251
|
Pillitteri LJ, Dong J. Stomatal development in Arabidopsis. THE ARABIDOPSIS BOOK 2013; 11:e0162. [PMID: 23864836 PMCID: PMC3711358 DOI: 10.1199/tab.0162] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Stomata consist of two guard cells that function as turgor-operated valves that regulate gas exchange in plants. In Arabidopsis, a dedicated cell lineage is initiated and undergoes a series of cell divisions and cell-state transitions to produce a stoma. A set of basic helix-loop-helix (bHLH) transcription factors regulates the transition and differentiation events through the lineage, while the placement of stomata relative to each other is controlled by intercellular signaling via peptide ligands, transmembrane receptors, and mitogen-activated protein kinase (MAPK) modules. Some genes involved in regulating stomatal differentiation or density are also involved in hormonal and environmental stress responses, which may provide a link between modulation of stomatal development or function in response to changes in the environment. Premitotic polarlylocalized proteins provide an added layer of regulation, which can be addressed more thoroughly with the identification of additional proteins in this pathway. Linking the networks that control stomatal development promises to bring advances to our understanding of signal transduction, cell polarity, and cell-fate specification in plants.
Collapse
Affiliation(s)
- Lynn Jo Pillitteri
- Department of Biology, Western Washington University, Bellingham, WA, 98225, USA
- Address correspondence to
| | - Juan Dong
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, 08854, USA
| |
Collapse
|
252
|
Osakabe Y, Yamaguchi-Shinozaki K, Shinozaki K, Tran LSP. Sensing the environment: key roles of membrane-localized kinases in plant perception and response to abiotic stress. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:445-58. [PMID: 23307915 DOI: 10.1093/jxb/ers354] [Citation(s) in RCA: 218] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Adverse environmental conditions have negative effects on plant growth and development. Receptor proteins on the plasma membrane sense various environmental stimuli and transduce them to downstream intra- and intercellular signalling networks. Receptor-like kinases (RLKs) play important roles in perceiving the extracellular ligands and activating the downstream pathway via phosphorylation of intracellular serine/threonine kinase domains. The Arabidopsis genome possesses >600 RLK-encoding genes, some of which are implicated in the perception of environmental signals during the life cycle of the sessile plants. Histidine kinases are also membrane-localized kinases and perceive osmotic stress and plant hormones. In this review, we focus on the RLKs and histidine kinases that play a role in plant response to abiotic stresses. We summarize our recent understanding of their specific roles in stress responses and absicisic acid (ABA) regulation. Elucidation of the functions of these kinases in the osmotic stress response will provide a better understanding of stress-sensing mechanisms in plants and help to identify potential candidate genes for genetic engineering of improved stress-tolerant crops.
Collapse
Affiliation(s)
- Yuriko Osakabe
- Gene Discovery Research Group, RIKEN Plant Science Center, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan.
| | | | | | | |
Collapse
|
253
|
Lau OS, Bergmann DC. Stomatal development: a plant's perspective on cell polarity, cell fate transitions and intercellular communication. Development 2012; 139:3683-92. [PMID: 22991435 DOI: 10.1242/dev.080523] [Citation(s) in RCA: 150] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The plant stomatal lineage manifests features common to many developmental contexts: precursor cells are chosen from an initially equivalent field of cells, undergo asymmetric and self-renewing divisions, communicate among themselves and respond to information from a distance. As we review here, the experimental accessibility of these epidermal lineages, particularly in Arabidopsis, has made stomata a conceptual and technical framework for the study of cell fate, stem cells, and cell polarity in plants.
Collapse
Affiliation(s)
- On Sun Lau
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305-5020, USA
| | | |
Collapse
|
254
|
Meng X, Wang H, He Y, Liu Y, Walker JC, Torii KU, Zhang S. A MAPK cascade downstream of ERECTA receptor-like protein kinase regulates Arabidopsis inflorescence architecture by promoting localized cell proliferation. THE PLANT CELL 2012; 24:4948-60. [PMID: 23263767 PMCID: PMC3556968 DOI: 10.1105/tpc.112.104695] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2012] [Revised: 11/08/2012] [Accepted: 12/06/2012] [Indexed: 05/18/2023]
Abstract
Spatiotemporal-specific cell proliferation and cell differentiation are critical to the formation of normal tissues, organs, and organisms. The highly coordinated cell differentiation and proliferation events illustrate the importance of cell-cell communication during growth and development. In Arabidopsis thaliana, ERECTA (ER), a receptor-like protein kinase, plays important roles in promoting localized cell proliferation, which determines inflorescence architecture, organ shape, and size. However, the downstream signaling components remain unidentified. Here, we report a mitogen-activated protein kinase (MAPK; or MPK) cascade that functions downstream of ER in regulating localized cell proliferation. Similar to an er mutant, loss of function of MPK3/MPK6 or their upstream MAPK kinases (MAPKKs; or MKKs), MKK4/MKK5, resulted in shortened pedicels and clustered inflorescences. Epistasis analysis demonstrated that the gain of function of MKK4 and MKK5 transgenes could rescue the loss-of-function er mutant phenotype at both morphological and cellular levels, suggesting that the MPK3/MPK6 cascade functions downstream of the ER receptor. Furthermore, YODA (YDA), a MAPKK kinase, was shown to be upstream of MKK4/MKK5 and downstream of ER in regulating inflorescence architecture based on both gain- and loss-of-function data. Taken together, these results suggest that the YDA-MKK4/MKK5-MPK3/MPK6 cascade functions downstream of the ER receptor in regulating localized cell proliferation, which further shapes the morphology of plant organs.
Collapse
Affiliation(s)
- Xiangzong Meng
- Division of Biochemistry, Interdisciplinary Plant Group, Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211
| | - Huachun Wang
- Division of Biochemistry, Interdisciplinary Plant Group, Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211
| | - Yunxia He
- Division of Biochemistry, Interdisciplinary Plant Group, Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211
| | - Yidong Liu
- Division of Biochemistry, Interdisciplinary Plant Group, Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211
| | - John C. Walker
- Division of Biological Sciences, Interdisciplinary Plant Group, Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211
| | - Keiko U. Torii
- Howard Hughes Medical Institute and Department of Biology, University of Washington, Seattle, Washington 98195
| | - Shuqun Zhang
- Division of Biochemistry, Interdisciplinary Plant Group, Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211
- Address correspondence to
| |
Collapse
|
255
|
Torii KU. Mix-and-match: ligand-receptor pairs in stomatal development and beyond. TRENDS IN PLANT SCIENCE 2012; 17:711-9. [PMID: 22819466 DOI: 10.1016/j.tplants.2012.06.013] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 06/22/2012] [Accepted: 06/25/2012] [Indexed: 05/19/2023]
Abstract
Stomata are small valves on the plant epidermis balancing gas exchange and water loss. Stomata are formed according to positional cues. In Arabidopsis, two EPIDERMAL PATTERNING FACTOR (EPF) peptides, EPF1 and EPF2, are secreted from stomatal precursors enforcing proper stomatal patterning. Here, I review recent studies revealing the ligand-receptor pairs and revising the previously predicted relations between receptors specifying stomatal patterning: ERECTA-family and TOO MANY MOUTHS (TMM). Furthermore, EPF-LIKE9 (EPFL9/Stomagen) promotes stomatal differentiation from internal tissues. Two EPFL peptides specify inflorescence architecture, a process beyond stomatal development, as ligands for ERECTA. Thus, broadly expressed receptor kinases may regulate multiple developmental processes through perceiving different peptide ligands, each with a specialized expression pattern. TMM in the epidermis may fine-tune multiple EPF/EPFL signals to prevent signal interference.
Collapse
Affiliation(s)
- Keiko U Torii
- Department of Biology, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
256
|
Gudesblat GE, Betti C, Russinova E. Brassinosteroids tailor stomatal production to different environments. TRENDS IN PLANT SCIENCE 2012; 17:685-7. [PMID: 23022359 DOI: 10.1016/j.tplants.2012.09.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 09/03/2012] [Accepted: 09/15/2012] [Indexed: 05/09/2023]
Abstract
Two recent reports show that brassinosteroids control stomata production by regulating the GSK3-like kinase BIN2-mediated phosphorylation of two different stomatal signalling components resulting in opposite stomatal phenotypes. We discuss how these two mechanisms might differentially control stomatal generation under diverse growth conditions.
Collapse
Affiliation(s)
- Gustavo E Gudesblat
- Instituto de Ciencia y Tecnología Dr. Cesar Milstein, Fundación Pablo Cassará, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, C1440FFX, Argentina
| | | | | |
Collapse
|
257
|
Facette MR, Smith LG. Division polarity in developing stomata. CURRENT OPINION IN PLANT BIOLOGY 2012; 15:585-92. [PMID: 23044038 DOI: 10.1016/j.pbi.2012.09.013] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 09/12/2012] [Accepted: 09/13/2012] [Indexed: 05/03/2023]
Abstract
Stomata are generated via asymmetric cell division in both dicots and monocots. Intrinsic or extrinsic polarity cues are perceived and acted upon to generate mother cell polarity and determine asymmetric division planes. Arabidopsis employs both intrinsic and extrinsic cues to orient a variable series of asymmetric stomatal divisions, using novel proteins such as BASL and POLAR to generate polarity. In contrast, maize appears to employ only extrinsic cues to orient the polarities of divisions occurring in an invariant sequence to generate stomatal complexes. Although both plants use receptor-like kinases to generate or orient division polarity in developing stomata, there are few similarities in the proteins and pathway identified to date as regulators of these processes.
Collapse
Affiliation(s)
- Michelle R Facette
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093-0116, United States
| | | |
Collapse
|
258
|
Patterns of cell division, cell differentiation and cell elongation in epidermis and cortex of Arabidopsis pedicels in the wild type and in erecta. PLoS One 2012; 7:e46262. [PMID: 23050000 PMCID: PMC3457992 DOI: 10.1371/journal.pone.0046262] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 08/31/2012] [Indexed: 11/19/2022] Open
Abstract
Plant organ shape and size are established during growth by a predictable, controlled sequence of cell proliferation, differentiation, and elongation. To understand the regulation and coordination of these processes, we studied the temporal behavior of epidermal and cortex cells in Arabidopsis pedicels and used computational modeling to analyze cell behavior in tissues. Pedicels offer multiple advantages for such a study, as their growth is determinate, mostly one dimensional, and epidermis differentiation is uniform along the proximodistal axis. Three developmental stages were distinguished during pedicel growth: a proliferative stage, a stomata differentiation stage, and a cell elongation stage. Throughout the first two stages pedicel growth is exponential, while during the final stage growth becomes linear and depends on flower fertilization. During the first stage, the average cell cycle duration in the cortex and during symmetric divisions of epidermal cells was constant and cells divided at a fairly specific size. We also examined the mutant of ERECTA, a gene with strong influence on pedicel growth. We demonstrate that during the first two stages of pedicel development ERECTA is important for the rate of cell growth along the proximodistal axis and for cell cycle duration in epidermis and cortex. The second function of ERECTA is to prolong the proliferative phase and inhibit premature cell differentiation in the epidermis. Comparison of epidermis development in the wild type and erecta suggests that differentiation is a synchronized event in which the stomata differentiation and the transition of pavement cells from proliferation to expansion are intimately connected.
Collapse
|
259
|
Torii KU. Two-dimensional spatial patterning in developmental systems. Trends Cell Biol 2012; 22:438-46. [DOI: 10.1016/j.tcb.2012.06.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2012] [Revised: 06/10/2012] [Accepted: 06/11/2012] [Indexed: 01/29/2023]
|
260
|
Delgado D, Ballesteros I, Mena M, Fenoll C. Roles of constitutive photomorphogenic 10 in Arabidopsis stomata development. PLANT SIGNALING & BEHAVIOR 2012; 7:990-3. [PMID: 22836493 PMCID: PMC3474701 DOI: 10.4161/psb.20995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Stomata are epidermal bi-celled structures that differentiate within special cell lineages initiated by a subset of protodermal cells. Recently, we showed that the Arabidopsis photomorphogenic repressor COP10 controls specific cell-lineage and cell-signaling developmental mechanisms in stomatal lineages. Loss-of-function cop10-1 mutant cotyledons and leaves produced (in the light and in the dark) abundant stomatal clusters, but nonlineage epidermal cells were not affected. Here we examine COP10 role in hypocotyls, cylindrical organs displaying a distinct epidermal organization with alternate files of protruding and non-protruding cells, with the latter producing a limited number of stomata. COP10 prevents stomatal clusters and restricts stomata production in hypocotyls; these roles are specific to lineage cells as in cotyledons, since COP10 loss of function does not elicit stomatal fate in nonlineage cells; COP10 also sustains the directional cell expansion of all hypocotyl epidermal cell types, and seems necessary for the differentiation between protruding and non-protruding cell files.
Collapse
Affiliation(s)
| | | | - Montaña Mena
- Facultad de Ciencias Ambientales y Bioquímica; Universidad de Castilla-la Mancha; Toledo, Spain
| | - Carmen Fenoll
- Facultad de Ciencias Ambientales y Bioquímica; Universidad de Castilla-la Mancha; Toledo, Spain
| |
Collapse
|