251
|
Affiliation(s)
- Tie Xia
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Key Laboratory of Molecular Nanostructures and Nanotechnology, Chinese Academy of Sciences, Beijing 100190, China;
| | - Nan Li
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Key Laboratory of Molecular Nanostructures and Nanotechnology, Chinese Academy of Sciences, Beijing 100190, China;
| | - Xiaohong Fang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Key Laboratory of Molecular Nanostructures and Nanotechnology, Chinese Academy of Sciences, Beijing 100190, China;
| |
Collapse
|
252
|
|
253
|
Hensel Z, Xiao J. Single-molecule methods for studying gene regulation in vivo. Pflugers Arch 2013; 465:383-95. [PMID: 23430319 PMCID: PMC3595547 DOI: 10.1007/s00424-013-1243-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 01/30/2013] [Accepted: 01/31/2013] [Indexed: 01/25/2023]
Abstract
The recent emergence of new experimental tools employing sensitive fluorescence detection in vivo has made it possible to visualize various aspects of gene regulation at the single-molecule level in the native, intracellular context. In this review, we will first describe general considerations for in vivo, single-molecule fluorescence detection of DNA, mRNA, and protein molecules involved in gene regulation. We will then give an overview of the rapidly evolving suite of molecular tools available for observing gene regulation in vivo and discuss new insights they have brought into gene regulation.
Collapse
Affiliation(s)
- Zach Hensel
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21211, USA
| | | |
Collapse
|
254
|
Abstract
All aspects of DNA metabolism-including transcription, replication, and repair-involve motor enzymes that move along genomic DNA. These processes must all take place on chromosomes that are occupied by a large number of other proteins. However, very little is known regarding how nucleic acid motor proteins move along the crowded DNA substrates that are likely to exist in physiological settings. This review summarizes recent progress in understanding how DNA-binding motor proteins respond to the presence of other proteins that lie in their paths. We highlight recent single-molecule biophysical experiments aimed at addressing this question, with an emphasis placed on analyzing the single-molecule, ensemble biochemical, and in vivo data from a mechanistic perspective.
Collapse
Affiliation(s)
- Ilya J Finkelstein
- Department of Chemistry and Biochemistry, The University of Texas at Austin, Austin, Texas 78712, USA.
| | | |
Collapse
|
255
|
Czapla L, Grosner MA, Swigon D, Olson WK. Interplay of protein and DNA structure revealed in simulations of the lac operon. PLoS One 2013; 8:e56548. [PMID: 23457581 PMCID: PMC3572996 DOI: 10.1371/journal.pone.0056548] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 01/15/2013] [Indexed: 11/18/2022] Open
Abstract
The E. coli Lac repressor is the classic textbook example of a protein that attaches to widely spaced sites along a genome and forces the intervening DNA into a loop. The short loops implicated in the regulation of the lac operon suggest the involvement of factors other than DNA and repressor in gene control. The molecular simulations presented here examine two likely structural contributions to the in-vivo looping of bacterial DNA: the distortions of the double helix introduced upon association of the highly abundant, nonspecific nucleoid protein HU and the large-scale deformations of the repressor detected in low-resolution experiments. The computations take account of the three-dimensional arrangements of nucleotides and amino acids found in crystal structures of DNA with the two proteins, the natural rest state and deformational properties of protein-free DNA, and the constraints on looping imposed by the conformation of the repressor and the orientation of bound DNA. The predicted looping propensities capture the complex, chain-length-dependent variation in repression efficacy extracted from gene expression studies and in vitro experiments and reveal unexpected chain-length-dependent variations in the uptake of HU, the deformation of repressor, and the folding of DNA. Both the opening of repressor and the presence of HU, at levels approximating those found in vivo, enhance the probability of loop formation. HU affects the global organization of the repressor and the opening of repressor influences the levels of HU binding to DNA. The length of the loop determines whether the DNA adopts antiparallel or parallel orientations on the repressor, whether the repressor is opened or closed, and how many HU molecules bind to the loop. The collective behavior of proteins and DNA is greater than the sum of the parts and hints of ways in which multiple proteins may coordinate the packaging and processing of genetic information.
Collapse
Affiliation(s)
- Luke Czapla
- Department of Chemistry & Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Michael A. Grosner
- Department of Chemistry & Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey, United States of America
| | - David Swigon
- Department of Mathematics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Wilma K. Olson
- Department of Chemistry & Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey, United States of America
- BioMaPS Institute for Quantitative Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey, United States of America
| |
Collapse
|
256
|
Kamiyama D, Huang B. Development in the STORM. Dev Cell 2013; 23:1103-10. [PMID: 23237944 DOI: 10.1016/j.devcel.2012.10.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 10/01/2012] [Accepted: 10/01/2012] [Indexed: 12/13/2022]
Abstract
The recent invention of superresolution microscopy has brought up much excitement in the biological research community. Here, we focus on stochastic optical reconstruction microscopy/photoactivated localization microscopy (STORM/PALM) to discuss the challenges in applying superresolution microscopy to the study of developmental biology, including tissue imaging, sample preparation artifacts, and image interpretation. We also summarize new opportunities that superresolution microscopy could bring to the field of developmental biology.
Collapse
Affiliation(s)
- Daichi Kamiyama
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA.
| | | |
Collapse
|
257
|
Wang X, Montero Llopis P, Rudner DZ. Organization and segregation of bacterial chromosomes. Nat Rev Genet 2013; 14:191-203. [PMID: 23400100 DOI: 10.1038/nrg3375] [Citation(s) in RCA: 217] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The bacterial chromosome must be compacted more than 1,000-fold to fit into the compartment in which it resides. How it is condensed, organized and ultimately segregated has been a puzzle for over half a century. Recent advances in live-cell imaging and genome-scale analyses have led to new insights into these problems. We argue that the key feature of compaction is the orderly folding of DNA along adjacent segments and that this organization provides easy and efficient access for protein-DNA transactions and has a central role in driving segregation. Similar principles and common proteins are used in eukaryotes to condense and to resolve sister chromatids at metaphase.
Collapse
Affiliation(s)
- Xindan Wang
- Harvard Medical School, Department of Microbiology and Immunobiology, HIM 1025, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
258
|
Cellular organization of the transfer of genetic information. Curr Opin Microbiol 2013; 16:171-6. [PMID: 23395479 DOI: 10.1016/j.mib.2013.01.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Revised: 01/15/2013] [Accepted: 01/16/2013] [Indexed: 11/22/2022]
Abstract
Each step involved in the transfer of genetic information is spatially regulated in eukaryotic cells, as transcription, translation and mRNA degradation mostly occur in distinct functional compartments (e.g., nucleus, cytoplasm and P-bodies). At first glance in bacteria, these processes seem to take place in the same compartment - the cytoplasm - because of the conspicuous absence of membrane-enclosed organelles. However, it is becoming increasingly evident that mRNA-related processes are also spatially organized inside bacterial cells, and that this organization affects cellular function. The aims of this review are to summarize the current knowledge about this organization and to consider the mechanisms and forces shaping the cell interior. The field stands at an exciting point where new technologies are making long-standing questions amenable to experimentation.
Collapse
|
259
|
Abstract
Transcriptional regulation is at the heart of biological functions such as adaptation to a changing environment or to new carbon sources. One of the mechanisms which has been found to modulate transcription, either positively (activation) or negatively (repression), involves the formation of DNA loops. A DNA loop occurs when a protein or a complex of proteins simultaneously binds to two different sites on DNA with looping out of the intervening DNA. This simple mechanism is central to the regulation of several operons in the genome of the bacterium Escherichia coli, like the lac operon, one of the paradigms of genetic regulation. The aim of this review is to gather and discuss concepts and ideas from experimental biology and theoretical physics concerning DNA looping in genetic regulation. We first describe experimental techniques designed to show the formation of a DNA loop. We then present the benefits that can or could be derived from a mechanism involving DNA looping. Some of these are already experimentally proven, but others are theoretical predictions and merit experimental investigation. Then, we try to identify other genetic systems that could be regulated by a DNA looping mechanism in the genome of Escherichia coli. We found many operons that, according to our set of criteria, have a good chance to be regulated with a DNA loop. Finally, we discuss the proposition recently made by both biologists and physicists that this mechanism could also act at the genomic scale and play a crucial role in the spatial organization of genomes.
Collapse
|
260
|
Zarei M, Sclavi B, Cosentino Lagomarsino M. Gene silencing and large-scale domain structure of the E. coli genome. MOLECULAR BIOSYSTEMS 2013; 9:758-67. [DOI: 10.1039/c3mb25364c] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
261
|
Super-Resolution Imaging Through Stochastic Switching and Localization of Single Molecules: An Overview. SPRINGER SERIES ON FLUORESCENCE 2013. [DOI: 10.1007/4243_2013_61] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
262
|
Dempsey GT. A User’s Guide to Localization-Based Super-Resolution Fluorescence Imaging. Methods Cell Biol 2013; 114:561-92. [DOI: 10.1016/b978-0-12-407761-4.00024-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
263
|
Ritchie K, Lill Y, Sood C, Lee H, Zhang S. Single-molecule imaging in live bacteria cells. Philos Trans R Soc Lond B Biol Sci 2012; 368:20120355. [PMID: 23267188 DOI: 10.1098/rstb.2012.0355] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Bacteria, such as Escherichia coli and Caulobacter crescentus, are the most studied and perhaps best-understood organisms in biology. The advances in understanding of living systems gained from these organisms are immense. Application of single-molecule techniques in bacteria have presented unique difficulties owing to their small size and highly curved form. The aim of this review is to show advances made in single-molecule imaging in bacteria over the past 10 years, and to look to the future where the combination of implementing such high-precision techniques in well-characterized and controllable model systems such as E. coli could lead to a greater understanding of fundamental biological questions inaccessible through classic ensemble methods.
Collapse
Affiliation(s)
- Ken Ritchie
- Department of Physics, Purdue University, West Lafayette, IN 47907, USA.
| | | | | | | | | |
Collapse
|
264
|
Coltharp C, Kessler RP, Xiao J. Accurate construction of photoactivated localization microscopy (PALM) images for quantitative measurements. PLoS One 2012; 7:e51725. [PMID: 23251611 PMCID: PMC3520911 DOI: 10.1371/journal.pone.0051725] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2012] [Accepted: 11/05/2012] [Indexed: 11/25/2022] Open
Abstract
Localization-based superresolution microscopy techniques such as Photoactivated Localization Microscopy (PALM) and Stochastic Optical Reconstruction Microscopy (STORM) have allowed investigations of cellular structures with unprecedented optical resolutions. One major obstacle to interpreting superresolution images, however, is the overcounting of molecule numbers caused by fluorophore photoblinking. Using both experimental and simulated images, we determined the effects of photoblinking on the accurate reconstruction of superresolution images and on quantitative measurements of structural dimension and molecule density made from those images. We found that structural dimension and relative density measurements can be made reliably from images that contain photoblinking-related overcounting, but accurate absolute density measurements, and consequently faithful representations of molecule counts and positions in cellular structures, require the application of a clustering algorithm to group localizations that originate from the same molecule. We analyzed how applying a simple algorithm with different clustering thresholds (tThresh and dThresh) affects the accuracy of reconstructed images, and developed an easy method to select optimal thresholds. We also identified an empirical criterion to evaluate whether an imaging condition is appropriate for accurate superresolution image reconstruction with the clustering algorithm. Both the threshold selection method and imaging condition criterion are easy to implement within existing PALM clustering algorithms and experimental conditions. The main advantage of our method is that it generates a superresolution image and molecule position list that faithfully represents molecule counts and positions within a cellular structure, rather than only summarizing structural properties into ensemble parameters. This feature makes it particularly useful for cellular structures of heterogeneous densities and irregular geometries, and allows a variety of quantitative measurements tailored to specific needs of different biological systems.
Collapse
Affiliation(s)
- Carla Coltharp
- Department of Biophysics & Biophysical Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Rene P. Kessler
- Department of Biophysics & Biophysical Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Jie Xiao
- Department of Biophysics & Biophysical Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
265
|
Nishida H. Evolution of genome base composition and genome size in bacteria. Front Microbiol 2012; 3:420. [PMID: 23230432 PMCID: PMC3515811 DOI: 10.3389/fmicb.2012.00420] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 11/21/2012] [Indexed: 11/13/2022] Open
Affiliation(s)
- Hiromi Nishida
- Agricultural Bioinformatics Research Unit, Graduate School of Agricultural and Life Sciences, University of Tokyo Tokyo, Japan
| |
Collapse
|
266
|
Hakim O, Sung MH, Nakayamada S, Voss TC, Baek S, Hager GL. Spatial congregation of STAT binding directs selective nuclear architecture during T-cell functional differentiation. Genome Res 2012; 23:462-72. [PMID: 23212947 PMCID: PMC3589535 DOI: 10.1101/gr.147652.112] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Higher-order genome organization shows tissue-specific patterns. However, functional relevance and the mechanisms shaping the genome architecture are poorly understood. Here we report a profound shift from promiscuous to highly selective genome organization that accompanies the effector lineage choice of differentiating T cells. As multipotent naive cells receive antigenic signals and commit to a T helper (Th) pathway, the genome-wide contacts of a lineage-specific cytokine locus are preferentially enriched for functionally relevant genes. Despite the establishment of divergent interactomes and global reprogramming of transcription in Th1 versus Th2, the overall expression status of the contact genes is surprisingly similar between the two lineages. Importantly, during differentiation, the genomic contacts are retained and strengthened precisely at DNA binding sites of the specific lineage-determining STAT transcription factor. In cells from the specific STAT knock-out mouse, the signature cytokine locus is unable to shed the promiscuous contacts established in the naive T cells, indicating the importance of genomic STAT binding. Altogether, the global aggregation of STAT binding loci from genic and nongenic regions highlights a new role for differentiation-promoting transcription factors in direct specification of higher-order nuclear architecture through interacting with regulatory regions. Such subnuclear environments have significant implications for efficient functioning of the mature effector lymphocytes.
Collapse
Affiliation(s)
- Ofir Hakim
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | |
Collapse
|
267
|
|
268
|
Lin J, Chen H, Dröge P, Yan J. Physical organization of DNA by multiple non-specific DNA-binding modes of integration host factor (IHF). PLoS One 2012; 7:e49885. [PMID: 23166787 PMCID: PMC3498176 DOI: 10.1371/journal.pone.0049885] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 10/15/2012] [Indexed: 11/18/2022] Open
Abstract
The integration host factor (IHF) is an abundant nucleoid-associated protein and an essential co-factor for phage λ site-specific recombination and gene regulation in E. coli. Introduction of a sharp DNA kink at specific cognate sites is critical for these functions. Interestingly, the intracellular concentration of IHF is much higher than the concentration needed for site-specific interactions, suggesting that non-specific binding of IHF to DNA plays a role in the physical organization of bacterial chromatin. However, it is unclear how non-specific DNA association contributes to DNA organization. By using a combination of single DNA manipulation and atomic force microscopy imaging methods, we show here that distinct modes of non-specific DNA binding of IHF result in complex global DNA conformations. Changes in KCl and IHF concentrations, as well as tension applied to DNA, dramatically influence the degree of DNA-bending. In addition, IHF can crosslink DNA into a highly compact DNA meshwork that is observed in the presence of magnesium at low concentration of monovalent ions and high IHF-DNA stoichiometries. Our findings provide important insights into how IHF contributes to bacterial chromatin organization, gene regulation, and biofilm formation.
Collapse
Affiliation(s)
- Jie Lin
- Department of Physics, National University of Singapore, Singapore, Singapore
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
- Centre for Bioimaging Sciences, National University of Singapore, Singapore, Singapore
| | - Hu Chen
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - Peter Dröge
- Division of Molecular Genetics and Cell Biology, School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- * E-mail: (PD); (JY)
| | - Jie Yan
- Department of Physics, National University of Singapore, Singapore, Singapore
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
- Centre for Bioimaging Sciences, National University of Singapore, Singapore, Singapore
- * E-mail: (PD); (JY)
| |
Collapse
|
269
|
Cattoni DI, Fiche JB, Nöllmann M. Single-molecule super-resolution imaging in bacteria. Curr Opin Microbiol 2012; 15:758-63. [PMID: 23142583 DOI: 10.1016/j.mib.2012.10.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2012] [Revised: 09/26/2012] [Accepted: 10/15/2012] [Indexed: 10/27/2022]
Abstract
Bacteria have evolved complex, multi-component cellular machineries to carry out fundamental cellular processes such as cell division/separation, locomotion, protein secretion, DNA transcription/replication, or conjugation/competence. Diffraction of light has so far restricted the use of conventional fluorescence microscopy to reveal the composition, internal architecture and dynamics of these important machineries. This review describes some of the more recent advances on single-molecule super-resolution microscopy methods applied to bacteria and highlights their application to chemotaxis, cell division, DNA segregation, and DNA transcription machineries. Finally, we discuss some of the lessons learned from this approach, and future perspectives.
Collapse
Affiliation(s)
- D I Cattoni
- Centre de Biochimie Structurale, CNRS UMR5048, INSERM U554, Université de Montpellier, 29 rue de Navacelles, 34090 Montpellier, France
| | | | | |
Collapse
|
270
|
Studying genomic processes at the single-molecule level: introducing the tools and applications. Nat Rev Genet 2012; 14:9-22. [DOI: 10.1038/nrg3316] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
271
|
Norris V, Amar P. Chromosome Replication in Escherichia coli: Life on the Scales. Life (Basel) 2012; 2:286-312. [PMID: 25371267 PMCID: PMC4187155 DOI: 10.3390/life2040286] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2012] [Revised: 10/01/2012] [Accepted: 10/15/2012] [Indexed: 12/22/2022] Open
Abstract
At all levels of Life, systems evolve on the 'scales of equilibria'. At the level of bacteria, the individual cell must favor one of two opposing strategies and either take risks to grow or avoid risks to survive. It has been proposed in the Dualism hypothesis that the growth and survival strategies depend on non-equilibrium and equilibrium hyperstructures, respectively. It has been further proposed that the cell cycle itself is the way cells manage to balance the ratios of these types of hyperstructure so as to achieve the compromise solution of living on the two scales. Here, we attempt to re-interpret a major event, the initiation of chromosome replication in Escherichia coli, in the light of scales of equilibria. This entails thinking in terms of hyperstructures as responsible for intensity sensing and quantity sensing and how this sensing might help explain the role of the DnaA protein in initiation of replication. We outline experiments and an automaton approach to the cell cycle that should test and refine the scales concept.
Collapse
Affiliation(s)
- Vic Norris
- Theoretical Biology Unit, EA 3829, Department of Biology, University of Rouen, 76821, Mont Saint Aignan, France.
| | - Patrick Amar
- Laboratoire de Recherche en Informatique, Université Paris-Sud, and INRIA Saclay - Ile de France, AMIB Project, Orsay, France.
| |
Collapse
|
272
|
Le Chat L, Espéli O. Let's get 'Fisical' with bacterial nucleoid. Mol Microbiol 2012; 86:1285-90. [PMID: 23078263 DOI: 10.1111/mmi.12073] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2012] [Indexed: 01/01/2023]
Abstract
The mechanisms driving bacterial chromosome segregation remain poorly characterized. While a number of factors influencing chromosome segregation have been described in recent years, none of them appeared to play an essential role in the process comparable to the eukaryotic centromere/spindle complex. The research community involved in bacterial chromosome was becoming familiar with the fact that bacteria have selected multiple redundant systems to ensure correct chromosome segregation. Over the past few years a new perspective came out that entropic forces generated by the confinement of the chromosome in the crowded nucleoid shell could be sufficient to segregate the chromosome. The segregating factors would only be required to create adequate conditions for entropy to do its job. In the article by Yazdi et al. (2012) in this issue of Molecular Microbiology, this model was challenged experimentally in live Escherichia coli cells. A Fis-GFP fusion was used to follow nucleoid choreography and analyse it from a polymer physics perspective. Their results suggest strongly that E. coli nucleoids behave as self-adherent polymers. Such a structuring and the specific segregation patterns observed do not support an entropic like segregation model. Are we back to the pre-entropic era?
Collapse
Affiliation(s)
- Ludovic Le Chat
- Centre de Génétique Moléculaire, CGM, CNRS, UPR3404, Université Paris, Sud. 1 Avenue de la terrasse, 91198 Gif sur Yvette, France
| | | |
Collapse
|
273
|
Dupaigne P, Tonthat NK, Espéli O, Whitfill T, Boccard F, Schumacher MA. Molecular basis for a protein-mediated DNA-bridging mechanism that functions in condensation of the E. coli chromosome. Mol Cell 2012; 48:560-71. [PMID: 23084832 DOI: 10.1016/j.molcel.2012.09.009] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2012] [Revised: 07/26/2012] [Accepted: 09/07/2012] [Indexed: 01/10/2023]
Abstract
The E. coli chromosome is condensed into insulated regions termed macrodomains (MDs), which are essential for genomic packaging. How chromosomal MDs are specifically organized and compacted is unknown. Here, we report studies revealing the molecular basis for Terminus-containing (Ter) chromosome condensation by the Ter-specific factor MatP. MatP contains a tripartite fold with a four-helix bundle DNA-binding motif, ribbon-helix-helix and C-terminal coiled-coil. Strikingly, MatP-matS structures show that the MatP coiled-coils form bridged tetramers that flexibly link distant matS sites. Atomic force microscopy and electron microscopy studies demonstrate that MatP alone loops DNA. Mutation of key coiled-coil residues destroys looping and causes a loss of Ter condensation in vivo. Thus, these data reveal the molecular basis for a protein-mediated DNA-bridging mechanism that mediates condensation of a large chromosomal domain in enterobacteria.
Collapse
Affiliation(s)
- Pauline Dupaigne
- Centre de Génétique Moléculaire du CNRS, Associé à l'Université Paris-Sud, 91198 Gif-sur-Yvette, France
| | | | | | | | | | | |
Collapse
|
274
|
Dame RT, Espéli O, Grainger DC, Wiggins PA. Multidisciplinary perspectives on bacterial genome organization and dynamics. Mol Microbiol 2012; 86:1023-30. [DOI: 10.1111/mmi.12055] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2012] [Indexed: 11/30/2022]
Affiliation(s)
| | - Olivier Espéli
- CNRS; Centre de Génétique Moléculaire; Gif-sur-yvette Cedex; France
| | - David C. Grainger
- School of Biosciences; University of Birmingham; Edgbaston; Birmingham; B15 2TT; UK
| | - Paul A. Wiggins
- Department of Physics; University of Washington; Seattle; WA; USA
| |
Collapse
|
275
|
Coltharp C, Xiao J. Superresolution microscopy for microbiology. Cell Microbiol 2012; 14:1808-18. [PMID: 22947061 DOI: 10.1111/cmi.12024] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2012] [Revised: 08/14/2012] [Accepted: 08/16/2012] [Indexed: 11/28/2022]
Abstract
This review provides a practical introduction to superresolution microscopy from the perspective of microbiological research. Because of the small sizes of bacterial cells, superresolution methods are particularly powerful and suitable for revealing details of cellular structures that are not resolvable under conventional fluorescence light microscopy. Here we describe the methodological concepts behind three major categories of superresolution light microscopy: photoactivated localization microscopy (PALM) and stochastic optical reconstruction microscopy (STORM), structured illumination microscopy (SIM) and stimulated emission-depletion (STED) microscopy. We then present recent applications of each of these techniques to microbial systems, which have revealed novel conformations of cellular structures and described new properties of in vivo protein function and interactions. Finally, we discuss the unique issues related to implementing each of these superresolution techniques with bacterial specimens and suggest avenues for future development. The goal of this review is to provide the necessary technical background for interested microbiologists to choose the appropriate superresolution method for their biological systems, and to introduce the practical considerations required for designing and analysing superresolution imaging experiments.
Collapse
Affiliation(s)
- Carla Coltharp
- Department of Biophysics & Biophysical Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | |
Collapse
|
276
|
Vecchiarelli AG, Mizuuchi K, Funnell BE. Surfing biological surfaces: exploiting the nucleoid for partition and transport in bacteria. Mol Microbiol 2012; 86:513-23. [PMID: 22934804 DOI: 10.1111/mmi.12017] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2012] [Indexed: 12/13/2022]
Abstract
The ParA family of ATPases is responsible for transporting bacterial chromosomes, plasmids and large protein machineries. ParAs pattern the nucleoid in vivo, but how patterning functions or is exploited in transport is of considerable debate. Here we discuss the process of self-organization into patterns on the bacterial nucleoid and explore how it relates to the molecular mechanism of ParA action. We review ParA-mediated DNA partition as a general mechanism of how ATP-driven protein gradients on biological surfaces can result in spatial organization on a mesoscale. We also discuss how the nucleoid acts as a formidable diffusion barrier for large bodies in the cell, and make the case that the ParA family evolved to overcome the barrier by exploiting the nucleoid as a matrix for movement.
Collapse
Affiliation(s)
- Anthony G Vecchiarelli
- Laboratory of Molecular Biology, National Institute of Diabetes, and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892-0540, USA
| | | | | |
Collapse
|
277
|
Yun SH, Ji SC, Jeon HJ, Wang X, Kim SW, Bak G, Lee Y, Lim HM. The CnuK9E H-NS complex antagonizes DNA binding of DicA and leads to temperature-dependent filamentous growth in E. coli. PLoS One 2012; 7:e45236. [PMID: 23028867 PMCID: PMC3441716 DOI: 10.1371/journal.pone.0045236] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 08/20/2012] [Indexed: 01/07/2023] Open
Abstract
Cnu (an OriC-binding nucleoid protein) associates with H-NS. A variant of Cnu was identified as a key factor for filamentous growth of a wild-type Escherichia coli strain at 37°C. This variant (CnuK9E) bears a substitution of a lysine to glutamic acid, causing a charge reversal in the first helix. The temperature-dependent filamentous growth of E. coli bearing CnuK9E could be reversed by either lowering the temperature to 25°C or lowering the CnuK9E concentration in the cell. Gene expression analysis suggested that downregulation of dicA by CnuK9E causes a burst of dicB transcription, which, in turn, elicits filamentous growth. In vivo assays indicated that DicA transcriptionally activates its own gene, by binding to its operator in a temperature-dependent manner. The antagonizing effect of CnuK9E with H-NS on DNA-binding activity of DicA was stronger at 37°C, presumably due to the lower operator binding of DicA at 37°C. These data suggest that the temperature-dependent negative effect of CnuK9E on DicA binding plays a major role in filamentous growth. The C-terminus of DicA shows significant amino acid sequence similarity to the DNA-binding domains of RovA and SlyA, regulators of pathogenic genes in Yersinia and Salmonella, respectively, which also show better DNA-binding activity at 25°C.
Collapse
Affiliation(s)
- Sang Hoon Yun
- Department of Biology, College of Biological Sciences and Biotechnology, Chungnam National University, Taejon, Republic of Korea
| | - Sang Chun Ji
- Department of Biology, College of Biological Sciences and Biotechnology, Chungnam National University, Taejon, Republic of Korea
| | - Heung Jin Jeon
- Department of Biology, College of Biological Sciences and Biotechnology, Chungnam National University, Taejon, Republic of Korea
| | - Xun Wang
- Department of Biology, College of Biological Sciences and Biotechnology, Chungnam National University, Taejon, Republic of Korea
| | - Si Wouk Kim
- Department of Environmental Engineering, Pioneer Research Center for Controlling of Harmful Algal Blooming, Chosun University, Gwangju, Republic of Korea
| | - Geunu Bak
- Department of Chemistry, KAIST, Daejeon, Republic of Korea
| | - Younghoon Lee
- Department of Chemistry, KAIST, Daejeon, Republic of Korea
| | - Heon M. Lim
- Department of Biology, College of Biological Sciences and Biotechnology, Chungnam National University, Taejon, Republic of Korea
- * E-mail:
| |
Collapse
|
278
|
Ray JCJ, Igoshin OA. Interplay of gene expression noise and ultrasensitive dynamics affects bacterial operon organization. PLoS Comput Biol 2012; 8:e1002672. [PMID: 22956903 PMCID: PMC3431296 DOI: 10.1371/journal.pcbi.1002672] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 07/16/2012] [Indexed: 11/30/2022] Open
Abstract
Bacterial chromosomes are organized into polycistronic cotranscribed operons, but the evolutionary pressures maintaining them are unclear. We hypothesized that operons alter gene expression noise characteristics, resulting in selection for or against maintaining operons depending on network architecture. Mathematical models for 6 functional classes of network modules showed that three classes exhibited decreased noise and 3 exhibited increased noise with same-operon cotranscription of interacting proteins. Noise reduction was often associated with a decreased chance of reaching an ultrasensitive threshold. Stochastic simulations of the lac operon demonstrated that the predicted effects of transcriptional coupling hold for a complex network module. We employed bioinformatic analysis to find overrepresentation of noise-minimizing operon organization compared with randomized controls. Among constitutively expressed physically interacting protein pairs, higher coupling frequencies appeared at lower expression levels, where noise effects are expected to be dominant. Our results thereby suggest an important role for gene expression noise, in many cases interacting with an ultrasensitive switch, in maintaining or selecting for operons in bacterial chromosomes. In some species, most notably bacteria, chromosomal genes are arranged into clusters called operons. In operons, the process of transcription is physically coupled: a single pass of the RNA polymerase enzyme reading that region of the chromosome simultaneously produces messenger RNA encoding multiple proteins. So far, we do not have a satisfying explanation for what evolutionary forces have maintained operons on bacterial chromosomes. We hypothesized that different types of interactions between operon-coded proteins affect how strongly operons are selected for between two genes. The proposed mechanism for this effect is that operons correlate gene expression noise, changing how it manifests in the post-translational network depending on the type of protein interaction. Mathematical models demonstrate that operons reduce noise for some types of interactions but not others. We found that operon-dependent noise reduction has an underlying dependence on surprisingly high sensitivity of the network to the ratio of proteins from each gene. Databases of genetic information show that E. coli has operons more frequently than random if operons reduce noise for the type of interaction various gene pairs have, but not otherwise. Our study thus provides an example of how the architecture of post-translational networks affects bacterial evolution.
Collapse
Affiliation(s)
- J. Christian J Ray
- Department of Bioengineering, Rice University, Houston, Texas, United States of America
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Oleg A. Igoshin
- Department of Bioengineering, Rice University, Houston, Texas, United States of America
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
279
|
Abstract
In dividing cells, chromosome duplication once per generation must be coordinated with faithful segregation of newly replicated chromosomes and with cell growth and division. Many of the mechanistic details of bacterial replication elongation are well established. However, an understanding of the complexities of how replication initiation is controlled and coordinated with other cellular processes is emerging only slowly. In contrast to eukaryotes, in which replication and segregation are separate in time, the segregation of most newly replicated bacterial genetic loci occurs sequentially soon after replication. We compare the strategies used by chromosomes and plasmids to ensure their accurate duplication and segregation and discuss how these processes are coordinated spatially and temporally with growth and cell division. We also describe what is known about the three conserved families of ATP-binding proteins that contribute to chromosome segregation and discuss their inter-relationships in a range of disparate bacteria.
Collapse
|
280
|
Norris V, Menu-Bouaouiche L, Becu JM, Legendre R, Norman R, Rosenzweig JA. Hyperstructure interactions influence the virulence of the type 3 secretion system in yersiniae and other bacteria. Appl Microbiol Biotechnol 2012; 96:23-36. [PMID: 22949045 DOI: 10.1007/s00253-012-4325-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 07/18/2012] [Accepted: 07/18/2012] [Indexed: 01/06/2023]
Abstract
A paradigm shift in our thinking about the intricacies of the host-parasite interaction is required that considers bacterial structures and their relationship to bacterial pathogenesis. It has been proposed that interactions between extended macromolecular assemblies, termed hyperstructures (which include multiprotein complexes), determine bacterial phenotypes. In particular, it has been proposed that hyperstructures can alter virulence. Two such hyperstructures have been characterized in both pathogenic and nonpathogenic bacteria. Present within a number of both human and plant Gram-negative pathogens is the type 3 secretion system (T3SS) injectisome which in some bacteria serves to inject toxic effector proteins directly into targeted host cells resulting in their paralysis and eventual death (but which in other bacteria prevents the death of the host). The injectisome itself comprises multiple protein subunits, which are all essential for its function. The degradosome is another multiprotein complex thought to be involved in cooperative RNA decay and processing of mRNA transcripts and has been very well characterized in nonpathogenic Escherichia coli. Recently, experimental evidence has suggested that a degradosome exists in the yersiniae as well and that its interactions within the pathogens modulate their virulence. Here, we explore the possibility that certain interactions between hyperstructures, like the T3SS and the degradosome, can ultimately influence the virulence potential of the pathogen based upon the physical locations of hyperstructures within the cell.
Collapse
Affiliation(s)
- Vic Norris
- Department of Biology, University of Rouen, 76821 Mont-Saint-Aignan, Rouen, France.
| | | | | | | | | | | |
Collapse
|
281
|
Mitchell-Jordan S, Chen H, Franklin S, Stefani E, Bentolila LA, Vondriska TM. Features of endogenous cardiomyocyte chromatin revealed by super-resolution STED microscopy. J Mol Cell Cardiol 2012; 53:552-8. [PMID: 22846883 DOI: 10.1016/j.yjmcc.2012.07.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 07/06/2012] [Accepted: 07/19/2012] [Indexed: 11/30/2022]
Abstract
Despite the extensive knowledge of the functional unit of chromatin-the nucleosome-for which structural information exists at the atomic level, little is known about the endogenous structure of eukaryotic genomes. Chromosomal capture techniques and genome-wide chromatin immunoprecipitation and next generation sequencing have provided complementary insight into global features of chromatin structure, but these methods do not directly measure structural features of the genome in situ. This lack of insight is particularly troublesome in terminally differentiated cells which must reorganize their genomes for large scale gene expression changes in the absence of cell division. For example, cardiomyocytes, which are fully committed and reside in interphase, are capable of massive gene expression changes in response to physiological stimuli, but the global changes in chromatin structure that enable such transcriptional changes are unknown. The present study addressed this problem utilizing super-resolution stimulated emission depletion (STED) microscopy to directly measure chromatin features in mammalian cells. We demonstrate that immunolabeling of histone H3 coupled with STED imaging reveals chromatin domains on a scale of 40-70 nm, several folds better than the resolution of conventional confocal microscopy. An analytical workflow is established to detect changes in chromatin structure following acute stimuli and used to investigate rearrangements in cardiomyocyte genomes following agonists that induce cellular hypertrophy. This approach is readily adaptable to investigation of other nuclear features using a similar antibody-based labeling technique and enables direct measurements of chromatin domain changes in response to physiological stimuli.
Collapse
Affiliation(s)
- Scherise Mitchell-Jordan
- Department of Anesthesiology, David Geffen School of Medicine, University of California, Los Angeles, USA
| | | | | | | | | | | |
Collapse
|
282
|
Abstract
Members of the histone-like nucleoid-structuring (H-NS) family of proteins have been shown to play important roles in silencing gene expression and in nucleoid compaction. In Pseudomonas aeruginosa, the two H-NS family members MvaT and MvaU are thought to bind the same AT-rich regions of the chromosome and function coordinately to control a common set of genes. Here we present evidence that the loss of both MvaT and MvaU cannot be tolerated because it results in the production of Pf4 phage that superinfect and kill cells or inhibit their growth. Using a ClpXP-based protein depletion system in combination with transposon mutagenesis, we identify mutants of P. aeruginosa that can tolerate the depletion of MvaT in an ΔmvaU mutant background. Many of these mutants contain insertions in genes encoding components, assembly factors, or regulators of type IV pili or contain insertions in genes of the prophage Pf4. We demonstrate that cells that no longer produce type IV pili or that no longer produce the replicative form of the Pf4 genome can tolerate the loss of both MvaT and MvaU. Furthermore, we show that the loss of both MvaT and MvaU results in an increase in expression of Pf4 genes and that cells that cannot produce type IV pili are resistant to infection by Pf4 phage. Our findings suggest that type IV pili are the receptors for Pf4 phage and that the essential activities of MvaT and MvaU are to repress the expression of Pf4 genes.
Collapse
|
283
|
Finan K, Torella JP, Kapanidis AN, Cook PR. T7 RNA polymerase functions in vitro without clustering. PLoS One 2012; 7:e40207. [PMID: 22768341 PMCID: PMC3388079 DOI: 10.1371/journal.pone.0040207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 06/06/2012] [Indexed: 11/18/2022] Open
Abstract
Many nucleic acid polymerases function in clusters known as factories. We investigate whether the RNA polymerase (RNAP) of phage T7 also clusters when active. Using ‘pulldowns’ and fluorescence correlation spectroscopy we find that elongation complexes do not interact in vitro with a Kd<1 µM. Chromosome conformation capture also reveals that genes located 100 kb apart on the E. coli chromosome do not associate more frequently when transcribed by T7 RNAP. We conclude that if clustering does occur in vivo, it must be driven by weak interactions, or mediated by a phage-encoded protein.
Collapse
Affiliation(s)
- Kieran Finan
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Joseph P. Torella
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, United Kingdom
| | - Achillefs N. Kapanidis
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, United Kingdom
| | - Peter R. Cook
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
284
|
Chromosome conformation capture assays in bacteria. Methods 2012; 58:212-20. [PMID: 22776362 DOI: 10.1016/j.ymeth.2012.06.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 06/27/2012] [Accepted: 06/27/2012] [Indexed: 01/17/2023] Open
Abstract
Bacterial chromosomes must be compacted by three-orders of magnitude to fit within the cell. While such compaction could in theory yield disordered structures, it is becoming increasingly clear that bacterial chromosomes are in fact arranged in regular and reproducible fashions and that their configurations are tightly connected to fundamental processes such as chromosome segregation. Nonetheless, due to throughput and resolution limitations associated with traditional assays, many question regarding bacterial chromosome structure and its relation to genome function remain. Here, I review the related technologies, chromosome conformation capture (3C) and chromosome conformation capture carbon copy (5C), which my collaborators and I recently introduced as tools to probe the high-resolution folding of entire bacterial genomes. These technologies utilize covalent cross-linking and proximity ligation to facilitate the measurement of the spatial positioning of hundreds of genomic loci, thereby opening the door to high-throughput studies of bacterial chromosome structure. Hence, 3C and 5C represent powerful new tools for assaying the three-dimensional architecture of bacterial genomes.
Collapse
|
285
|
Zhao Y, Zhan Q. Electric oscillation and coupling of chromatin regulate chromosome packaging and transcription in eukaryotic cells. Theor Biol Med Model 2012; 9:27. [PMID: 22759343 PMCID: PMC3472328 DOI: 10.1186/1742-4682-9-27] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 06/18/2012] [Indexed: 11/10/2022] Open
Abstract
Transcription in eukaryotic cells is efficiently spatially and temporally regulated, but how this genome-wide regulation is achieved at the physical level remains unclear, given the limited transcriptional resources within the nucleus and the sporadic linear arrangements of genes within chromosomes. In this article, we provide a physical model for chromatin cluster formation, based on oscillation synchronization and clustering of different chromatin regions, enabling efficient systemic genome-wide regulation of transcription. We also propose that the electromagnetic field generated by oscillation of chromatin is the driving force for chromosome packing during M phase. We further explore the physical mechanisms for chromatin oscillation cluster (COC) formation, and long-distance chromatin kissing. The COC model, which connects the dots between chromatin epigenetic modification and higher-order nuclear organization, answers many important questions, such as how the CCCTC-binding factor CTCF contributes to higher-order chromatin organization, and the mechanism of sequential transcriptional activation of HOX clusters. In the COC model, long non-coding RNAs function as oscillation clustering adaptors to recruit chromatin modification factors to specific sub-nuclear regions, fine-tuning transcriptional events in the chromatin oscillation clusters. Introns of eukaryotic genes have evolved to promote the clustering of transcriptionally co-regulated genes in these sub-nuclear regions.
Collapse
Affiliation(s)
- Yue Zhao
- State key laboratory of molecular oncology, Cancer Institute & Hospital of Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100021, China.
| | | |
Collapse
|
286
|
Benza VG, Bassetti B, Dorfman KD, Scolari VF, Bromek K, Cicuta P, Lagomarsino MC. Physical descriptions of the bacterial nucleoid at large scales, and their biological implications. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2012; 75:076602. [PMID: 22790781 DOI: 10.1088/0034-4885/75/7/076602] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Recent experimental and theoretical approaches have attempted to quantify the physical organization (compaction and geometry) of the bacterial chromosome with its complement of proteins (the nucleoid). The genomic DNA exists in a complex and dynamic protein-rich state, which is highly organized at various length scales. This has implications for modulating (when not directly enabling) the core biological processes of replication, transcription and segregation. We overview the progress in this area, driven in the last few years by new scientific ideas and new interdisciplinary experimental techniques, ranging from high space- and time-resolution microscopy to high-throughput genomics employing sequencing to map different aspects of the nucleoid-related interactome. The aim of this review is to present the wide spectrum of experimental and theoretical findings coherently, from a physics viewpoint. In particular, we highlight the role that statistical and soft condensed matter physics play in describing this system of fundamental biological importance, specifically reviewing classic and more modern tools from the theory of polymers. We also discuss some attempts toward unifying interpretations of the current results, pointing to possible directions for future investigation.
Collapse
Affiliation(s)
- Vincenzo G Benza
- Dipartimento di Fisica e Matematica, Università dell'Insubria, Como, Italy
| | | | | | | | | | | | | |
Collapse
|
287
|
The Escherichia coli SMC complex, MukBEF, shapes nucleoid organization independently of DNA replication. J Bacteriol 2012; 194:4669-76. [PMID: 22753058 DOI: 10.1128/jb.00957-12] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
SMC (structural maintenance of chromosomes) complexes function ubiquitously in organizing and maintaining chromosomes. Functional fluorescent derivatives of the Escherichia coli SMC complex, MukBEF, form foci that associate with the replication origin region (ori). MukBEF impairment results in mispositioning of ori and other loci in steady-state cells. These observations led to an earlier proposal that MukBEF positions new replicated sister oris. We show here that MukBEF generates and maintains the cellular positioning of chromosome loci independently of DNA replication. Rapid impairment of MukBEF function by depleting a Muk component in the absence of DNA replication leads to loss of MukBEF foci as well as mispositioning of ori and other loci, while rapid Muk synthesis leads to rapid MukBEF focus formation but slow restoration of normal chromosomal locus positioning.
Collapse
|
288
|
Galactose repressor mediated intersegmental chromosomal connections in Escherichia coli. Proc Natl Acad Sci U S A 2012; 109:11336-41. [PMID: 22733746 DOI: 10.1073/pnas.1208595109] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
By microscopic analysis of fluorescent-labeled GalR, a regulon-specific transcription factor in Escherichia coli, we observed that GalR is present in the cell as aggregates (one to three fluorescent foci per cell) in nongrowing cells. To investigate whether these foci represent GalR-mediated association of some of the GalR specific DNA binding sites (gal operators), we used the chromosome conformation capture (3C) method in vivo. Our 3C data demonstrate that, in stationary phase cells, many of the operators distributed around the chromosome are interacted. By the use of atomic force microscopy, we showed that the observed remote chromosomal interconnections occur by direct interactions between DNA-bound GalR not involving any other factors. Mini plasmid DNA circles with three or five operators positioned at defined loci showed GalR-dependent loops of expected sizes of the intervening DNA segments. Our findings provide unique evidence that a transcription factor participates in organizing the chromosome in a three-dimensional structure. We believe that these chromosomal connections increase local concentration of GalR for coordinating the regulation of widely separated target genes, and organize the chromosome structure in space, thereby likely contributing to chromosome compaction.
Collapse
|
289
|
Summers EL, Meindl K, Usón I, Mitra AK, Radjainia M, Colangeli R, Alland D, Arcus VL. The structure of the oligomerization domain of Lsr2 from Mycobacterium tuberculosis reveals a mechanism for chromosome organization and protection. PLoS One 2012; 7:e38542. [PMID: 22719899 PMCID: PMC3374832 DOI: 10.1371/journal.pone.0038542] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 05/07/2012] [Indexed: 11/21/2022] Open
Abstract
Lsr2 is a small DNA-binding protein present in mycobacteria and related actinobacteria that regulates gene expression and influences the organization of bacterial chromatin. Lsr2 is a dimer that binds to AT-rich regions of chromosomal DNA and physically protects DNA from damage by reactive oxygen intermediates (ROI). A recent structure of the C-terminal DNA-binding domain of Lsr2 provides a rationale for its interaction with the minor groove of DNA, its preference for AT-rich tracts, and its similarity to other bacterial nucleoid-associated DNA-binding domains. In contrast, the details of Lsr2 dimerization (and oligomerization) via its N-terminal domain, and the mechanism of Lsr2-mediated chromosomal cross-linking and protection is unknown. We have solved the structure of the N-terminal domain of Lsr2 (N-Lsr2) at 1.73 Å resolution using crystallographic ab initio approaches. The structure shows an intimate dimer of two ß–ß–a motifs with no close homologues in the structural databases. The organization of individual N-Lsr2 dimers in the crystal also reveals a mechanism for oligomerization. Proteolytic removal of three N-terminal residues from Lsr2 results in the formation of an anti-parallel β-sheet between neighboring molecules and the formation of linear chains of N-Lsr2. Oligomerization can be artificially induced using low concentrations of trypsin and the arrangement of N-Lsr2 into long chains is observed in both monoclinic and hexagonal crystallographic space groups. In solution, oligomerization of N-Lsr2 is also observed following treatment with trypsin. A change in chromosomal topology after the addition of trypsin to full-length Lsr2-DNA complexes and protection of DNA towards DNAse digestion can be observed using electron microscopy and electrophoresis. These results suggest a mechanism for oligomerization of Lsr2 via protease-activation leading to chromosome compaction and protection, and concomitant down-regulation of large numbers of genes. This mechanism is likely to be relevant under conditions of stress where cellular proteases are known to be upregulated.
Collapse
Affiliation(s)
- Emma L. Summers
- Department of Biological Sciences, University of Waikato, Hamilton, New Zealand
| | - Kathrin Meindl
- Instituto de Biología Molecular de Barcelona, Barcelona Science Park, Barcelona, Spain
| | - Isabel Usón
- Institucio Catalana de Recerca i Estudis Avançats at Instituto de Biología Molecular de Barcelona, Barcelona Science Park, Barcelona, Spain
| | - Alok K. Mitra
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Mazdak Radjainia
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Roberto Colangeli
- Division of Infectious Disease and the Center for Emerging Pathogens, Department of Medicine, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, New Jersey, United States of America
| | - David Alland
- Division of Infectious Disease and the Center for Emerging Pathogens, Department of Medicine, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, New Jersey, United States of America
| | - Vickery L. Arcus
- Department of Biological Sciences, University of Waikato, Hamilton, New Zealand
- * E-mail:
| |
Collapse
|
290
|
Bakshi S, Siryaporn A, Goulian M, Weisshaar JC. Superresolution imaging of ribosomes and RNA polymerase in live Escherichia coli cells. Mol Microbiol 2012; 85:21-38. [PMID: 22624875 DOI: 10.1111/j.1365-2958.2012.08081.x] [Citation(s) in RCA: 344] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Quantitative spatial distributions of ribosomes (S2-YFP) and RNA polymerase (RNAP; β'-yGFP) in live Escherichia coli are measured by superresolution fluorescence microscopy. In moderate growth conditions, nucleoid-ribosome segregation is strong, and RNAP localizes to the nucleoid lobes. The mean copy numbers per cell are 4600 RNAPs and 55,000 ribosomes. Only 10-15% of the ribosomes lie within the densest part of the nucleoid lobes, and at most 4% of the RNAPs lie in the two ribosome-rich endcaps. The predominant observed diffusion coefficient of ribosomes is D(ribo) = 0.04 µm(2) s(-1), attributed to free mRNA being translated by one or more 70S ribosomes. We find no clear evidence of subdiffusion, as would arise from tethering of ribosomes to the DNA. The degree of DNA-ribosome segregation strongly suggests that in E. coli most translation occurs on free mRNA transcripts that have diffused into the ribosome-rich regions. Both RNAP and ribosome radial distributions extend to the cytoplasmic membrane, consistent with the transertion hypothesis. However, few if any RNAP copies lie near the membrane of the endcaps. This suggests that if transertion occurs, it exerts a direct radially expanding force on the nucleoid, but not a direct axially expanding force.
Collapse
Affiliation(s)
- Somenath Bakshi
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
291
|
Biteen JS. Extending the tools of single-molecule fluorescence imaging to problems in microbiology. Mol Microbiol 2012; 85:1-4. [PMID: 22571513 DOI: 10.1111/j.1365-2958.2012.08089.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Single-molecule fluorescence microscopy enables non-invasive, high-sensitivity, high-resolution imaging, and this direct, quantitative method has recently been extended to understanding organization, dynamics and cooperativity of macromolecules in prokaryotes. In this issue of Molecular Microbiology, Bakshi et al. (2012) examine fluorescently labelled ribosomes and RNA polymerase (RNAP) in live Escherichia coli cells. By localizing individual molecules with 30 nm scale accuracy, they resolve the spatial distribution of RNAP (and thus of the E. coli nucleoid) and of the ribosomes, measure diffusion rates, and sensitively count protein copy numbers. This work represents an exciting achievement in terms of applying biophysical methods to live cells and quantitatively answering important questions in physiologically relevant conditions. In particular, the authors directly relate the positions, dynamics, and numbers of ribosomes and RNAP to transcription and translation in E. coli. The results indicate that, since the ribosomes and the nucleoid are well segregated, translation and transcription must be predominantly uncoupled. As well, the radial extension of ribosomes and RNAP to the cytoplasmic membrane is consistent with the hypothesis of transertion (simultaneous insertion of membrane proteins upon translation).
Collapse
Affiliation(s)
- Julie S Biteen
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48104, USA.
| |
Collapse
|
292
|
EbfC (YbaB) is a new type of bacterial nucleoid-associated protein and a global regulator of gene expression in the Lyme disease spirochete. J Bacteriol 2012; 194:3395-406. [PMID: 22544270 DOI: 10.1128/jb.00252-12] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nearly every known species of Eubacteria encodes a homolog of the Borrelia burgdorferi EbfC DNA-binding protein. We now demonstrate that fluorescently tagged EbfC associates with B. burgdorferi nucleoids in vivo and that chromatin immunoprecipitation (ChIP) of wild-type EbfC showed it to bind in vivo to sites throughout the genome, two hallmarks of nucleoid-associated proteins. Comparative RNA sequencing (RNA-Seq) of a mutant B. burgdorferi strain that overexpresses EbfC indicated that approximately 4.5% of borrelial genes are significantly impacted by EbfC. The ebfC gene was highly expressed in rapidly growing bacteria, but ebfC mRNA was undetectable in stationary phase. Combined with previous data showing that EbfC induces bends in DNA, these results demonstrate that EbfC is a nucleoid-associated protein and lead to the hypothesis that B. burgdorferi utilizes cellular fluctuations in EbfC levels to globally control transcription of numerous genes. The ubiquity of EbfC proteins in Eubacteria suggests that these results apply to a wide range of pathogens and other bacteria.
Collapse
|
293
|
Thiel A, Valens M, Vallet-Gely I, Espéli O, Boccard F. Long-range chromosome organization in E. coli: a site-specific system isolates the Ter macrodomain. PLoS Genet 2012; 8:e1002672. [PMID: 22532809 PMCID: PMC3330122 DOI: 10.1371/journal.pgen.1002672] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 03/11/2012] [Indexed: 01/24/2023] Open
Abstract
The organization of the Escherichia coli chromosome into a ring composed of four macrodomains and two less-structured regions influences the segregation of sister chromatids and the mobility of chromosomal DNA. The structuring of the terminus region (Ter) into a macrodomain relies on the interaction of the protein MatP with a 13-bp target called matS repeated 23 times in the 800-kb-long domain. Here, by using a new method that allows the transposition of any chromosomal segment at a defined position on the genetic map, we reveal a site-specific system that restricts to the Ter region a constraining process that reduces DNA mobility and delays loci segregation. Remarkably, the constraining process is regulated during the cell cycle and occurs only when the Ter MD is associated with the division machinery at mid-cell. The change of DNA properties does not rely on the presence of a trans-acting mechanism but rather involves a cis-effect acting at a long distance from the Ter region. Two specific 12-bp sequences located in the flanking Left and Right macrodomains and a newly identified protein designated YfbV conserved with MatP through evolution are required to impede the spreading of the constraining process to the rest of the chromosome. Our results unravel a site-specific system required to restrict to the Ter region the consequences of anchoring the Ter MD to the division machinery. The large size of genomes compared to cell dimensions imposes an extensive compaction of chromosomes compatible with various processes of DNA metabolism, such as gene expression or segregation of the genetic information. Most bacterial genomes are circular molecules, and DNA replication proceeds bidirectionally from a single origin to an opposite region where replication forks meet. In the bacteria Escherichia coli, the long-range organization of the chromosome relies on the presence of mechanisms that structure large regions called macrodomains. The macrodomain containing the terminus of replication is structured by a specific organization system involving the binding of the protein MatP to 23 matS sites scattered over the 800-kb-long Ter region. In this report, we describe a site-specific insulation system that restricts to the Ter region the consequences of the mechanism structuring the Ter macrodomain. We identified two 12-bp sequences flanking the Ter macrodomain and one protein that are required to isolate the Ter region from the other parts of the chromosome.
Collapse
Affiliation(s)
- Axel Thiel
- CNRS, Centre de Génétique Moléculaire, UPR3404, Gif-sur-Yvette, France
- Université Paris-Sud, Orsay, France
| | - Michèle Valens
- CNRS, Centre de Génétique Moléculaire, UPR3404, Gif-sur-Yvette, France
- Université Paris-Sud, Orsay, France
| | - Isabelle Vallet-Gely
- CNRS, Centre de Génétique Moléculaire, UPR3404, Gif-sur-Yvette, France
- Université Paris-Sud, Orsay, France
| | - Olivier Espéli
- CNRS, Centre de Génétique Moléculaire, UPR3404, Gif-sur-Yvette, France
- Université Paris-Sud, Orsay, France
| | - Frédéric Boccard
- CNRS, Centre de Génétique Moléculaire, UPR3404, Gif-sur-Yvette, France
- Université Paris-Sud, Orsay, France
- * E-mail:
| |
Collapse
|
294
|
Ali SS, Xia B, Liu J, Navarre WW. Silencing of foreign DNA in bacteria. Curr Opin Microbiol 2012; 15:175-81. [DOI: 10.1016/j.mib.2011.12.014] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 12/20/2011] [Accepted: 12/23/2011] [Indexed: 10/14/2022]
|
295
|
Macvanin M, Adhya S. Architectural organization in E. coli nucleoid. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1819:830-5. [PMID: 22387214 DOI: 10.1016/j.bbagrm.2012.02.012] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 02/06/2012] [Accepted: 02/09/2012] [Indexed: 10/28/2022]
Abstract
In contrast to organized hierarchical structure of eukaryotic chromosome, bacterial chromosomes are believed not to have such structures. The genomes of bacteria are condensed into a compact structure called the nucleoid. Among many architectural, histone-like proteins which associate with the chromosomal DNA is HU which is implicated in folding DNA into a compact structure by bending and wrapping DNA. Unlike the majority of other histone-like proteins, HU is highly conserved in eubacteria and unique in its ability to bind RNA. Furthermore, an HU mutation profoundly alters the cellular transcription profile and consequently has global effects on physiology and the lifestyle of E. coli. Here we provide a short overview of the mechanisms by which the nucleoid is organized into different topological domains. We propose that HU is a major player in creating domain-specific superhelicities and thus influences the transcription profile from the constituent promoters. This article is part of a Special Issue entitled: Chromatin in time and space.
Collapse
Affiliation(s)
- Mirjana Macvanin
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|
296
|
Stratmann T, Pul Ü, Wurm R, Wagner R, Schnetz K. RcsB-BglJ activates the Escherichia coli leuO gene, encoding an H-NS antagonist and pleiotropic regulator of virulence determinants. Mol Microbiol 2012; 83:1109-23. [DOI: 10.1111/j.1365-2958.2012.07993.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
297
|
Towards a molecular view of transcriptional control. Curr Opin Struct Biol 2012; 22:160-7. [PMID: 22296921 DOI: 10.1016/j.sbi.2012.01.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 01/06/2012] [Accepted: 01/09/2012] [Indexed: 11/21/2022]
Abstract
The accumulation of experimental data over recent years has fueled theoretical work on how transcription factors (TFs) search for and recognise their DNA target sites, how they interact with one another, or with other DNA-binding proteins, and how they cope with the compaction of DNA within bacterial nucleoids or within eukaryotic chromatin. Many models have been built to study the kinetic, thermodynamic and mechanistic aspects of these questions. In some cases they have resulted in a relatively clear consensus view, but a number of questions remain controversial. We present an overview of recent work, with an emphasis on models that provide, or can inspire, a better understanding of transcriptional control at a detailed molecular level.
Collapse
|
298
|
Deng B, Melnik S, Cook PR. Transcription factories, chromatin loops, and the dysregulation of gene expression in malignancy. Semin Cancer Biol 2012; 23:65-71. [PMID: 22285981 DOI: 10.1016/j.semcancer.2012.01.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 01/03/2012] [Indexed: 02/02/2023]
Abstract
Pathologists recognize and classify cancers according to nuclear morphology, but there remains little scientific explanation of why malignant nuclei possess their characteristic features, or how those features are related to dysregulated function. This essay will discuss a basic structure-function axis that connects one central architectural motif in the nucleus-the chromatin loop-to the vital nuclear function of transcription. The loop is attached to a "transcription factory" through components of the transcription machinery (either polymerases or transcriptional activators/repressors), and the position of a gene within a loop determines how often that gene is transcribed. Then, dysregulated transcription is tightly coupled to alterations in structure, and vice versa. We also speculate on how the experimental approaches being used to analyze loops and factories might be applied to study the problems of tumour initiation and progression.
Collapse
Affiliation(s)
- Binwei Deng
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | | | | |
Collapse
|
299
|
Galagan J, Lyubetskaya A, Gomes A. ChIP-Seq and the complexity of bacterial transcriptional regulation. Curr Top Microbiol Immunol 2012; 363:43-68. [PMID: 22983621 DOI: 10.1007/82_2012_257] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Transcription factors (TFs) play a central role in regulating gene expression in all bacteria. Yet, until recently, studies of TF binding were limited to a small number of factors at a few genomic locations. Chromatin immunoprecipitation followed by sequencing enables mapping of binding sites for TFs in a global and high-throughput fashion. The NIAID funded TB systems biology project http://www.broadinstitute.org/annotation/tbsysbio/home.html aims to map the binding sites for every transcription factor in the genome of Mycobacterium tuberculosis (MTB), the causative agent of human TB. ChIP-Seq data already released through TBDB.org have provided new insight into the mechanisms of TB pathogenesis. But in addition, data from MTB are beginning to challenge many simplifying assumptions associated with gene regulation in all bacteria. In this chapter, we review the global aspects of TF binding in MTB and discuss the implications of these data for our understanding of bacterial gene regulation. We begin by reviewing the canonical model of bacterial transcriptional regulation using the lac operon as the standard paradigm. We then review the use of ChIP-Seq to map the binding sites of DNA-binding proteins and the application of this method to mapping TF binding sites in MTB. Finally, we discuss two aspects of the binding discovered by ChIP-Seq that were unexpected given the canonical model: the substantial binding outside the proximal promoter region and the large number of weak binding sites.
Collapse
Affiliation(s)
- James Galagan
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA.
| | | | | |
Collapse
|
300
|
Lim CJ, Whang YR, Kenney LJ, Yan J. Gene silencing H-NS paralogue StpA forms a rigid protein filament along DNA that blocks DNA accessibility. Nucleic Acids Res 2011; 40:3316-28. [PMID: 22187157 PMCID: PMC3333869 DOI: 10.1093/nar/gkr1247] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Nucleoid-associated proteins are bacterial proteins that are responsible for chromosomal DNA compaction and global gene regulation. One such protein is Escherichia coli Histone-like nucleoid structuring protein (H-NS) which functions as a global gene silencer. Whereas the DNA-binding mechanism of H-NS is well-characterized, its paralogue, StpA which is also able to silence genes is less understood. Here we show that StpA is similar to H-NS in that it is able to form a rigid filament along DNA. In contrast to H-NS, the StpA filament interacts with a naked DNA segment to cause DNA bridging which results in simultaneous stiffening and bridging of DNA. DNA accessibility is effectively blocked after the formation of StpA filament on DNA, suggesting rigid filament formation is the important step in promoting gene silencing. We also show that >1 mM magnesium promotes higher order DNA condensation, suggesting StpA may also play a role in chromosomal DNA packaging.
Collapse
Affiliation(s)
- Ci Ji Lim
- NUS Graduate school for Integrative Sciences and Engineering, National University of Singapore, 28 Medical Drive, Singapore, 119077, Singapore
| | | | | | | |
Collapse
|