251
|
Qiu LQ, Stumpo DJ, Blackshear PJ. Myeloid-specific tristetraprolin deficiency in mice results in extreme lipopolysaccharide sensitivity in an otherwise minimal phenotype. THE JOURNAL OF IMMUNOLOGY 2012; 188:5150-9. [PMID: 22491258 DOI: 10.4049/jimmunol.1103700] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Tristetraprolin (TTP) is a mRNA-destabilizing protein that binds to AU-rich elements in labile transcripts, such as the mRNA encoding TNF, and promotes their deadenylation and degradation. TTP-deficient (knockout [KO]) mice exhibit an early-onset, severe inflammatory phenotype, with cachexia, erosive arthritis, left-sided cardiac valvulitis, myeloid hyperplasia, and autoimmunity, which can be prevented by injections of anti-TNF Abs, or interbreeding with TNF receptor-deficient mice. To determine whether the excess TNF that causes the TTP KO phenotype is produced by myeloid cells, we performed myeloid-specific disruption of Zfp36, the gene encoding TTP. We documented the lack of TTP expression in LPS-stimulated bone marrow-derived macrophages from the mice, whereas fibroblasts expressed TTP mRNA and protein normally in response to serum. The mice exhibited a minimal phenotype, characterized by slight slowing of weight gain late in the first year of life, compared with the early-onset, severe weight loss and inflammation seen in the TTP KO mice. Instead, the myeloid-specific TTP KO mice were highly and abnormally susceptible to a low-dose LPS challenge, with rapid development of typical endotoxemia signs and extensive organ damage, and elevations of serum TNF levels to 110-fold greater than control. We conclude that myeloid-specific TTP deficiency does not phenocopy complete TTP deficiency in C57BL/6 mice under normal laboratory conditions, implying contributions from other cell types to the complete phenotype. However, myeloid cell TTP plays a critical role in protecting mice against LPS-induced septic shock, primarily through its posttranscriptional regulation of TNF mRNA stability.
Collapse
Affiliation(s)
- Lian-Qun Qiu
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | | | | |
Collapse
|
252
|
UU/UA dinucleotide frequency reduction in coding regions results in increased mRNA stability and protein expression. Mol Ther 2012; 20:954-9. [PMID: 22434136 PMCID: PMC3345983 DOI: 10.1038/mt.2012.29] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
UU and UA dinucleotides are rare in mammalian genes and may offer natural selection against endoribonuclease-mediated mRNA decay. This study hypothesized that reducing UU and UA (UW) dinucleotides in the mRNA-coding sequence, including the codons and the dicodon boundaries, may promote resistance to mRNA decay, thereby increasing protein production. Indeed, protein expression from UW-reduced coding regions of enhanced green fluorescent protein (EGFP), luciferase, interferon-α, and hepatitis B surface antigen (HBsAg) was higher when compared to the wild-type protein expression. The steady-state level of UW-reduced EGFP mRNA was higher and the mRNA half-life was also longer. Ectopic expression of the endoribonuclease, RNase L, did not reduce the wild type or UW-reduced mRNA. A mutant form of the mRNA decay-promoting protein, tristetraprolin (TTP/ZFP36), which has a point mutation in the zinc-finger domain (C124R), was used. The wild-type EGFP mRNA but not the UW-reduced mRNA responded to the dominant negative action of the C124R ZFP36/TTP mutant. The results indicate the efficacy of the described rational approach to formulate a general scheme for boosting recombinant protein production in mammalian cells.
Collapse
|
253
|
Sanduja S, Blanco FF, Dixon DA. The roles of TTP and BRF proteins in regulated mRNA decay. WILEY INTERDISCIPLINARY REVIEWS-RNA 2012; 2:42-57. [PMID: 21278925 DOI: 10.1002/wrna.28] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Adenylate- and uridylate-rich element (ARE) motifs are cis-acting elements present in the 3′ untranslated region of mRNA transcripts that encode many inflammation- and cancer-associated genes. The TIS11 family of RNA-binding proteins, composed of tristetraprolin (TTP) and butyrate response factors 1 and 2 (BRF-1 and -2), plays a critical role in regulating the expression of ARE-containing mRNAs. Through their ability to bind and target ARE-containing mRNAs for rapid degradation, this class of RNA-binding proteins serves a fundamental role in limiting the expression of a number of critical genes, thereby exerting anti-inflammatory and anti-cancer effects. Regulation of TIS11 family members occurs on a number of levels through cellular signaling events to control their transcription, mRNA turnover, phosphorylation status, cellular localization, association with other proteins, and proteosomal degradation, all of which impact TIS11 members' ability to promote ARE-mediated mRNA decay along with decay-independent functions. This review summarizes our current understanding of posttranscriptional regulation of ARE-containing gene expression by TIS11 family members and discusses their role in maintaining normal physiological processes and the pathological consequences in their absence.
Collapse
Affiliation(s)
- Sandhya Sanduja
- Department of Biological Sciences and Cancer Research Center, University of South Carolina, Columbia, SC, USA
| | | | | |
Collapse
|
254
|
Jin WJ, Chen CF, Liao HY, Gong LL, Yuan XH, Zhao BB, Zhang D, Feng X, Liu JJ, Wang Y, Chen GF, Yan HP, He YW. Downregulation of the AU-rich RNA-binding protein ZFP36 in chronic HBV patients: implications for anti-inflammatory therapy. PLoS One 2012; 7:e33356. [PMID: 22428029 PMCID: PMC3302862 DOI: 10.1371/journal.pone.0033356] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 02/13/2012] [Indexed: 12/12/2022] Open
Abstract
Inflammation caused by chronic hepatitis B virus (HBV) infection is associated with the development of cirrhosis and hepatocellular carcinoma; however, the mechanisms by which HBV infection induces inflammation and inflammatory cytokine production remain largely unknown. We analyzed the gene expression patterns of lymphocytes from chronic HBV-infected patients and found that the expression of ZFP36, an AU-rich element (ARE)-binding protein, was dramatically reduced in CD4(+) and CD8(+) T lymphocytes from chronic HBV patients. ZFP36 expression was also reduced in CD14(+) monocytes and in total PBMCs from chronic HBV patients. To investigate the functional consequences of reduced ZFP36 expression, we knocked down ZFP36 in PBMCs from healthy donors using siRNA. siRNA-mediated silencing of ZFP36 resulted in dramatically increased expression of multiple inflammatory cytokines, most of which were also increased in the plasma of chronic HBV patients. Furthermore, we found that IL-8 and RANTES induced ZFP36 downregulation, and this effect was mediated through protein kinase C. Importantly, we found that HBsAg stimulated PBMCs to express IL-8 and RANTES, resulting in decreased ZFP36 expression. Our results suggest that an inflammatory feedback loop involving HBsAg, ZFP36, and inflammatory cytokines may play a critical role in the pathogenesis of chronic HBV and further indicate that ZFP36 may be an important target for anti-inflammatory therapy during chronic HBV infection.
Collapse
Affiliation(s)
- Wen-Jing Jin
- Key Laboratory of Systems Biology of Pathogens, Ministry of Health, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Dongcheng District, Beijing, China
| | - Cai-Feng Chen
- Key Laboratory of Systems Biology of Pathogens, Ministry of Health, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Dongcheng District, Beijing, China
| | - Hui-Yu Liao
- Center for Infection and Immunity, YouAn Hospital, The Beijing Capital Medical University, Beijing, China
| | - Lu-Lu Gong
- Key Laboratory of Systems Biology of Pathogens, Ministry of Health, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Dongcheng District, Beijing, China
| | - Xiao-Hui Yuan
- Key Laboratory of Systems Biology of Pathogens, Ministry of Health, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Dongcheng District, Beijing, China
| | - Bin-Bin Zhao
- Key Laboratory of Systems Biology of Pathogens, Ministry of Health, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Dongcheng District, Beijing, China
| | - Ding Zhang
- Key Laboratory of Systems Biology of Pathogens, Ministry of Health, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Dongcheng District, Beijing, China
| | - Xia Feng
- Center for Infection and Immunity, YouAn Hospital, The Beijing Capital Medical University, Beijing, China
| | - Jing-Jun Liu
- Key Laboratory of Systems Biology of Pathogens, Ministry of Health, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Dongcheng District, Beijing, China
| | - Yu Wang
- Department of Immunology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Guo-Feng Chen
- Fibrosis Noninvasive Diagnosis and Treatment Center, 302 Hospital, Beijing, China
| | - Hui-Ping Yan
- Center for Infection and Immunity, YouAn Hospital, The Beijing Capital Medical University, Beijing, China
| | - You-Wen He
- Key Laboratory of Systems Biology of Pathogens, Ministry of Health, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Dongcheng District, Beijing, China
- Department of Immunology, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
255
|
Schott J, Stoecklin G. Networks controlling mRNA decay in the immune system. WILEY INTERDISCIPLINARY REVIEWS-RNA 2012; 1:432-56. [PMID: 21956941 DOI: 10.1002/wrna.13] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The active control of mRNA degradation has emerged as a key regulatory mechanism required for proper gene expression in the immune system. An adenosine/uridine (AU)-rich element (ARE) is at the heart of a first regulatory system that promotes the rapid degradation of a multitude of cytokine and chemokine mRNAs. AREs serve as binding sites for a number of regulatory proteins that either destabilize or stabilize the mRNA. Several kinase pathways regulate the activity of ARE-binding proteins and thereby coordinate the expression of their target mRNAs. Small regulatory micro (mi)-RNAs represent a second system that enhances the degradation of several mRNAs encoding important components of signal transduction cascades that are activated during adaptive and innate immune responses. Specific miRNAs are important for the differentiation of T helper cells, class switch recombination in B cells, and the maturation of dendritic cells. Excitement in this area of research is fueled by the discovery of novel RNA elements and regulatory proteins that exert control over specific mRNAs, as exemplified by an endonuclease that was found to directly cleave interleukin-6 mRNA. Together, these systems make up an extensive regulatory network that controls decay rates of individual mRNAs in a precise manner and thereby orchestrates the dynamic expression of many factors essential for adaptive and innate immune responses. In this review, we provide an overview of relevant factors regulated at the level of mRNA stability, summarize RNA-binding proteins and miRNAs that control their degradation rates, and discuss signaling pathways operating within this regulatory network.
Collapse
Affiliation(s)
- Johanna Schott
- Helmholtz Junior Research Group Posttranscriptional Control of Gene Expression, German Cancer Research Center, DKFZ-ZMBH Alliance, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | | |
Collapse
|
256
|
Ness GC, Edelman JL, Brooks PA. Involvement of tristetraprolin in transcriptional activation of hepatic 3-hydroxy-3-methylglutaryl coenzyme A reductase by insulin. Biochem Biophys Res Commun 2012; 420:178-82. [PMID: 22405826 DOI: 10.1016/j.bbrc.2012.02.138] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 02/24/2012] [Indexed: 11/28/2022]
Abstract
Several AU-rich RNA binding element (ARE) proteins were investigated for their possible effects on transcription of hepatic 3-hydroxy-3-methyglutaryl coenzyme A reductase (HMGR) in normal rats. Using in vivo electroporation, four different siRNAs to each ARE protein were introduced together with HMGR promoter (-325 to +20) luciferase construct and compared to saline controls. All four siRNAs to tristetraprolin (TTP) completely eliminated transcription from the HMGR promoter construct. Since insulin acts to rapidly increase hepatic HMGR transcription, the effect of TTP siRNA on induction by insulin was tested. The 3-fold stimulation by insulin was eliminated by this treatment. In comparison, siRNA to AU RNA binding protein/enoyl coenzyme A hydratase (AUH) had no effect. These findings indicate a role for TTP in the insulin-mediated activation of hepatic HMGR transcription.
Collapse
Affiliation(s)
- Gene C Ness
- Department of Molecular Medicine, College of Medicine, University of South Florida, Tampa, FL 33612, USA.
| | | | | |
Collapse
|
257
|
Lavoie-Lamoureux A, Beauchamp G, Quessy S, Martin JG, Lavoie JP. Systemic inflammation and priming of peripheral blood leukocytes persist during clinical remission in horses with heaves. Vet Immunol Immunopathol 2012; 146:35-45. [DOI: 10.1016/j.vetimm.2012.01.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 12/22/2011] [Accepted: 01/23/2012] [Indexed: 01/14/2023]
|
258
|
Qi MY, Wang ZZ, Zhang Z, Shao Q, Zeng A, Li XQ, Li WQ, Wang C, Tian FJ, Li Q, Zou J, Qin YW, Brewer G, Huang S, Jing Q. AU-rich-element-dependent translation repression requires the cooperation of tristetraprolin and RCK/P54. Mol Cell Biol 2012; 32:913-928. [PMID: 22203041 PMCID: PMC3295194 DOI: 10.1128/mcb.05340-11] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Accepted: 12/20/2011] [Indexed: 11/20/2022] Open
Abstract
AU-rich elements (AREs), residing in the 3' untranslated region (UTR) of many labile mRNAs, are important cis-acting elements that modulate the stability of these mRNAs by collaborating with trans-acting factors such as tristetraprolin (TTP). AREs also regulate translation, but the underlying mechanism is not fully understood. Here we examined the function and mechanism of TTP in ARE-mRNA translation. Through a luciferase-based reporter system, we used knockdown, overexpression, and tethering assays in 293T cells to demonstrate that TTP represses ARE reporter mRNA translation. Polyribosome fractionation experiments showed that TTP shifts target mRNAs to lighter fractions. In murine RAW264.7 macrophages, knocking down TTP produces significantly more tumor necrosis factor alpha (TNF-α) than the control, while the corresponding mRNA level has a marginal change. Furthermore, knockdown of TTP increases the rate of biosynthesis of TNF-α, suggesting that TTP can exert effects at translational levels. Finally, we demonstrate that the general translational repressor RCK may cooperate with TTP to regulate ARE-mRNA translation. Collectively, our studies reveal a novel function of TTP in repressing ARE-mRNA translation and that RCK is a functional partner of TTP in promoting TTP-mediated translational repression.
Collapse
Affiliation(s)
- Mei-Yan Qi
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Graduate School of Chinese Academy of Sciences & Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Zhi-Zhang Wang
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Graduate School of Chinese Academy of Sciences & Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Zhuo Zhang
- Department of Cardiology, Changhai Hospital, Shanghai, China
| | - Qin Shao
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Graduate School of Chinese Academy of Sciences & Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - An Zeng
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Graduate School of Chinese Academy of Sciences & Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Xiang-Qi Li
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Graduate School of Chinese Academy of Sciences & Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Wen-Qing Li
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Graduate School of Chinese Academy of Sciences & Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Chen Wang
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Graduate School of Chinese Academy of Sciences & Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Fu-Ju Tian
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Graduate School of Chinese Academy of Sciences & Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Qing Li
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Graduate School of Chinese Academy of Sciences & Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Jun Zou
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Graduate School of Chinese Academy of Sciences & Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Yong-Wen Qin
- Department of Cardiology, Changhai Hospital, Shanghai, China
| | - Gary Brewer
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Graduate School of Chinese Academy of Sciences & Shanghai Jiao-Tong University School of Medicine, Shanghai, China
- Department of Molecular Genetics, Microbiology & Immunology, UMDNJ-Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | - Shuang Huang
- Department of Cardiology, Changhai Hospital, Shanghai, China
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, Georgia, USA
| | - Qing Jing
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Graduate School of Chinese Academy of Sciences & Shanghai Jiao-Tong University School of Medicine, Shanghai, China
- Department of Cardiology, Changhai Hospital, Shanghai, China
| |
Collapse
|
259
|
Ramos SBV. Characterization of DeltaN-Zfp36l2 mutant associated with arrest of early embryonic development and female infertility. J Biol Chem 2012; 287:13116-27. [PMID: 22367205 DOI: 10.1074/jbc.m111.330837] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The zinc finger protein 36-like 2, Zfp36l2, has been implicated in female mouse infertility, because an amino-terminal truncation mutation (ΔN-Zfp36l2) leads to two-cell stage arrest of embryos derived from the homozygous mutant female gamete. Zfp36l2 is a member of the tristetraprolin (TTP) family of CCCH tandem zinc finger proteins that can bind to transcripts containing AU-rich elements (ARE), resulting in deadenylation and destabilization of these transcripts. I show here that the mouse Zfp36l2 is composed of two exons and a single intron, encoding a polypeptide of 484 amino acids. I observed that ΔN-Zfp36l2 protein is similar to both wild-type Zfp36l2 and TTP (Zfp36) in that it shuttles between the cytoplasm and nucleus, binds to RNAs containing AREs, and promotes deadenylation of a model ARE transcript in a cell-based co-transfection assay. Surprisingly, in contrast to TTP, Zfp36l2 mRNA and protein were rapidly down-regulated upon LPS exposure in bone marrow-derived macrophages. The ΔN-Zfp36l2 protein was substantially more resistant to stimulus-induced down-regulation than the WT. I postulate that the embryonic arrest linked to the ΔN-Zfp36l2 truncation might be related to its resistance to stimulus-induced down-regulation.
Collapse
Affiliation(s)
- Silvia B V Ramos
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, University of North Carolina, School of Medicine, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
260
|
Deng H, Liu H, Li X, Xiao J, Wang S. A CCCH-type zinc finger nucleic acid-binding protein quantitatively confers resistance against rice bacterial blight disease. PLANT PHYSIOLOGY 2012; 158:876-89. [PMID: 22158700 PMCID: PMC3271775 DOI: 10.1104/pp.111.191379] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Bacterial blight is a devastating disease of rice (Oryza sativa) caused by Xanthomonas oryzae pv oryzae (Xoo). Zinc finger proteins harboring the motif with three conserved cysteine residues and one histidine residue (CCCH) belong to a large family. Although at least 67 CCCH-type zinc finger protein genes have been identified in the rice genome, their functions are poorly understood. Here, we report that one of the rice CCCH-type zinc finger proteins, C3H12, containing five typical CX(8)-CX(5)-CX(3)-H zinc finger motifs, is involved in the rice-Xoo interaction. Activation of C3H12 partially enhanced resistance to Xoo, accompanied by the accumulation of jasmonic acid (JA) and induced expression of JA signaling genes in rice. In contrast, knockout or suppression of C3H12 resulted in partially increased susceptibility to Xoo, accompanied by decreased levels of JA and expression of JA signaling genes in rice. C3H12 colocalized with a minor disease resistance quantitative trait locus to Xoo, and the enhanced resistance of randomly chosen plants in the quantitative trait locus mapping population correlated with an increased expression level of C3H12. The C3H12 protein localized in the nucleus and possessed nucleic acid-binding activity in vitro. These results suggest that C3H12, as a nucleic acid-binding protein, positively and quantitatively regulates rice resistance to Xoo and that its function is likely associated with the JA-dependent pathway.
Collapse
|
261
|
Belarbi K, Jopson T, Tweedie D, Arellano C, Luo W, Greig NH, Rosi S. TNF-α protein synthesis inhibitor restores neuronal function and reverses cognitive deficits induced by chronic neuroinflammation. J Neuroinflammation 2012; 9:23. [PMID: 22277195 PMCID: PMC3298520 DOI: 10.1186/1742-2094-9-23] [Citation(s) in RCA: 220] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 01/25/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Chronic neuroinflammation is a hallmark of several neurological disorders associated with cognitive loss. Activated microglia and secreted factors such as tumor necrosis factor (TNF)-α are key mediators of neuroinflammation and may contribute to neuronal dysfunction. Our study was aimed to evaluate the therapeutic potential of a novel analog of thalidomide, 3,6'-dithiothalidomide (DT), an agent with anti-TNF-α activity, in a model of chronic neuroinflammation. METHODS Lipopolysaccharide or artificial cerebrospinal fluid was infused into the fourth ventricle of three-month-old rats for 28 days. Starting on day 29, animals received daily intraperitoneal injections of DT (56 mg/kg/day) or vehicle for 14 days. Thereafter, cognitive function was assessed by novel object recognition, novel place recognition and Morris water maze, and animals were euthanized 25 min following water maze probe test evaluation. RESULTS Chronic LPS-infusion was characterized by increased gene expression of the proinflammatory cytokines TNF-α and IL-1β in the hippocampus. Treatment with DT normalized TNF-α levels back to control levels but not IL-1β. Treatment with DT attenuated the expression of TLR2, TLR4, IRAK1 and Hmgb1, all genes involved in the TLR-mediated signaling pathway associated with classical microglia activation. However DT did not impact the numbers of MHC Class II immunoreactive cells. Chronic neuroinflammation impaired novel place recognition, spatial learning and memory function; but it did not impact novel object recognition. Importantly, treatment with DT restored cognitive function in LPS-infused animals and normalized the fraction of hippocampal neurons expressing the plasticity-related immediate-early gene Arc. CONCLUSION Our data demonstrate that the TNF-α synthesis inhibitor DT can significantly reverse hippocampus-dependent cognitive deficits induced by chronic neuroinflammation. These results suggest that TNF-α is a critical mediator of chronic neuroinflammation-induced neuronal dysfunction and cognitive impairment and targeting its synthesis could provide an effective therapeutic approach to several human neurodegenerative diseases.
Collapse
Affiliation(s)
- Karim Belarbi
- Brain and Spinal Injury Center, University of California, San Francisco, California, USA
| | | | | | | | | | | | | |
Collapse
|
262
|
MAPK usage in periodontal disease progression. JOURNAL OF SIGNAL TRANSDUCTION 2012; 2012:308943. [PMID: 22315682 PMCID: PMC3270463 DOI: 10.1155/2012/308943] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Accepted: 10/05/2011] [Indexed: 12/12/2022]
Abstract
In periodontal disease, host recognition of bacterial constituents, including lipopolysaccharide (LPS), induces p38 MAPK activation and subsequent inflammatory cytokine expression, favoring osteoclastogenesis and increased net bone resorption in the local periodontal environment. In this paper, we discuss evidence that the p38/MAPK-activated protein kinase-2 (MK2) signaling axis is needed for periodontal disease progression: an orally administered p38α inhibitor reduced the progression of experimental periodontal bone loss by reducing inflammation and cytokine expression. Subsequently, the significance of p38 signaling was confirmed with RNA interference to attenuate MK2-reduced cytokine expression and LPS-induced alveolar bone loss. MAPK phosphatase-1 (MKP-1), a negative regulator of MAPK activation, was also critical for periodontal disease progression. In MPK-1-deficient mice, p38-sustained activation increased osteoclast formation and bone loss, whereas MKP-1 overexpression dampened p38 signaling and subsequent cytokine expression. Finally, overexpression of the p38/MK2 target RNA-binding tristetraprolin (TTP) decreased mRNA stability of key inflammatory cytokines at the posttranscriptional level, thereby protecting against periodontal inflammation. Collectively, these studies highlight the importance of p38 MAPK signaling in immune cytokine production and periodontal disease progression.
Collapse
|
263
|
Shi JX, Su X, Xu J, Zhang WY, Shi Y. MK2 posttranscriptionally regulates TNF-α-induced expression of ICAM-1 and IL-8 via tristetraprolin in human pulmonary microvascular endothelial cells. Am J Physiol Lung Cell Mol Physiol 2012; 302:L793-9. [PMID: 22268119 DOI: 10.1152/ajplung.00339.2011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Tristetraprolin (TTP), a substrate of p38 mitogen-activated protein kinase (MAPK)-activated protein kinase 2 (MK2), is an RNA-binding protein that binds to AU-rich elements (AREs) in the 3'-untranslated region (3'-UTR) of its target mRNAs and accelerates mRNA degradation. A previous study by our group showed that MK2 regulates tumor necrosis factor-α (TNF-α)-induced expression of intercellular adhesion molecule-1 (ICAM-1) and interleukin-8 (IL-8) in human lung microvascular endothelial cells; however, the downstream protein of MK2 remains unknown. Interestingly, both ICAM-1 and IL-8 have AREs in the 3'-UTR of their mRNAs. In the present study, we performed experiments to determine whether MK2 regulates TNF-α-induced expression of ICAM-1 and IL-8 via TTP in human pulmonary microvascular endothelial cells (HPMECs). The study revealed that MK2 silencing significantly reduced the half-lives of ICAM-1 and IL-8 mRNAs in TNF-α-stimulated HPMECs. TTP phosphorylation levels were decreased in MK2-silenced cells. TTP silencing led to mRNA stabilization of ICAM-1 and IL-8 and upregulation of protein production following TNF-α stimulation. These results, together with our previous study and others, suggest that MK2, in HPMECs, regulates TNF-α-induced expression of ICAM-1 and IL-8 via TTP at the mRNA decay level.
Collapse
Affiliation(s)
- Jia-Xin Shi
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing University School of Medicine, China
| | | | | | | | | |
Collapse
|
264
|
Sanduja S, Blanco FF, Young LE, Kaza V, Dixon DA. The role of tristetraprolin in cancer and inflammation. Front Biosci (Landmark Ed) 2012; 17:174-88. [PMID: 22201737 DOI: 10.2741/3920] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Messenger RNA decay is a critical mechanism to control the expression of many inflammation- and cancer-associated genes. These transcripts are targeted for rapid degradation through AU-rich element (ARE) motifs present in the mRNA 3' untranslated region (3'UTR). Tristetraprolin (TTP) is an RNA-binding protein that plays a significant role in regulating the expression of ARE-containing mRNAs. Through its ability to bind AREs and target the bound mRNA for rapid degradation, TTP can limit the expression of a number of critical genes frequently overexpressed in inflammation and cancer. Regulation of TTP occurs on multiple levels through cellular signaling events to control transcription, mRNA turnover, phosphorylation status, cellular localization, association with other proteins, and proteosomal degradation, all of which impact TTP's ability to promote ARE-mediated mRNA decay along with decay-independent functions of TTP. This review summarizes the current understanding of post-transcriptional regulation of ARE-containing gene expression by TTP and discusses its role in maintaining homeostasis and the pathological consequences of losing TTP expression.
Collapse
Affiliation(s)
- Sandhya Sanduja
- Department of Biological Sciences and Cancer Research Center, University of South Carolina, Columbia, SC 29203, USA
| | | | | | | | | |
Collapse
|
265
|
Abstract
The cytoplasmic events that control mammalian gene expression, primarily mRNA stability and translation, potently influence the cellular response to internal and external signals. The ubiquitous RNA-binding protein (RBP) HuR is one of the best-studied regulators of cytoplasmic mRNA fate. Through its post-transcriptional influence on specific target mRNAs, HuR can alter the cellular response to proliferative, stress, apoptotic, differentiation, senescence, inflammatory and immune stimuli. In light of its central role in important cellular functions, HuR's role in diseases in which these responses are aberrant is increasingly appreciated. Here, we review the mechanisms that control HuR function, its influence on target mRNAs, and how impairment in HuR-governed gene expression programs impact upon different disease processes. We focus on HuR's well-recognized implication in cancer and chronic inflammation, and discuss emerging studies linking HuR to cardiovascular, neurological, and muscular pathologies. We also discuss the progress, potential, and challenges of targeting HuR therapeutically.
Collapse
Affiliation(s)
- Subramanya Srikantan
- Laboratory of Molecular Biology and Immunology, NIA-IRP, NIH, Baltimore, MD 21224, USA
| | | |
Collapse
|
266
|
Kedar VP, Zucconi BE, Wilson GM, Blackshear PJ. Direct binding of specific AUF1 isoforms to tandem zinc finger domains of tristetraprolin (TTP) family proteins. J Biol Chem 2011; 287:5459-71. [PMID: 22203679 DOI: 10.1074/jbc.m111.312652] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tristetraprolin (TTP) is the prototype of a family of CCCH tandem zinc finger proteins that can bind to AU-rich elements in mRNAs and promote their decay. TTP binds to mRNA through its central tandem zinc finger domain; it then promotes mRNA deadenylation, considered to be the rate-limiting step in eukaryotic mRNA decay. We found that TTP and its related family members could bind to certain isoforms of another AU-rich element-binding protein, HNRNPD/AUF1, as well as a related protein, laAUF1. The interaction domain within AUF1p45 appeared to be a C-terminal "GY" region, and the interaction domain within TTP was the tandem zinc finger domain. Surprisingly, binding of AUF1p45 to TTP occurred even with TTP mutants that lacked RNA binding activity. In cell extracts, binding of AUF1p45 to TTP potentiated TTP binding to ARE-containing RNA probes, as determined by RNA gel shift assays; AUF1p45 did not bind to the RNA probes under these conditions. Using purified, recombinant proteins and a synthetic RNA target in FRET assays, we demonstrated that AUF1p45, but not AUF1p37, increased TTP binding affinity for RNA ∼5-fold. These data suggest that certain isoforms of AUF1 can serve as "co-activators" of TTP family protein binding to RNA. The results raise interesting questions about the ability of AUF1 isoforms to regulate the mRNA binding and decay-promoting activities of TTP and its family members as well as the ability of AUF1 proteins to serve as possible physical links between TTP and other mRNA decay proteins and structures.
Collapse
Affiliation(s)
- Vishram P Kedar
- Laboratory of Signal Transduction, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | | | | | | |
Collapse
|
267
|
Abstract
MicroRNAs (miRNAs) are important regulators of gene expression in the immune system. In a few short years, their mechanism of action has been described in various cell lineages within the immune system, targets have been defined and their unique contributions to immune cell function have been examined. Certain miRNAs serve in important negative feedback loops in the immune system, whereas others serve to amplify the response of the immune system by repressing inhibitors of the response. Here, we review some of the better understood mechanisms as well as some emerging concepts of miRNA function. Future work will likely involve defining the function of specific miRNAs in specific immune cell lineages and to utilize them in the design of therapeutic strategies for diseases involving the immune system.
Collapse
|
268
|
Hamilton T, Li X, Novotny M, Pavicic PG, Datta S, Zhao C, Hartupee J, Sun D. Cell type- and stimulus-specific mechanisms for post-transcriptional control of neutrophil chemokine gene expression. J Leukoc Biol 2011; 91:377-83. [PMID: 22167720 DOI: 10.1189/jlb.0811404] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
mRNAs encoding inflammatory chemokines that recruit neutrophils frequently exhibit short half-lives that serve to limit their expression under inappropriate conditions but are often prolonged to ensure adequate levels during inflammatory response. Extracellular stimuli that modulate the stability of such mRNAs may be the same as the transcriptional activator, as is the case with TLR ligands, or may cooperate with independent transcriptional stimuli, as with IL-17, which extends the half-life of TNF-induced transcripts. These different stimuli engage independent signaling pathways that target different instability mechanisms distinguished by dependence on different regulatory nucleotide sequence motifs within the 3'UTRs, which involve that action of different mRNA-binding proteins. The selective use of these pathways by different stimuli and in distinct cell populations provides the potential for tailoring of chemokine expression patterns to meet specific needs in different pathophysiologic circumstances.
Collapse
Affiliation(s)
- Thomas Hamilton
- Cleveland Clinic Foundation, 9500 Euclid Ave., Cleveland, OH 44195-0001, USA.
| | | | | | | | | | | | | | | |
Collapse
|
269
|
Abstract
Many lines of evidence demonstrate that prostaglandins play an important role in cancer, and enhanced synthesis of prostaglandin E(2) (PGE(2)) is often observed in various human malignancies often associated with poor prognosis. PGE(2) synthesis is initiated with the release of arachidonic acid by phospholipase enzymes, where it is then converted into the intermediate prostaglandin prostaglandin H(2) (PGH(2)) by members of the cyclooxygenase family. The synthesis of PGE(2) from PGH(2) is facilitated by three different PGE synthases, and functional PGE(2) can promote tumor growth by binding to four EP receptors to activate signaling pathways that control cell proliferation, migration, apoptosis, and angiogenesis. An integral method of controlling gene expression is by posttranscriptional mechanisms that regulate mRNA stability and protein translation. Messenger RNA regulatory elements typically reside within the 3' untranslated region (3'UTR) of the transcript and play a critical role in targeting specific mRNAs for posttranscriptional regulation through microRNA (miRNA) binding and adenylate- and uridylate-rich element RNA-binding proteins. In this review, we highlight the current advances in our understanding of the impact these RNA sequence elements have upon regulating PGE(2) levels. We also identify various RNA sequence elements consistently observed within the 3'UTRs of the genes involved in the PGE(2) pathway, indicating these binding sites for miRNAs and RNA-binding proteins to be central regulators of PGE(2) synthesis and function. These findings may provide a rationale for the development of new therapeutic approaches to control tumor growth and metastasis promoted by elevated PGE(2) levels.
Collapse
Affiliation(s)
- Ashleigh E. Moore
- Department of Biological Sciences and Center for Colon Cancer Research, University of South Carolina, Columbia, SC, USA
| | - Lisa E. Young
- Novartis Institutes for Biomedical Research, RNAi Therapeutics, Cambridge, MA, USA
| | - Dan A. Dixon
- Department of Biological Sciences and Center for Colon Cancer Research, University of South Carolina, Columbia, SC, USA
| |
Collapse
|
270
|
Kim JK, Lee SM, Suk K, Lee WH. A novel pathway responsible for lipopolysaccharide-induced translational regulation of TNF-α and IL-6 expression involves protein kinase C and fascin. THE JOURNAL OF IMMUNOLOGY 2011; 187:6327-34. [PMID: 22102721 DOI: 10.4049/jimmunol.1100612] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Fascin, as a substrate of protein kinase C (PKC), is a well-known cytoskeletal regulatory protein required for cell migration, invasion, and adhesion in normal and cancer cells. In an effort to identify the role of fascin in PKC-mediated cellular signaling, its expression was suppressed by stable transfection of specific short hairpin RNAs (shRNAs) in mouse monocytic leukemia RAW264.7 cells. Suppression of fascin expression resulted in impaired cellular migration and invasion through extracellular matrix proteins. Unexpectedly, the specific shRNA transfectants exhibited a marked reduction in LPS-induced expression of TNF-α and IL-6 by blocking the translation of their mRNAs. Transient transfection assay using a luciferase expression construct containing the 3' untranslated region of TNF-α or IL-6 mRNA revealed a significant reduction in both LPS- and PMA- (the direct activator of PKC) induced reporter activity in cells transfected with fascin-specific shRNA, indicating that fascin-mediated translational regulation targeted 3' untranslated region. Furthermore, LPS-induced translational activation of reporter expression was blocked by a pharmacological inhibitor of PKC, and the dominant-negative form of PKCα attenuated LPS-induced translational activation. The same type of regulation was also observed in the human monocytic leukemia cell line THP-1 and in mouse peritoneal macrophages. These data demonstrate the involvement of fascin in the PKC-mediated translational regulation of TNF-α and IL-6 expression during the LPS response.
Collapse
Affiliation(s)
- Jae-Kwan Kim
- School of Life Sciences and Biotechnology, Kyungpook National University, Daegu 702-701, Korea
| | | | | | | |
Collapse
|
271
|
Baillet A, Le Bouffant R, Volff JN, Luangpraseuth A, Poumerol E, Thépot D, Pailhoux E, Livera G, Cotinot C, Mandon-Pépin B. TOPAZ1, a novel germ cell-specific expressed gene conserved during evolution across vertebrates. PLoS One 2011; 6:e26950. [PMID: 22069478 PMCID: PMC3206057 DOI: 10.1371/journal.pone.0026950] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Accepted: 10/06/2011] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND We had previously reported that the Suppression Subtractive Hybridization (SSH) approach was relevant for the isolation of new mammalian genes involved in oogenesis and early follicle development. Some of these transcripts might be potential new oocyte and granulosa cell markers. We have now characterized one of them, named TOPAZ1 for the Testis and Ovary-specific PAZ domain gene. PRINCIPAL FINDINGS Sheep and mouse TOPAZ1 mRNA have 4,803 bp and 4,962 bp open reading frames (20 exons), respectively, and encode putative TOPAZ1 proteins containing 1,600 and 1653 amino acids. They possess PAZ and CCCH domains. In sheep, TOPAZ1 mRNA is preferentially expressed in females during fetal life with a peak during prophase I of meiosis, and in males during adulthood. In the mouse, Topaz1 is a germ cell-specific gene. TOPAZ1 protein is highly conserved in vertebrates and specifically expressed in mouse and sheep gonads. It is localized in the cytoplasm of germ cells from the sheep fetal ovary and mouse adult testis. CONCLUSIONS We have identified a novel PAZ-domain protein that is abundantly expressed in the gonads during germ cell meiosis. The expression pattern of TOPAZ1, and its high degree of conservation, suggests that it may play an important role in germ cell development. Further characterization of TOPAZ1 may elucidate the mechanisms involved in gametogenesis, and particularly in the RNA silencing process in the germ line.
Collapse
Affiliation(s)
- Adrienne Baillet
- INRA, UMR 1198 Biologie du Développement et Reproduction, Jouy-en-Josas, France
- ENVA, Maisons Alfort, France
| | - Ronan Le Bouffant
- CEA, DSV/DRR/SEGG/LDRG, Laboratory of Differentiation and Radiobiology of the Gonads, Unit of Gametogenesis and Genotoxicity, Fontenay aux Roses, France
| | - Jean Nicolas Volff
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, CNRS, INRA, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Alix Luangpraseuth
- INRA, UMR 1198 Biologie du Développement et Reproduction, Jouy-en-Josas, France
- ENVA, Maisons Alfort, France
| | - Elodie Poumerol
- INRA, UMR 1198 Biologie du Développement et Reproduction, Jouy-en-Josas, France
- ENVA, Maisons Alfort, France
| | - Dominique Thépot
- INRA, UMR 1198 Biologie du Développement et Reproduction, Jouy-en-Josas, France
- ENVA, Maisons Alfort, France
| | - Eric Pailhoux
- INRA, UMR 1198 Biologie du Développement et Reproduction, Jouy-en-Josas, France
- ENVA, Maisons Alfort, France
| | - Gabriel Livera
- CEA, DSV/DRR/SEGG/LDRG, Laboratory of Differentiation and Radiobiology of the Gonads, Unit of Gametogenesis and Genotoxicity, Fontenay aux Roses, France
| | - Corinne Cotinot
- INRA, UMR 1198 Biologie du Développement et Reproduction, Jouy-en-Josas, France
- ENVA, Maisons Alfort, France
| | - Béatrice Mandon-Pépin
- INRA, UMR 1198 Biologie du Développement et Reproduction, Jouy-en-Josas, France
- ENVA, Maisons Alfort, France
| |
Collapse
|
272
|
Apponi LH, Corbett AH, Pavlath GK. RNA-binding proteins and gene regulation in myogenesis. Trends Pharmacol Sci 2011; 32:652-8. [PMID: 21982546 DOI: 10.1016/j.tips.2011.06.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 06/03/2011] [Accepted: 06/17/2011] [Indexed: 11/17/2022]
Abstract
Skeletal muscle development, repair and function are dependent on highly coordinated expression of many genes. RNA-binding proteins are crucial determinants of gene expression in the health and disease of various tissues, including skeletal muscle. A variety of RNA-binding proteins are associated with a transcript during its life cycle and define the lifetime, cellular localization, processing and rate at which that transcript is translated and ultimately degraded. The focus of this review is to highlight the roles of the best-characterized RNA-binding proteins in muscle, including HuR, KSRP, CUGBP1, PABPN1, Lin-28 and TTP. Recent studies indicate key functions for these RNA-binding proteins in different aspects of muscle physiology. Understanding the role of specific RNA-binding proteins in skeletal muscle will provide insights not only into basic mechanisms regulating gene expression in muscle, but also into the etiology and pathology of muscle disease.
Collapse
Affiliation(s)
- Luciano H Apponi
- Department of Pharmacology, Emory University, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
273
|
The cardinal role of the phospholipase A2/cyclooxygenase-2/prostaglandin E synthase/prostaglandin E2 (PCPP) axis in inflammostasis. Inflamm Res 2011; 60:1083-92. [DOI: 10.1007/s00011-011-0385-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 08/15/2011] [Accepted: 09/06/2011] [Indexed: 12/20/2022] Open
|
274
|
Holmes B, Artinian N, Anderson L, Martin J, Masri J, Cloninger C, Bernath A, Bashir T, Benavides-Serrato A, Gera J. Protor-2 interacts with tristetraprolin to regulate mRNA stability during stress. Cell Signal 2011; 24:309-15. [PMID: 21964062 DOI: 10.1016/j.cellsig.2011.09.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 09/12/2011] [Indexed: 01/12/2023]
Abstract
The A/U-rich RNA-binding protein tristetraprolin (TTP) is an mRNA destabilizing factor which plays a role in the regulated turnover of many transcripts encoding proteins involved in immune function and cell growth control. TTP also plays a role in stress-induced destabilization of mRNAs. Here we report the interaction of TTP with a component of the mTORC2 kinase, Protor-2 (PRR5-L, protein Q6MZQ0/FLJ14213/CAE45978). Protor-2 is structurally similar to human PRR5 and has been demonstrated to bind mTORC2 via Rictor and/or Sin1 and may signal downstream events promoting apoptosis. Protor-2 dissociates from mTORC2 upon hyperactivation of the kinase and is not required for mTORC2 integrity or activity. We identified Protor-2 in a yeast two-hybrid screen as a TTP interactor using the C-terminal mRNA decay domain of TTP as bait. The interaction of Protor-2 with TTP was also confirmed in vivo in co-immunoprecipitation experiments and Protor-2 was also detected in immunoprecipitates of Rictor. Protor-2 was shown to stimulate TTP-mediated mRNA turnover of several TTP-associated mRNAs (TNF-α, GM-CSF, IL-3 and COX-2) in Jurkat cells when overexpressed while the half-lives of transcripts which do not decay via a TTP-mediated mechanism were unaffected. Knockdown of Protor-2 via RNAi inhibited TTP-mediated mRNA turnover of these TTP-associated mRNAs and inhibited association of TTP with cytoplasmic stress granules (SG) or mRNA processing bodies (P-bodies) following induction of the integrated stress response. These results suggest that Protor-2 associates with TTP to accelerate TTP-mediated mRNA turnover and functionally links the control of TTP-regulated mRNA stability to mTORC2 activity.
Collapse
Affiliation(s)
- Brent Holmes
- Department of Research & Development, Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, California 91343, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
275
|
Griseri P, Bourcier C, Hieblot C, Essafi-Benkhadir K, Chamorey E, Touriol C, Pagès G. A synonymous polymorphism of the Tristetraprolin (TTP) gene, an AU-rich mRNA-binding protein, affects translation efficiency and response to Herceptin treatment in breast cancer patients. Hum Mol Genet 2011; 20:4556-68. [PMID: 21875902 DOI: 10.1093/hmg/ddr390] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Post-transcriptional regulation plays a central role in cell differentiation and proliferation. Among the regulatory factors involved in this mechanism, Tristetraprolin (ZFP36 or TTP) is the prototype of a family of RNA-binding proteins that bind to adenylate and uridylate (AU)-rich sequences in the 3'UTR of mRNAs, which promotes their physiological decay. Here, we investigated whether TTP correlates with tumor aggressiveness in breast cancer and is a novel prognostic factor for this neoplasia. By immunoblot analysis, we determined the amount of TTP protein in different breast cancer cell lines and found an inverse correlation between aggressiveness and metastatic potential. TTP mRNA levels were very variable among cells lines and did not correlate with protein levels. Interestingly, by sequencing the entire TTP coding region in Hs578T cells that do not express the TTP protein, we identified a synonymous polymorphism (rs3746083) that showed a statistically significant association with a lack of response to Herceptin/Trastuzumab in HER2-positive-breast cancer patients. Even though this genetic change did not modify the corresponding amino acid, we performed functional studies and showed an effect on protein translation associated with the variant allele with respect to the wild-type. These data underline the importance of synonymous variants on gene expression and the potential role of TTP genetic polymorphisms as a prognostic marker for breast cancer.
Collapse
Affiliation(s)
- Paola Griseri
- University Nice-Sophia Antipolis Institute of Developmental Biology and Cancer, CNRS UMR 6543, France
| | | | | | | | | | | | | |
Collapse
|
276
|
Assays for monitoring viral manipulation of host ARE-mRNA turnover. Methods 2011; 55:172-81. [PMID: 21854851 DOI: 10.1016/j.ymeth.2011.08.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 08/04/2011] [Accepted: 08/05/2011] [Indexed: 12/22/2022] Open
Abstract
Early host responses to viral infection rapidly induce an antiviral gene expression program that limits viral replication and recruits sentinel cells of the innate immune system. These responses are mediated by cytokines. The mRNAs that encode cytokines typically harbor destabilizing adenine- and uridine-rich elements (AREs) that direct their constitutive degradation in the cytoplasm. In response to a variety of signals, including viral infection, small pools of cytoplasmic ARE-mRNAs are rapidly stabilized and translated. Thus, mRNA stability plays a key role in antiviral gene expression. Intriguingly, recent studies have identified viral proteins that specifically target ARE-mRNAs for stabilization, suggesting that certain proteins encoded by ARE-mRNAs may be advantageous for infection. Here, we discuss the development of a suite of sensitive and complementary assays to monitor ARE-mRNA turnover. These include luciferase- and destabilized-GFP-based assays that can be adapted for high-throughput screening applications.
Collapse
|
277
|
Kang JG, Amar MJ, Remaley AT, Kwon J, Blackshear PJ, Wang PY, Hwang PM. Zinc finger protein tristetraprolin interacts with CCL3 mRNA and regulates tissue inflammation. THE JOURNAL OF IMMUNOLOGY 2011; 187:2696-701. [PMID: 21784977 DOI: 10.4049/jimmunol.1101149] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Zinc finger protein tristetraprolin (TTP) modulates macrophage inflammatory activity by destabilizing cytokine mRNAs. In this study, through a screen of TTP-bound mRNAs in activated human macrophages, we have identified CCL3 mRNA as the most abundantly bound TTP target mRNA and have characterized this interaction via conserved AU-rich elements. Compared to the wild-type cells, TTP(-/-) macrophages produced higher levels of LPS-induced CCL3. In addition, the plasma level of CCL3 in TTP(-/-) mice was markedly higher than that in wild-type mice. To determine the in vivo significance of TTP-regulated CCL3, we generated CCL3(-/-)TTP(-/-) double-knockout mice. Along with decreased proinflammatory cytokines in their paw joints, there were significant functional and histologic improvements in the inflammatory arthritis of TTP(-/-) mice when CCL3 was absent, although cachexia, reflecting systemic inflammation, was notably unaffected. Furthermore, the marked exacerbation of aortic plaque formation caused by TTP deficiency in the APOE(-/-) mouse model of atherosclerosis was also rescued by disrupting CCL3. Taken together, our data indicate that the interaction between TTP and CCL3 mRNA plays an important role in modulating localized inflammatory processes in tissues that are dissociated from the systemic manifestations of chronic inflammation.
Collapse
Affiliation(s)
- Ju-Gyeong Kang
- Center for Molecular Medicine, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|
278
|
Idler RK, Yan W. Control of messenger RNA fate by RNA-binding proteins: an emphasis on mammalian spermatogenesis. ACTA ACUST UNITED AC 2011; 33:309-37. [PMID: 21757510 DOI: 10.2164/jandrol.111.014167] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Posttranscriptional status of messenger RNAs (mRNA) can be affected by many factors, most of which are RNA-binding proteins (RBP) that either bind mRNA in a nonspecific manner or through specific motifs, usually located in the 3' untranslated regions. RBPs can also be recruited by small noncoding RNAs (sncRNA), which have been shown to be involved in posttranscriptional regulations and transposon repression (eg, microRNAs or P-element-induced wimpy testis-interacting RNA) as components of the sncRNA effector complex. Non-sncRNA-binding RBPs have much more diverse effects on their target mRNAs. Some can cause degradation of their target transcripts and/or repression of translation, whereas others can stabilize and/or activate translation. The splicing and exportation of transcripts from the nucleus to the cytoplasm are often mediated by sequence-specific RBPs. The mechanisms by which RBPs regulate mRNA transcripts involve manipulating the 3' poly(A) tail, targeting the transcript to polysomes or to other ribonuclear protein particles, recruiting regulatory proteins, or competing with other RBPs. Here, we briefly review the known mechanisms of posttranscriptional regulation mediated by RBPs, with an emphasis on how these mechanisms might control spermatogenesis in general.
Collapse
Affiliation(s)
- R Keegan Idler
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA
| | | |
Collapse
|
279
|
PolyA-specific ribonuclease (PARN-1) function in stage-specific mRNA turnover in Trypanosoma brucei. EUKARYOTIC CELL 2011; 10:1230-40. [PMID: 21743004 DOI: 10.1128/ec.05097-11] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Deadenylation is often the rate-limiting event in regulating the turnover of cellular mRNAs in eukaryotes. Removal of the poly(A) tail initiates mRNA degradation by one of several decay pathways, including deadenylation-dependent decapping, followed by 5' to 3' exonuclease decay or 3' to 5' exosome-mediated decay. In trypanosomatids, mRNA degradation is important in controlling the expression of differentially expressed genes. Genomic annotation studies have revealed several potential deadenylases. Poly(A)-specific RNase (PARN) is a key deadenylase involved in regulating gene expression in mammals, Xenopus oocytes, and higher plants. Trypanosomatids possess three different PARN genes, PARN-1, -2, and -3, each of which is expressed at the mRNA level in two life-cycle stages of the human parasite Trypanosoma brucei. Here we show that T. brucei PARN-1 is an active deadenylase. To determine the role of PARN-1 on mRNA stability in vivo, we overexpressed this protein and analyzed perturbations in mRNA steady-state levels as well as mRNA half-life. Interestingly, a subset of mRNAs was affected, including a family of mRNAs that encode stage-specific coat proteins. These data suggest that PARN-1 functions in stage-specific protein production.
Collapse
|
280
|
Nadar M, Chan MY, Huang SW, Huang CC, Tseng JT, Tsai CH. HuR binding to AU-rich elements present in the 3' untranslated region of Classical swine fever virus. Virol J 2011; 8:340. [PMID: 21729330 PMCID: PMC3144019 DOI: 10.1186/1743-422x-8-340] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Accepted: 07/06/2011] [Indexed: 02/01/2023] Open
Abstract
Background Classical swine fever virus (CSFV) is the member of the genus Pestivirus under the family Flaviviridae. The 5' untranslated region (UTR) of CSFV contains the IRES, which is a highly structured element that recruits the translation machinery. The 3' UTR is usually the recognition site of the viral replicase to initiate minus-strand RNA synthesis. Adenosine-uridine rich elements (ARE) are instability determinants present in the 3' UTR of short-lived mRNAs. However, the presence of AREs in the 3' UTR of CSFV conserved in all known strains has never been reported. This study inspects a possible role of the ARE in the 3' UTR of CSFV. Results Using RNA pull-down and LC/MS/MS assays, this study identified at least 32 possible host factors derived from the cytoplasmic extracts of PK-15 cells that bind to the CSFV 3' UTR, one of which is HuR. HuR is known to bind the AREs and protect the mRNA from degradation. Using recombinant GST-HuR, this study demonstrates that HuR binds to the ARE present in the 3' UTR of CSFV in vitro and that the binding ability is conserved in strains irrespective of virulence. Conclusions This study identified one of the CSFV 3' UTR binding proteins HuR is specifically binding to in the ARE region.
Collapse
Affiliation(s)
- Muthukumar Nadar
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, 402, Taiwan
| | | | | | | | | | | |
Collapse
|
281
|
Posttranscriptional control of type I interferon genes by KSRP in the innate immune response against viral infection. Mol Cell Biol 2011; 31:3196-207. [PMID: 21690298 DOI: 10.1128/mcb.05073-11] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Inherently unstable mRNAs contain AU-rich elements (AREs) in the 3' untranslated regions. Expression of ARE-containing type I interferon transcripts is robustly induced upon viral infection and rapidly shut off thereafter. Their transient accumulation is partly mediated through posttranscriptional regulation. Here we show that mouse embryonic fibroblasts derived from knockout mice deficient in KH-type splicing regulatory protein (KSRP), an RNA-binding protein required for ARE-mediated mRNA decay, produce higher levels of Ifna and Ifnb mRNAs in response to viral infection as a result of decreased mRNA decay. Functional analysis showed that KSRP is required for the decay of Ifna4 and Ifnb mRNAs by interaction with AREs. The increased IFN expression renders Ksrp(-)(/)(-) cells refractory to herpes simplex virus type 1 and vesicular stomatitis virus infection. These findings support a role of a posttranscriptional mechanism in the control of type I IFN expression and highlight the function of KSRP in innate immunity by negatively regulating IFN production.
Collapse
|
282
|
Ling AS, Trotter JR, Hendriks EF. A zinc finger protein, TbZC3H20, stabilizes two developmentally regulated mRNAs in trypanosomes. J Biol Chem 2011; 286:20152-62. [PMID: 21467035 PMCID: PMC3121479 DOI: 10.1074/jbc.m110.139261] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Revised: 04/01/2011] [Indexed: 12/21/2022] Open
Abstract
CCCH zinc finger proteins (ZC3Hs) are a novel class of RNA-binding protein involved in post-transcriptional mechanisms controlling gene expression. We show TbZC3H20 from Trypanosoma brucei, the causative agent of sleeping sickness and other diseases, stabilizes two developmentally regulated transcripts encoding a mitochondrial carrier protein (MCP12) and trans-sialidase (TS-like E). TbZC3H20 is shown to be an RNA-binding protein that is enriched in insect procyclic form T. brucei and is the first ZC3H discovered controlling gene expression through modulating mRNA abundance in trypanosomes. Previous studies have demonstrated that RNA recognition motif-containing and PUF family RNA-binding proteins can control gene expression by stabilizing specific target mRNA levels. This work is the first to describe a ZC3H stabilizing rather than destabilizing target mRNAs as a regulatory mechanism and the first report of a ZC3H regulating a gene encoding a mitochondrial protein. This suggests a broader role for ZC3Hs in post-transcriptional regulation of gene expression than previously thought.
Collapse
Affiliation(s)
- Alexandra S. Ling
- From the Division of Cell and Molecular Biology, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - James R. Trotter
- From the Division of Cell and Molecular Biology, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Edward F. Hendriks
- From the Division of Cell and Molecular Biology, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| |
Collapse
|
283
|
Zucconi BE, Wilson GM. Modulation of neoplastic gene regulatory pathways by the RNA-binding factor AUF1. FRONT BIOSCI-LANDMRK 2011; 16:2307-25. [PMID: 21622178 PMCID: PMC3589912 DOI: 10.2741/3855] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The mRNA-binding protein AUF1 regulates the expression of many key players in cancer including proto-oncogenes, regulators of apoptosis and the cell cycle, and pro-inflammatory cytokines, principally by directing the decay kinetics of their encoded mRNAs. Most studies support an mRNA-destabilizing role for AUF1, although other findings suggest additional functions for this factor. In this review, we explore how changes in AUF1 isoform distribution, subcellular localization, and post-translational protein modifications can influence the metabolism of targeted mRNAs. However, several lines of evidence also support a role for AUF1 in the initiation and/or development of cancer. Many AUF1-targeted transcripts encode products that control pro- and anti-oncogenic processes. Also, overexpression of AUF1 enhances tumorigenesis in murine models, and AUF1 levels are enhanced in some tumors. Finally, signaling cascades that modulate AUF1 function are deregulated in some cancerous tissues. Together, these features suggest that AUF1 may play a prominent role in regulating the expression of many genes that can contribute to tumorigenic phenotypes, and that this post-transcriptional regulatory control point may be subverted by diverse mechanisms in neoplasia.
Collapse
Affiliation(s)
- Beth E. Zucconi
- Department of Biochemistry and Molecular Biology and Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, 108 N. Greene St., Baltimore, MD 21201
| | - Gerald M. Wilson
- Department of Biochemistry and Molecular Biology and Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, 108 N. Greene St., Baltimore, MD 21201
| |
Collapse
|
284
|
Bourcier C, Griseri P, Grépin R, Bertolotto C, Mazure N, Pagès G. Constitutive ERK activity induces downregulation of tristetraprolin, a major protein controlling interleukin8/CXCL8 mRNA stability in melanoma cells. Am J Physiol Cell Physiol 2011; 301:C609-18. [PMID: 21593445 DOI: 10.1152/ajpcell.00506.2010] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Most melanoma cells are characterized by the V600E mutation in B-Raf kinase. This mutation leads to increased expression of interleukin (CXCL8), which plays a key role in cell growth and angiogenesis. Thus CXCL8 appears to be an interesting therapeutic target. Hence, we performed vaccination of mice with GST-CXCL8, which results in a reduced incidence of syngenic B16 melanoma cell xenograft tumors. We next addressed the molecular mechanisms responsible for aberrant CXCL8 expression in melanoma. The CXCL8 mRNA contains multiples AU-rich sequences (AREs) that modulate mRNA stability through the binding of tristetraprolin (TTP). Melanoma cell lines express very low TTP levels. We therefore hypothesized that the very low endogenous levels of TTP present in different melanoma cell lines might be responsible for the relative stability of CXCL8 mRNAs. We show that TTP is actively degraded by the proteasome and that extracellular-regulated kinase inhibition results in TTP accumulation. Conditional expression of TTP in A375 melanoma cells leads to CXCL8 mRNA destabilization via its 3' untranslated regions (3'-UTR), and TTP overexpression reduces its production. In contrast, downregulation of TTP by short hairpin RNA results in upregulation of CXCL8 mRNA. Maintaining high TTP levels in melanoma cells decreases cell proliferation and autophagy and induces apoptosis. Sorafenib, a therapeutic agent targeting Raf kinases, decreases CXCL8 expression in melanoma cells through reexpression of TTP. We conclude that loss of TTP represents a key event in the establishment of melanomas through constitutive expression of CXCL8, which constitutes a potent therapeutic target.
Collapse
Affiliation(s)
- Christine Bourcier
- University Nice Sophia Antipolis, Institute of Signalling, Developmental Biology and Cancer Research, UMR Centre National de la Recherche Scientifique, Nice, France
| | | | | | | | | | | |
Collapse
|
285
|
Qian X, Ning H, Zhang J, Hoft DF, Stumpo DJ, Blackshear PJ, Liu J. Posttranscriptional regulation of IL-23 expression by IFN-gamma through tristetraprolin. THE JOURNAL OF IMMUNOLOGY 2011; 186:6454-64. [PMID: 21515794 DOI: 10.4049/jimmunol.1002672] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
IL-23 plays an essential role in maintenance of IL-17-producing Th17 cells that are involved in the pathogenesis of several autoimmune diseases. Regulation of Th17 cells is tightly controlled by multiple factors such as IL-27 and IFN-γ. However, the detailed mechanisms responsible for IFN-γ-mediated Th17 cell inhibition are still largely unknown. In this study, we demonstrate that IFN-γ differentially regulates IL-12 and IL-23 production in both dendritic cells and macrophages. IFN-γ suppresses IL-23 expression by selectively targeting p19 mRNA stability through its 3'-untranslated region (3'UTR). Furthermore, IFN-γ enhances LPS-induced tristetraprolin (TTP) mRNA expression and protein production. Overexpression of TTP suppresses IL-23 p19 mRNA expression and p19 3'UTR-dependent luciferase activity. Additionally, deletion of TTP completely abolishes IFN-γ-mediated p19 mRNA degradation. We further demonstrate that IFN-γ suppresses LPS-induced p38 phosphorylation, and blockade of p38 MAPK signaling pathway with SB203580 inhibits IFN-γ- and LPS-induced p19 mRNA expression, whereas overexpression of p38 increases p19 mRNA expression via reducing TTP binding to the p19 3'UTR. Finally, inhibition of p38 phosphorylation by IFN-γ leads to TTP dephosphorylation that could result in stronger binding of the TTP to the adenosine/uridine-rich elements in the p19 3'UTR and p19 mRNA degradation. In summary, our results reveal a direct link among TTP, IFN-γ, and IL-23, indicating that IFN-γ-mediated Th17 cell suppression might act through TTP by increasing p19 mRNA degradation and therefore IL-23 inhibition.
Collapse
Affiliation(s)
- Xuesong Qian
- Division of Infectious Diseases, Department of Internal Medicine, Saint Louis University School of Medicine, St Louis, MO 63104, USA
| | | | | | | | | | | | | |
Collapse
|
286
|
Zhao W, Liu M, D'Silva NJ, Kirkwood KL. Tristetraprolin regulates interleukin-6 expression through p38 MAPK-dependent affinity changes with mRNA 3' untranslated region. J Interferon Cytokine Res 2011; 31:629-37. [PMID: 21457063 DOI: 10.1089/jir.2010.0154] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Tristetraprolin (TTP) is a well-characterized, zinc finger-containing, RNA-binding protein. TTP targets tumor necrosis factor α for degradation via the 3' untranslated region (3'UTR). Although AU-rich elements (AREs) in the 3'UTR of interleukin-6 (IL-6) mRNA dictate mRNA degradation, the role of TTP in the post-transcriptional regulation of IL-6 gene expression is unclear. Here we used TTP-deficient mice to test the hypothesis that IL-6 expression is influenced by TTP. Genetic and siRNA-mediated knockdown of TTP resulted in increased IL-6 production and overexpression of TTP had the reverse effect. IL-6 and tumor necrosis factor α production were elevated after injection of IL-1β in TTP-deficient mice. Further, embryonic fibroblasts from these mice (mouse embryonic fibroblasts) exhibited greater IL-6 mRNA expression and longer half-life than wild-type mouse embryonic fibroblasts. Overexpression of TTP reduced IL-6 3'UTR luciferase reporter activity in an ARE-dependent manner. Proximal and distal regions of the 3'UTR acted synergistically to produce the full repression of TTP. Mutation-based luciferase assays show that ARE2, ARE3, and ARE4 are required for TTP-mediated repression. The constitutively activated p38-MK2 pathway abrogated TTP-mediated repression of IL-6 3'UTR reporter activity. RNA immunoprecipitation assay indicated that the deficiency of p38α resulted in the increased affinity of TTP to IL-6 mRNA. Taken together, we propose that TTP downregulates IL-6 gene expression at the post-transcriptional level by targeting ARE elements in the 3'UTR region.
Collapse
Affiliation(s)
- Wenpu Zhao
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
| | | | | | | |
Collapse
|
287
|
Abstract
Non-coding RNAs and their interaction with RNA-binding proteins regulate mRNA levels in key cellular processes. This has intensified interest in post-transcriptional regulation. Recent studies on the turnover of AU-rich cytokine mRNAs have linked mRNA metabolism with ubiquitination. Ubiquitin is well recognized for its role in protein regulation/degradation. In the present paper, we describe a new group of RNA-binding E3 ubiquitin ligases which are predicted to bind and regulate RNA stability. Although much effort has been focused on understanding the role of these proteins as key regulators of mRNA turnover, the requirement for E3 ligase activity in mRNA decay remains unclear. It is remarkable that the ubiquitin system is involved, either directly or indirectly, in both the degradation of nucleic acids as well as proteins. These new RNA-binding E3 ligases are potential candidates which link two important cellular regulatory pathways: the regulation of both protein and mRNA stability.
Collapse
|
288
|
O'Neill LA, Sheedy FJ, McCoy CE. MicroRNAs: the fine-tuners of Toll-like receptor signalling. Nat Rev Immunol 2011; 11:163-75. [DOI: 10.1038/nri2957] [Citation(s) in RCA: 680] [Impact Index Per Article: 48.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
289
|
The mTOR kinase inhibitor rapamycin decreases iNOS mRNA stability in astrocytes. J Neuroinflammation 2011; 8:1. [PMID: 21208419 PMCID: PMC3025854 DOI: 10.1186/1742-2094-8-1] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Accepted: 01/05/2011] [Indexed: 01/08/2023] Open
Abstract
Background Reactive astrocytes are capable of producing a variety of pro-inflammatory mediators and potentially neurotoxic compounds, including nitric oxide (NO). High amounts of NO are synthesized following up-regulation of inducible NO synthase (iNOS). The expression of iNOS is tightly regulated by complex molecular mechanisms, involving both transcriptional and post-transcriptional processes. The mammalian target of rapamycin (mTOR) kinase modulates the activity of some proteins directly involved in post-transcriptional processes of mRNA degradation. mTOR is a serine-threonine kinase that plays an evolutionarily conserved role in the regulation of cell growth, proliferation, survival, and metabolism. It is also a key regulator of intracellular processes in glial cells. However, with respect to iNOS expression, both stimulatory and inhibitory actions involving the mTOR pathway have been described. In this study the effects of mTOR inhibition on iNOS regulation were evaluated in astrocytes. Methods Primary cultures of rat cortical astrocytes were activated with different proinflammatory stimuli, namely a mixture of cytokines (TNFα, IFNγ, and IL-1β) or by LPS plus IFNγ. Rapamycin was used at nM concentrations to block mTOR activity and under these conditions we measured its effects on the iNOS promoter, mRNA and protein levels. Functional experiments to evaluate iNOS activity were also included. Results In this experimental paradigm mTOR activation did not significantly affect astrocyte iNOS activity, but mTOR pathway was involved in the regulation of iNOS expression. Rapamycin did not display any significant effects under basal conditions, on either iNOS activity or its expression. However, the drug significantly increased iNOS mRNA levels after 4 h incubation in presence of pro-inflammatory stimuli. This stimulatory effect was transient, since no differences in either iNOS mRNA or protein levels were detected after 24 h. Interestingly, reduced levels of iNOS mRNA were detected after 48 hours, suggesting that rapamycin can modify iNOS mRNA stability. In this regard, we found that rapamycin significantly reduced the half-life of iNOS mRNA, from 4 h to 50 min when cells were co-incubated with cytokine mixture and 10 nM rapamycin. Similarly, rapamycin induced a significant up-regulation of tristetraprolin (TTP), a protein involved in the regulation of iNOS mRNA stability. Conclusion The present findings show that mTOR controls the rate of iNOS mRNA degradation in astrocytes. Together with the marked anti-inflammatory effects that we previously observed in microglial cells, these data suggest possible beneficial effects of mTOR inhibitors in the treatment of inflammatory-based CNS pathologies.
Collapse
|
290
|
Turner M. Is transcription the dominant force during dynamic changes in gene expression? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 780:1-13. [PMID: 21842360 DOI: 10.1007/978-1-4419-5632-3_1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
Dynamic changes in gene expression punctuate lymphocyte development and are a characteristic of lymphocyte activation. A prevailing view has been that these changes are driven by DNA transcription factors, which are the dominant force in gene expression. Accumulating evidence is challenging this DNA centric view and has highlighted the prevalence and dynamic nature of RNA handling mechanisms. Alternative splicing and differential polyadenylation appear to be more widespread than first thought. Changes in mRNA decay rates also affect the abundance of transcripts and this mechanism may contribute significantly to gene expression. Additional RNA handling mechanisms that control the intracellular localization of mRNA and association with translating ribosomes are also important. Thus, gene expression is regulated through the coordination of transcriptional and post-transcriptional mechanisms. Developing a more "RNA centric" view of gene expression will allow a more systematic understanding of how gene expression and cell function are integrated.
Collapse
Affiliation(s)
- Martin Turner
- The Babraham Institute, Babraham, Cambridge, CB22 3AT, UK.
| |
Collapse
|
291
|
Isolation and identification of anti-inflammatory constituents from Ligusticum chuanxiong and their underlying mechanisms of action on microglia. Neuropharmacology 2010; 60:823-31. [PMID: 21146552 DOI: 10.1016/j.neuropharm.2010.12.002] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Revised: 12/01/2010] [Accepted: 12/01/2010] [Indexed: 01/02/2023]
Abstract
Stroke is the third most common cause of death worldwide. Recent findings showed that the severity of cerebrovascular diseases including ischemic stroke correlates with inflammation mediated responses in the neural cells. During ischemia, inflammatory mediators including tumor necrosis factor-alpha (TNF-α) and nitric oxide are produced by microglia, which play a central role in the pathogenesis of the disease. Ligusticum chuanxiong (LCX) is a commonly used traditional Chinese medicine (TCM) for empiric treatment of cerebrovascular and cardiovascular diseases for many centuries. By applying a bioactivity-guided fractionation scheme, two compounds with inhibition on neuroinflammation were isolated from LCX. Using chromatographic and spectrometric methods, they were identified to be senkyunolide A and Z-ligustilide. They could inhibit the production of proinflammatory mediators in lipopolysaccharide (LPS)-stimulated murine BV-2 microglial cells and human peripheral blood monocyte derived macrophages. In addition, both compounds protected Neuro-2a cells from neuroinflammatory toxicity induced by the conditioned culture media produced by LPS-stimulated BV-2 cells. The underlying mechanisms of action of senkyunolide A were further delineated. Its inhibitory effects were shown to be independent of the phosphorylation of mitogen-activated protein kinases (MAPK) and translocation of nuclear factor kappa B (NF-κB). However, senkyunolide A could increase the degradation of TNF-α mRNA and reduce its half life by 43%. In conclusion, bioactivity-guided fractionation is an effective way of isolating bioactive compounds from medicinal herbs. In addition, senkyunolide A and Z-ligustilide isolated from LCX may be considered as potential complementary drug candidates for treating inflammatory processes associated with cerebrovascular diseases.
Collapse
|
292
|
Early recruitment of AU-rich element-containing mRNAs determines their cytosolic fate during iron deficiency. Mol Cell Biol 2010; 31:417-29. [PMID: 21135132 DOI: 10.1128/mcb.00754-10] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The yeast Cth2 protein is a CX(8)CX(5)CX(3)H tandem zinc finger protein that binds AU-rich element (ARE)-containing transcripts to enhance their decay in response to iron (Fe) deficiency. Mammalian members of this family of proteins are known to undergo nucleocytoplasmic shuttling, but little is known about the role of shuttling in the mechanism of ARE-dependent mRNA decay. Here we demonstrate that, like its mammalian homologues, Cth2 is a nucleocytoplasmic shuttling protein whose nuclear export depends on mRNA transport to the cytosol. The nuclear import information of Cth2 is contained within its tandem zinc finger domain, but it is independent of mRNA-binding function. Moreover, we also demonstrate that nucleocytoplasmic shuttling of Cth2 requires active transcription and that disruption of shuttling leads to defects in Cth2 function in mRNA decay under Fe deficiency. Taken together, our data suggest that under conditions of Fe deficiency Cth2 travels into the nucleus to recruit target mRNAs, perhaps cotranscriptionally, that are destined for cytosolic degradation as part of the mechanism of adaptation to growth under Fe limitation. These data also suggest an important role for nucleocytoplasmic shuttling in this conserved family of proteins in the mechanism of ARE-mediated mRNA decay.
Collapse
|
293
|
Phosphorylation of tristetraprolin by MK2 impairs AU-rich element mRNA decay by preventing deadenylase recruitment. Mol Cell Biol 2010; 31:256-66. [PMID: 21078877 DOI: 10.1128/mcb.00717-10] [Citation(s) in RCA: 164] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
mRNA turnover is a critical step in the control of gene expression. In mammalian cells, a subset of mRNAs regulated at the level of mRNA turnover contain destabilizing AU-rich elements (AREs) in their 3' untranslated regions. These transcripts are bound by a suite of ARE-binding proteins (AUBPs) that receive information from cell signaling events to modulate rates of ARE mRNA decay. Here we show that a key destabilizing AUBP, tristetraprolin (TTP), is repressed by the p38 mitogen-activated protein kinase (MAPK)-activated kinase MK2 due to the inability of phospho-TTP to recruit deadenylases to target mRNAs. TTP is tightly associated with cytoplasmic deadenylases and promotes rapid deadenylation of target mRNAs both in vitro and in cells. TTP can direct the deadenylation of substrate mRNAs when tethered to a heterologous mRNA, yet its ability to do so is inhibited upon phosphorylation by MK2. Phospho-TTP is not impaired in mRNA binding but does fail to recruit the major cytoplasmic deadenylases. These observations suggest that phosphorylation of TTP by MK2 primarily affects mRNA decay downstream of RNA binding by preventing recruitment of the deadenylation machinery. Thus, TTP may remain poised to rapidly reactivate deadenylation of bound transcripts to downregulate gene expression once the p38 MAPK pathway is deactivated.
Collapse
|
294
|
Zhang X, Virtanen A, Kleiman FE. To polyadenylate or to deadenylate: that is the question. Cell Cycle 2010; 9:4437-49. [PMID: 21084869 DOI: 10.4161/cc.9.22.13887] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
mRNA polyadenylation and deadenylation are important processes that allow rapid regulation of gene expression in response to different cellular conditions. Almost all eukaryotic mRNA precursors undergo a co-transcriptional cleavage followed by polyadenylation at the 3' end. After the signals are selected, polyadenylation occurs to full extent, suggesting that this first round of polyadenylation is a default modification for most mRNAs. However, the length of these poly(A) tails changes by the activation of deadenylation, which might regulate gene expression by affecting mRNA stability, mRNA transport, or translation initiation. The mechanisms behind deadenylation activation are highly regulated and associated with cellular conditions such as development, mRNA surveillance, DNA damage response, cell differentiation and cancer. After deadenylation, depending on the cellular response, some mRNAs might undergo an extension of the poly(A) tail or degradation. The polyadenylation/deadenylation machinery itself, miRNAs, or RNA binding factors are involved in the regulation of polyadenylation/deadenylation. Here, we review the mechanistic connections between polyadenylation and deadenylation and how the two processes are regulated in different cellular conditions. It is our conviction that further studies of the interplay between polyadenylation and deadenylation will provide critical information required for a mechanistic understanding of several diseases, including cancer development.
Collapse
Affiliation(s)
- Xiaokan Zhang
- Chemistry Department, Hunter College, City University of New York, NY, USA
| | | | | |
Collapse
|
295
|
Khera TK, Dick AD, Nicholson LB. Mechanisms of TNFα regulation in uveitis: Focus on RNA-binding proteins. Prog Retin Eye Res 2010; 29:610-21. [DOI: 10.1016/j.preteyeres.2010.08.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
296
|
Zucconi BE, Ballin JD, Brewer BY, Ross CR, Huang J, Toth EA, Wilson GM. Alternatively expressed domains of AU-rich element RNA-binding protein 1 (AUF1) regulate RNA-binding affinity, RNA-induced protein oligomerization, and the local conformation of bound RNA ligands. J Biol Chem 2010; 285:39127-39. [PMID: 20926381 DOI: 10.1074/jbc.m110.180182] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
AU-rich element RNA-binding protein 1 (AUF1) binding to AU-rich elements (AREs) in the 3'-untranslated regions of mRNAs encoding many cytokines and other regulatory proteins modulates mRNA stability, thereby influencing protein expression. AUF1-mRNA association is a dynamic paradigm directed by various cellular signals, but many features of its function remain poorly described. There are four isoforms of AUF1 that result from alternative splicing of exons 2 and 7 from a common pre-mRNA. Preliminary evidence suggests that the different isoforms have varied functional characteristics, but no detailed quantitative analysis of the properties of each isoform has been reported despite their differential expression and regulation. Using purified recombinant forms of each AUF1 protein variant, we used chemical cross-linking and gel filtration chromatography to show that each exists as a dimer in solution. We then defined the association mechanisms of each AUF1 isoform for ARE-containing RNA substrates and quantified relevant binding affinities using electrophoretic mobility shift and fluorescence anisotropy assays. Although all AUF1 isoforms generated oligomeric complexes on ARE substrates by sequential dimer association, sequences encoded by exon 2 inhibited RNA-binding affinity. By contrast, the exon 7-encoded domain enhanced RNA-dependent protein oligomerization, even permitting cooperative RNA-binding activity in some contexts. Finally, fluorescence resonance energy transfer-based assays showed that the different AUF1 isoforms remodel bound RNA substrates into divergent structures as a function of protein:RNA stoichiometry. Together, these data describe isoform-specific characteristics among AUF1 ribonucleoprotein complexes, which likely constitute a mechanistic basis for differential functions and regulation among members of this protein family.
Collapse
Affiliation(s)
- Beth E Zucconi
- Department of Biochemistry and Molecular Biology and Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | | | | | | | | | | | |
Collapse
|
297
|
Guven-Ozkan T, Robertson SM, Nishi Y, Lin R. zif-1 translational repression defines a second, mutually exclusive OMA function in germline transcriptional repression. Development 2010; 137:3373-82. [PMID: 20826530 PMCID: PMC2947753 DOI: 10.1242/dev.055327] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2010] [Indexed: 02/03/2023]
Abstract
Specification of primordial germ cells requires global repression of transcription. In C. elegans, primordial germ cells are generated through four rounds of asymmetric divisions, starting from the zygote P0, each producing a transcriptionally repressed germline blastomere (P1-P4). Repression in P2-P4 requires PIE-1, which is provided maternally in oocytes and segregated to all germline blastomeres. We have shown previously that OMA-1 and OMA-2 repress global transcription in P0 and P1 by sequestering TAF-4, an essential component of TFIID. Soon after the first mitotic cycle, OMA proteins undergo developmentally regulated degradation. Here, we show that OMA proteins also repress transcription in P2-P4 indirectly, through a completely different mechanism that operates in oocytes. OMA proteins bind to both the 3' UTR of the zif-1 transcript and the eIF4E-binding protein, SPN-2, repressing translation of zif-1 mRNA in oocytes. zif-1 encodes the substrate-binding subunit of the E3 ligase for PIE-1 degradation. Inhibition of zif-1 translation in oocytes ensures high PIE-1 levels in oocytes and germline blastomeres. The two OMA protein functions are strictly regulated in both space and time by MBK-2, a kinase activated following fertilization. Phosphorylation by MBK-2 facilitates the binding of OMA proteins to TAF-4 and simultaneously inactivates their function in repressing zif-1 translation. Phosphorylation of OMA proteins displaces SPN-2 from the zif-1 3' UTR, releasing translational repression. We propose that MBK-2 phosphorylation serves as a developmental switch, converting OMA proteins from specific translational repressors in oocytes to global transcriptional repressors in embryos, together effectively repressing transcription in all germline blastomeres.
Collapse
Affiliation(s)
| | | | - Yuichi Nishi
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | |
Collapse
|
298
|
Rodriguez PC, Hernandez CP, Morrow K, Sierra R, Zabaleta J, Wyczechowska DD, Ochoa AC. L-arginine deprivation regulates cyclin D3 mRNA stability in human T cells by controlling HuR expression. THE JOURNAL OF IMMUNOLOGY 2010; 185:5198-204. [PMID: 20889542 DOI: 10.4049/jimmunol.1001224] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Myeloid-derived suppressor cells are a major mechanism of tumor-induced immune suppression in cancer. Arginase I-producing myeloid-derived suppressor cells deplete l-arginine (L-Arg) from the microenvironment, which arrests T cells in the G(0)-G(1) phase of the cell cycle. This cell cycle arrest correlated with an inability to increase cyclin D3 expression resulting from a decreased mRNA stability and an impaired translation. We sought to determine the mechanisms leading to a decreased cyclin D3 mRNA stability in activated T cells cultured in medium deprived of L-Arg. Results show that cyclin D3 mRNA instability induced by L-Arg deprivation is dependent on response elements found in its 3'-untranslated region (UTR). RNA-binding protein HuR was found to be increased in T cells cultured in medium with L-Arg and bound to the 3'-untranslated region of cyclin D3 mRNA in vitro and endogenously in activated T cells. Silencing of HuR expression significantly impaired cyclin D3 mRNA stability. L-Arg deprivation inhibited the expression of HuR through a global arrest in de novo protein synthesis, but it did not affect its mRNA expression. This alteration is dependent on the expression of the amino acid starvation sensor general control nonderepressible 2 kinase. These data contribute to an understanding of a central mechanism by which diseases characterized by increased arginase I production may cause T cell dysfunction.
Collapse
Affiliation(s)
- Paulo C Rodriguez
- Tumor Immunology Program, Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | | | | | | | | | | | | |
Collapse
|
299
|
David Gerecht PS, Taylor MA, Port JD. Intracellular localization and interaction of mRNA binding proteins as detected by FRET. BMC Cell Biol 2010; 11:69. [PMID: 20843363 PMCID: PMC2949623 DOI: 10.1186/1471-2121-11-69] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Accepted: 09/15/2010] [Indexed: 02/10/2023] Open
Abstract
Background A number of RNA binding proteins (BPs) bind to A+U rich elements (AREs), commonly present within 3'UTRs of highly regulated RNAs. Individual RNA-BPs proteins can modulate RNA stability, RNA localization, and/or translational efficiency. Although biochemical studies have demonstrated selectivity of ARE-BPs for individual RNAs, less certain is the in vivo composition of RNA-BP multiprotein complexes and how their composition is affected by signaling events and intracellular localization. Using FRET, we previously demonstrated that two ARE-BPs, HuR and AUF1, form stable homomeric and heteromeric associations in the nucleus and cytoplasm. In the current study, we use immuno-FRET of endogenous proteins to examine the intracellular localization and interactions of HuR and AUF1 as well as KSRP, TIA-1, and Hedls. These results were compared to those obtained with their exogenously expressed, fluorescently labeled counterparts. Results All ARE-BPs examined were found to colocalize and to form stable associations with selected other RNA-BPs in one or more cellular locations variably including the nucleus, cytoplasm (in general), or in stress granules or P bodies. Interestingly, FRET based interaction of the translational suppressor, TIA-1, and the decapping protein, Hedls, was found to occur at the interface of stress granules and P bodies, dynamic sites of intracellular RNA storage and/or turnover. To explore the physical interactions of RNA-BPs with ARE containing RNAs, in vitro transcribed Cy3-labeled RNA was transfected into cells. Interestingly, Cy3-RNA was found to coalesce in P body like punctate structures and, by FRET, was found to interact with the RNA decapping proteins, Hedls and Dcp1. Conclusions Biochemical methodologies, such as co-immunoprecipitation, and cell biological approaches such as standard confocal microscopy are useful in demonstrating the possibility of proteins and/or proteins and RNAs interacting. However, as demonstrated herein, colocalization of proteins and proteins and RNA is not always indicative of interaction. To this point, using FRET and immuno-FRET, we have demonstrated that RNA-BPs can visually colocalize without producing a FRET signal. In contrast, proteins that appear to be delimited to one or another intracellular compartment can be shown to interact when those compartments are juxtaposed.
Collapse
Affiliation(s)
- Pamela S David Gerecht
- Department of Medicine/Cardiology and Pharmacology, University of Colorado School of Medicine, 12700 East 19th Avenue, Aurora, CO 80045, USA.
| | | | | |
Collapse
|
300
|
Morgan BR, Massi F. A computational study of RNA binding and specificity in the tandem zinc finger domain of TIS11d. Protein Sci 2010; 19:1222-34. [PMID: 20506496 DOI: 10.1002/pro.401] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
TIS11d is a member of the CCCH-type family of tandem zinc finger (TZF) proteins; the TZF domain of TIS11d (residues 151-220) is sufficient to bind and destabilize its target mRNAs with high specificity. In this study, the TZF domain of TIS11d is simulated in an aqueous environment in both the free and RNA-bound states. Multiple nanosecond timescale molecular dynamics trajectories of TIS11d wild-type and E157R/E195K mutant with different RNA sequences were performed to investigate the molecular basis for RNA binding specificities of this TZF domain. A variety of measures of the protein structure, fluctuations, and dynamics were used to analyze the trajectories. The results of this study support the following conclusions: (1) the structure of the two fingers is maintained in the free state but a global reorientation occurs to yield a more compact structure; (2) mutation of the glutamate residues at positions 157 and 195 to arginine and lysine, respectively, affects the RNA recognition by this TIS11d mutant in agreement with the findings of Pagano et al. (J Biol Chem 2007; 282:8883-8894); and (3) we predict that the E157R/E195K mutant will present a more relaxed RNA binding specificity relative to wild-type TIS11d based on the more favorable nonsequence-specific Coulomb interaction of the two positively charged residues at positions 157 and 195 with the RNA backbone, which compensates for a partial loss of the stacking interaction of aromatic side chains with the RNA bases.
Collapse
Affiliation(s)
- Brittany R Morgan
- Department of Physics, Clark University, Worcester, Massachusetts 01610, USA
| | | |
Collapse
|