- The University of Minnesota Biological Materials Procurement Network (BioNet), University of Minnesota, Minneapolis, Minnesota
| | - Timothy D. O'Brien
- Animal Cancer Care and Research Program, University of Minnesota, St Paul, Minnesota
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
- Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St Paul, Minnesota
| | - Ingrid Cornax
- Animal Cancer Care and Research Program, University of Minnesota, St Paul, Minnesota
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St Paul, Minnesota
- Janssen Research and Development, LLC
| | - M. Gerard O'Sullivan
- Animal Cancer Care and Research Program, University of Minnesota, St Paul, Minnesota
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St Paul, Minnesota
| | - Nuojin Cheng
- School of Mathematics, College of Science and Engineering, University of Minnesota, Minneapolis, Minnesota
- Applied Mathematics, University of Colorado Boulder, Boulder, Colorado
| | - Mitzi Lewellen
- Animal Cancer Care and Research Program, University of Minnesota, St Paul, Minnesota
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St Paul, Minnesota
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - LeAnn Oseth
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Sunil Kumar
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St Paul, Minnesota
| | - Susan Bullman
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Chandra Sekhar Pedamallu
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Sagar M. Goyal
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St Paul, Minnesota
| | - Matthew Meyerson
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Troy C. Lund
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
- Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, Minnesota
| | - Matthew Breen
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, and Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina
- Cancer Genetics Program, University of North Carolina Lineberger Comprehensive Cancer Center, Raleigh, North Carolina
| | - Kerstin Lindblad-Toh
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Science of Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Erin B. Dickerson
- Animal Cancer Care and Research Program, University of Minnesota, St Paul, Minnesota
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St Paul, Minnesota
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Dan S. Kaufman
- Animal Cancer Care and Research Program, University of Minnesota, St Paul, Minnesota
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
- Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota
- Department of Medicine (Division of Hematology, Oncology, and Transplantation), Medical School, University of Minnesota, Minneapolis, Minnesota
- Center for Immunology, University of Minnesota, Minneapolis, Minnesota
- Division of Regenerative Medicine, Department of Medicine, University of California-San Diego, La Jolla, California
| | - Jaime F. Modiano
- Animal Cancer Care and Research Program, University of Minnesota, St Paul, Minnesota
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St Paul, Minnesota
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
- Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota
- Center for Immunology, University of Minnesota, Minneapolis, Minnesota
- Department of Laboratory Medicine and Pathology, Medical School, University of Minnesota, Minneapolis, Minnesota
- Center for Engineering in Medicine, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
295
|
Chen C, Chen Z, Zhou Z, Ye H, Xiong S, Hu W, Xu Z, Ge C, Zhao C, Yu D, Shen J. T cell-related ubiquitination genes as prognostic indicators in hepatocellular carcinoma. Front Immunol 2024; 15:1424752. [PMID: 38919610 PMCID: PMC11196398 DOI: 10.3389/fimmu.2024.1424752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 05/28/2024] [Indexed: 06/27/2024] Open
Abstract
BACKGROUND T lymphocytes, integral to the adaptive immune system, wield pivotal influence in bolstering anti-tumor responses, and are strictly regulated by ubiquitination modification. The objective of this investigation was to devise a novel prognostic and immunotherapeutic efficacy predictor for hepatocellular carcinoma patients utilizing T cell-related ubiquitination genes (TCRUG). METHOD The single-cell RNA sequencing (scRNA-seq) data and bulk RNA data of HCC patients are derived from the GEO database and TCGA database. Based on the processing of scRNA-seq, T cell marker genes are obtained and TCRUG is obtained. Further combined with WGCNA, differential analysis, univariate Cox regression analysis, LASSO analysis, and multivariate Cox regression analysis to filter and screen TCRUG. Finally construct a riskscore for predicting the prognosis of HCC patients, the predictive effect of which is validated in the GEO dataset. In addition, we also studied the correlation between riskscore and immunotherapy efficacy. Finally, the oncogenic role of UBE2E1 in HCC was explored through various in vitro experiments. RESULT Based on patients' scRNA-seq data, we finally obtained 3050 T cell marker genes. Combined with bulk RNA data and clinical data from the TCGA database, we constructed a riskscore that accurately predicts the prognosis of HCC patients. This riskscore is an independent prognostic factor for HCC and is used to construct a convenient column chart. In addition, we found that the high-risk group is more suitable for immunotherapy. Finally, the proliferation, migration, and invasion abilities of HCC cells significantly decreased after UBE2E1 expression reduction. CONCLUSION This study developed a riskscore based on TCRUG that can accurately and stably predict the prognosis of HCC patients. This riskscore is also effective in predicting the immune therapy response of HCC patients.
Collapse
Affiliation(s)
- Chaobo Chen
- Department of General Surgery, Xishan People’s Hospital of Wuxi City, Wuxi, China
| | - Zheng Chen
- Department of Hepatobiliary and Liver Transplantation Surgery, Drum Tower Hospital Affiliated to Nanjing University School of Medicine, Nanjing, China
| | - Zheyu Zhou
- Department of General Surgery, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Graduate School of Peking Union Medical College, Nanjing, China
| | - Hui Ye
- Department of Anesthesiology, ZhongDa Hospital, Southeast University, Nanjing, Jiangsu, China
| | - Shaohui Xiong
- Department of Cardiology, Huzhou Central Hospital, Huzhou, China
| | - Weidong Hu
- Department of General Surgery, Xishan People’s Hospital of Wuxi City, Wuxi, China
| | - Zipeng Xu
- Department of General Surgery, Xishan People’s Hospital of Wuxi City, Wuxi, China
| | - Chen Ge
- Department of General Surgery, Xishan People’s Hospital of Wuxi City, Wuxi, China
| | - Chunlong Zhao
- Department of General Surgery, Xishan People’s Hospital of Wuxi City, Wuxi, China
| | - Decai Yu
- Department of Hepatobiliary and Liver Transplantation Surgery, Drum Tower Hospital Affiliated to Nanjing University School of Medicine, Nanjing, China
| | - Jiapei Shen
- Department of Infectious Diseases, Huzhou Central Hospital, Huzhou, China
| |
Collapse
|
296
|
Fu Y, Zhu X, Ren L, Wan J, Wang H. Syringeable Near-Infrared Light-Activated In Situ Immunogenic Hydrogel Boosts the Cancer-Immunity Cycle to Enhance Anticancer Immunity. ACS NANO 2024; 18:14877-14892. [PMID: 38809421 DOI: 10.1021/acsnano.3c08425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Effective anticancer immunity depends on properly activating multiple stepwise events in the cancer-immunity cycle. An immunologically "cold" tumor microenvironment (TME) engenders immune evasion and refractoriness to conventional checkpoint blockade immunotherapy. Here, we combine nanoparticle formulations and an in situ formed hydrogel scaffold to treat accessible tumors locally and to stimulate systemic immunity against metastatic tumor lesions. The nanoparticles encapsulate poly(ε-caprolactone)-derived cytotoxic chemotherapy and adjuvant of Toll-like receptor 7/8 through a reactive oxygen species (ROS)-cleavable linker that can be self-activated by the coassembled neighboring photosensitizer following near-infrared (NIR) laser irradiation. Further development results in syringeable, NIR light-responsive, and immunogenic hydrogel (iGEL) that can be implanted peritumorally and deposited into the tumor surgical bed. Upon NIR laser irradiation, the generated ROS induces iGEL degradation and bond cleavage in the polymer-drug conjugates, triggering the immunogenic cell death cascade in cancer cells and spontaneously releasing encapsulated agents to rewire the cancer-immunity cycle. Notably, upon application in multiple preclinical models of melanoma and triple-negative breast cancer, which are aggressive and refractory to conventional immunotherapy, iGEL induces durable remission of established tumors, extends postsurgical tumor-free survival, and inhibits metastatic burden. The result of this study is a locally administrable immunogenic hydrogel for triggering host systemic immunity to improve immunotherapeutic efficacy with minimal off-target side effects.
Collapse
Affiliation(s)
- Yang Fu
- The First Affiliated Hospital; NHC Key Laboratory of Combined Multi-Organ Transplantation, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310003, P. R. China
| | - Xiaoxiao Zhu
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310016, P. R. China
| | - Lulu Ren
- The First Affiliated Hospital; Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310003, P. R. China
| | - Jianqin Wan
- The First Affiliated Hospital; Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310003, P. R. China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong Province 250117, P. R. China
| | - Hangxiang Wang
- The First Affiliated Hospital; Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310003, P. R. China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong Province 250117, P. R. China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province 325000, P. R. China
| |
Collapse
|
297
|
Zhu L, Yang K, Ren Z, Yin D, Zhou Y. Metformin as anticancer agent and adjuvant in cancer combination therapy: Current progress and future prospect. Transl Oncol 2024; 44:101945. [PMID: 38555742 PMCID: PMC10998183 DOI: 10.1016/j.tranon.2024.101945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/19/2024] [Accepted: 03/26/2024] [Indexed: 04/02/2024] Open
Abstract
Metformin, as the preferred antihyperglycemic drug for type 2 diabetes, has been found to have a significant effect in inhibiting tumor growth in recent years. However, metformin alone in cancer treatment has the disadvantages of high dose concentrations and few targeted cancer types. Increasing studies have confirmed that metformin can be used in combination with conventional anticancer therapy to obtain more promising clinical benefits, which is expected to be rapidly transformed and applied in clinic. Some combination therapy strategies including metformin combined with chemotherapy, radiotherapy, targeted therapy and immunotherapy have been proven to have more significant antitumor effects and longer survival time than monotherapy. In this review, we summarize the synergistic antitumor effects and mechanisms of metformin in combination with other current conventional anticancer therapies. In addition, we update the research progress and the latest prospect of the metformin-combined application in the cancer treatment. This work could provide more evidence and future direction for the clinical application of metformin in antitumor.
Collapse
Affiliation(s)
- Lin Zhu
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, PR China
| | - Kaiqing Yang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, PR China
| | - Zhe Ren
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, PR China
| | - Detao Yin
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, PR China.
| | - Yubing Zhou
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, PR China.
| |
Collapse
|
298
|
Chen ACY, Jaiswal S, Martinez D, Yerinde C, Ji K, Miranda V, Fung ME, Weiss SA, Zschummel M, Taguchi K, Garris CS, Mempel TR, Hacohen N, Sen DR. The aged tumor microenvironment limits T cell control of cancer. Nat Immunol 2024; 25:1033-1045. [PMID: 38745085 PMCID: PMC11500459 DOI: 10.1038/s41590-024-01828-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 03/27/2024] [Indexed: 05/16/2024]
Abstract
The etiology and effect of age-related immune dysfunction in cancer is not completely understood. Here we show that limited priming of CD8+ T cells in the aged tumor microenvironment (TME) outweighs cell-intrinsic defects in limiting tumor control. Increased tumor growth in aging is associated with reduced CD8+ T cell infiltration and function. Transfer of T cells from young mice does not restore tumor control in aged mice owing to rapid induction of T cell dysfunction. Cell-extrinsic signals in the aged TME drive a tumor-infiltrating age-associated dysfunctional (TTAD) cell state that is functionally, transcriptionally and epigenetically distinct from canonical T cell exhaustion. Altered natural killer cell-dendritic cell-CD8+ T cell cross-talk in aged tumors impairs T cell priming by conventional type 1 dendritic cells and promotes TTAD cell formation. Aged mice are thereby unable to benefit from therapeutic tumor vaccination. Critically, myeloid-targeted therapy to reinvigorate conventional type 1 dendritic cells can improve tumor control and restore CD8+ T cell immunity in aging.
Collapse
Affiliation(s)
- Alex C Y Chen
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Sneha Jaiswal
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Carnegie Mellon University, Pittsburgh, PA, USA
| | - Daniela Martinez
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Cansu Yerinde
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Keely Ji
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Velita Miranda
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Megan E Fung
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Sarah A Weiss
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Maria Zschummel
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Kazuhiro Taguchi
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Christopher S Garris
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Thorsten R Mempel
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Nir Hacohen
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Debattama R Sen
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
299
|
Kuo HY, Khan KA, Kerbel RS. Antiangiogenic-immune-checkpoint inhibitor combinations: lessons from phase III clinical trials. Nat Rev Clin Oncol 2024; 21:468-482. [PMID: 38600370 DOI: 10.1038/s41571-024-00886-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2024] [Indexed: 04/12/2024]
Abstract
Antiangiogenic agents, generally antibodies or tyrosine-kinase inhibitors that target the VEGF-VEGFR pathway, are currently among the few combination partners clinically proven to improve the efficacy of immune-checkpoint inhibitors (ICIs). This benefit has been demonstrated in pivotal phase III trials across different cancer types, some with practice-changing results; however, numerous phase III trials have also had negative results. The rationale for using antiangiogenic drugs as partners for ICIs relies primarily on blocking the multiple immunosuppressive effects of VEGF and inducing several different vascular-modulating effects that can stimulate immunity, such as vascular normalization leading to increased intratumoural blood perfusion and flow, and inhibition of pro-apoptotic effects of endothelial cells on T cells, among others. Conversely, VEGF blockade can also cause changes that suppress antitumour immunity, such as increased tumour hypoxia, and reduced intratumoural ingress of co-administered ICIs. As a result, the net clinical benefits from antiangiogenic-ICI combinations will be determined by the balance between the opposing effects of VEGF signalling and its inhibition on the antitumour immune response. In this Perspective, we summarize the results from the currently completed phase III trials evaluating antiangiogenic agent-ICI combinations. We also discuss strategies to improve the efficacy of these combinations, focusing on aspects that include the deleterious functions of VEGF-VEGFR inhibition on antitumour immunity, vessel co-option as a driver of non-angiogenic tumour growth, clinical trial design, or the rationale for drug selection, dosing and scheduling.
Collapse
Affiliation(s)
- Hung-Yang Kuo
- Department of Oncology, National Taiwan University Hospital, and Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei, Taiwan.
| | - Kabir A Khan
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
| | - Robert S Kerbel
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
300
|
Li Y, Tuerxun H, Zhao Y, Liu X, Li X, Wen S, Zhao Y. The new era of lung cancer therapy: Combining immunotherapy with ferroptosis. Crit Rev Oncol Hematol 2024; 198:104359. [PMID: 38615871 DOI: 10.1016/j.critrevonc.2024.104359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 03/12/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024] Open
Abstract
Ferroptosis is an unconventional programmed cell death mode caused by phospholipid peroxidation dependent on iron. Emerging immunotherapies (especially immune checkpoint inhibitors) have the potential to enhance lung cancer patients' long-term survival. Although immunotherapy has yielded significant positive applications in some patients, there are still many mechanisms that can cause lung cancer cells to evade immunity, thus leading to the failure of targeted therapies. Immune-tolerant cancer cells are insensitive to conventional death pathways such as apoptosis and necrosis, whereas mesenchymal and metastasis-prone cancer cells are particularly vulnerable to ferroptosis, which plays a vital role in mediating immune tolerance resistance by tumors and immune cells. As a result, triggering lung cancer cell ferroptosis holds significant therapeutic potential for drug-resistant malignancies. Here, we summarize the mechanisms underlying the suppression of ferroptosis in lung cancer, highlight its function in the lung cancer immune microenvironment, and propose possible therapeutic strategies.
Collapse
Affiliation(s)
- Yawen Li
- Cancer Center, the First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Halahati Tuerxun
- Cancer Center, the First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Yixin Zhao
- Cancer Center, the First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Xingyu Liu
- Cancer Center, the First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Xi Li
- Cancer Center, the First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Shuhui Wen
- Cancer Center, the First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Yuguang Zhao
- Cancer Center, the First Hospital of Jilin University, Changchun, Jilin 130021, China.
| |
Collapse
|