251
|
Lind MA, Sepp T, Štšeglova K, Hõrak P. Antibiotic treatment increases yellowness of carotenoid feather coloration in male greenfinches (Chloris chloris). Sci Rep 2021; 11:13235. [PMID: 34168219 PMCID: PMC8225797 DOI: 10.1038/s41598-021-92598-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 06/04/2021] [Indexed: 12/17/2022] Open
Abstract
Carotenoid plumage coloration is an important sexually selected trait in many bird species. However, the mechanisms ensuring the honesty of signals based on carotenoid pigments remain unclear. It has recently been suggested that intestinal integrity, which is affected by gut parasites and microbiota and influences nutrient absorption and acquisition, mediates the relationship between carotenoid ornamentation and individual quality. Here, we test whether carotenoid plumage coloration in greenfinches (Chloris chloris) is affected by the treatment of an antibiotic or an antiparasitic drug. We captured wild greenfinches (N = 71) and administered anticoccidial medication toltrazuril (TOLTRA) to one group, antibiotic metronidazole (METRO) to the second group to target trichomonosis, and the third group received no medication. In the METRO group, feathers grown during the experiment had significantly higher chroma of yellow parts, but there was no effect of TOLTRA on feather chroma. The results suggest that METRO increased the efficiency of carotenoid modification or deposition to the feathers rather than nutrient acquisition and/or freed energy resources that could be invested in coloration. Alternatively, though not measured, METRO might have affected microbial community and host physiology as microbial metabolites can modulate mitochondrial and immune function.
Collapse
Affiliation(s)
- Mari-Ann Lind
- Institute of Ecology and Earth Sciences, University of Tartu, Vanemuise 46, 51014, Tartu, Estonia.
| | - Tuul Sepp
- Institute of Ecology and Earth Sciences, University of Tartu, Vanemuise 46, 51014, Tartu, Estonia
| | - Kristiina Štšeglova
- Institute of Ecology and Earth Sciences, University of Tartu, Vanemuise 46, 51014, Tartu, Estonia
| | - Peeter Hõrak
- Institute of Ecology and Earth Sciences, University of Tartu, Vanemuise 46, 51014, Tartu, Estonia
| |
Collapse
|
252
|
Zhou Q, Gu R, Xue B, Li P, Gu Q. Phenyl lactic acid alleviates Samonella Typhimurium-induced colitis via regulating microbiota composition, SCFA production and inflammatory responses. Food Funct 2021; 12:5591-5606. [PMID: 34017972 DOI: 10.1039/d1fo00166c] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Colitis caused by non-typhoidal Salmonella (NST) infection is increasingly serious and widespread, so new effective treatment strategies with little or no side-effects are urgently needed. Our previous research found that phenyl lactic acid (PLA) derived from Lactobacillus plantarum ZJ316 can effectively inhibit Salmonella enterica Typhimurium (S. Typhimurium). In this study, we further investigated the protective effects of this PLA against S. Typhimurium-induced colitis in mice. An infection model was established using female C57BL/6J mice by oral administration of 109 CFU mL-1 of S. Typhimurium, and PLA was supplied for 10 days after infection. In colitic mice, PLA administration reduced the disease activity index, prevented the colon shortening and spleen enlargement, decreased liver enzyme (AST and ALT) activities, and alleviated the colonic tissue damage. RT-qPCR analysis showed that PLA significantly down-regulated the levels of NF-κB, TLR4 and pro-inflammatory cytokines (IFN-γ, IL-1β and TNF-α), but stimulated the mRNA expression of the anti-inflammatory cytokine IL-10. Changes in intestinal microecology were analyzed by 16S rRNA sequencing. PLA modulated colonic microbiota dysbiosis by increasing the abundance of Lactobacillus, Butyricicoccus and Roseburia, and reducing Salmonella and Alloprevotella at the genus level. In addition, PLA significantly increased the concentrations of short-chain fatty acids (SCFAs) in the colon, especially propionic acid and butyric acid. These findings revealed that PLA has potential benefits on alleviating S. Typhimurium-induced colitis mainly through intestinal microbiota regulation and inflammation elimination, providing a new perspective for the NTS infection treatment strategy.
Collapse
Affiliation(s)
- Qingqing Zhou
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China.
| | - Rongcheng Gu
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | - Bingyao Xue
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China.
| | - Ping Li
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China.
| | - Qing Gu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China.
| |
Collapse
|
253
|
Li B, Qiu H, Zheng N, Wu G, Gu Y, Zhong J, Hong Y, Ma J, Zhou W, Sheng L, Li H. Integrated Metagenomic and Transcriptomic Analyses Reveal the Dietary Dependent Recovery of Host Metabolism From Antibiotic Exposure. Front Cell Dev Biol 2021; 9:680174. [PMID: 34222250 PMCID: PMC8250461 DOI: 10.3389/fcell.2021.680174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 05/20/2021] [Indexed: 01/10/2023] Open
Abstract
The balance of gut microbiome is essential for maintaining host metabolism homeostasis. Despite widespread antibiotic use, the potential long-term detrimental consequences of antibiotics for host health are getting more and more attention. However, it remains unclear whether diet affects the post-antibiotic recovery of gut microbiome and host metabolism. In this study, through metagenomic sequencing and hepatic transcriptome analysis, we investigated the divergent impacts of short-term vancomycin (Vac), or combination of ciprofloxacin and metronidazole (CM) treatment on gut microbiome and host metabolism, as well as their recovery extent from antibiotic exposure on chow diet (CD) and high-fat diet (HFD). Our results showed that short-term Vac intervention affected insulin signaling, while CM induced more functional changes in the microbiome. However, Vac-induced long-term (45 days) changes of species were more apparent when recovered on CD than HFD. The effects of antibiotic intervention on host metabolism were long-lasting, antibiotic-specific, and diet-dependent. The number of differentially expressed gene was doubled by Vac than CM, but was comparable after recovery on CD as revealed by the hepatic transcriptomic analysis. In contrast, HFD intake during recovery could worsen the extent of post-antibiotic recovery by altering infection, immunity, and cancer-related pathways in short-term Vac-exposed rats and by shifting endocrine system-associated pathways in CM-exposed rats. Together, the presented data demonstrated the long-term recovery extent after different antibiotic exposure was diet-related, highlighting the importance of dietary management during post-antibiotic recovery.
Collapse
Affiliation(s)
- Bingbing Li
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huihui Qiu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ningning Zheng
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Gaosong Wu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu Gu
- Human Phenome Institute, Fudan University, Shanghai, China
| | - Jing Zhong
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Huzhou Key Laboratory of Molecular Medicine, Huzhou Central Hospital, Huzhou, China
| | - Ying Hong
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Junli Ma
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wen Zhou
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Lili Sheng
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Houkai Li
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
254
|
El-Salhy M, Patcharatrakul T, Gonlachanvit S. Fecal microbiota transplantation for irritable bowel syndrome: An intervention for the 21 st century. World J Gastroenterol 2021; 27:2921-2943. [PMID: 34168399 PMCID: PMC8192290 DOI: 10.3748/wjg.v27.i22.2921] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/03/2021] [Accepted: 05/22/2021] [Indexed: 02/06/2023] Open
Abstract
Irritable bowel syndrome (IBS) affects about 12% of the global population. Although IBS does not develop into a serious disease or increase mortality, it results in a considerable reduction in the quality of life. The etiology of IBS is not known, but the intestinal microbiota appears to play a pivotal role in its pathophysiology. There is no effective treatment for IBS, and so the applied treatments clinically focus on symptom relief. Fecal microbiota transplantation (FMT), an old Chinese treatment, has been applied to IBS patients in seven randomized controlled trials (RCTs). Positive effects on IBS symptoms in various degrees were obtained in four of these RCTs, while there was no effect in the remaining three. Across the seven RCTs there were marked differences in the selection processes for the donor and treated patients, the transplant dose, the route of administration, and the methods used to measure how the patients responded to FMT. The present frontier discusses these differences and proposes: (1) criteria for selecting an effective donor (superdonor); (2) selection criteria for patients that are suitable for FMT; (3) the optimal FMT dose; and (4) the route of transplant administration. FMT appears to be safe, with only mild, self-limiting side effects of abdominal pain, cramping, tenderness, diarrhea, and constipation. Although it is early to speculate about the mechanisms underlying the effects of FMT, the available data suggest that changes in the intestinal bacteria accompanied by changes in fermentation patterns and fermentation products (specifically short-chain fatty acids) play an important role in improving the IBS symptoms seen after FMT. FMT appears to be a promising treatment for IBS, but further studies are needed before it can be applied in everyday clinical practice.
Collapse
Affiliation(s)
- Magdy El-Salhy
- Department of Medicine, Stord Helse Fonna Hospital and University of Bergen, Stord 5416, Norway
| | - Tanisa Patcharatrakul
- Department of Medicine, King Chulalongkorn Memorial Hospital and Center of Excellence in Neurogastroenterology and Motility, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sutep Gonlachanvit
- Department of Medicine, King Chulalongkorn Memorial Hospital and Center of Excellence in Neurogastroenterology and Motility, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
255
|
Beckmann L, Künstner A, Freschi ML, Huber G, Stölting I, Ibrahim SM, Hirose M, Freitag M, Langan EA, Matschl U, Galuska CE, Fuchs B, Knobloch JK, Busch H, Raasch W. Telmisartan induces a specific gut microbiota signature which may mediate its antiobesity effect. Pharmacol Res 2021; 170:105724. [PMID: 34116209 DOI: 10.1016/j.phrs.2021.105724] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/17/2021] [Accepted: 06/04/2021] [Indexed: 02/07/2023]
Abstract
Telmisartan prevents diet-induced obesity (DIO) in rodents. Given that the precise underlying mechanism is not known, we examined whether a gut-related mechanism might be involved. Sprague-Dawley rats received cafeteria diet (CD) for 3 months to develop DIO and were administered either telmisartan (8 mg/kgbw) or vehicle. In addition, pair-fed (PF) rats received CD adjusted to TEL and control rats (CON) only received chow. Stool samples were analysed by 16 S rRNA gene amplicon sequencing. CD-fed rats became obese while TEL, PF and CON rats remained lean. Alpha diversity analyses indicated that bacterial diversity was similar before the study but changed over time. Beta diversity revealed a time-, CD- and telmisartan-dependent effect. The Firmicutes/Bacteroidetes ratio and the abundance of Blautia, Allobaculum and Parasutterella were higher in DIO and PF than in CON, but not in TEL. Enterotype (ET)-like clustering analyses, Kleinberg's hub network scoring and random forest analyses also indicated that telmisartan induced a specific signature of gut microbiota. In response to stool transfer from telmisartan-pre-treated donor to high-fat fed acceptor mice, body weight gain was slightly attenuated. We attribute the anti-obesity action of telmisartan treatment to diet-independent alterations in gut microbiota as the microbiota from telmisartan-treated, CD-fed rats clearly differed from those of DIO and PF rats. ET-like clustering network, random forest classification and the higher stability in bacterial co-occurrence network analyses indicate that there is more than one indicator species for telmisartan's specific signature, which is further strengthened by the fact that we cannot identify a single indicator species.
Collapse
Affiliation(s)
- Laura Beckmann
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Germany
| | - Axel Künstner
- Medical Systems Biology Group, Institute of Experimental Dermatology, University of Lübeck, Germany; Institute for Cardiogenetic, University of Lübeck, Germany
| | - Marco L Freschi
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Germany
| | - Gianna Huber
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Lübeck, Germany; CBBM (Center of Brain, Behavior and Metabolism), Germany
| | - Ines Stölting
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Germany
| | - Saleh M Ibrahim
- Institute of Experimental Dermatology, University of Lübeck, Germany
| | - Misa Hirose
- Institute of Experimental Dermatology, University of Lübeck, Germany
| | - Miriam Freitag
- Departement of Dermatology, University of Lübeck, Germany
| | - Ewan A Langan
- Departement of Dermatology, University of Lübeck, Germany; Dermatological Sciences, University of Manchester, UK
| | - Urte Matschl
- Department Virus Immunology, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Christina E Galuska
- Leibniz Institute for Farm Animal Biology (FBN) Core Facility Metabolomics, Germany
| | - Beate Fuchs
- Leibniz Institute for Farm Animal Biology (FBN) Core Facility Metabolomics, Germany
| | - Johannes K Knobloch
- Clinic of Infectiology and Microbiology, University Clinic Schleswig-Holstein, Campus Lübeck, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Lübeck, Germany; Insitute for Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hauke Busch
- Medical Systems Biology Group, Institute of Experimental Dermatology, University of Lübeck, Germany; Institute for Cardiogenetic, University of Lübeck, Germany
| | - Walter Raasch
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Lübeck, Germany; CBBM (Center of Brain, Behavior and Metabolism), Germany.
| |
Collapse
|
256
|
Chen Y, Xiang Q, Liu L. Comparison of antibiotic-associated diarrhea caused by cefoperazone/sulbactam or piperacillin/tazobactam in neurosurgery patients. J Int Med Res 2021; 49:3000605211019661. [PMID: 34057835 PMCID: PMC8170296 DOI: 10.1177/03000605211019661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Objective To compare the occurrence and prognosis of antibiotic-associated diarrhea
(AAD) between patients treated with cefoperazone/sulbactam and
piperacillin/tazobactam in the neurosurgery department. Methods This study retrospectively analyzed patients who received
cefoperazone/sulbactam or piperacillin/tazobactam to prevent or treat
hospital-acquired infections in the Department of Neurosurgery of The First
Medical Center of Chinese PLA General Hospital between October 2019 and
October 2020. For patients with AAD, clinical data, antibiotic usage, the
incidence of diarrhea, treatment, and prognosis were collected and
analyzed. Results In total, 356 patients were enrolled, and 65 (18.6%) experienced AAD, 38
patients in the cefoperazone/sulbactam group and 27 patients in the
piperacillin/tazobactam group. The AAD rate did not differ between the
treatment arms. Conversely, the dosage, intensity, and duration of
antibiotic therapy differed between the groups, whereas no differences were
noted in the time to the appearance of diarrhea and prognosis. According to
regression analysis, the incidence of AAD did not differ between the groups
(odds ratio [OR] = 0.85, 95% confidence interval [CI] = 0.46–1.48). Conclusion Cefoperazone/sulbactam or piperacillin/tazobactam can lead to a similar
incidence rate of AAD. The combined application of antibiotics and empiric
therapy often occurs. The rational use of antibiotics should be
improved.
Collapse
Affiliation(s)
- Yue Chen
- Pharmacy Department, Medical Supplies Center of Chinese PLA General Hospital, Beijing, China
| | | | - Lei Liu
- Department of Neurosurgery, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
257
|
Ravid JD, Kamel MH, Chitalia VC. Uraemic solutes as therapeutic targets in CKD-associated cardiovascular disease. Nat Rev Nephrol 2021; 17:402-416. [PMID: 33758363 DOI: 10.1038/s41581-021-00408-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2021] [Indexed: 02/01/2023]
Abstract
Chronic kidney disease (CKD) is characterized by the retention of a myriad of solutes termed uraemic (or uremic) toxins, which inflict damage to several organs, including the cardiovascular system. Uraemic toxins can induce hallmarks of cardiovascular disease (CVD), such as atherothrombosis, heart failure, dysrhythmias, vessel calcification and dysregulated angiogenesis. CVD is an important driver of mortality in patients with CKD; however, reliance on conventional approaches to managing CVD risk is insufficient in these patients, underscoring a need to target risk factors that are specific to CKD. Mounting evidence suggests that targeting uraemic toxins and/or pathways induced by uraemic toxins, including tryptophan metabolites and trimethylamine N-oxide (TMAO), can lower the risk of CVD in patients with CKD. Although tangible therapies resulting from our growing knowledge of uraemic toxicity are yet to materialize, a number of pharmacological and non-pharmacological approaches have the potential to abrogate the effects of uraemic toxins, for example, by decreasing the production of uraemic toxins, by modifying metabolic pathways induced by uraemic toxins such as those controlled by aryl hydrocarbon receptor signalling and by augmenting the clearance of uraemic toxins.
Collapse
Affiliation(s)
- Jonathan D Ravid
- School of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Mohamed Hassan Kamel
- Renal Section, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Vipul C Chitalia
- Renal Section, Department of Medicine, Boston University School of Medicine, Boston, MA, USA. .,Boston Veterans Affairs Healthcare System, Boston, MA, USA. .,Global Co-creation Lab, Institute of Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
258
|
Luo J, Liang S, Jin F. Gut microbiota in antiviral strategy from bats to humans: a missing link in COVID-19. SCIENCE CHINA. LIFE SCIENCES 2021; 64:942-956. [PMID: 33521857 PMCID: PMC7847806 DOI: 10.1007/s11427-020-1847-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 09/21/2020] [Indexed: 01/31/2023]
Abstract
Bats are a potential natural reservoir for SARS-CoV-2 virus and other viruses detrimental to humans. Accumulated evidence has shown that, in their adaptation to a flight-based lifestyle, remodeling of the gut microbiota in bats may have contributed to immune tolerance to viruses. This evidence from bats provides profound insights into the potential influence of gut microbiota in COVID-19 disease in humans. Here, we highlight recent advances in our understanding of the mechanisms by which the gut microbiota helps bats tolerate deadly viruses, and summarize the current clinical evidence on the influence of gut microbiota on the susceptibility to SARS-CoV-2 infection and risk of COVID-19 leading to a fatal outcome. In addition, we discuss the implications of gut microbiota-targeted approaches for preventing infection and reducing disease severity in COVID-19 patients.
Collapse
Affiliation(s)
- Jia Luo
- Department of Psychology, Sichuan Normal University, Chengdu, 610068, China
| | - Shan Liang
- Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Feng Jin
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
259
|
Everett C, Li C, Wilkinson JE, Nguyen LH, McIver LJ, Ivey K, Izard J, Palacios N, Eliassen AH, Willett WC, Ascherio A, Sun Q, Tworoger SS, Chan AT, Garrett WS, Huttenhower C, Rimm EB, Song M. Overview of the Microbiome Among Nurses study (Micro-N) as an example of prospective characterization of the microbiome within cohort studies. Nat Protoc 2021; 16:2724-2731. [PMID: 33883746 PMCID: PMC9240631 DOI: 10.1038/s41596-021-00519-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 02/16/2021] [Indexed: 02/06/2023]
Abstract
A lack of prospective studies has been a major barrier for assessing the role of the microbiome in human health and disease on a population-wide scale. To address this significant knowledge gap, we have launched a large-scale collection targeting fecal and oral microbiome specimens from 20,000 women within the Nurses' Health Study II cohort (the Microbiome Among Nurses study, or Micro-N). Leveraging the rich epidemiologic data that have been repeatedly collected from this cohort since 1989; the established biorepository of archived blood, urine, buccal cell, and tumor tissue specimens; the available genetic and biomarker data; the cohort's ongoing follow-up; and the BIOM-Mass microbiome research platform, Micro-N furnishes unparalleled resources for future prospective studies to interrogate the interplay between host, environmental factors, and the microbiome in human health. These prospectively collected materials will provide much-needed evidence to infer causality in microbiome-associated outcomes, paving the way toward development of microbiota-targeted modulators, preventives, diagnostics and therapeutics. Here, we describe a generalizable, scalable and cost-effective platform used for stool and oral microbiome specimen and metadata collection in the Micro-N study as an example of how prospective studies of the microbiome may be carried out.
Collapse
Affiliation(s)
- Christine Everett
- Harvard Chan Microbiome in Public Health Center, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Chengchen Li
- Harvard Chan Microbiome in Public Health Center, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Jeremy E Wilkinson
- Harvard Chan Microbiome in Public Health Center, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Long H Nguyen
- Harvard Chan Microbiome in Public Health Center, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Clinical and Translational Epidemiology Unit, Mongan Institute, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Lauren J McIver
- Harvard Chan Microbiome in Public Health Center, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Kerry Ivey
- Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- South Australian Health and Medical Research Institute, Infection and Immunity Theme, School of Medicine, Flinders University, Adelaide, Australia
- Department of Nutrition and Dietetics, College of Nursing and Health Sciences, Flinders University, Adelaide, South Australia, Australia
| | - Jacques Izard
- Food Science and Technology Department, Institute of Agriculture and Natural Resources, University of Nebraska, Lincoln, NE, USA
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Natalia Palacios
- Harvard Chan Microbiome in Public Health Center, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Department of Public Health, Zuckerberg College of Health Sciences, University of Massachusetts Lowell, Lowell, MA, USA
| | - A Heather Eliassen
- Harvard Chan Microbiome in Public Health Center, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Walter C Willett
- Harvard Chan Microbiome in Public Health Center, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Alberto Ascherio
- Harvard Chan Microbiome in Public Health Center, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Qi Sun
- Harvard Chan Microbiome in Public Health Center, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Shelley S Tworoger
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL, USA
| | - Andrew T Chan
- Harvard Chan Microbiome in Public Health Center, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Clinical and Translational Epidemiology Unit, Mongan Institute, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Wendy S Garrett
- Harvard Chan Microbiome in Public Health Center, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Department of Molecular Metabolism, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Curtis Huttenhower
- Harvard Chan Microbiome in Public Health Center, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Eric B Rimm
- Harvard Chan Microbiome in Public Health Center, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Mingyang Song
- Harvard Chan Microbiome in Public Health Center, Harvard T. H. Chan School of Public Health, Boston, MA, USA.
- Clinical and Translational Epidemiology Unit, Mongan Institute, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, MA, USA.
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
260
|
Schubert ML, Rohrbach R, Schmitt M, Stein-Thoeringer CK. The Potential Role of the Intestinal Micromilieu and Individual Microbes in the Immunobiology of Chimeric Antigen Receptor T-Cell Therapy. Front Immunol 2021; 12:670286. [PMID: 34135898 PMCID: PMC8200823 DOI: 10.3389/fimmu.2021.670286] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 05/04/2021] [Indexed: 12/25/2022] Open
Abstract
Cellular immunotherapy with chimeric antigen receptor (CAR)-T cells (CARTs) represents a breakthrough in the treatment of hematologic malignancies. CARTs are genetically engineered hybrid receptors that combine antigen-specificity of monoclonal antibodies with T cell function to direct patient-derived T cells to kill malignant cells expressing the target (tumor) antigen. CARTs have been introduced into clinical medicine as CD19-targeted CARTs for refractory and relapsed B cell malignancies. Despite high initial response rates, current CART therapies are limited by a long-term loss of antitumor efficacy, the occurrence of toxicities, and the lack of biomarkers for predicting therapy and toxicity outcomes. In the past decade, the gut microbiome of mammals has been extensively studied and evidence is accumulating that human health, apart from our own genome, largely depends on microbes that are living in and on the human body. The microbiome encompasses more than 1000 bacterial species who collectively encode a metagenome that guides multifaceted, bidirectional host-microbiome interactions, primarily through the action of microbial metabolites. Increasing knowledge has been accumulated on the role of the gut microbiome in T cell-driven anticancer immunotherapy. It has been shown that antibiotics, dietary components and gut microbes reciprocally affect the efficacy and toxicity of allogeneic hematopoietic cell transplantation (allo HCT) as the prototype of T cell-based immunotherapy for hematologic malignancies, and that microbiome diversity metrics can predict clinical outcomes of allo HCTs. In this review, we will provide a comprehensive overview of the principles of CD19-CART immunotherapy and major aspects of the gut microbiome and its modulators that impact antitumor T cell transfer therapies. We will outline i) the extrinsic and intrinsic variables that can contribute to the complex interaction of the gut microbiome and host in CART immunotherapy, including ii) antibiotic administration affecting loss of colonization resistance, expansion of pathobionts and disturbed mucosal and immunological homeostasis, and ii) the role of specific gut commensals and their microbial virulence factors in host immunity and inflammation. Although the role of the gut microbiome in CART immunotherapy has only been marginally explored so far, this review may open a new chapter and views on putative connections and mechanisms.
Collapse
Affiliation(s)
- Maria-Luisa Schubert
- Klinik fuer Haematologie, Onkologie und Rheumatologie, Universitätsklinikum Heidelberg, Heidelberg, Germany
| | - Roman Rohrbach
- Research Division Microbiome and Cancer, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| | - Michael Schmitt
- Klinik fuer Haematologie, Onkologie und Rheumatologie, Universitätsklinikum Heidelberg, Heidelberg, Germany
| | - Christoph K Stein-Thoeringer
- Research Division Microbiome and Cancer, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany.,Klinik fuer Medizinische Onkologie, Nationales Centrum für Tumorerkrankungen (NCT), Heidelberg, Germany
| |
Collapse
|
261
|
Sun P, Yang J, Wang B, Ma H, Zhang Y, Guo J, Chen X, Zhao J, Sun H, Yang J, Yang H, Cui Y. The effects of combined environmental factors on the intestinal flora of mice based on ground simulation experiments. Sci Rep 2021; 11:11373. [PMID: 34059794 PMCID: PMC8166921 DOI: 10.1038/s41598-021-91077-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 05/17/2021] [Indexed: 11/09/2022] Open
Abstract
The composition and function of intestinal microbial communities are important for human health. However, these intestinal floras are sensitive to changes in the environment. Adverse changes to intestinal flora can affect the health of astronauts, resulting in difficulties in implementing space missions. We randomly divided mice into three groups and placed each group in either a normal environment, simulated microgravity environment or a combined effects environment, which included simulated microgravity, low pressure and noise. Fecal samples of the mice were collected for follow-up analysis based on metagenomics technology. With the influence of different space environmental factors, the species composition at the phylum and genus levels were significantly affected by the combined effects environment, especially the abundance of the Firmicutes and Bacteroidetes. Furthermore, screening was conducted to identify biomarkers that could be regarded as environmental markers. And there have also been some noticeable changes in the function of intestinal floras. Moreover, the abundance of antibiotic resistance genes (ARGs) was also found to be changed under different environmental conditions, such as bacitracin and vancomycin. The combined effects environment could significantly affect the species composition, function, and the expression of ARGs of intestinal flora of mice which may provide a theoretical basis for space medical supervision and healthcare.
Collapse
Affiliation(s)
- Peiming Sun
- Department of General Surgery, Strategic Support Force Medical Center, Chaoyang District, Beijing, 100101, China
| | - Jiaqi Yang
- Department of General Surgery, Strategic Support Force Medical Center, Chaoyang District, Beijing, 100101, China
- Department of General Surgery, The 306th Hospital of Chinese PLA-Peking University Teaching Hospital, Chaoyang District, Beijing, 100101, China
| | - Bo Wang
- China Astronaut Research and Training Center, Haidian District, Beijing, 100094, China
| | - Huan Ma
- Ministry of Education (MOE) Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Haizhu District, Guangzhou, 510006, China
| | - Yin Zhang
- Ministry of Education (MOE) Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Haizhu District, Guangzhou, 510006, China
| | - Jinhu Guo
- Ministry of Education (MOE) Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Haizhu District, Guangzhou, 510006, China
| | - Xiaoping Chen
- China Astronaut Research and Training Center, Haidian District, Beijing, 100094, China
| | - Jianwei Zhao
- China Astronaut Research and Training Center, Haidian District, Beijing, 100094, China
| | - Hongwei Sun
- Department of General Surgery, Strategic Support Force Medical Center, Chaoyang District, Beijing, 100101, China
| | - Jianwu Yang
- Department of General Surgery, Strategic Support Force Medical Center, Chaoyang District, Beijing, 100101, China
| | - Heming Yang
- Department of General Surgery, Strategic Support Force Medical Center, Chaoyang District, Beijing, 100101, China.
| | - Yan Cui
- Department of General Surgery, Strategic Support Force Medical Center, Chaoyang District, Beijing, 100101, China.
| |
Collapse
|
262
|
Freedman ZG, Kane JA, King TS, Graziane NM. The effect of prescribing antibiotics with opioids on the development of opioid use disorder: a national database study. J Addict Dis 2021; 40:62-70. [PMID: 34030608 DOI: 10.1080/10550887.2021.1926889] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The goal of this study was to examine the impact of inpatient- or emergency department- prescribed antibiotic treatment in combination with opioids on the risk of developing opioid use disorder 12 months following discharge from the hospital. The authors conducted a propensity score-matched cohort study with data from the TriNetX Research Network database to identify adult subjects (18-65 years old) with no previous history of an opioid use disorder. Three cohorts were defined for the analyses: subjects who were prescribed an opioid, opioid in combination with an antibiotic, or an antibiotic while in the emergency department or inpatient unit, from the years 2012 to 2018. The diagnosis of an Opioid Related Disorder (F11.10-F11.20) 12 months following discharge from the emergency department or inpatient unit was then observed within the cohorts following the index event as identified by the ICD-10 procedural coding system. Primary analysis (propensity-score matched on age and sex) showed that opioids prescribed in combination with antibiotics had a protective effect against the development of opioid use disorder. This effect was consistent throughout all of the years included in this study with the smallest protective effect observed in 2018 (2012 risk ratio = 1.27 (95% CI: 1.23, 1.32); 2018 risk ratio: 1.03 (95% CI: 1.01, 1.05). These findings suggest that opioids prescribed in combination with antibiotics in the hospital setting are protective against the development of OUD at later time points following hospital discharge.
Collapse
Affiliation(s)
- Zachary G Freedman
- Doctor of Medicine Program, Penn State College of Medicine, Hershey, PA, USA
| | - Jennifer A Kane
- Doctor of Medicine Program, Penn State College of Medicine, Hershey, PA, USA
| | - Tonya S King
- Public Health Sciences, Penn State College of Medicine, Hershey, PA, USA
| | - Nicholas M Graziane
- Departments of Anesthesiology and Perioperative Medicine and Pharmacology, Penn State College of Medicine, Hershey, PA, USA
| |
Collapse
|
263
|
Evidences for a Role of Gut Microbiota in Pathogenesis and Management of Epilepsy. Int J Mol Sci 2021; 22:ijms22115576. [PMID: 34070389 PMCID: PMC8197531 DOI: 10.3390/ijms22115576] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 02/06/2023] Open
Abstract
Epilepsy as a chronic neurological disorder is characterized by recurrent, unprovoked epileptic seizures. In about half of the people who suffer from epilepsy, the root cause of the disorder is unknown. In the other cases, different factors can cause the onset of epilepsy. In recent years, the role of gut microbiota has been recognized in many neurological disorders, including epilepsy. These data are based on studies of the gut microbiota–brain axis, a relationship starting by a dysbiosis followed by an alteration of brain functions. Interestingly, epileptic patients may show signs of dysbiosis, therefore the normalization of the gut microbiota may lead to improvement of epilepsy and to greater efficacy of anticonvulsant drugs. In this descriptive review, we analyze the evidences for the role of gut microbiota in epilepsy and hypothesize a mechanism of action of these microorganisms in the pathogenesis and treatment of the disease. Human studies revealed an increased prevalence of Firmicutes in patients with refractory epilepsy. Exposure to various compounds can change microbiota composition, decreasing or exacerbating epileptic seizures. These include antibiotics, epileptic drugs, probiotics and ketogenic diet. Finally, we hypothesize that physical activity may play a role in epilepsy through the modulation of the gut microbiota.
Collapse
|
264
|
Pressure response of carbapenems Klebsiella pneumoniae under antibiotic stress. INFECTION GENETICS AND EVOLUTION 2021; 92:104915. [PMID: 34000446 DOI: 10.1016/j.meegid.2021.104915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/17/2021] [Accepted: 05/11/2021] [Indexed: 11/21/2022]
Abstract
To analyze the drug-resistant phenotype and genetic characteristics of Carbapenem resistant Klebsiella pneumoniae (CRKP) in this region, and to study its different expression profiles in RNA level under the pressure of low levels of antibiotics. Trace dilution method and PCR method were used to detect the antibiotic resistance phenotype and antibiotic resistance gene carrying of CRKP strain, simulate the antibiotic stress process, and RNAseq was used to analyze the transcriptomic changes of CRKP strain. 37 CRKP strains, 27 Carbapenem sensitive Klebsiella pneumoniae (CSKP) CSKP strains and 42 sensitive strains were detected. The antibiotic resistance rate of CRKP strain was significantly higher than that of other drug-resistant strains, and there were many kinds of antibiotic resistance genes. Transcriptomic analysis showed that CRKP strain showed compensatory rise under meropenem stress at low concentration, and the expression of genes related to biofilm formation, pressure induction, pressure tolerance and transcriptional regulation was significantly changed. It was speculated that mrkAB, fimDH, phoHP and pspABCD clusters significantly altered their expression under the antibiotics stress response in CRKP strain. The detection rate of CRKP strain is high in this area. Under low levels of antibiotic stress, CRKP strain can not only survive by synthesizing antibiotic modified enzyme, but also respond by transcriptional regulation and biofilm changes, resulting in stress compensation. The discovery of this phenomenon explains the failure of treatment due to improper use of higher-order antibiotics from the perspective of genetic interaction.
Collapse
|
265
|
Al Othaim A, Marasini D, Carbonero F. Impact of cranberry juice consumption on gut and vaginal microbiota in postmenopausal women. FOOD FRONTIERS 2021. [DOI: 10.1002/fft2.76] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Ayoub Al Othaim
- Cell and Molecular Biology Program University of Arkansas Fayetteville Arkansas USA
- Department of Medical Laboratories College of Applied Medical Sciences Majmaah University Al‐Majmaah Saudi Arabia
| | - Daya Marasini
- Department of Food Science University of Arkansas Fayetteville Arkansas USA
| | - Franck Carbonero
- Cell and Molecular Biology Program University of Arkansas Fayetteville Arkansas USA
- Department of Food Science University of Arkansas Fayetteville Arkansas USA
- Department of Food Science Washington State University Spokane Washington USA
- Department of Nutrition and Exercise Physiology Elson Floyd School of Medicine Washington State University Spokane Spokane Washington USA
| |
Collapse
|
266
|
Werner M, Unterer S. [Use of antimicrobials in acute canine diarrhea - overview of potential risks, indications and alternatives]. TIERAERZTLICHE PRAXIS AUSGABE KLEINTIERE HEIMTIERE 2021; 49:110-120. [PMID: 33902119 DOI: 10.1055/a-1395-2001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
In Germany, antibiotics are frequently used in dogs with gastrointestinal disorders such as acute diarrhea. In line with global efforts to limit antibiotic use, this literature review aims to provide a guideline for the rational and judicious use of antibiotics in acute canine diarrhea. Antibiotics can lead to gastrointestinal side effects and may exert a negative influence on the intestinal microbiota in addition to increasing the occurrence of resistant bacteria. There is also evidence that chronic immunological diseases may be triggered by the administration of antibiotics. Therefore, these should not be administered in uncomplicated acute diarrhea without signs of sepsis or systemic inflammatory reaction. In addition, enteropathogenic bacteria usually do not play a role in the etiology of acute diarrhea. For select clinical entities such as acute hemorrhagic diarrhea syndrome, antibiotic therapy should only be recommended in cases displaying signs of bacterial translocation with subsequent sepsis. In the case of parvovirosis, on the other hand, the administration of antibiotics is unavoidable due to the immunological incompetence of the dog caused by the accompanying severe neutropenia.
Collapse
Affiliation(s)
- Melanie Werner
- Medizinische Kleintierklinik, Zentrum für Klinische Tiermedizin, Ludwig-Maximilians-Universität München
| | - Stefan Unterer
- Medizinische Kleintierklinik, Zentrum für Klinische Tiermedizin, Ludwig-Maximilians-Universität München
| |
Collapse
|
267
|
Siu J, Mackenzie BW, Klingler L, Biswas K, Wang Y, Hung CT, Jeong SH, Barnett D, Tingle MD, Douglas RG. Sinonasal and gastrointestinal bacterial composition and abundance are stable after 1 week of once-daily oral antibiotic treatment for chronic rhinosinusitis. Int Forum Allergy Rhinol 2021; 11:1355-1366. [PMID: 33877743 DOI: 10.1002/alr.22799] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 03/17/2021] [Accepted: 03/17/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND Despite the widespread prescription of antibiotics for the treatment of chronic rhinosinusitis (CRS), their efficacy remains uncertain. Limited penetration of systemic antibiotics into the sinonasal mucosa has been reported previously by this group. This study aimed to investigate the short-term effects of antibiotics on the sinus and gut microbiota as well as any relationships these had with drug distribution. METHODS Thirty subjects undergoing functional endoscopic sinus surgery for CRS were randomized to one of three groups: (1) doxycycline (100 mg daily for 7 days); (2) roxithromycin (300 mg daily for 7 days); and (3) control (no antibiotics given). Sinonasal and stool samples collected before and after treatment were analyzed using 16S ribosomal RNA (rRNA) gene-targeted amplicon sequencing and Droplet Digital polymerase chain reaction (PCR) for bacterial community composition and the quantification of bacterial DNA, respectively. RESULTS There were no significant major bacterial community shifts or changes to bacterial diversity and load following the treatment period in all patient groups. Non-significant trend reductions were observed in gut microbial diversity with antibiotics. For the roxithromycin group, sinonasal bacterial diversity was negatively correlated with serum drug levels and reduced overall compared to controls (p < 0.05). The relative abundance of Staphylococcus ASV129 in sinonasal samples reduced with increasing mucus doxycycline levels (p = 0.01). CONCLUSION Antibiotic prescription for CRS should be further investigated because of preliminary evidence of poor sinonasal drug penetration, unproven efficacy, and the potential impact of dysbiosis in the sinuses and off-target sites. Further studies should consider distinguishing the presence of DNA from viable and nonviable bacteria.
Collapse
Affiliation(s)
- Joey Siu
- Department of Surgery, University of Auckland, Auckland, New Zealand
| | | | - Lilian Klingler
- Research and Development, Zenith Technology Corporation Limited, Dunedin, New Zealand
| | - Kristi Biswas
- Department of Surgery, University of Auckland, Auckland, New Zealand
| | - Yi Wang
- Research and Development, Zenith Technology Corporation Limited, Dunedin, New Zealand
| | - Cheung-Tak Hung
- Research and Development, Zenith Technology Corporation Limited, Dunedin, New Zealand
| | - Soo Hee Jeong
- Department of Pharmacology and Clinical Pharmacology, University of Auckland, Auckland, New Zealand
| | - Daniel Barnett
- Department of Statistics, University of Auckland, Auckland, New Zealand
| | - Malcolm Drummond Tingle
- Department of Pharmacology and Clinical Pharmacology, University of Auckland, Auckland, New Zealand
| | | |
Collapse
|
268
|
Yuan L, Wei H, Yang XY, Geng W, Peterson BW, van der Mei HC, Busscher HJ. Escherichia coli Colonization of Intestinal Epithelial Layers In Vitro in the Presence of Encapsulated Bifidobacterium breve for Its Protection against Gastrointestinal Fluids and Antibiotics. ACS APPLIED MATERIALS & INTERFACES 2021; 13:15973-15982. [PMID: 33793212 PMCID: PMC8153531 DOI: 10.1021/acsami.0c21790] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 03/23/2021] [Indexed: 05/02/2023]
Abstract
Encapsulation of probiotic bacteria can enhance their functionality when used in combination with antibiotics for treating intestinal tract infections. The interaction strength of encapsulating shells, however, varies among the encapsulation methods and impacts encapsulation. Here, we compared the protection offered by encapsulating shells with different interaction strengths toward probiotic Bifidobacterium breve against simulated gastric fluid and tetracycline, including protamine-assisted SiO2 nanoparticle yolk-shell packing (weak interaction across a void), alginate gelation (intermediate interaction due to hydrogen binding), and ZIF-8 mineralization (strong interaction due to coordinate covalent binding). The presence of encapsulating shells was demonstrated using X-ray-photoelectron spectroscopy, particulate microelectrophoresis, and dynamic light scattering. Strong interaction upon ZIF-8 encapsulation caused demonstrable cell wall damage to B. breve and slightly reduced bacterial viability, delaying the growth of encapsulated bacteria. Cell wall damage and reduced viability did not occur upon encapsulation with weakly interacting yolk-shells. Only alginate-hydrogel-based shells yielded protection against simulated gastric acid and tetracycline. Accordingly, only alginate-hydrogel-encapsulated B. breve operated synergistically with tetracycline in killing tetracycline-resistant Escherichia coli adhering to intestinal epithelial layers and maintained surface coverage of transwell membranes by epithelial cell layers and their barrier integrity. This synergy between alginate-hydrogel-encapsulated B. breve and an antibiotic warrants further studies for treating antibiotic-resistant E. coli infections in the gastrointestinal tract.
Collapse
Affiliation(s)
- Lu Yuan
- Department
of Biomedical Engineering, University of
Groningen and University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Hao Wei
- Department
of Biomedical Engineering, University of
Groningen and University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Xiao-Yu Yang
- State
Key Laboratory of Advanced Technology for Materials Synthesis and
Processing, Wuhan University of Technology, Wuhan 430070, China
- School
of Engineering and Applied Sciences, Harvard
University, Cambridge, Massachusetts 02138, United States
| | - Wei Geng
- Southern
Marine Science and Engineering Guangdong Laboratory (Zhuhai) &
School of Chemical Engineering and Technology & School of Materials, Sun Yat-Sen University, Guangdong 510275, China
| | - Brandon W. Peterson
- Department
of Biomedical Engineering, University of
Groningen and University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Henny C. van der Mei
- Department
of Biomedical Engineering, University of
Groningen and University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Henk J. Busscher
- Department
of Biomedical Engineering, University of
Groningen and University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| |
Collapse
|
269
|
Manipulating the Microbiome: An Alternative Treatment for Bile Acid Diarrhoea. MICROBIOLOGY RESEARCH 2021. [DOI: 10.3390/microbiolres12020023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Bile acid diarrhoea (BAD) is a widespread gastrointestinal disease that is often misdiagnosed as irritable bowel syndrome and is estimated to affect 1% of the United Kingdom (UK) population alone. BAD is associated with excessive bile acid synthesis secondary to a gastrointestinal or idiopathic disorder (also known as primary BAD). Current licensed treatment in the UK has undesirable effects and has been the same since BAD was first discovered in the 1960s. Bacteria are essential in transforming primary bile acids into secondary bile acids. The profile of an individual’s bile acid pool is central in bile acid homeostasis as bile acids regulate their own synthesis. Therefore, microbiome dysbiosis incurred through changes in diet, stress levels and the introduction of antibiotics may contribute to or be the cause of primary BAD. This literature review focuses on primary BAD, providing an overview of bile acid metabolism, the role of the human gut microbiome in BAD and the potential options for therapeutic intervention in primary BAD through manipulation of the microbiome.
Collapse
|
270
|
Pancu DF, Scurtu A, Macasoi IG, Marti D, Mioc M, Soica C, Coricovac D, Horhat D, Poenaru M, Dehelean C. Antibiotics: Conventional Therapy and Natural Compounds with Antibacterial Activity-A Pharmaco-Toxicological Screening. Antibiotics (Basel) 2021; 10:401. [PMID: 33917092 PMCID: PMC8067816 DOI: 10.3390/antibiotics10040401] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 12/11/2022] Open
Abstract
Antibiotics are considered as a cornerstone of modern medicine and their discovery offers the resolution to the infectious diseases problem. However, the excessive use of antibiotics worldwide has generated a critical public health issue and the bacterial resistance correlated with antibiotics inefficiency is still unsolved. Finding novel therapeutic approaches to overcome bacterial resistance is imperative, and natural compounds with antibacterial effects could be considered a promising option. The role played by antibiotics in tumorigenesis and their interrelation with the microbiota are still debatable and are far from being elucidated. Thus, the present manuscript offers a global perspective on antibiotics in terms of evolution from a historical perspective with an emphasis on the main classes of antibiotics and their adverse effects. It also highlights the connection between antibiotics and microbiota, focusing on the dual role played by antibiotics in tumorigenesis. In addition, using the natural compounds with antibacterial properties as potential alternatives for the classical antibiotic therapy is discussed.
Collapse
Affiliation(s)
- Daniel Florin Pancu
- Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 1, 300041 Timisoara, Romania; (D.F.P.); (D.H.); (M.P.)
| | - Alexandra Scurtu
- Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania; (A.S.); (M.M.); (C.S.); (D.C.); (C.D.)
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| | - Ioana Gabriela Macasoi
- Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania; (A.S.); (M.M.); (C.S.); (D.C.); (C.D.)
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| | - Daniela Marti
- Faculty of Medicine, Western University Vasile Goldis Arad, 94 Revolutiei Blvd., 310025 Arad, Romania
| | - Marius Mioc
- Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania; (A.S.); (M.M.); (C.S.); (D.C.); (C.D.)
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| | - Codruta Soica
- Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania; (A.S.); (M.M.); (C.S.); (D.C.); (C.D.)
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| | - Dorina Coricovac
- Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania; (A.S.); (M.M.); (C.S.); (D.C.); (C.D.)
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| | - Delia Horhat
- Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 1, 300041 Timisoara, Romania; (D.F.P.); (D.H.); (M.P.)
| | - Marioara Poenaru
- Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 1, 300041 Timisoara, Romania; (D.F.P.); (D.H.); (M.P.)
| | - Cristina Dehelean
- Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania; (A.S.); (M.M.); (C.S.); (D.C.); (C.D.)
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| |
Collapse
|
271
|
Angoa-Pérez M, Kuhn DM. Evidence for Modulation of Substance Use Disorders by the Gut Microbiome: Hidden in Plain Sight. Pharmacol Rev 2021; 73:571-596. [PMID: 33597276 PMCID: PMC7896134 DOI: 10.1124/pharmrev.120.000144] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The gut microbiome modulates neurochemical function and behavior and has been implicated in numerous central nervous system (CNS) diseases, including developmental, neurodegenerative, and psychiatric disorders. Substance use disorders (SUDs) remain a serious threat to the public well-being, yet gut microbiome involvement in drug abuse has received very little attention. Studies of the mechanisms underlying SUDs have naturally focused on CNS reward circuits. However, a significant body of research has accumulated over the past decade that has unwittingly provided strong support for gut microbiome participation in drug reward. β-Lactam antibiotics have been employed to increase glutamate transporter expression to reverse relapse-induced release of glutamate. Sodium butyrate has been used as a histone deacetylase inhibitor to prevent drug-induced epigenetic alterations. High-fat diets have been used to alter drug reward because of the extensive overlap of the circuitry mediating them. This review article casts these approaches in a different light and makes a compelling case for gut microbiome modulation of SUDs. Few factors alter the structure and composition of the gut microbiome more than antibiotics and a high-fat diet, and butyrate is an endogenous product of bacterial fermentation. Drugs such as cocaine, alcohol, opiates, and psychostimulants also modify the gut microbiome. Therefore, their effects must be viewed on a complex background of cotreatment-induced dysbiosis. Consideration of the gut microbiome in SUDs should have the beneficial effects of expanding the understanding of SUDs and aiding in the design of new therapies based on opposing the effects of abused drugs on the host's commensal bacterial community. SIGNIFICANCE STATEMENT: Proposed mechanisms underlying substance use disorders fail to acknowledge the impact of drugs of abuse on the gut microbiome. β-Lactam antibiotics, sodium butyrate, and high-fat diets are used to modify drug seeking and reward, overlooking the notable capacity of these treatments to alter the gut microbiome. This review aims to stimulate research on substance abuse-gut microbiome interactions by illustrating how drugs of abuse share with antibiotics, sodium butyrate, and fat-laden diets the ability to modify the host microbial community.
Collapse
Affiliation(s)
- Mariana Angoa-Pérez
- Research and Development Service, John D. Dingell VA Medical Center, and Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan
| | - Donald M Kuhn
- Research and Development Service, John D. Dingell VA Medical Center, and Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan
| |
Collapse
|
272
|
Yang J, Wu J, Li Y, Zhang Y, Cho WC, Ju X, van Schothorst EM, Zheng Y. Gut bacteria formation and influencing factors. FEMS Microbiol Ecol 2021; 97:fiab043. [PMID: 33705527 DOI: 10.1093/femsec/fiab043] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 03/09/2021] [Indexed: 12/11/2022] Open
Abstract
The gut microbiota plays an important role in human health. In modern life, with the improvement of living conditions, the intake of high-sugar and high-fat diets as well as the large-scale use of antibacterial drugs have an extensive impact on the gut microbiota, even leading to gut microbiota-orchestrating disorders. This review discusses the effects of various factors, including geographic location, age, diet, antibacterial drugs, psychological situation and exercise on gut bacteria, which helps us profoundly to understand the significance of gut bacteria to human health and to find effective solutions to prevent or treat related diseases.
Collapse
Affiliation(s)
- Jing Yang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, CAAS, 1 Xujiaping, Chengguan District, Lanzhou 730046, China
| | - Jin'en Wu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, CAAS, 1 Xujiaping, Chengguan District, Lanzhou 730046, China
| | - Yating Li
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, CAAS, 1 Xujiaping, Chengguan District, Lanzhou 730046, China
| | - Yong'e Zhang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, CAAS, 1 Xujiaping, Chengguan District, Lanzhou 730046, China
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, 30 Gascoigne Road, Hong Kong SAR 999077, China
| | - Xianghong Ju
- Department of Veterinary Medicine, College of Agriculture, Guangdong Ocean University, 1 Haida Road, Mazhang District, 524088, China
| | - Evert M van Schothorst
- Human and Animal Physiology, Wageningen University, De Elst 1, Wageningen 6708WD, The Netherlands
| | - Yadong Zheng
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, CAAS, 1 Xujiaping, Chengguan District, Lanzhou 730046, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, 88 Daxuenan Road, Yangzhou 225009, China
| |
Collapse
|
273
|
Third generation cephalosporins and piperacillin/tazobactam have distinct impacts on the microbiota of critically ill patients. Sci Rep 2021; 11:7252. [PMID: 33790304 PMCID: PMC8012612 DOI: 10.1038/s41598-021-85946-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/08/2021] [Indexed: 02/01/2023] Open
Abstract
Effective implementation of antibiotic stewardship, especially in critical care, is limited by a lack of direct comparative investigations on how different antibiotics impact the microbiota and antibiotic resistance rates. We investigated the impact of two commonly used antibiotics, third-generation cephalosporins (3GC) and piperacillin/tazobactam (TZP) on the endotracheal, perineal and faecal microbiota of intensive care patients in Australia. Patients exposed to either 3GC, TZP, or no β-lactams (control group) were sampled over time and 16S rRNA amplicon sequencing was performed to examine microbiota diversity and composition. While neither treatment significantly affected diversity, numerous changes to microbiota composition were associated with each treatment. The shifts in microbiota composition associated with 3GC exposure differed from those observed with TZP, consistent with previous reports in animal models. This included a significant increase in Enterobacteriaceae and Enterococcaceae abundance in endotracheal and perineal microbiota for those administered 3GC compared to the control group. Culture-based analyses did not identify any significant changes in the prevalence of specific pathogenic or antibiotic-resistant bacteria. Exposure to clinical antibiotics has previously been linked to reduced microbiota diversity and increased antimicrobial resistance, but our results indicate that these effects may not be immediately apparent after short-term real-world exposures.
Collapse
|
274
|
Tashiro H, Shore SA. The Gut Microbiome and Ozone-induced Airway Hyperresponsiveness. Mechanisms and Therapeutic Prospects. Am J Respir Cell Mol Biol 2021; 64:283-291. [PMID: 33091322 DOI: 10.1165/rcmb.2020-0288tr] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In recent years, several new asthma therapeutics have been developed. Although many of these agents show promise in treating allergic asthma, they are less effective against nonallergic forms of asthma. The gut microbiome has important roles in human health and disease, and a growing body of evidence indicates a link between the gut microbiome and asthma. Here, we review those data focusing on the role of the microbiome in mouse models of nonallergic asthma including obese asthma and asthma triggered by exposure to air pollutants. We describe the impact of antibiotics, diet, and early life events on airway responses to the air pollutant ozone, including in the setting of obesity. We also review potential mechanisms responsible for gut-lung interactions focusing on bacterial-derived metabolites, the immune system, and hormones. Finally, we discuss future prospects for gut microbiome-targeted therapies such as fecal microbiome transplantation, prebiotics, probiotics, and prudent use of antibiotics. Better understanding of the role of the microbiome in airway responses may lead to exploration of new microbiome-targeted therapies to control asthma, especially nonallergic forms of asthma.
Collapse
Affiliation(s)
- Hiroki Tashiro
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan; and.,Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Stephanie A Shore
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| |
Collapse
|
275
|
Ávila-Román J, Arreaza-Gil V, Cortés-Espinar AJ, Soliz-Rueda JR, Mulero M, Muguerza B, Arola-Arnal A, Arola L, Torres-Fuentes C. Impact of gut microbiota on plasma oxylipins profile under healthy and obesogenic conditions. Clin Nutr 2021; 40:1475-1486. [PMID: 33743282 DOI: 10.1016/j.clnu.2021.02.035] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 02/03/2021] [Accepted: 02/17/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND & AIMS Oxylipins (OXLs) are bioactive lipid metabolites derived from polyunsaturated fatty acids (PUFAs) which act as signaling molecules and are involved in inflammatory processes such as those that occur in obesity. On the other hand, gut microbiota plays an essential role in regulating inflammatory responses. However, little is known about the potential impact of gut bacteria on OXLs metabolism. Thus, the objective of this study was to investigate the effect of gut microbiota dysbiosis on plasma oxylipins profile in healthy and diet-induced obese animals. METHODS Eight-week-old male Wistar rats were fed with either a standard or cafeteria diet (CAF) for 5 weeks and administered an antibiotic cocktail (ABX) in the drinking water (Ampicillin: 1 g/ml, Vancomycin: 0.5 g/ml, Imipenem: 0.25 g/ml) for the last 2 weeks in order to induce gut microbiota dysbiosis. Metabolomics analysis of OXLs in plasma was performed by HPLC-MS analysis. No antibiotic treated animals were included as controls. RESULTS Plasma OXLs profile was significantly altered due to both CAF feeding and ABX administration. ABX effect was more pronounced under obesogenic conditions. Several significant correlations between different bacteria taxa and these lipid mediators were observed. Among these, the positive correlation of Proteobacteria with LTB4, a proinflammatory OXL involved in obesity-related disorders, was especially remarkable. CONCLUSIONS Gut microbiota plays a key role in regulating these lipid metabolites and, therefore, affecting oxylipins-mediated inflammatory processes. These results are the first evidence to our knowledge of gut microbiota impact on OXLs metabolism. Moreover, this can set the basis for developing new obesity markers based on OXLs and gut microbiota profiles.
Collapse
Affiliation(s)
- Javier Ávila-Román
- Universitat Rovira i Virgili, Departament de Bioquimica i Biotecnologia, Nutrigenomics Research Group, 43007, Tarragona, Spain.
| | - Verónica Arreaza-Gil
- Universitat Rovira i Virgili, Departament de Bioquimica i Biotecnologia, Nutrigenomics Research Group, 43007, Tarragona, Spain.
| | - Antonio J Cortés-Espinar
- Universitat Rovira i Virgili, Departament de Bioquimica i Biotecnologia, Nutrigenomics Research Group, 43007, Tarragona, Spain.
| | - Jorge R Soliz-Rueda
- Universitat Rovira i Virgili, Departament de Bioquimica i Biotecnologia, Nutrigenomics Research Group, 43007, Tarragona, Spain.
| | - Miquel Mulero
- Universitat Rovira i Virgili, Departament de Bioquimica i Biotecnologia, Nutrigenomics Research Group, 43007, Tarragona, Spain.
| | - Begoña Muguerza
- Universitat Rovira i Virgili, Departament de Bioquimica i Biotecnologia, Nutrigenomics Research Group, 43007, Tarragona, Spain.
| | - Anna Arola-Arnal
- Universitat Rovira i Virgili, Departament de Bioquimica i Biotecnologia, Nutrigenomics Research Group, 43007, Tarragona, Spain.
| | - Lluís Arola
- Universitat Rovira i Virgili, Departament de Bioquimica i Biotecnologia, Nutrigenomics Research Group, 43007, Tarragona, Spain.
| | - Cristina Torres-Fuentes
- Universitat Rovira i Virgili, Departament de Bioquimica i Biotecnologia, Nutrigenomics Research Group, 43007, Tarragona, Spain.
| |
Collapse
|
276
|
Xu M, Li L, Hu Q. The recent progress in photothermal-triggered bacterial eradication. Biomater Sci 2021; 9:1995-2008. [PMID: 33564803 DOI: 10.1039/d0bm02057e] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Increasing evidence suggested that bacterial infection diseases posed a great threat to human health and became the leading cause of mortality. However, the abuse of antibiotics and their residues in the environment result in the emergence and prevalence of drug-resistant bacteria. Photothermal therapy (PTT) has received considerable attention owing to its noninvasiveness, and proved to be promising in preventing bacterial infection diseases. In this review, we first surveyed the recent progress of PTT-based responsive targeting strategies for bacterial killing. We then highlighted the PTT-based smart designs of bio-films, hydrogels and synergistic methods for treating bacterial infections. Existing challenges and perspectives are also discussed to inspire the future development of a PTT-based platform for the efficient therapy of bacterial infections.
Collapse
Affiliation(s)
- Minjie Xu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China.
| | | | | |
Collapse
|
277
|
Huang Y, Wang Z, Ma H, Ji S, Chen Z, Cui Z, Chen J, Tang S. Dysbiosis and Implication of the Gut Microbiota in Diabetic Retinopathy. Front Cell Infect Microbiol 2021; 11:646348. [PMID: 33816351 PMCID: PMC8017229 DOI: 10.3389/fcimb.2021.646348] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 03/02/2021] [Indexed: 12/16/2022] Open
Abstract
The pathogenesis of type 2 diabetes mellitus (T2DM) is commonly associated with altered gut bacteria. However, whether the microbial dysbiosis that exists in human diabetic patients with or without retinopathy is different remains largely unknown. Here, we collected clinical information and fecal samples from 75 participants, including 25 diabetic patients without retinopathy (DM), 25 diabetic patients with retinopathy (DR), and 25 healthy controls (HC). The gut microbial composition in the three groups was analyzed using 16S ribosomal RNA (rRNA) gene sequencing. Microbial structure and composition differed in the three groups. The α and β diversities in both the DM and DR groups were reduced compared with those in the HC group. Blautia was the most abundant genus, especially in the DM group. In addition, increased levels of Bifidobacterium and Lactobacillus and decreased levels of Escherichia-Shigella, Faecalibacterium, Eubacterium_hallii_group and Clostridium genera were observed in the DM and DR groups compared with the HC group. Furthermore, a biomarker set of 25 bacterial families, which could distinguish patients in the DR group from those in the DM and HC groups was identified, with the area under the curve values ranging from 0.69 to 0.85. Of note, Pasteurellaceae, which was increased in DM and decreased in DR compared with HC, generated a high AUC (0.74) as an individual predictive biomarker. Moreover, 14 family biomarkers were associated with fasting blood glucose levels or diabetes, with most of them being negatively correlated. In summary, our study establishes compositional alterations of gut microbiota in DM and DR, suggesting the potential use of gut microbiota as a non-invasive biomarker for clinical and differential diagnosis, as well as identifying potential therapeutic targets of diabetic retinopathy.
Collapse
Affiliation(s)
- Yinhua Huang
- Aier School of Ophthalmology, Central South University, Changsha, China.,Aier Eye Institute, Changsha, China
| | - Zhijie Wang
- Aier School of Ophthalmology, Central South University, Changsha, China.,Aier Eye Institute, Changsha, China
| | | | | | | | | | - Jiansu Chen
- Aier School of Ophthalmology, Central South University, Changsha, China.,Aier Eye Institute, Changsha, China.,Key Laboratory for Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China.,Institute of Ophthalmology, Medical College, Jinan University, Guangzhou, China
| | - Shibo Tang
- Aier School of Ophthalmology, Central South University, Changsha, China.,Aier Eye Institute, Changsha, China.,CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
278
|
Postoperative Complications Are Associated with Long-Term Changes in the Gut Microbiota Following Colorectal Cancer Surgery. Life (Basel) 2021; 11:life11030246. [PMID: 33809741 PMCID: PMC8002283 DOI: 10.3390/life11030246] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/10/2021] [Accepted: 03/13/2021] [Indexed: 12/17/2022] Open
Abstract
Changes in the gut microbiome have already been associated with postoperative complications in major abdominal surgery. However, it is still unclear whether these changes are transient or a long-lasting effect. Therefore, the aim of this prospective clinical pilot study was to examine long-term changes in the gut microbiota and to correlate these changes with the clinical course of the patient. Methods: In total, stool samples of 62 newly diagnosed colorectal cancer patients undergoing primary tumor resection were analyzed by 16S-rDNA next-generation sequencing. Stool samples were collected preoperatively in order to determine the gut microbiome at baseline as well as at 6, 12, and 24 months thereafter to observe longitudinal changes. Postoperatively, the study patients were separated into two groups-patients who suffered from postoperative complications (n = 30) and those without complication (n = 32). Patients with postoperative complications showed a significantly stronger reduction in the alpha diversity starting 6 months after operation, which does not resolve, even after 24 months. The structure of the microbiome was also significantly altered from baseline at six-month follow-up in patients with complications (p = 0.006). This was associated with a long-lasting decrease of a large number of species in the gut microbiota indicating an impact in the commensal microbiota and a long-lasting increase of Fusobacterium ulcerans. The microbial composition of the gut microbiome shows significant changes in patients with postoperative complications up to 24 months after surgery.
Collapse
|
279
|
Human-associated microbiota suppress invading bacteria even under disruption by antibiotics. ISME JOURNAL 2021; 15:2809-2812. [PMID: 33712700 PMCID: PMC8397715 DOI: 10.1038/s41396-021-00929-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 01/31/2021] [Accepted: 02/05/2021] [Indexed: 01/20/2023]
Abstract
In light of their adverse impacts on resident microbial communities, it is widely predicted that broad-spectrum antibiotics can promote the spread of resistance by releasing resistant strains from competition with other strains and species. We investigated the competitive suppression of a resistant strain of Escherichia coli inoculated into human-associated communities in the presence and absence of the broad and narrow spectrum antibiotics rifampicin and polymyxin B, respectively. We found strong evidence of community-level suppression of the resistant strain in the absence of antibiotics and, despite large changes in community composition and abundance following rifampicin exposure, suppression of the invading resistant strain was maintained in both antibiotic treatments. Instead, the strength of competitive suppression was more strongly associated with the source community (stool sample from individual human donor). This suggests microbiome composition strongly influences the competitive suppression of antibiotic-resistant strains, but at least some antibiotic-associated disruption can be tolerated before competitive release is observed. A deeper understanding of this association will aid the development of ecologically-aware strategies for managing antibiotic resistance.
Collapse
|
280
|
Eisele Y, Mallea PM, Gigic B, Stephens WZ, Warby CA, Buhrke K, Lin T, Boehm J, Schrotz-King P, Hardikar S, Huang LC, Pickron TB, Scaife CL, Viskochil R, Koelsch T, Peoples AR, Pletneva MA, Bronner M, Schneider M, Ulrich AB, Swanson EA, Toriola AT, Shibata D, Li CI, Siegel EM, Figueiredo J, Janssen KP, Hauner H, Round J, Ulrich CM, Holowatyj AN, Ose J. Fusobacterium nucleatum and Clinicopathologic Features of Colorectal Cancer: Results From the ColoCare Study. Clin Colorectal Cancer 2021; 20:e165-e172. [PMID: 33935016 DOI: 10.1016/j.clcc.2021.02.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/08/2021] [Accepted: 02/24/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Fusobacterium nucleatum (Fn), a bacterium associated with a wide spectrum of infections, has emerged as a key microbe in colorectal carcinogenesis. However, the underlying mechanisms and clinical relevance of Fn in colorectal cancer (CRC) remain incompletely understood. PATIENTS AND METHODS We examined associations between Fn abundance and clinicopathologic characteristics among 105 treatment-naïve CRC patients enrolled in the international, prospective ColoCare Study. Electronic medical charts, including pathological reports, were reviewed to document clinicopathologic features. Quantitative real-time polymerase chain reaction (PCR) was used to amplify/detect Fn DNA in preoperative fecal samples. Multinomial logistic regression was used to analyze associations between Fn abundance and patient sex, age, tumor stage, grade, site, microsatellite instability, body mass index (BMI), alcohol consumption, and smoking history. Cox proportional hazards models were used to investigate associations of Fn abundance with overall survival in adjusted models. RESULTS Compared to patients with undetectable or low Fn abundance, patients with high Fn abundance (n = 22) were 3-fold more likely to be diagnosed with rectal versus colon cancer (odds ratio [OR] = 3.01; 95% confidence interval [CI], 1.06-8.57; P = .04) after adjustment for patient sex, age, BMI, and study site. Patients with high Fn abundance also had a 5-fold increased risk of being diagnosed with rectal cancer versus right-sided colon cancer (OR = 5.32; 95% CI, 1.23-22.98; P = .03). There was no statistically significant association between Fn abundance and overall survival. CONCLUSION Our findings suggest that Fn abundance in fecal samples collected prior to surgery varies by tumor site among treatment-naïve CRC patients. Overall, fecal Fn abundance may have diagnostic and prognostic significance in the clinical management of CRC.
Collapse
Affiliation(s)
- Yannick Eisele
- Huntsman Cancer Institute, Salt Lake City, UT; Department of Population Health Sciences, University of Utah, Salt Lake City, UT; Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany; Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Patrick M Mallea
- Huntsman Cancer Institute, Salt Lake City, UT; Department of Population Health Sciences, University of Utah, Salt Lake City, UT
| | - Biljana Gigic
- Department of General, Visceral and Transplantation Surgery, University Hospital of Heidelberg, Heidelberg, Germany
| | - W Zac Stephens
- Department of Pathology, University of Utah, Salt Lake City, UT
| | - Christy A Warby
- Huntsman Cancer Institute, Salt Lake City, UT; Department of Population Health Sciences, University of Utah, Salt Lake City, UT
| | - Kate Buhrke
- Department of Pathology, University of Utah, Salt Lake City, UT
| | - Tengda Lin
- Huntsman Cancer Institute, Salt Lake City, UT; Department of Population Health Sciences, University of Utah, Salt Lake City, UT
| | - Juergen Boehm
- Huntsman Cancer Institute, Salt Lake City, UT; Department of Population Health Sciences, University of Utah, Salt Lake City, UT
| | - Petra Schrotz-King
- Division of Preventive Oncology, National Center for Tumor Diseases, German Cancer Research Center, Heidelberg, Germany
| | - Sheetal Hardikar
- Huntsman Cancer Institute, Salt Lake City, UT; Department of Population Health Sciences, University of Utah, Salt Lake City, UT
| | - Lyen C Huang
- Division of General Surgery, Department of Surgery, School of Medicine, University of Utah, Salt Lake City, UT
| | - T Bartley Pickron
- Division of General Surgery, Department of Surgery, School of Medicine, University of Utah, Salt Lake City, UT
| | - Courtney L Scaife
- Division of General Surgery, Department of Surgery, School of Medicine, University of Utah, Salt Lake City, UT
| | - Richard Viskochil
- Huntsman Cancer Institute, Salt Lake City, UT; Department of Population Health Sciences, University of Utah, Salt Lake City, UT
| | - Torsten Koelsch
- Department of General, Visceral and Transplantation Surgery, University Hospital of Heidelberg, Heidelberg, Germany
| | - Anita R Peoples
- Huntsman Cancer Institute, Salt Lake City, UT; Department of Population Health Sciences, University of Utah, Salt Lake City, UT
| | - Maria A Pletneva
- Huntsman Cancer Institute, Salt Lake City, UT; Department of Pathology, University of Utah, Salt Lake City, UT
| | - Mary Bronner
- Huntsman Cancer Institute, Salt Lake City, UT; Department of Pathology, University of Utah, Salt Lake City, UT
| | - Martin Schneider
- Department of General, Visceral and Transplantation Surgery, University Hospital of Heidelberg, Heidelberg, Germany
| | - Alexis B Ulrich
- Department of General, Visceral and Transplantation Surgery, University Hospital of Heidelberg, Heidelberg, Germany
| | - Eric A Swanson
- Department of Pathology, University of Utah, Salt Lake City, UT
| | | | - David Shibata
- Department of Surgery, University of Tennessee Health Science Center, Memphis, TN
| | - Christopher I Li
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Erin M Siegel
- Cancer Epidemiology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Jane Figueiredo
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Klaus-Peter Janssen
- Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany; Department of Surgery, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Hans Hauner
- Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany; Else Kröner-Fresenius-Centre for Nutritional Medicine, School of Life Sciences, Technical University of Munich, Munich, Germany
| | - June Round
- Department of Pathology, University of Utah, Salt Lake City, UT
| | - Cornelia M Ulrich
- Huntsman Cancer Institute, Salt Lake City, UT; Department of Population Health Sciences, University of Utah, Salt Lake City, UT
| | - Andreana N Holowatyj
- Huntsman Cancer Institute, Salt Lake City, UT; Department of Population Health Sciences, University of Utah, Salt Lake City, UT; Department of Medicine, Vanderbilt University Medical Center, Nashville, TN; Vanderbilt-Ingram Cancer Center, Nashville, TN.
| | - Jennifer Ose
- Huntsman Cancer Institute, Salt Lake City, UT; Department of Population Health Sciences, University of Utah, Salt Lake City, UT.
| |
Collapse
|
281
|
Liu J, Xu Y, Jiang B. Novel Insights Into Pathogenesis and Therapeutic Strategies of Hepatic Encephalopathy, From the Gut Microbiota Perspective. Front Cell Infect Microbiol 2021; 11:586427. [PMID: 33692964 PMCID: PMC7937792 DOI: 10.3389/fcimb.2021.586427] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 01/08/2021] [Indexed: 01/10/2023] Open
Abstract
Since the 1950s, gradual changes in the gut microbiota of patients with hepatic encephalopathy have been observed. Previous research has indicated potential associations between the gut and brain, and the gut microbiota is becoming a hot topic in research on diseases of the nervous system. However, for the past few decades, studies of hepatic encephalopathy have been restricted to controlling the gut microbiota during macroscopic manipulation, such as probiotic intervention, while its clinical use remains controversial, and the cellular mechanisms underlying this condition are still poorly understood. This thesis seeks to comprehensively understand and explain the role of gut microbiota in hepatic encephalopathy as well as analyze the effects of intervention by regulating the gut microbiota. Evidence is presented that shows that dysbiosis of the gut microbiota is the primary pathological driver of hepatic encephalopathy and impacts pathologic progression via complex regulatory networks. As a result, suggestions were identified for future mechanistic research and improvements in therapeutic strategies for hepatic encephalopathy.
Collapse
Affiliation(s)
- Jiachen Liu
- Xiangya Medical College of Central South University, Changsha, China
| | - Yantao Xu
- Xiangya Medical College of Central South University, Changsha, China
| | - Bimei Jiang
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, China
| |
Collapse
|
282
|
Obesity, Early Life Gut Microbiota, and Antibiotics. Microorganisms 2021; 9:microorganisms9020413. [PMID: 33671180 PMCID: PMC7922584 DOI: 10.3390/microorganisms9020413] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/09/2021] [Accepted: 02/15/2021] [Indexed: 02/07/2023] Open
Abstract
Obesity is a major public health problem that continues to be one of the leading risk factors for premature death. Early life is a critical period of time when the gut microbiota and host metabolism are developing in tandem and significantly contribute to long-term health outcomes. Dysbiosis of the gut microbiota, particularly in early life, can have detrimental effects on host health and increase the susceptibility of developing obesity later in life. Antibiotics are an essential lifesaving treatment; however, their use in early life may not be without risk. Antibiotics are a leading cause of intestinal dysbiosis, and early life administration is associated with obesity risk. The following review explores the relevant literature that simultaneously examines antibiotic-induced dysbiosis and obesity risk. Current evidence suggests that disruptions to the composition and maturation of the gut microbiota caused by antibiotic use in early life are a key mechanism linking the association between antibiotics and obesity. Without compromising clinical practice, increased consideration of the long-term adverse effects of antibiotic treatment on host health, particularly when used in early life is warranted. Novel adjunct interventions should be investigated (e.g., prebiotics) to help mitigate metabolic risk when antibiotic treatment is clinically necessary.
Collapse
|
283
|
Barbosa AM, Gomes-Gonçalves A, Castro AG, Torrado E. Immune System Efficiency in Cancer and the Microbiota Influence. Pathobiology 2021; 88:170-186. [PMID: 33588418 DOI: 10.1159/000512326] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 10/06/2020] [Indexed: 11/19/2022] Open
Abstract
The immune system plays a critical role in preventing cancer development and progression. However, the complex network of cells and soluble factor that form the tumor microenvironment (TME) can dictate the differentiation of tumor-infiltrating leukocytes and shift the antitumor immune response into promoting tumor growth. With the advent of cancer immunotherapy, there has been a reinvigorated interest in defining how the TME shapes the antitumor immune response. This interest brought to light the microbiome as a novel player in shaping cancer immunosurveillance. Indeed, accumulating evidence now suggests that the microbiome may confer susceptibility or resistance to certain cancers and may influence response to therapeutics, particularly immune checkpoint inhibitors. As we move forward into the age of precision medicine, it is vital that we define the factors that influence the interplay between the triad immune system-microbiota-cancer. This knowledge will contribute to improve the therapeutic response to current approaches and will unravel novel targets for immunotherapy.
Collapse
Affiliation(s)
- Ana Margarida Barbosa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Alexandra Gomes-Gonçalves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - António G Castro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Egídio Torrado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal, .,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal,
| |
Collapse
|
284
|
Beheshti-Maal A, Shahrokh S, Ansari S, Mirsamadi ES, Yadegar A, Mirjalali H, Zali MR. Gut mycobiome: The probable determinative role of fungi in IBD patients. Mycoses 2021; 64:468-476. [PMID: 33421192 DOI: 10.1111/myc.13238] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 12/15/2020] [Accepted: 01/04/2021] [Indexed: 12/12/2022]
Abstract
Inflammatory bowel disease (IBD) is a multi-factorial autoimmune disorder that its causative agents are unknown. The gut microbiota comprises of bacteria, viruses, fungi and protozoa that its role in IBD has remained controversially. Bacteria constitute more than 99% of the gut microbiota composition, and the main core of the gut microbiota is composed from Bacteroidetes and Firmicutes. The gut microbiota plays an important role in training, development and haemostasis of the immune responses during the life. Fungi compose a very small portion of gut microbiota, but play determinative roles in homeostasis of the gut bacterial composition and the mucosal immune responses. An interkingdom correlation between bacteria and fungi has been suggested. For example, the presence of Salmonella enterica serovar Typhimurium reduces the viability and colonisation of C albicans. Alterations in the composition and function of the gut microbiota, which is known as dysbiosis, are a usual event in patients who suffer from IBD. Although the main reason for this alteration is not clear, the interaction between gut bacteria and gut fungi seems to be an important subject in IBD patients. This review covers new findings on the interaction between fungi and bacteria and the role of fungi in the pathophysiology of IBD.
Collapse
Affiliation(s)
- Alireza Beheshti-Maal
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shabnam Shahrokh
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saham Ansari
- Department of Medical Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elnaz Sadat Mirsamadi
- Department of Microbiology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Mirjalali
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
285
|
das Neves J, Sverdlov Arzi R, Sosnik A. Molecular and cellular cues governing nanomaterial-mucosae interactions: from nanomedicine to nanotoxicology. Chem Soc Rev 2021; 49:5058-5100. [PMID: 32538405 DOI: 10.1039/c8cs00948a] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mucosal tissues constitute the largest interface between the body and the surrounding environment and they regulate the access of molecules, supramolecular structures, particulate matter, and pathogens into it. All mucosae are characterized by an outer mucus layer that protects the underlying cells from physicochemical, biological and mechanical insults, a mono-layered or stratified epithelium that forms tight junctions and controls the selective transport of solutes across it and associated lymphoid tissues that play a sentinel role. Mucus is a gel-like material comprised mainly of the glycoprotein mucin and water and it displays both hydrophilic and hydrophobic domains, a net negative charge, and high porosity and pore interconnectivity, providing an efficient barrier for the absorption of therapeutic agents. To prolong the residence time, absorption and bioavailability of a broad spectrum of active compounds upon mucosal administration, mucus-penetrating and mucoadhesive particles have been designed by tuning the chemical composition, the size, the density, and the surface properties. The benefits of utilizing nanomaterials that interact intimately with mucosae by different mechanisms in the nanomedicine field have been extensively reported. To ensure the safety of these nanosystems, their compatibility is evaluated in vitro and in vivo in preclinical and clinical trials. Conversely, there is a growing concern about the toxicity of nanomaterials dispersed in air and water effluents that unintentionally come into contact with the airways and the gastrointestinal tract. Thus, deep understanding of the key nanomaterial properties that govern the interplay with mucus and tissues is crucial for the rational design of more efficient drug delivery nanosystems (nanomedicine) and to anticipate the fate and side-effects of nanoparticulate matter upon acute or chronic exposure (nanotoxicology). This review initially overviews the complex structural features of mucosal tissues, including the structure of mucus, the epithelial barrier, the mucosal-associated lymphatic tissues and microbiota. Then, the most relevant investigations attempting to identify and validate the key particle features that govern nanomaterial-mucosa interactions and that are relevant in both nanomedicine and nanotoxicology are discussed in a holistic manner. Finally, the most popular experimental techniques and the incipient use of mathematical and computational models to characterize these interactions are described.
Collapse
Affiliation(s)
- José das Neves
- i3S - Instituto de Investigação e Inovação em Saúde & INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - Roni Sverdlov Arzi
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering, Technion-Israel Institute of Technology, De-Jur Building, Office 607, Haifa, 3200003, Israel.
| | - Alejandro Sosnik
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering, Technion-Israel Institute of Technology, De-Jur Building, Office 607, Haifa, 3200003, Israel.
| |
Collapse
|
286
|
Xin L, He F, Li S, Zhou ZX, Ma XL. Intestinal microbiota and juvenile idiopathic arthritis: current understanding and future prospective. World J Pediatr 2021; 17:40-51. [PMID: 32533534 DOI: 10.1007/s12519-020-00371-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 05/24/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Juvenile idiopathic arthritis (JIA) characterized by arthritis of unknown origin is the most common childhood chronic rheumatic disease, caused by both host genetic factors and environmental triggers. Recent evidence has mounted to focus on the intestinal microbiota, a potentially recognized set of environmental triggers affecting JIA development. Here we offer an overview of recently published animal and human studies that support the impact of intestinal microbiota in JIA. DATA SOURCES We searched PubMed for animal and human studies publications with the search terms "intestinal microbiota or gut microbiota" and "juvenile idiopathic arthritis or juvenile chronic arthritis or juvenile rheumatoid arthritis or childhood rheumatoid arthritis or pediatric rheumatoid arthritis". RESULTS Several comparative studies have demonstrated that intestinal microbial alterations might be triggers in disease pathogenesis. Alternatively, a slice of studies has suggested environmental triggers in early life might disrupt intestinal microbial colonization, including cesarean section, formula feeding, and antibiotic exposure. Aberrant intestinal microbiota may influence the development of JIA by mediating host immune programming and by altering mucosal permeability. CONCLUSIONS Specific microbial factors may contribute to the pathogenesis of JIA. Intensive studies, however, are warranted to investigate the causality between intestinal dysbiosis and JIA and the mechanisms behind these epidemiologic relationships. Studies are also needed to design the best interventional administrations to restore balanced intestinal microbial communities.
Collapse
Affiliation(s)
- Le Xin
- Gynecological Minimal Invasive Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Feng He
- Department of Biochemistry and Immunology, Capital Institute of Pediatrics, Yabao Road No. 2, Chaoyang District, Beijing, China
| | - Sen Li
- Department of Biochemistry and Immunology, Capital Institute of Pediatrics, Yabao Road No. 2, Chaoyang District, Beijing, China
| | - Zhi-Xuan Zhou
- Department of Rheumatology, Capital Institute of Pediatrics, Beijing, China
| | - Xiao-Lin Ma
- Department of Rheumatology, Capital Institute of Pediatrics, Beijing, China.
| |
Collapse
|
287
|
Rochegüe T, Haenni M, Cazeau G, Metayer V, Madec JY, Ferry T, Lupo A. An inventory of 44 qPCR assays using hydrolysis probes operating with a unique amplification condition for the detection and quantification of antibiotic resistance genes. Diagn Microbiol Infect Dis 2021; 100:115328. [PMID: 33819858 DOI: 10.1016/j.diagmicrobio.2021.115328] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 01/22/2021] [Accepted: 01/24/2021] [Indexed: 01/28/2023]
Abstract
Early antibiotic resistance determinants (ARDs) detection in humans or animals is crucial to counteract their propagation. The ARDs quantification is fundamental to understand the perturbation caused by disruptors, such as antibiotics, during therapies. Forty-three qPCRs on the most diffused ARDs and integrons among human and animal Enterobacterales, and one on the 16S rDNA for bacteria quantification, were developed. The qPCRs, using hydrolysis probes, operated with a unique amplification condition and were tested analytically and diagnostically performing 435 reactions on five positive and negative controls for each qPCR. Diagnostic sensitivity and specificity were confirmed by PCR and genome sequencing of control isolates, demonstrating 100% performance for all qPCRs. An easy and rapid discrimination method for the epidemiologically relevant blaCTX-Ms is provided. This large, noncommercial qPCRs inventory could serve for precise quantification of ARDs, but also as a rapid screening tool for surveillance purposes, providing the basis for further high-throughput developments.
Collapse
Affiliation(s)
- Tony Rochegüe
- ANSES - Université de Lyon, Unité Antibiorésistance et Virulence Bactériennes (AVB), Lyon, France
| | - Marisa Haenni
- ANSES - Université de Lyon, Unité Antibiorésistance et Virulence Bactériennes (AVB), Lyon, France
| | - Géraldine Cazeau
- ANSES - Université de Lyon, Unité Epidémiologie et Appui à la Surveillance (EAS), Lyon, France
| | - Véronique Metayer
- ANSES - Université de Lyon, Unité Antibiorésistance et Virulence Bactériennes (AVB), Lyon, France
| | - Jean-Yves Madec
- ANSES - Université de Lyon, Unité Antibiorésistance et Virulence Bactériennes (AVB), Lyon, France
| | - Tristan Ferry
- Service des maladies infectieuses et tropicales, CHU de Lyon, Hôpital de la Croix-Rousse, Lyon, France; Centre International de Recherche en Infectiologie, CIRI, Inserm U1111, CNRS UMR5308, ENS de Lyon, UCBL1, Lyon, France
| | - Agnese Lupo
- ANSES - Université de Lyon, Unité Antibiorésistance et Virulence Bactériennes (AVB), Lyon, France.
| |
Collapse
|
288
|
Sabit H, Tombuloglu H, Rehman S, Almandil NB, Cevik E, Abdel-Ghany S, Rashwan S, Abasiyanik MF, Yee Waye MM. Gut microbiota metabolites in autistic children: An epigenetic perspective. Heliyon 2021; 7:e06105. [PMID: 33553761 PMCID: PMC7848646 DOI: 10.1016/j.heliyon.2021.e06105] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/18/2021] [Accepted: 01/22/2021] [Indexed: 12/18/2022] Open
Abstract
Gut microbiota has become an issue of great importance recently due to its major role in autism spectrum disorder (ASD). Over the past three decades, there has been a sustained research activity focused to explain the actual mechanism by which gut microbiota triggers/develops autism. Several genetic and epigenetic factors are involved in this disorder, with epigenetics being the most active area of research. Although the constant investigation and advancements, epigenetic implications in ASD still need a deeper functional/causal analysis. In this review, we describe the major gut microbiota metabolites and how they induce epigenetic changes in ASD along with interactions through the gut-brain axis.
Collapse
Affiliation(s)
- Hussein Sabit
- Department of Genetics, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P. O. Box 1982, Dammam, 31441 Saudi Arabia
| | - Huseyin Tombuloglu
- Department of Genetics, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P. O. Box 1982, Dammam, 31441 Saudi Arabia
| | - Suriya Rehman
- Department of Epidemic Diseases, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P. O. Box 1982, Dammam, 31441 Saudi Arabia
| | - Noor B Almandil
- Department of Clinical Pharmacy Research, Institute for Research and Medical Consultation (IRMC), Imam Abdulrahman Bin Faisal University, P. O. Box 1982, Dammam, 31441 Saudi Arabia
| | - Emre Cevik
- Department of Genetics, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P. O. Box 1982, Dammam, 31441 Saudi Arabia
| | - Shaimaa Abdel-Ghany
- Department of Environmental Biotechnology, College of Biotechnology, Misr University for Science and Technology, P. O. Box 77, Giza, Egypt
| | - Sanaa Rashwan
- Pediatrics Department, Madinat Zayed Hospital, SEHA, Abu Dhabi, United Arab Emirates
| | - Mustafa Fatih Abasiyanik
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA.,Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL, 60637, USA
| | - Mary Miu Yee Waye
- The Nethersole School of Nursing, The Croucher Laboratory for Human Genomics, The Chinese University of Hong Kong, Shatin, N.T. Hong Kong
| |
Collapse
|
289
|
Effects of Antibiotic Treatment with Piperacillin/Tazobactam versus Ceftriaxone on the Composition of the Murine Gut Microbiota. Antimicrob Agents Chemother 2021; 65:AAC.01504-20. [PMID: 33168609 DOI: 10.1128/aac.01504-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 11/04/2020] [Indexed: 12/11/2022] Open
Abstract
Effective antimicrobial stewardship requires a better understanding of the impact of different antibiotics on the gut microflora. Studies with humans are confounded by large interindividual variability and difficulty in identifying control cohorts. However, controlled murine models can provide valuable information. In this study, we examined the impact of a penicillin-like antibiotic (piperacillin-tazobactam [TZP]) or a third-generation cephalosporin (ceftriaxone [CRO]) on the murine gut microbiota by analysis of changes in fecal microbiome composition by 16S rRNA amplicon sequencing and standard microbiology. Resistance to colonization by multidrug-resistant Escherichia coli sequence type 131 (ST131) and Klebsiella pneumoniae ST258 was also tested. Changes in microbiome composition and a significant (P < 0.05) decrease in diversity occurred in all treated mice, but dysbiosis was more marked and prolonged after CRO exposure, with a persistent rise in Proteobacteria Enterobacteriaceae blooms occurred in all antibiotic-treated mice, but for TZP, unlike CRO, these were significant only under direct antibiotic pressure. At the height of dysbiosis after antibiotic termination, the murine gut was highly susceptible to colonization with both multidrug-resistant enterobacterial pathogens. Cohabitation of treated mice with untreated individuals had a notable mitigating effect on dysbiosis of treated guts. The administration of a third-generation cephalosporin caused a more severe imbalance in the murine fecal microflora than that caused by a penicillin/β-lactam inhibitor combination with comparable activity against medically important virulent bacteria. At the height of dysbiosis, both antibiotic treatments equally led to microbial instability associated with loss of resistance to gut colonization by antibiotic-resistant pathogens.
Collapse
|
290
|
Tomé-Castro XM, Rodriguez-Arrastia M, Cardona D, Rueda-Ruzafa L, Molina-Torres G, Roman P. Probiotics as a therapeutic strategy in obesity and overweight: a systematic review. Benef Microbes 2021; 12:5-15. [PMID: 33459204 DOI: 10.3920/bm2020.0111] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Obesity and overweight are two of the most health challenges with an increasing prevalence in recent years, in which several complications have been identified to have a high impact in patients' health conditions. In this vein, an increasing interest in the gut microbiota has emerged as a target for therapeutic strategies in obesity and overweight due to its direct relation with the aforementioned health conditions and complications. Thus, the aim of this study was to evaluate the efficacy of probiotics as a therapeutic strategy in the management of obesity and overweight. A systematic review of randomised controlled trials was carried out in 6 databases until May 2019 to assess the use of probiotics in obesity and overweight patients. The Jadad Scale was used to assess the quality of the clinical trials. Twenty-three clinical trials published between 2000 and 2019 met the inclusion criteria. The role of probiotics in reducing body mass index and weight as well as changing the visceral abdominal fat area, waist and hip circumference were shown in 14 of 23 trials (60.87%); 14 trials (60.87%) showed changes on patients' fatty acids and biomarkers; and 4 trials (17.39%) studied the role of the gut microbiota in obese and overweight patients. Some probiotics strains are shown to be effective in reducing body mass index and hip circumference. This review provides evidence of successful results in weight loss using probiotic groups.
Collapse
Affiliation(s)
- X M Tomé-Castro
- Faculty of Health Sciences, Department of Nursing Science, Physiotherapy and Medicine, University of Almeria, Ctra. Sacramento s/n, 04120 Almeria, Spain
| | - M Rodriguez-Arrastia
- Faculty of Health Sciences, Pre-Department of Nursing, Jaume I University, Av. Sos Baynat, 12071 Castello de la Plana, Spain.,Research Group CYS, Faculty of Health Sciences, Jaume I University, Av. Sos Baynat, 12071 Castello de la Plana, Spain
| | - D Cardona
- Faculty of Health Sciences, Department of Nursing Science, Physiotherapy and Medicine, University of Almeria, Ctra. Sacramento s/n, 04120 Almeria, Spain.,Health Research Centre, University of Almeria, Ctra. Sacramento s/n, 04120 Almeria, Spain
| | - L Rueda-Ruzafa
- Research Group CTS-451 Health Sciences, University of Almeria, Ctra. Sacramento s/n, 04120 Almeria, Spain
| | - G Molina-Torres
- Faculty of Health Sciences, Department of Physiotherapy, University of Granada, C/Santander 1, 52071 Melilla, Spain
| | - P Roman
- Faculty of Health Sciences, Department of Nursing Science, Physiotherapy and Medicine, University of Almeria, Ctra. Sacramento s/n, 04120 Almeria, Spain.,Health Research Centre, University of Almeria, Ctra. Sacramento s/n, 04120 Almeria, Spain.,Research Group CTS-451 Health Sciences, University of Almeria, Ctra. Sacramento s/n, 04120 Almeria, Spain
| |
Collapse
|
291
|
Kakiuchi T, Yamamoto K, Imamura I, Hashiguchi K, Kawakubo H, Yamaguchi D, Fujioka Y, Okuda M. Gut microbiota changes related to Helicobacter pylori eradication with vonoprazan containing triple therapy among adolescents: a prospective multicenter study. Sci Rep 2021; 11:755. [PMID: 33436953 PMCID: PMC7804423 DOI: 10.1038/s41598-020-80802-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/29/2020] [Indexed: 12/14/2022] Open
Abstract
Currently, it is unclear whether treating Helicobacter pylori (H. pylori) infection is safe among adolescents. This study aimed to evaluate the safety of H. pylori eradication therapy by examining gut microbiota changes in adolescents 3 months after the therapy. H. pylori-infected adolescents were enrolled in this study. Their stool samples were collected at the following three time points: before treatment, 1-2 days after completion of treatment, and time of eradication successful judgment. We assessed the relative abundance, alpha-diversity, and beta-diversity of the gut microbiota and adverse events. The number of isolated Actinobacteria decreased immediately after eradication therapy in the 16 students included in the study, and it returned to pretreatment condition at the eradication judgment point. There was no change in the relative abundance at genus level. The alpha-diversity was lost immediately after eradication therapy; however, it recovered at the time of eradication judgment, and it was restored to pretreatment condition. Meanwhile, none of the participants experienced serious adverse events. H. pylori eradication therapy is safe for adolescents with respect to gut microbiota changes associated with H. pylori eradication therapy. Therefore, further long-term evaluations of gut microbiota changes following eradication therapy are warranted.
Collapse
Affiliation(s)
- Toshihiko Kakiuchi
- Department of Pediatrics, Faculty of Medicine, Saga University, Saga, Japan.
| | - Kentaroh Yamamoto
- Department of Gastroenterology, Yamamoto Memorial Hospital, Imari, Japan
| | - Ichiro Imamura
- Department of Gastroenterology, Imamura Hospital, Tosu, Japan
| | | | - Hiroharu Kawakubo
- Department of Gastroenterology, ImariArita Kyoritsu Hospital, Nishimatsuura, Japan
| | - Daisuke Yamaguchi
- Department of Gastroenterology, Ureshino Medical Center, Ureshino, Japan
| | | | - Masumi Okuda
- Department of Pediatrics, Hyogo College of Medicine, Nishinomiya, Japan
| |
Collapse
|
292
|
Martin-Nuñez GM, Cornejo-Pareja I, Clemente-Postigo M, Tinahones FJ. Gut Microbiota: The Missing Link Between Helicobacter pylori Infection and Metabolic Disorders? Front Endocrinol (Lausanne) 2021; 12:639856. [PMID: 34220702 PMCID: PMC8247771 DOI: 10.3389/fendo.2021.639856] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 05/17/2021] [Indexed: 12/14/2022] Open
Abstract
Helicobacter pylori (H. pylori) is a gram-negative bacterium that infects approximately 4.4 billion individuals worldwide. Although the majority of infected individuals remain asymptomatic, this bacterium colonizes the gastric mucosa causing the development of various clinical conditions as peptic ulcers, chronic gastritis and gastric adenocarcinomas and mucosa-associated lymphoid tissue lymphomas, but complications are not limited to gastric ones. Extradigestive pathologies, including metabolic disturbances such as diabetes, obesity and nonalcoholic fatty liver disease, have also been associated with H. pylori infection. However, the underlying mechanisms connecting H. pylori with extragastric metabolic diseases needs to be clarified. Notably, the latest studies on the topic have confirmed that H. pylori infection modulates gut microbiota in humans. Damage in the gut bacterial community (dysbiosis) has been widely related to metabolic dysregulation by affecting adiposity, host energy balance, carbohydrate metabolism, and hormonal modulation, among others. Taking into account that Type 2 diabetic patients are more prone to be H. pylori positive, gut microbiota emerges as putative key factor responsible for this interaction. In this regard, the therapy of choice for H. pylori eradication, based on proton pump inhibitor combined with two or more antibiotics, also alters gut microbiota composition, but consequences on metabolic health of the patients has been scarcely explored. Recent studies from our group showed that, despite decreasing gut bacterial diversity, conventional H. pylori eradication therapy is related to positive changes in glucose and lipid profiles. The mechanistic insights explaining these effects should also be addressed in future research. This review will deal with the role of gut microbiota as the linking factor between H. pylori infection and metabolic diseases, and discussed the impact that gut bacterial modulation by H. pylori eradication treatment can also have in host's metabolism. For this purpose, new evidence from the latest human studies published in more recent years will be analyzed.
Collapse
Affiliation(s)
- Gracia M. Martin-Nuñez
- Unidad de Gestión Clínica de Endocrinología y Nutrición (Hospital Universitario Virgen de la Victoria), Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Málaga, Spain
- Centro de Investigación Biomédica en Red (CIBER) Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Isabel Cornejo-Pareja
- Unidad de Gestión Clínica de Endocrinología y Nutrición (Hospital Universitario Virgen de la Victoria), Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Málaga, Spain
- Centro de Investigación Biomédica en Red (CIBER) Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Mercedes Clemente-Postigo
- Centro de Investigación Biomédica en Red (CIBER) Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Cell Biology, Physiology and Immunology. Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)-Reina Sofia University Hospital, University of Cordoba, Córdoba, Spain
- *Correspondence: Francisco J. Tinahones, ; Mercedes Clemente-Postigo,
| | - Francisco J. Tinahones
- Unidad de Gestión Clínica de Endocrinología y Nutrición (Hospital Universitario Virgen de la Victoria), Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Málaga, Spain
- Centro de Investigación Biomédica en Red (CIBER) Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- *Correspondence: Francisco J. Tinahones, ; Mercedes Clemente-Postigo,
| |
Collapse
|
293
|
Chen CC, Liou JM, Lee YC, Hong TC, El-Omar EM, Wu MS. The interplay between Helicobacter pylori and gastrointestinal microbiota. Gut Microbes 2021; 13:1-22. [PMID: 33938378 PMCID: PMC8096336 DOI: 10.1080/19490976.2021.1909459] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 03/10/2021] [Accepted: 03/19/2021] [Indexed: 02/07/2023] Open
Abstract
The complex population of microbes in the human gastrointestinal (GI) tract interacts with itself and with the host, exerting a deep influence on health and disease development. The development of modern sequencing technology has enabled us to gain insight into GI microbes. Helicobacter pylori colonization significantly affects the gastric microenvironment, which in turn affects gastric microbiota and may be correlated with colonic microbiota changes. Crosstalk between H. pylori and GI commensal flora may play a role in H. pylori-related carcinogenicity and extragastric manifestations. We review current knowledge on how H. pylori shapes GI microbiota with a specific focus on its impact on the stomach and colon. We also review current evidence on colonic microbiota changes attributed to eradication therapy based on the clinical studies performed to date.
Collapse
Affiliation(s)
- Chieh-Chang Chen
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Jyh-Ming Liou
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Medicine, National Taiwan University Cancer Center, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yi-Chia Lee
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Tzu-Chan Hong
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Emad M El-Omar
- Microbiome Research Centre, St George & Sutherland Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Ming-Shiang Wu
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
294
|
Chen Y, Chen Y, Wang N, Gu S, Wang M, Fu Y, Wei C, Xu W. Doxycycline in Extremely Low Dose Improves Glycemic Control and Islet Morphology in Mice Fed a High-Fat Diet. Diabetes Metab Syndr Obes 2021; 14:637-646. [PMID: 33603428 PMCID: PMC7884939 DOI: 10.2147/dmso.s292264] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/15/2021] [Indexed: 02/05/2023] Open
Abstract
PURPOSE Chronic low-grade inflammation is detected in obese and diabetic individuals. Tetracyclines, used as antibiotics for years, have been demonstrated to have diverse non-bactericidal effects, including anti-tumor and anti-inflammatory activities. This study aimed to investigate whether doxycycline at sub-antimicrobial concentrations could improve glycemic control in mice fed a high-fat diet, through its anti-inflammatory activities. METHODS C57BL/6J mice were fed with a high-fat diet to induce diabetic and obese conditions. Three sub-antimicrobial dosages of doxycycline (200, 20, and 2 μg/mL) were added to drinking water for 23 weeks during the housing phase. RESULTS Doxycycline at 200 μg/mL tended to increase body weight, islet mass, and the percentage of large islets (diameter >350 μm). At 20 μg/mL, doxycycline significantly improved glucose tolerance and decreased fasting blood glucose. At 2 μg/mL, doxycycline increased the percentage of small islets (diameter <80 μm). Serum C-reactive protein and lipopolysaccharide levels significantly decreased while the beta-cell ratio increased in all doxycycline-administered mice. CONCLUSION Our results suggest that doxycycline, even at an extremely low dose, could improve glycemic control and islet morphology via its anti-inflammatory activities.
Collapse
Affiliation(s)
- Yixin Chen
- Department of Endocrinology, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, 515041, People’s Republic of China
| | - Yu Chen
- Laboratory of Molecular Biology, Multidisciplinary Research Center, Shantou University, Shantou, Guangdong, 515063, People’s Republic of China
| | - Na Wang
- Laboratory of Molecular Biology, Multidisciplinary Research Center, Shantou University, Shantou, Guangdong, 515063, People’s Republic of China
| | - Shanhong Gu
- Department of Endocrinology, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, 515041, People’s Republic of China
| | - Meilin Wang
- Department of Endocrinology, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, 515041, People’s Republic of China
| | - Yucai Fu
- Laboratory of Cell Senescence, Shantou University Medical College, Shantou, Guangdong, 515041, People’s Republic of China
| | - Chiju Wei
- Laboratory of Molecular Biology, Multidisciplinary Research Center, Shantou University, Shantou, Guangdong, 515063, People’s Republic of China
- Correspondence: Chiju Wei Shantou University, 243 Daxue Road, Shantou, Guangdong, 515063, People’s Republic of China Email
| | - Wencan Xu
- Department of Endocrinology, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, 515041, People’s Republic of China
- Wencan Xu Department of Endocrinology, The First Affiliated Hospital of Shantou University Medical College, 57 Changping Road, Shantou, Guangdong, 515041, People’s Republic of China Email
| |
Collapse
|
295
|
Kamphorst K, Van Daele E, Vlieger AM, Daams JG, Knol J, van Elburg RM. Early life antibiotics and childhood gastrointestinal disorders: a systematic review. BMJ Paediatr Open 2021; 5:e001028. [PMID: 33748435 PMCID: PMC7931764 DOI: 10.1136/bmjpo-2021-001028] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND In adults, there is increasing evidence for an association between antibiotic use and gastrointestinal (GI) disorders but in children, the evidence is scarce. OBJECTIVE Assess the association between exposure to antibiotics in the first 2 years of life in term born children and the presence of chronic GI disorders later in childhood. DESIGN For this systematic review the MEDLINE, Embase, WHO trial register and Web of Science were systematically searched from inception to 8 June 2020. Title and abstract screening (n=12 219), full-text screening (n=132) as well as the quality assessment with the Newcastle-Ottawa Scale were independently performed by two researchers. MAIN OUTCOME MEASURES The association between antibiotics and inflammatory bowel disease (IBD) (n=6), eosinophilic oesophagitis (EoE) (n=5), coeliac disease (CeD) (n=6), infantile colics (n=3), functional constipation (n=2), recurrent abdominal pain, regurgitation, functional diarrhoea and infant dyschezia were examined. RESULTS Twenty-two studies were included, 11 cohort and 11 case-control studies. A best evidence synthesis showed strong evidence for an association between antibiotic exposure in the first 2 years of life and the presence of IBD, and CeD during childhood. Moderate evidence was found for an association with EoE and no association with functional constipation in the first year of life. There was insufficient evidence for the other studied disorders. CONCLUSIONS The use of antibiotics in early life may increase the risk of GI disorders later in life. Further studies are necessary to unravel the underlying mechanisms and determine potential preventive measures. Meanwhile judicious use of antibiotics in early childhood is highly warranted. PROSPERO REGISTRATION NUMBER PROSPERO CRD42019132631.
Collapse
Affiliation(s)
- Kim Kamphorst
- Pediatrics, Amsterdam Gastroenterology, Metabolism & Nutrition, Amsterdam Reproduction & Development Amsterdam, Amsterdam UMC Location AMC, Amsterdam, The Netherlands.,Paediatrics, Sint Antonius Ziekenhuis, Nieuwegein, The Netherlands
| | - Emmy Van Daele
- Laboratory of Microbiology, Wageningen Universiteit en Research, Wageningen, The Netherlands
| | - Arine M Vlieger
- Paediatrics, Sint Antonius Ziekenhuis, Nieuwegein, The Netherlands
| | - Joost G Daams
- Medical Library, Amsterdam UMC Location AMC, Amsterdam, The Netherlands
| | - Jan Knol
- Laboratory of Microbiology, Wageningen Universiteit en Research, Wageningen, The Netherlands.,Gut biology and microbiology, Danone Nutricia Research, Utrecht, The Netherlands
| | - Ruurd M van Elburg
- Pediatrics, Amsterdam Gastroenterology, Metabolism & Nutrition, Amsterdam Reproduction & Development Amsterdam, Amsterdam UMC Location AMC, Amsterdam, The Netherlands
| |
Collapse
|
296
|
Zhu J, Li M, Shao D, Ma S, Wei W. Altered Fecal Microbiota Signatures in Patients With Anxiety and Depression in the Gastrointestinal Cancer Screening: A Case-Control Study. Front Psychiatry 2021; 12:757139. [PMID: 34819887 PMCID: PMC8607523 DOI: 10.3389/fpsyt.2021.757139] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/27/2021] [Indexed: 12/21/2022] Open
Abstract
Background: Increasing attention has been devoted to cancer screening and microbiota in recent decades, but currently there is less focus on microbiota characterization among screeners and its relationship to anxiety and depression. Methods: We characterized the microbial communities of fecal samples collected through the FOBT card from anxiety and depression screeners and paired controls in Henan, China (1:2, N = 69). DNA was extracted using the MOBIO PowerSoil kit. The V4 region of the 16S rRNA gene was sequenced using MiniSeq and processed using QIIME1. LEfSe was used to identify differentially abundant microbes, the Wilcoxon rank-sum test was used to test alpha diversity differences, and permutational multivariate analysis of variance was used to test for differences in beta diversity. Results: Similar fecal microbiota signatures in composition were found among screeners. The intestinal microbial environments by phylum were all composed primarily of Firmicutes, Bacteroidetes, and Proteobacteria, and the corresponding top genera were Faecalibacterium, Roseburia, and Prevotella. Compared with controls, the ranking of the top five genera in the anxiety and depression group changed, and the dominant genus was Prevotella in the anxiety and depression group and Faecalibacterium in the control group. There was a lower relative abundance of Gemmiger (1.4 vs. 2.3%, P = 0.025), Ruminococcus (0.6 vs. 0.8%, P = 0.037), and Veillonella (0.6 vs. 1.3%, P = 0.020). This may be linked to the lower alpha diversity in participants with anxiety and depression (Observed OTUs: 122.35 vs. 143.24; Chao1: 127.35 vs. 149.98), although no significant differences were observed. Distinct clustering in microbial composition between the two groups was detected for the Jaccard distance (P = 0.011). Conclusions: Our study showed differing microbial characterization among participants with anxiety and depression in the endoscopic screening of upper gastrointestinal cancer. Gemmiger, Ruminococcus, and Veillonella were informative and have potential clinical implications, which need to be confirmed by large-scale, prospective cohort studies and biological mechanism research.
Collapse
Affiliation(s)
- Juan Zhu
- National Central Cancer Registry, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Minjuan Li
- National Central Cancer Registry, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dantong Shao
- National Central Cancer Registry, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shanrui Ma
- National Central Cancer Registry, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wenqiang Wei
- National Central Cancer Registry, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
297
|
|
298
|
Escudero-Sánchez R, Ponce-Alonso M, Barragán-Prada H, Morosini MI, Cantón R, Cobo J, del Campo R. Long-Term Impact of Suppressive Antibiotic Therapy on Intestinal Microbiota. Genes (Basel) 2020; 12:genes12010041. [PMID: 33396759 PMCID: PMC7823557 DOI: 10.3390/genes12010041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/20/2020] [Accepted: 12/29/2020] [Indexed: 02/07/2023] Open
Abstract
The aim was to describe the safety of indefinite administration of antibiotics, the so-called suppressive antibiotic therapy (SAT) and to provide insight into their impact on gut microbiota. 17 patients with SAT were recruited, providing a fecal sample. Bacterial composition was determined by 16S rDNA massive sequencing, and their viability was explored by PCR-DGGE with and without propidium monoazide. Presence of antibiotic multirresistant bacteria was explored through the culture of feces in selective media. High intra-individual variability in the genera distribution regardless of the antibiotic or antibiotic administration ingestion period, with few statistically significant differences detected by Bray-Curtis distance-based principle component analysis, permutational multivariate analysis of variance and linear discriminant analysis effect size analysis. However, the microbiota composition of patients treated with both beta-lactams and sulfonamides clustered by a heat map. Curiously, the detection of antibiotic resistant bacteria was almost anecdotic and CTX-M-15-producing E. coli were detected in two subjects. Our work demonstrates the overall clinical safety of SAT and the low rate of the selection of multidrug-resistant bacteria triggered by this therapy. We also describe the composition of intestinal microbiota under the indefinite use of antibiotics for the first time.
Collapse
Affiliation(s)
- Rosa Escudero-Sánchez
- Servicio de Enfermedades Infecciosas, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), and Red Española de Investigación en Patología Infecciosa (REIPI), 28034 Madrid, Spain; (R.E.-S.); (J.C.)
| | - Manuel Ponce-Alonso
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), and Red Española de Investigación en Patología Infecciosa (REIPI), 28034 Madrid, Spain; (M.P.-A.); (M.I.M.); (R.C.)
| | - Hugo Barragán-Prada
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain;
| | - María Isabel Morosini
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), and Red Española de Investigación en Patología Infecciosa (REIPI), 28034 Madrid, Spain; (M.P.-A.); (M.I.M.); (R.C.)
| | - Rafael Cantón
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), and Red Española de Investigación en Patología Infecciosa (REIPI), 28034 Madrid, Spain; (M.P.-A.); (M.I.M.); (R.C.)
| | - Javier Cobo
- Servicio de Enfermedades Infecciosas, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), and Red Española de Investigación en Patología Infecciosa (REIPI), 28034 Madrid, Spain; (R.E.-S.); (J.C.)
| | - Rosa del Campo
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), and Red Española de Investigación en Patología Infecciosa (REIPI), 28034 Madrid, Spain; (M.P.-A.); (M.I.M.); (R.C.)
- Correspondence: ; Tel.: +34-913-368-832
| |
Collapse
|
299
|
The Microbiota-Gut-Brain Axis and Alzheimer's Disease: Neuroinflammation Is to Blame? Nutrients 2020; 13:nu13010037. [PMID: 33374235 PMCID: PMC7824474 DOI: 10.3390/nu13010037] [Citation(s) in RCA: 177] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/20/2020] [Accepted: 12/22/2020] [Indexed: 02/06/2023] Open
Abstract
For years, it has been reported that Alzheimer’s disease (AD) is the most common cause of dementia. Various external and internal factors may contribute to the early onset of AD. This review highlights a contribution of the disturbances in the microbiota–gut–brain (MGB) axis to the development of AD. Alteration in the gut microbiota composition is determined by increase in the permeability of the gut barrier and immune cell activation, leading to impairment in the blood–brain barrier function that promotes neuroinflammation, neuronal loss, neural injury, and ultimately AD. Numerous studies have shown that the gut microbiota plays a crucial role in brain function and changes in the behavior of individuals and the formation of bacterial amyloids. Lipopolysaccharides and bacterial amyloids synthesized by the gut microbiota can trigger the immune cells residing in the brain and can activate the immune response leading to neuroinflammation. Growing experimental and clinical data indicate the prominent role of gut dysbiosis and microbiota–host interactions in AD. Modulation of the gut microbiota with antibiotics or probiotic supplementation may create new preventive and therapeutic options in AD. Accumulating evidences affirm that research on MGB involvement in AD is necessary for new treatment targets and therapies for AD.
Collapse
|
300
|
Akobeng AK, Singh P, Kumar M, Al Khodor S. Role of the gut microbiota in the pathogenesis of coeliac disease and potential therapeutic implications. Eur J Nutr 2020; 59:3369-3390. [PMID: 32651763 PMCID: PMC7669811 DOI: 10.1007/s00394-020-02324-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 07/01/2020] [Indexed: 12/17/2022]
Abstract
PURPOSE Although genetic predisposition and exposure to dietary gluten are considered necessary triggers for the development of coeliac disease, alterations in the gut microbial composition may also contribute towards the pathogenesis of coeliac disease. This review aims to provide an overview of the available data on the potential mechanisms through which the gut microbiota plays a role in the causation of coeliac disease and to discuss the potential therapeutic strategies that could diminish the consequences of microbial dysbiosis. METHOD A search of the literature was performed using the PubMed, Embase, and JSTOR databases; relevant articles were included. RESULTS Recent studies in patients with coeliac disease have reported an increase in the relative amounts of gram negative bacterial genera such as Bacteroides, Prevotella, and Escherichia, and reduced amounts of protective anti-inflammatory bacteria such as Bifidobacteria and Lactobacilli. Dysbiotic microbiota may lead to a dysregulated immune response that may contribute to the pathogenesis of coeliac disease. In infancy, antibiotic use and certain infant feeding practices may lead to alterations in the developing gut microbiota to influence the immune maturation process and predispose to coeliac disease. CONCLUSION The induction of the intestinal immune system and gluten intolerance may be influenced by the relative abundance of certain microbiota. Factors such as infant feeding practices, diet, antibiotics, and infections, may be involved in the development of coeliac disease due to their influence on gut microbial composition. The efficacy of potential modulators of the gut microbiota such as probiotics, prebiotics, and fecal microbial transplant as adjunctive treatments to gluten-free diet in coeliac disease is unproven and requires further investigation.
Collapse
Affiliation(s)
- Anthony K Akobeng
- Division of Gastroenterology, Hepatology, and Nutrition, Sidra Medicine, Doha, Qatar
- Weill Cornell Medicine, Cornell University, Doha, Qatar
| | - Parul Singh
- Research Department, Sidra Medicine, Doha, Qatar
| | - Manoj Kumar
- Research Department, Sidra Medicine, Doha, Qatar
| | | |
Collapse
|