251
|
Akhtyamova Z, Martynenko E, Arkhipova T, Seldimirova O, Galin I, Belimov A, Vysotskaya L, Kudoyarova G. Influence of Plant Growth-Promoting Rhizobacteria on the Formation of Apoplastic Barriers and Uptake of Water and Potassium by Wheat Plants. Microorganisms 2023; 11:1227. [PMID: 37317202 DOI: 10.3390/microorganisms11051227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/25/2023] [Accepted: 05/04/2023] [Indexed: 06/16/2023] Open
Abstract
The formation of apoplastic barriers is important for controlling the uptake of water and ions by plants, thereby influencing plant growth. However, the effects of plant growth-promoting bacteria on the formation of apoplastic barriers, and the relationship between these effects and the ability of bacteria to influence the content of hormones in plants, have not been sufficiently studied. The content of cytokinins, auxins and potassium, characteristics of water relations, deposition of lignin and suberin and the formation of Casparian bands in the root endodermis of durum wheat (Triticum durum Desf.) plants were evaluated after the introduction of the cytokinin-producing bacterium Bacillus subtilis IB-22 or the auxin-producing bacterium Pseudomonas mandelii IB-Ki14 into their rhizosphere. The experiments were carried out in laboratory conditions in pots with agrochernozem at an optimal level of illumination and watering. Both strains increased shoot biomass, leaf area and chlorophyll content in leaves. Bacteria enhanced the formation of apoplastic barriers, which were most pronounced when plants were treated with P. mandelii IB-Ki14. At the same time, P. mandelii IB-Ki14 caused no decrease in the hydraulic conductivity, while inoculation with B. subtilis IB-22, increased hydraulic conductivity. Cell wall lignification reduced the potassium content in the roots, but did not affect its content in the shoots of plants inoculated with P. mandelii IB-Ki14. Inoculation with B. subtilis IB-22 did not change the potassium content in the roots, but increased it in the shoots.
Collapse
Affiliation(s)
- Zarina Akhtyamova
- Ufa Institute of Biology, Ufa Federal Research Centre, Russian Academy of Sciences, Prospekt Oktyabrya, 69, 450054 Ufa, Russia
| | - Elena Martynenko
- Ufa Institute of Biology, Ufa Federal Research Centre, Russian Academy of Sciences, Prospekt Oktyabrya, 69, 450054 Ufa, Russia
| | - Tatiana Arkhipova
- Ufa Institute of Biology, Ufa Federal Research Centre, Russian Academy of Sciences, Prospekt Oktyabrya, 69, 450054 Ufa, Russia
| | - Oksana Seldimirova
- Ufa Institute of Biology, Ufa Federal Research Centre, Russian Academy of Sciences, Prospekt Oktyabrya, 69, 450054 Ufa, Russia
| | - Ilshat Galin
- Ufa Institute of Biology, Ufa Federal Research Centre, Russian Academy of Sciences, Prospekt Oktyabrya, 69, 450054 Ufa, Russia
| | - Andrey Belimov
- Group of Culture of Beneficial Microorganisms, All-Russia Research Institute for Agricultural Microbiology, Podbelskogo sh. 3, Pushkin, 196608 Saint-Petersburg, Russia
| | - Lidiya Vysotskaya
- Ufa Institute of Biology, Ufa Federal Research Centre, Russian Academy of Sciences, Prospekt Oktyabrya, 69, 450054 Ufa, Russia
| | - Guzel Kudoyarova
- Ufa Institute of Biology, Ufa Federal Research Centre, Russian Academy of Sciences, Prospekt Oktyabrya, 69, 450054 Ufa, Russia
| |
Collapse
|
252
|
Mazumder S, Zhang N. Cellulose-Hemicellulose-Lignin Interaction in the Secondary Cell Wall of Coconut Endocarp. Biomimetics (Basel) 2023; 8:biomimetics8020188. [PMID: 37218775 DOI: 10.3390/biomimetics8020188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/24/2023] Open
Abstract
The coconut shell consists of three distinct layers: the skin-like outermost exocarp, the thick fibrous mesocarp, and the hard and tough inner endocarp. In this work, we focused on the endocarp because it features a unique combination of superior properties, including low weight, high strength, high hardness, and high toughness. These properties are usually mutually exclusive in synthesized composites. The microstructures of the secondary cell wall of the endocarp at the nanoscale, in which cellulose microfibrils are surrounded by hemicellulose and lignin, were generated. All-atom molecular dynamics simulations with PCFF force field were conducted to investigate the deformation and failure mechanisms under uniaxial shear and tension. Steered molecular dynamics simulations were carried out to study the interaction between different types of polymer chains. The results demonstrated that cellulose-hemicellulose and cellulose-lignin exhibit the strongest and weakest interactions, respectively. This conclusion was further validated against the DFT calculations. Additionally, through shear simulations of sandwiched polymer models, it was found that cellulose-hemicellulose-cellulose exhibits the highest strength and toughness, while cellulose-lignin-cellulose shows the lowest strength and toughness among all tested cases. This conclusion was further confirmed by uniaxial tension simulations of sandwiched polymer models. It was revealed that hydrogen bonds formed between the polymer chains are responsible for the observed strengthening and toughening behaviors. Additionally, it was interesting to note that failure mode under tension varies with the density of amorphous polymers located between cellulose bundles. The failure mode of multilayer polymer models under tension was also investigated. The findings of this work could potentially provide guidelines for the design of coconut-inspired lightweight cellular materials.
Collapse
Affiliation(s)
- Sharmi Mazumder
- Department of Mechanical Engineering, Baylor University, Waco, TX 76706, USA
| | - Ning Zhang
- Department of Mechanical Engineering, Baylor University, Waco, TX 76706, USA
| |
Collapse
|
253
|
Chaudhury D, Torkelson ER, Meyers KA, Acheson JF, Landucci L, Pu Y, Sun Z, Tonelli M, Bingman CA, Smith RA, Karlen SD, Mansfield SD, Ralph J, Fox BG. Rapid Biocatalytic Synthesis of Aromatic Acid CoA Thioesters by Using Microbial Aromatic Acid CoA Ligases. Chembiochem 2023; 24:e202300001. [PMID: 36821718 PMCID: PMC10467583 DOI: 10.1002/cbic.202300001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 02/25/2023]
Abstract
Chemically labile ester linkages can be introduced into lignin by incorporation of monolignol conjugates, which are synthesized in planta by acyltransferases that use a coenzyme A (CoA) thioester donor and a nucleophilic monolignol alcohol acceptor. The presence of these esters facilitates processing and aids in the valorization of renewable biomass feedstocks. However, the effectiveness of this strategy is potentially limited by the low steady-state levels of aromatic acid thioester donors in plants. As part of an effort to overcome this, aromatic acid CoA ligases involved in microbial aromatic degradation were identified and screened against a broad panel of substituted cinnamic and benzoic acids involved in plant lignification. Functional fingerprinting of this ligase library identified four robust, highly active enzymes capable of facile, rapid, and high-yield synthesis of aromatic acid CoA thioesters under mild aqueous reaction conditions mimicking in planta activity.
Collapse
Affiliation(s)
- Debayan Chaudhury
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI, 53706, USA
| | - Ella R Torkelson
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI, 53706, USA
| | - Kaya A Meyers
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI, 53706, USA
| | - Justin F Acheson
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI, 53706, USA
| | - Leta Landucci
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI, 53706, USA
| | - Yucen Pu
- Department of Botany and Department of Wood Science, University of British Columbia, 2424 Main Mall, Vancouver, BC V6T 1Z4, Canada
| | - Zimou Sun
- Department of Botany and Department of Wood Science, University of British Columbia, 2424 Main Mall, Vancouver, BC V6T 1Z4, Canada
| | - Marco Tonelli
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI, 53706, USA
| | - Craig A Bingman
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI, 53706, USA
| | - Rebecca A Smith
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI, 53706, USA
| | - Steven D Karlen
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI, 53706, USA
| | - Shawn D Mansfield
- Department of Botany and Department of Wood Science, University of British Columbia, 2424 Main Mall, Vancouver, BC V6T 1Z4, Canada
| | - John Ralph
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI, 53706, USA
| | - Brian G Fox
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI, 53706, USA
| |
Collapse
|
254
|
Donev EN, Derba‐Maceluch M, Yassin Z, Gandla ML, Pramod S, Heinonen E, Kumar V, Scheepers G, Vilaplana F, Johansson U, Hertzberg M, Sundberg B, Winestrand S, Hörnberg A, Alriksson B, Jönsson LJ, Mellerowicz EJ. Field testing of transgenic aspen from large greenhouse screening identifies unexpected winners. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:1005-1021. [PMID: 36668687 PMCID: PMC10106850 DOI: 10.1111/pbi.14012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 11/30/2022] [Accepted: 12/29/2022] [Indexed: 05/04/2023]
Abstract
Trees constitute promising renewable feedstocks for biorefinery using biochemical conversion, but their recalcitrance restricts their attractiveness for the industry. To obtain trees with reduced recalcitrance, large-scale genetic engineering experiments were performed in hybrid aspen blindly targeting genes expressed during wood formation and 32 lines representing seven constructs were selected for characterization in the field. Here we report phenotypes of five-year old trees considering 49 traits related to growth and wood properties. The best performing construct considering growth and glucose yield in saccharification with acid pretreatment had suppressed expression of the gene encoding an uncharacterized 2-oxoglutarate-dependent dioxygenase (2OGD). It showed minor changes in wood chemistry but increased nanoporosity and glucose conversion. Suppressed levels of SUCROSE SYNTHASE, (SuSy), CINNAMATE 4-HYDROXYLASE (C4H) and increased levels of GTPase activating protein for ADP-ribosylation factor ZAC led to significant growth reductions and anatomical abnormalities. However, C4H and SuSy constructs greatly improved glucose yields in saccharification without and with pretreatment, respectively. Traits associated with high glucose yields were different for saccharification with and without pretreatment. While carbohydrates, phenolics and tension wood contents positively impacted the yields without pretreatment and growth, lignin content and S/G ratio were negative factors, the yields with pretreatment positively correlated with S lignin and negatively with carbohydrate contents. The genotypes with high glucose yields had increased nanoporosity and mGlcA/Xyl ratio, and some had shorter polymers extractable with subcritical water compared to wild-type. The pilot-scale industrial-like pretreatment of best-performing 2OGD construct confirmed its superior sugar yields, supporting our strategy.
Collapse
Affiliation(s)
- Evgeniy N. Donev
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science CentreSwedish University of Agricultural SciencesUmeåSweden
| | - Marta Derba‐Maceluch
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science CentreSwedish University of Agricultural SciencesUmeåSweden
| | - Zakiya Yassin
- Enhet Produktionssystem och MaterialRISE Research Institutes of SwedenVäxjöSweden
| | | | - Sivan Pramod
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science CentreSwedish University of Agricultural SciencesUmeåSweden
- Division of Glycoscience, Department of ChemistryKTH Royal Institute of Technology, AlbaNova University CentreStockholmSweden
| | - Emilia Heinonen
- Division of Glycoscience, Department of ChemistryKTH Royal Institute of Technology, AlbaNova University CentreStockholmSweden
- Wallenberg Wood Science Centre (WWSC)KTH Royal Institute of TechnologyStockholmSweden
| | - Vikash Kumar
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science CentreSwedish University of Agricultural SciencesUmeåSweden
| | - Gerhard Scheepers
- Enhet Produktionssystem och MaterialRISE Research Institutes of SwedenVäxjöSweden
| | - Francisco Vilaplana
- Division of Glycoscience, Department of ChemistryKTH Royal Institute of Technology, AlbaNova University CentreStockholmSweden
- Wallenberg Wood Science Centre (WWSC)KTH Royal Institute of TechnologyStockholmSweden
| | - Ulf Johansson
- Tönnersjöheden Experimental ForestSwedish University of Agricultural SciencesSimlångsdalenSweden
| | | | - Björn Sundberg
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science CentreSwedish University of Agricultural SciencesUmeåSweden
| | | | | | | | | | - Ewa J. Mellerowicz
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science CentreSwedish University of Agricultural SciencesUmeåSweden
| |
Collapse
|
255
|
Xu P, Shu L, Li Y, Zhou S, Zhang G, Wu Y, Yang Z. Pretreatment and composting technology of agricultural organic waste for sustainable agricultural development. Heliyon 2023; 9:e16311. [PMID: 37305492 PMCID: PMC10256924 DOI: 10.1016/j.heliyon.2023.e16311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 04/16/2023] [Accepted: 05/12/2023] [Indexed: 06/13/2023] Open
Abstract
With the continuous development of agriculture, Agricultural organic waste (AOW) has become the most abundant renewable energy on earth, and it is a hot spot of research in recent years to realize the recycling of AOW to achieve sustainable development of agricultural production. However, lignocellulose, which is difficult to degrade in AOW, greenhouse gas emissions, and pile pathogenic fungi and insect eggs are the biggest obstacles to its return to land use. In response to the above problems researchers promote organic waste recycling by pretreating AOW, controlling composting conditions and adding other substances to achieve green return of AOW to the field and promote the development of agricultural production. This review summarizes the ways of organic waste treatment, factors affecting composting and problems in composting by researchers in recent years, with a view to providing research ideas for future related studies.
Collapse
Affiliation(s)
- Peng Xu
- College of Horticulture, Northwest Agriculture and Forestry University of Science and Technology, Yangling, Shaanxi Province, 712100, China
| | - Luolin Shu
- College of Horticulture, Northwest Agriculture and Forestry University of Science and Technology, Yangling, Shaanxi Province, 712100, China
| | - Yang Li
- College of Horticulture, Northwest Agriculture and Forestry University of Science and Technology, Yangling, Shaanxi Province, 712100, China
| | - Shun Zhou
- College of Horticulture, Northwest Agriculture and Forestry University of Science and Technology, Yangling, Shaanxi Province, 712100, China
| | - Guanzhi Zhang
- College of Horticulture, Northwest Agriculture and Forestry University of Science and Technology, Yangling, Shaanxi Province, 712100, China
| | - Yongjun Wu
- College of Life Sciences, Northwest Agriculture and Forestry University of Science and Technology, Yangling, Shaanxi Province, 712100, China
| | - Zhenchao Yang
- College of Horticulture, Northwest Agriculture and Forestry University of Science and Technology, Yangling, Shaanxi Province, 712100, China
| |
Collapse
|
256
|
Klein J, Waldvogel SR. Selective Electrochemical Degradation of Lignosulfonate to Bio-Based Aldehydes. CHEMSUSCHEM 2023; 16:e202202300. [PMID: 36651115 DOI: 10.1002/cssc.202202300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/17/2023] [Indexed: 06/17/2023]
Abstract
A sustainable electrochemical pathway for degradation and thermal treatment of technical lignosulfonate is presented. This approach is an opportunity to produce remarkable quantities of low molecular weight compounds, such as vanillin and acetovanillone. For the electrochemical degradation, a simple two-electrode arrangement in aqueous media is used, which is also easily scalable. The oxidation of the biopolymer occurs at the anode whereas hydrogen is evolved at the cathode. The subsequent thermal treatment supports the degradation of the robust chemical structure of lignosulfonates. With optimized electrolytic conditions, vanillin could be obtained in 9.7 wt% relative to the dry mass of lignosulfonate used. Aside from vanillin, by-products such as acetovanillone or vanillic acid were observed in lower yields. A new and reliable one-pot, two-step degradation of different technically relevant lignosulfonates is established with the advantages of using electrons as an oxidizing agent, which results in low quantities of reagent waste.
Collapse
Affiliation(s)
- Jana Klein
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55131, Mainz, Germany
| | - Siegfried R Waldvogel
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55131, Mainz, Germany
- Institute of Biological and Chemical Systems - Functional Molecular Systems (IBCS-FMS), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
257
|
Ruwoldt J, Blindheim FH, Chinga-Carrasco G. Functional surfaces, films, and coatings with lignin - a critical review. RSC Adv 2023; 13:12529-12553. [PMID: 37101953 PMCID: PMC10123495 DOI: 10.1039/d2ra08179b] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/03/2023] [Indexed: 04/28/2023] Open
Abstract
Lignin is the most abundant polyaromatic biopolymer. Due to its rich and versatile chemistry, many applications have been proposed, which include the formulation of functional coatings and films. In addition to replacing fossil-based polymers, the lignin biopolymer can be part of new material solutions. Functionalities may be added, such as UV-blocking, oxygen scavenging, antimicrobial, and barrier properties, which draw on lignin's intrinsic and unique features. As a result, various applications have been proposed, including polymer coatings, adsorbents, paper-sizing additives, wood veneers, food packaging, biomaterials, fertilizers, corrosion inhibitors, and antifouling membranes. Today, technical lignin is produced in large volumes in the pulp and paper industry, whereas even more diverse products are prospected to be available from future biorefineries. Developing new applications for lignin is hence paramount - both from a technological and economic point of view. This review article is therefore summarizing and discussing the current research-state of functional surfaces, films, and coatings with lignin, where emphasis is put on the formulation and application of such solutions.
Collapse
Affiliation(s)
- Jost Ruwoldt
- RISE PFI AS Høgskoleringen 6B Trondheim 7491 Norway
| | | | | |
Collapse
|
258
|
Kahie MA, Wang Y, Fang P, Qi J, Lei R, Xu J, Lin L, Zhang L, Zhang J, Tao A. Evolution and expression analysis of the caffeoyl-CoA 3-O-methyltransferase (CCoAOMT) gene family in jute (Corchorus L.). BMC Genomics 2023; 24:204. [PMID: 37069498 PMCID: PMC10111781 DOI: 10.1186/s12864-023-09281-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 03/29/2023] [Indexed: 04/19/2023] Open
Abstract
BACKGROUND Jute is considered one of the most important crops for fiber production and multipurpose usages. Caffeoyl-CoA 3-O-methyltransferase (CCoAOMT) is a crucial enzyme involved in lignin biosynthesis in plants. The potential functions of CCoAOMT in lignin biosynthesis of jute have been reported in several studies. However, little is known about the evolution of the CCoAOMT gene family, and either their expression level at different developing stages in different jute cultivars, as well as under abiotic stresses including salt and drought stress. RESULTS In the present study, 66 CCoAOMT genes from 12 species including 12 and eight CCoAOMTs in Corchorus olitorius and C. capsularis were identified. Phylogenetic analysis revealed that CCoAOMTs could be divided into six groups, and gene expansion was observed in C. olitorius. Furthermore, gene expression analysis of developing jute fibers was conducted at different developmental stages (15, 30, 45, 60, and 90 days after sowing [DAS]) in six varieties (Jute-179 [J179], Lubinyuanguo [LB], and Qiongyueqing [QY] for C. capsularis; Funong No.5 [F5], Kuanyechangguo [KY], and Cvlv [CL] for C. olitorius). The results showed that CCoAOMT1 and CCoAOMT2 were the dominant genes in the CCoAOMT family. Of these two dominant CCoAOMTs, CCoAOMT2 showed a constitutive expression level during the entire growth stages, while CCoAOMT1 exhibited differential expression patterns. These two genes showed higher expression levels in C. olitorius than in C. capsularis. The correlation between lignin content and CCoAOMT gene expression levels indicated that this gene family influences the lignin content of jute. Using real-time quantitative reverse transcription PCR (qRT-PCR), a substantial up-regulation of CCoAOMTs was detected in stem tissues of jute 24 h after drought treatment, with an up to 17-fold increase in expression compared to that of untreated plants. CONCLUSIONS This study provides a basis for comprehensive genomic studies of the entire CCoAOMT gene family in C. capsularis and C. olitorius. Comparative genomics analysis among the CCoAOMT gene families of 12 species revealed the close evolutionary relationship among Corchorus, Theobroma cacao and Gossypium raimondii. This study also shows that CCoAOMTs are not only involved in lignin biosynthesis, but also are associated with the abiotic stress response in jute, and suggests the potential use of these lignin-related genes to genetically improve the fiber quality of jute.
Collapse
Affiliation(s)
- Mohamed Ali Kahie
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Key Laboratory of Crop Breeding for Design, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Center of Genomics & Biotechnology, Haixia Institute of Science & Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- City University of Mogadishu, Mogadishu, 23111, Somalia
| | - Yongjun Wang
- Center of Genomics & Biotechnology, Haixia Institute of Science & Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Pingping Fang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Key Laboratory of Crop Breeding for Design, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jianmin Qi
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Key Laboratory of Crop Breeding for Design, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Rongjie Lei
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Key Laboratory of Crop Breeding for Design, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jiantang Xu
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Key Laboratory of Crop Breeding for Design, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lihui Lin
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Key Laboratory of Crop Breeding for Design, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Liwu Zhang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Key Laboratory of Crop Breeding for Design, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jisen Zhang
- Center of Genomics & Biotechnology, Haixia Institute of Science & Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- State Key Lab for Conservation and Utilization of Subtropical AgroBiological Resources and Guangxi Key Lab for Sugarcane Biology, Guangxi University, Nanning, China.
| | - Aifen Tao
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Key Laboratory of Crop Breeding for Design, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
259
|
Xu H, Lu Y, Jiang F, Zhang J, Ge Y, Li Z. 3D porous N-doped lignosulfonate/graphene oxide aerogel for efficient solar steam generation and desalination. Int J Biol Macromol 2023; 233:123469. [PMID: 36720330 DOI: 10.1016/j.ijbiomac.2023.123469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/09/2023] [Accepted: 01/25/2023] [Indexed: 02/02/2023]
Abstract
Solar-driven interfacial evaporation has been considered one of the most promising approaches to tackle the issue of water scarcity. The salt resistance and water transport capacity of solar evaporation materials are essential to evaluate desalination performance. Herein, a 3D-porous N-doped lignosulfonate/graphene oxide (GO) aerogel (NLGA) was facilely prepared by a one-step hydrothermal method. By introducing ethylenediamine (EDA) as a nitrogen source, the wettability and water transport capacity of the aerogel were enhanced; by introducing lignosulfonate (LS), its porous structure was regulated, and its light absorption capability was significantly improved. The obtained aerogel exhibited an outstanding evaporation rate (1.57 kg m-2 h-1) and efficiency (95.2 %) under 1 sun illumination, which is significantly better than some reported foam-based solar evaporators. In addition, NLGA maintained a stable evaporation rate over long-term cyclic evaporation without visible salt accumulation on the surface. The good salt rejection performance is due to the rich-pore structure and superhydrophilicity of NGLA, which provides sufficient water supply to dissolve the salts during water evaporation. NLGA has enormous potential as a solar evaporator based on its excellent performance in solar vapor generation.
Collapse
Affiliation(s)
- Hui Xu
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning 530004, China
| | - Yaoqin Lu
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning 530004, China
| | - Fangyuan Jiang
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning 530004, China
| | - Jiemei Zhang
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning 530004, China
| | - Yuanyuan Ge
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning 530004, China
| | - Zhili Li
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning 530004, China.
| |
Collapse
|
260
|
Thoresen PP, Lange H, Rova U, Christakopoulos P, Matsakas L. Covalently bound humin-lignin hybrids as important novel substructures in organosolv spruce lignins. Int J Biol Macromol 2023; 233:123471. [PMID: 36736515 DOI: 10.1016/j.ijbiomac.2023.123471] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/11/2023] [Accepted: 01/25/2023] [Indexed: 02/04/2023]
Abstract
Organosolv lignins (OSLs) are important byproducts of the cellulose-centred biorefinery that need to be converted in high value-added products for economic viability. Yet, OSLs occasionally display characteristics that are unexpected looking at the lignin motifs present. Applying advanced NMR, GPC, and thermal analyses, isolated spruce lignins were analysed to correlate organosolv process severity to the structural details for delineating potential valorisations. Very mild conditions were found to not fractionate the biomass, causing a mix of sugars, lignin-carbohydrate complexes (LCCs), and corresponding dehydration/degradation products and including pseudo-lignins. Employing only slightly harsher conditions promote fractionation, but also formation of sugar degradation structures that covalently incorporate into the oligomeric and polymeric lignin structures, causing the isolated organosolv lignins to contain lignin-humin hybrid (HLH) structures not yet evidenced as such in organosolv lignins. These structures effortlessly explain observed unexpected solubility issues and unusual thermal responses, and their presence might have to be acknowledged in downstream lignin valorisation.
Collapse
Affiliation(s)
- Petter Paulsen Thoresen
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971-87, Sweden
| | - Heiko Lange
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971-87, Sweden; Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy; NBFC - National Biodiversity Future Center, 90133 Palermo, Italy.
| | - Ulrika Rova
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971-87, Sweden
| | - Paul Christakopoulos
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971-87, Sweden
| | - Leonidas Matsakas
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971-87, Sweden.
| |
Collapse
|
261
|
Marinov O, Nomberg G, Sarkar S, Arya GC, Karavani E, Zelinger E, Manasherova E, Cohen H. Microscopic and metabolic investigations disclose the factors that lead to skin cracking in chili-type pepper fruit varieties. HORTICULTURE RESEARCH 2023; 10:uhad036. [PMID: 37799628 PMCID: PMC10548408 DOI: 10.1093/hr/uhad036] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 02/20/2023] [Indexed: 10/07/2023]
Abstract
The hydrophobic cuticle encasing the fruit skin surface plays critical roles during fruit development and post-harvest. Skin failure often results in the fruit surface cracking and forming a wound-periderm tissue made of suberin and lignin. The factors that make the fruit skin susceptible to cracking have yet to be fully understood. Herein, we investigated two varieties of chili peppers (Capsicum annuum L.), Numex Garnet, whose fruit has intact skin, and Vezena Slatka, whose fruit has cracked skin. Microscopical observations, gas chromatography-mass spectrometry, biochemical and gene expression assays revealed that Vezena Slatka fruit form a thicker cuticle with greater levels of cutin monomers and hydroxycinnamic acids, and highly express key cutin-related genes. The skin of these fruit also had a lower epidermal cell density due to cells with very large perimeters, and highly express genes involved in epidermal cell differentiation. We demonstrate that skin cracking in the Vezena Slatka fruit is accompanied by a spatial accumulation of lignin-like polyphenolic compounds, without the formation of a typical wound-periderm tissues made of suberized cells. Lastly, we establish that skin cracking in chili-type pepper significantly affects fruit quality during post-harvest storage in a temperature-dependent manner. In conclusion, our data highlight cuticle thickness and epidermal cell density as two critical factors determining fruit skin susceptibility to cracking in chili-type pepper fruit.
Collapse
Affiliation(s)
- Ofir Marinov
- Department of Vegetable and Field Crops, Institute of Plant Sciences, Agricultural Research Organization (ARO), Volcani Institute, Rishon LeZion 7505101, Israel
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Gal Nomberg
- Department of Vegetable and Field Crops, Institute of Plant Sciences, Agricultural Research Organization (ARO), Volcani Institute, Rishon LeZion 7505101, Israel
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Sutanni Sarkar
- Department of Vegetable and Field Crops, Institute of Plant Sciences, Agricultural Research Organization (ARO), Volcani Institute, Rishon LeZion 7505101, Israel
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Gulab Chand Arya
- Department of Vegetable and Field Crops, Institute of Plant Sciences, Agricultural Research Organization (ARO), Volcani Institute, Rishon LeZion 7505101, Israel
| | - Eldad Karavani
- Department of Vegetable and Field Crops, Institute of Plant Sciences, Agricultural Research Organization (ARO), Volcani Institute, Rishon LeZion 7505101, Israel
| | - Einat Zelinger
- Center for Scientific Imaging (CSI), The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Ekaterina Manasherova
- Department of Vegetable and Field Crops, Institute of Plant Sciences, Agricultural Research Organization (ARO), Volcani Institute, Rishon LeZion 7505101, Israel
| | - Hagai Cohen
- Department of Vegetable and Field Crops, Institute of Plant Sciences, Agricultural Research Organization (ARO), Volcani Institute, Rishon LeZion 7505101, Israel
| |
Collapse
|
262
|
Cai T, Sharif Y, Zhuang Y, Yang Q, Chen X, Chen K, Chen Y, Gao M, Dang H, Pan Y, Raza A, Zhang C, Chen H, Zhuang W. In-silico identification and characterization of O-methyltransferase gene family in peanut ( Arachis hypogaea L.) reveals their putative roles in development and stress tolerance. FRONTIERS IN PLANT SCIENCE 2023; 14:1145624. [PMID: 37063183 PMCID: PMC10102615 DOI: 10.3389/fpls.2023.1145624] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/10/2023] [Indexed: 06/19/2023]
Abstract
Cultivated peanut (Arachis hypogaea) is a leading protein and oil-providing crop and food source in many countries. At the same time, it is affected by a number of biotic and abiotic stresses. O-methyltransferases (OMTs) play important roles in secondary metabolism, biotic and abiotic stress tolerance. However, the OMT genes have not been comprehensively analyzed in peanut. In this study, we performed a genome-wide investigation of A. hypogaea OMT genes (AhOMTs). Gene structure, motifs distribution, phylogenetic history, genome collinearity and duplication of AhOMTs were studied in detail. Promoter cis-elements, protein-protein interactions, and micro-RNAs targeting AhOMTs were also predicted. We also comprehensively studied their expression in different tissues and under different stresses. We identified 116 OMT genes in the genome of cultivated peanut. Phylogenetically, AhOMTs were divided into three groups. Tandem and segmental duplication events played a role in the evolution of AhOMTs, and purifying selection pressure drove the duplication process. AhOMT promoters were enriched in several key cis-elements involved in growth and development, hormones, light, and defense-related activities. Micro-RNAs from 12 different families targeted 35 AhOMTs. GO enrichment analysis indicated that AhOMTs are highly enriched in transferase and catalytic activities, cellular metabolic and biosynthesis processes. Transcriptome datasets revealed that AhOMTs possessed varying expression levels in different tissues and under hormones, water, and temperature stress. Expression profiling based on qRT-PCR results also supported the transcriptome results. This study provides the theoretical basis for further work on the biological roles of AhOMT genes for developmental and stress responses.
Collapse
Affiliation(s)
- Tiecheng Cai
- Center of Legume Plant Genetics and System Biology, College of Agronomy, Fujian Agriculture and Forestry University (FAFU), Fuzhou, Fujian, China
| | - Yasir Sharif
- Center of Legume Plant Genetics and System Biology, College of Agronomy, Fujian Agriculture and Forestry University (FAFU), Fuzhou, Fujian, China
| | - Yuhui Zhuang
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Qiang Yang
- Center of Legume Plant Genetics and System Biology, College of Agronomy, Fujian Agriculture and Forestry University (FAFU), Fuzhou, Fujian, China
| | - Xiangyu Chen
- Center of Legume Plant Genetics and System Biology, College of Agronomy, Fujian Agriculture and Forestry University (FAFU), Fuzhou, Fujian, China
- Crops Research Institute, Fujian Academy of Agricultural Science, Fuzhou, Fujian, China
| | - Kun Chen
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yuting Chen
- Center of Legume Plant Genetics and System Biology, College of Agronomy, Fujian Agriculture and Forestry University (FAFU), Fuzhou, Fujian, China
| | - Meijia Gao
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Hao Dang
- Center of Legume Plant Genetics and System Biology, College of Agronomy, Fujian Agriculture and Forestry University (FAFU), Fuzhou, Fujian, China
| | - Yijing Pan
- Center of Legume Plant Genetics and System Biology, College of Agronomy, Fujian Agriculture and Forestry University (FAFU), Fuzhou, Fujian, China
| | - Ali Raza
- Center of Legume Plant Genetics and System Biology, College of Agronomy, Fujian Agriculture and Forestry University (FAFU), Fuzhou, Fujian, China
| | - Chong Zhang
- Center of Legume Plant Genetics and System Biology, College of Agronomy, Fujian Agriculture and Forestry University (FAFU), Fuzhou, Fujian, China
| | - Hua Chen
- Center of Legume Plant Genetics and System Biology, College of Agronomy, Fujian Agriculture and Forestry University (FAFU), Fuzhou, Fujian, China
| | - Weijian Zhuang
- Center of Legume Plant Genetics and System Biology, College of Agronomy, Fujian Agriculture and Forestry University (FAFU), Fuzhou, Fujian, China
| |
Collapse
|
263
|
Pichersky E. Biochemistry and genetics of floral scent: a historical perspective. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023. [PMID: 36995899 DOI: 10.1111/tpj.16220] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/16/2023] [Accepted: 03/24/2023] [Indexed: 06/19/2023]
Abstract
Floral scent plays a crucial role in the reproductive process of many plants. Humans have been fascinated by floral scents throughout history, and have transported and traded floral scent products for which they have found multiple uses, such as in food additives, hygiene and perfume products, and medicines. Yet the scientific study of how plants synthesize floral scent compounds began later than studies on most other major plant metabolites, and the first report of the characterization of an enzyme responsible for the synthesis of a floral scent compound, namely linalool in Clarkia breweri, a California annual, appeared in 1994. In the almost 30 years since, enzymes and genes involved in the synthesis of hundreds of scent compounds from multiple plant species have been described. This review recapitulates this history and describes the major findings relating to the various aspects of floral scent biosynthesis and emission, including genes and enzymes and their evolution, storage and emission of scent volatiles, and the regulation of the biochemical processes.
Collapse
Affiliation(s)
- Eran Pichersky
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, 1105 N. University Avenue, Ann Arbor, MI 48109, USA
| |
Collapse
|
264
|
Rovaletti A, De Gioia L, Fantucci P, Greco C, Vertemara J, Zampella G, Arrigoni F, Bertini L. Recent Theoretical Insights into the Oxidative Degradation of Biopolymers and Plastics by Metalloenzymes. Int J Mol Sci 2023; 24:6368. [PMID: 37047341 PMCID: PMC10094197 DOI: 10.3390/ijms24076368] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 03/30/2023] Open
Abstract
Molecular modeling techniques have become indispensable in many fields of molecular sciences in which the details related to mechanisms and reactivity need to be studied at an atomistic level. This review article provides a collection of computational modeling works on a topic of enormous interest and urgent relevance: the properties of metalloenzymes involved in the degradation and valorization of natural biopolymers and synthetic plastics on the basis of both circular biofuel production and bioremediation strategies. In particular, we will focus on lytic polysaccharide monooxygenase, laccases, and various heme peroxidases involved in the processing of polysaccharides, lignins, rubbers, and some synthetic polymers. Special attention will be dedicated to the interaction between these enzymes and their substrate studied at different levels of theory, starting from classical molecular docking and molecular dynamics techniques up to techniques based on quantum chemistry.
Collapse
Affiliation(s)
- Anna Rovaletti
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy
| | - Luca De Gioia
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Piercarlo Fantucci
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Claudio Greco
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy
| | - Jacopo Vertemara
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Giuseppe Zampella
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Federica Arrigoni
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Luca Bertini
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| |
Collapse
|
265
|
Ivanova D, Toneva M, Simeonov E, Nikolova B, Semkova S, Antov G, Yaneva Z. Newly Synthesized Lignin Microparticles as Bioinspired Oral Drug-Delivery Vehicles: Flavonoid-Carrier Potential and In Vitro Radical-Scavenging Activity. Pharmaceutics 2023; 15:pharmaceutics15041067. [PMID: 37111553 PMCID: PMC10142347 DOI: 10.3390/pharmaceutics15041067] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/13/2023] [Accepted: 03/23/2023] [Indexed: 03/28/2023] Open
Abstract
The aim of the present study was to synthesize lignin microparticles, to evaluate their physicochemical, spectral, morphological and structural characteristics, to examine their encapsulation and in vitro release potential and behaviour towards the flavonoid morin in simulated physiological medium and to assess the in vitro radical-scavenging potential of the morin-loaded lignin microcarrier systems. The physicochemical, structural and morphological characteristics of alkali lignin, lignin particles (LP) and morin-encapsulated lignin microparticles (LMP) were determined based on particle size distribution, SEM, UV/Vis spectrophotometric, FTIR and potentiometric titration analyses. The encapsulation efficiency of LMP was 98.1%. The FTIR analyses proved that morin was successfully encapsulated in the LP without unexpected chemical reactions between the flavonoid and the heteropolymer. The in vitro release performance of the microcarrier system was successfully mathematically described by Korsmeyer–Peppas and the sigmoidal models outlining the general role of diffusion during the initial stages of the in vitro release process in simulated gastric fluid (SGF), and the predominant contribution of biopolymer relaxation and erosion was determined in simulated intestinal medium (SIF). The higher radical-scavenging potential of LMP, as compared to that of LP, was proven via DPPH and ABTS assays. The synthesis of lignin microcarriers not only provides a facile approach for the utilization of the heteropolymer but also determines its potential for the design of drug-delivery matrices.
Collapse
|
266
|
Wang Z, Yao XM, Jia CH, Xu BY, Wang JY, Liu JH, Jin ZQ. Identification and analysis of lignin biosynthesis genes related to fruit ripening and stress response in banana ( Musa acuminata L. AAA group, cv. Cavendish). FRONTIERS IN PLANT SCIENCE 2023; 14:1072086. [PMID: 37035063 PMCID: PMC10074854 DOI: 10.3389/fpls.2023.1072086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 02/28/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Lignin is a key component of the secondary cell wall of plants, providing mechanical support and facilitating water transport as well as having important impact effects in response to a variety of biological and abiotic stresses. RESULTS In this study, we identified 104 genes from ten enzyme gene families related to lignin biosynthesis in Musa acuminata genome and found the number of MaCOMT gene family was the largest, while MaC3Hs had only two members. MaPALs retained the original members, and the number of Ma4CLs in lignin biosynthesis was significantly less than that of flavonoids. Segmental duplication existed in most gene families, except for MaC3Hs, and tandem duplication was the main way to expand the number of MaCOMTs. Moreover, the expression profiles of lignin biosynthesis genes during fruit development, postharvest ripening stages and under various abiotic and biological stresses were investigated using available RNA-sequencing data to obtain fruit ripening and stress response candidate genes. Finally, a co-expression network of lignin biosynthesis genes was constructed by weighted gene co-expression network analysis to elucidate the lignin biosynthesis genes that might participate in lignin biosynthesis in banana during development and in response to stresses. CONCLUSION This study systematically identified the lignin biosynthesis genes in the Musa acuminata genome, providing important candidate genes for further functional analysis. The identification of the major genes involved in lignin biosynthesis in banana provides the basis for the development of strategies to improve new banana varieties tolerant to biological and abiotic stresses with high yield and high quality.
Collapse
Affiliation(s)
- Zhuo Wang
- Key Laboratory of Tropical Crop Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
- Hainan Academy of Tropical Agricultural Resource, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
- Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya, Hainan, China
| | - Xiao-ming Yao
- Beijing Genomics Institute (BGI)-Sanya, Beijing Genomics Institute (BGI)-Shenzhen, Sanya, China
| | - Cai-hong Jia
- Key Laboratory of Tropical Crop Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
- Hainan Academy of Tropical Agricultural Resource, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| | - Bi-yu Xu
- Key Laboratory of Tropical Crop Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
- Hainan Academy of Tropical Agricultural Resource, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| | - Jing-yi Wang
- Key Laboratory of Tropical Crop Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
- Hainan Academy of Tropical Agricultural Resource, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| | - Ju-hua Liu
- Key Laboratory of Tropical Crop Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
- Hainan Academy of Tropical Agricultural Resource, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
- Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya, Hainan, China
| | - Zhi-qiang Jin
- Key Laboratory of Tropical Crop Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
- Hainan Academy of Tropical Agricultural Resource, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
- Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya, Hainan, China
| |
Collapse
|
267
|
Boarino A, Klok HA. Opportunities and Challenges for Lignin Valorization in Food Packaging, Antimicrobial, and Agricultural Applications. Biomacromolecules 2023; 24:1065-1077. [PMID: 36745923 PMCID: PMC10015462 DOI: 10.1021/acs.biomac.2c01385] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The exploration of renewable resources is essential to help transition toward a more sustainable materials economy. The valorization of lignin can be a key component of this transition. Lignin is an aromatic polymer that constitutes approximately one-third of the total lignocellulosic biomass and is isolated in huge quantities as a waste material of biofuel and paper production. About 98% of the 100 million tons of lignin produced each year is simply burned as low-value fuel, so this renewable polymer is widely available at very low cost. Lignin has valuable properties that make it a promising material for numerous applications, but it is far from being fully exploited. The aim of this Perspective is to highlight opportunities and challenges for the use of lignin-based materials in food packaging, antimicrobial, and agricultural applications. In the first part, the ongoing research and the possible future developments for the use of lignin as an additive to improve mechanical, gas and UV barrier, and antioxidant properties of food packaging items will be treated. Second, the application of lignin as an antimicrobial agent will be discussed to elaborate on the activity of lignin against bacteria, fungi, and viruses. Finally, the use of lignin in agriculture will be presented by focusing on the application of lignin as fertilizer.
Collapse
Affiliation(s)
- Alice Boarino
- Institut
des Matériaux and Institut des Sciences et Ingénierie
Chimiques, Laboratoire des Polymères, École Polytechnique Fédérale de Lausanne (EPFL), Station 12, CH-1015 Lausanne, Switzerland
| | - Harm-Anton Klok
- Institut
des Matériaux and Institut des Sciences et Ingénierie
Chimiques, Laboratoire des Polymères, École Polytechnique Fédérale de Lausanne (EPFL), Station 12, CH-1015 Lausanne, Switzerland
| |
Collapse
|
268
|
Paulsmeyer MN, Juvik JA. R3-MYB repressor Mybr97 is a candidate gene associated with the Anthocyanin3 locus and enhanced anthocyanin accumulation in maize. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:55. [PMID: 36913001 DOI: 10.1007/s00122-023-04275-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 11/10/2022] [Indexed: 06/18/2023]
Abstract
Anthocyanin3 inhibits the anthocyanin and monolignol pathways in maize. Transposon-tagging, RNA-sequencing, and GST-pulldown assays determine Anthocyanin3 may be R3-MYB repressor gene Mybr97. Anthocyanins are colorful molecules receiving recent attention due to their numerous health benefits and applications as natural colorants and nutraceuticals. Purple corn is being investigated as a more economical source of anthocyanins. Anthocyanin3 (A3) is a known recessive intensifier of anthocyanin pigmentation in maize. In this study, anthocyanin content was elevated 100-fold in recessive a3 plants. Two approaches were used to discover candidates involved with the a3 intense purple plant phenotype. First, a large-scale transposon-tagging population was created with a Dissociation (Ds) insertion in the nearby Anthocyanin1 gene. A de novo a3-m1::Ds mutant was generated, and the transposon insertion was found to be located in the promoter of Mybr97, which has homology to R3-MYB repressor CAPRICE in Arabidopsis. Second, a bulked segregant RNA-sequencing population found expression differences between pools of green A3 plants and purple a3 plants. All characterized anthocyanin biosynthetic genes were upregulated in a3 plants along with several genes of the monolignol pathway. Mybr97 was highly downregulated in a3 plants, suggesting its role as a negative regulator of the anthocyanin pathway. Photosynthesis-related gene expression was reduced in a3 plants through an unknown mechanism. Numerous transcription factors and biosynthetic genes were also upregulated and need further investigation. Mybr97 may inhibit anthocyanin synthesis by associating with basic helix-loop helix transcription factors like Booster1. Overall, Mybr97 is the most likely candidate gene for the A3 locus. A3 has a profound effect on the maize plant and has many favorable implications for crop protection, human health, and natural colorant production.
Collapse
Affiliation(s)
- Michael N Paulsmeyer
- Vegetable Crops Research Unit, USDA-ARS, Department of Horticulture, University of Wisconsin at Madison, 1575 Linden Dr., Madison, WI, 53706, USA
| | - John A Juvik
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, 1201 W. Gregory Dr., Urbana, IL, 61801, USA.
| |
Collapse
|
269
|
Luo S, Jin S, Xu L, Liao Y, He R, Zhang J, Zhong L. Lignin-derived new hydrogen donors for photoinitiating systems in dental materials. J Dent 2023; 132:104477. [PMID: 36914066 DOI: 10.1016/j.jdent.2023.104477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 03/01/2023] [Accepted: 03/04/2023] [Indexed: 03/14/2023] Open
Abstract
OBJECTIVES The aim of this study is to develop amine free photo-initiating system (PIs) for the photopolymerization of dental methacrylate resins, using seven new hydrogen donors HDA-HDG derived from β-O-4 lignin model. METHODS Seven experimental CQ/HD PIs were formulated with Bis-GMA/TEGDMA (70 w%/30 w%). CQ/EDB system was chosen as the comparison group. FTIR-ATR was used to monitor the polymerization kinetics and double bond conversion. Bleaching property and color stability were evaluated using a spectrophotometer. Molecular orbitals calculations were used to demonstrate C-H bond dissociation energies of the novel HDs. Depth of cure of the HD based systems were compared to the EDB based one. Cytotoxicity was also studied by CCK8 assay using tissue of mouse fibroblasts (L929 cells). RESULTS Compared to CQ/EDB system, the new CQ/HD systems show comparable or better photopolymerization performances (1 mm-thick samples). Comparable or even better bleaching properties were also obtained with the new amine-free systems. Comparing to EDB, all HDs exhibited significantly lower C-H bond dissociation energies by molecular orbitals calculations. Groups with new HD showed higher depth of cure. OD and RGR values were similar to that of the CQ/EDB group, ensuring the feasibility of the new HDs in dental materials. CLINICAL SIGNIFICANCE The new CQ/HD PI systems could be potentially useful in dental materials, presenting improvements in restorations' esthetic and biocompatibility.
Collapse
Affiliation(s)
- Shuxin Luo
- College of Stomatology, Hangzhou Normal University, Hangzhou 310000, China
| | - Shuqi Jin
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of, Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
| | - Lixia Xu
- College of Stomatology, Hangzhou Normal University, Hangzhou 310000, China
| | - Yilei Liao
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of, Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
| | - Rui He
- College of Stomatology, Hangzhou Normal University, Hangzhou 310000, China,; Center of Stomatology, Affiliated Hospital of Hangzhou Normal University, 310000, Hangzhou, China
| | - Jian Zhang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of, Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China; Center of Stomatology, Affiliated Hospital of Hangzhou Normal University, 310000, Hangzhou, China.
| | - Liangjun Zhong
- College of Stomatology, Hangzhou Normal University, Hangzhou 310000, China,; Center of Stomatology, Affiliated Hospital of Hangzhou Normal University, 310000, Hangzhou, China.
| |
Collapse
|
270
|
Kim H, Rencoret J, Elder TJ, del Río JC, Ralph J. Biomimetic oxidative copolymerization of hydroxystilbenes and monolignols. SCIENCE ADVANCES 2023; 9:eade5519. [PMID: 36888720 PMCID: PMC9995074 DOI: 10.1126/sciadv.ade5519] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Hydroxystilbenes are a class of polyphenolic compounds that behave as lignin monomers participating in radical coupling reactions during the lignification. Here, we report the synthesis and characterization of various artificial copolymers of monolignols and hydroxystilbenes, as well as low-molecular-mass compounds, to obtain the mechanistic insights into their incorporation into the lignin polymer. Integrating the hydroxystilbenes, resveratrol and piceatannol, into monolignol polymerization in vitro, using horseradish peroxidase to generate phenolic radicals, produced synthetic lignins [dehydrogenation polymers (DHPs)]. Copolymerization of hydroxystilbenes with monolignols, especially sinapyl alcohol, by in vitro peroxidases notably improved the reactivity of monolignols and resulted in substantial yields of synthetic lignin polymers. The resulting DHPs were analyzed using two-dimensional NMR and 19 synthesized model compounds to confirm the presence of hydroxystilbene structures in the lignin polymer. The cross-coupled DHPs confirmed both resveratrol and piceatannol as authentic monomers participating in the oxidative radical coupling reactions during polymerization.
Collapse
Affiliation(s)
- Hoon Kim
- Department of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Jorge Rencoret
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Avenida de la Reina Mercedes, 10, 41012, Seville, Spain
| | - Thomas J. Elder
- USDA-Forest Service, Southern Research Station 521 Devall Dr. Auburn, AL 36849, USA
| | - José C. del Río
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Avenida de la Reina Mercedes, 10, 41012, Seville, Spain
| | - John Ralph
- Department of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI 53726, USA
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
271
|
Birsa ML, Sarbu LG. Health Benefits of Key Constituents in Cichorium intybus L. Nutrients 2023; 15:1322. [PMID: 36986053 PMCID: PMC10058675 DOI: 10.3390/nu15061322] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/30/2023] Open
Abstract
The genus Cichorium (Asteraceae) that originates from the Mediterranean area consists of six species (Cichorium intybus, Cichorium frisee, Cichorium endivia, Cichorium grouse, Cichorium chico and Cichorium pumilum). Cichorium intybus L., commonly known as chicory, has a rich history of being known as a medicinal plant and coffee substitute. A variety of key constituents in chicory play important roles as antioxidant agents. The herb is also used as a forage plant for animals. This review highlights the bioactive composition of C. intybus L. and summarizes the antioxidant activity associated with the presence of inulin, caffeic acid derivatives, ferrulic acid, caftaric acid, chicoric acid, chlorogenic and isochlorogenic acids, dicaffeoyl tartaric acid, sugars, proteins, hydroxycoumarins, flavonoids and sesquiterpene lactones. It also covers the plant's occurrence, agriculture improvement, natural biosynthesis, geographical distribution and waste valorization.
Collapse
Affiliation(s)
| | - Laura G. Sarbu
- Department of Chemistry, Alexandru Ioan Cuza University of Iasi, 11 Carol I Blvd., 700506 Iasi, Romania
| |
Collapse
|
272
|
Schubert M, Panzarasa G, Burgert I. Sustainability in Wood Products: A New Perspective for Handling Natural Diversity. Chem Rev 2023; 123:1889-1924. [PMID: 36535040 DOI: 10.1021/acs.chemrev.2c00360] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Wood is a renewable resource with excellent qualities and the potential to become a key element of a future bioeconomy. The increasing environmental awareness and drive to achieve sustainability is leading to a resurgence of research on wood materials. Nevertheless, the global climate changes and associated consequences will soon challenge the wood-value chains in several regions (e.g., central Europe). To cope with these challenges, it is necessary to rethink the current practice of wood sourcing and transformation. The goal of this review is to address the intrinsic natural diversity of wood, from its origin to its technological consequences for the present and future manufacturing of wood products. So far, industrial processes have been optimized to repress the variability of wood properties, enabling more efficient processing and production of reliable products. However, the need to preserve biodiversity and the impact of climate change on forests call for new wood processing techniques and green chemistry protocols for wood modification as enabling factors necessary for managing a more diverse wood provision in the future. This article discusses the past developments that have resulted in the current wood value chains and provides a perspective about how natural variability could be turned into an asset for making truly sustainable wood products. After briefly introducing the chemical and structural complexity of wood, the methods conventionally adopted for industrial homogenization and modification of wood are discussed in relation to their evolution toward increased sustainability. Finally, a perspective is given on technological potentials of machine learning techniques and of novel functional wood materials. Here the main message is that through a combination of sustainable forestry, adherence to green chemistry principles and adapted processes based on machine learning, the wood industry could not only overcome current challenges but also thrive in the near future despite the awaiting challenges.
Collapse
Affiliation(s)
- Mark Schubert
- WoodTec Group, Cellulose & Wood Materials, Empa, CH-8600 Dübendorf, Switzerland
| | - Guido Panzarasa
- Wood Materials Science, Institute for Building Materials, ETH Zürich, CH-8093 Zurich, Switzerland
| | - Ingo Burgert
- WoodTec Group, Cellulose & Wood Materials, Empa, CH-8600 Dübendorf, Switzerland.,Wood Materials Science, Institute for Building Materials, ETH Zürich, CH-8093 Zurich, Switzerland
| |
Collapse
|
273
|
Transcriptome analysis identifies differentially expressed genes involved in lignin biosynthesis in barley. Int J Biol Macromol 2023; 236:123940. [PMID: 36894063 DOI: 10.1016/j.ijbiomac.2023.123940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/18/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023]
Abstract
Lignin is an essential metabolite for plant growth but negatively affects the quality of forage barley. Genetic modification of quality traits to improve the forage digestibility requires an understanding of the molecular mechanism of lignin biosynthesis. RNA-Seq was used to quantify transcripts differentially expressed among leaf, stem and spike tissues from two barley genotypes. A total of 13,172 differentially expressed genes (DEGs) were identified, of which much more up-regulated DEGs were detected from the contrasting groups of leaf vs spike (L-S) and stem vs spike (S-S), and down-regulated DEGs were dominant in the group of stem vs leaf (S-L). 47 DEGs were successfully annotated to the monolignol pathway and six of them were candidate genes regulating the lignin biosynthesis. The qRT-PCR assay verified the expression profiles of the six candidate genes. Among them, four genes might positively regulate the lignin biosynthesis during forage barley development in terms of the consistency of their expression levels and changes of lignin content among the tissues, while the other two genes may have the reverse effects. These findings provide target genes for further investigations on molecular regulatory mechanisms of lignin biosynthesis and genetic resources for improvement of forage quality in barley molecular breeding programme.
Collapse
|
274
|
Sutradhar S, Fatehi P. Latest development in the fabrication and use of lignin-derived humic acid. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:38. [PMID: 36882875 PMCID: PMC9989592 DOI: 10.1186/s13068-023-02278-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 02/07/2023] [Indexed: 03/09/2023]
Abstract
Humic substances (HS) are originated from naturally decaying biomass. The main products of HS are humic acids, fulvic acids, and humins. HS are extracted from natural origins (e.g., coals, lignite, forest, and river sediments). However, the production of HS from these resources is not environmentally friendly, potentially impacting ecological systems. Earlier theories claimed that the HS might be transformed from lignin by enzymatic or aerobic oxidation. On the other hand, lignin is a by-product of pulp and paper production processes and is available commercially. However, it is still under-utilized. To address the challenges of producing environmentally friendly HS and accommodating lignin in valorized processes, the production of lignin-derived HS has attracted attention. Currently, several chemical modification pathways can be followed to convert lignin into HS-like materials, such as alkaline aerobic oxidation, alkaline oxidative digestion, and oxidative ammonolysis of lignin. This review paper discusses the fundamental aspects of lignin transformation to HS comprehensively. The applications of natural HS and lignin-derived HS in various fields, such as soil enrichment, fertilizers, wastewater treatment, water decontamination, and medicines, were comprehensively discussed. Furthermore, the current challenges associated with the production and use of HS from lignin were described.
Collapse
Affiliation(s)
- Shrikanta Sutradhar
- Biorefining Research Institute, Lakehead University, 955 Oliver Road, Thunder Bay, ON, P7B 5E1, Canada
| | - Pedram Fatehi
- Biorefining Research Institute, Lakehead University, 955 Oliver Road, Thunder Bay, ON, P7B 5E1, Canada.
| |
Collapse
|
275
|
Zhu J, Zhang H, Huang K, Guo R, Zhao J, Xie H, Zhu J, Gu H, Chen H, Li G, Wei C, Liu S. Comprehensive analysis of the laccase gene family in tea plant highlights its roles in development and stress responses. BMC PLANT BIOLOGY 2023; 23:129. [PMID: 36882726 PMCID: PMC9990228 DOI: 10.1186/s12870-023-04134-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Laccase (LAC) is the pivotal enzyme responsible for the polymerization of monolignols and stress responses in plants. However, the roles of LAC genes in plant development and tolerance to diverse stresses are still largely unknown, especially in tea plant (Camellia sinensis), one of the most economically important crops worldwide. RESULTS In total, 51 CsLAC genes were identified, they were unevenly distributed on different chromosomes and classified into six groups based on phylogenetic analysis. The CsLAC gene family had diverse intron-exon patterns and a highly conserved motif distribution. Cis-acting elements in the promoter demonstrated that promoter regions of CsLACs encode various elements associated with light, phytohormones, development and stresses. Collinearity analysis identified some orthologous gene pairs in C. sinensis and many paralogous gene pairs among C. sinensis, Arabidopsis and Populus. Tissue-specific expression profiles revealed that the majority of CsLACs had high expression in roots and stems and some members had specific expression patterns in other tissues, and the expression patterns of six genes by qRT‒PCR were highly consistent with the transcriptome data. Most CsLACs showed significant variation in their expression level under abiotic (cold and drought) and biotic (insect and fungus) stresses via transcriptome data. Among them, CsLAC3 was localized in the plasma membrane and its expression level increased significantly at 13 d under gray blight treatment. We found that 12 CsLACs were predicted to be targets of cs-miR397a, and most CsLACs showed opposite expression patterns compared to cs-miR397a under gray blight infection. Additionally, 18 highly polymorphic SSR markers were developed, these markers can be widely used for diverse genetic studies of tea plants. CONCLUSIONS This study provides a comprehensive understanding of the classification, evolution, structure, tissue-specific profiles, and (a)biotic stress responses of CsLAC genes. It also provides valuable genetic resources for functional characterization towards enhancing tea plant tolerance to multiple (a)biotic stresses.
Collapse
Affiliation(s)
- Jiaxin Zhu
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, China
| | - Hongxiu Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, China
| | - Kelin Huang
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, China
| | - Rui Guo
- Lu'an Institute of Product Quality Supervision and Inspection, Lu'an City, China
| | - Jingjuan Zhao
- Lu'an Institute of Product Quality Supervision and Inspection, Lu'an City, China
| | - Hui Xie
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, China
| | - Junyan Zhu
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, China
| | - Honglian Gu
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, China
| | - Hongrong Chen
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, China
| | - Guoqiang Li
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, China
| | - Chaoling Wei
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, China
| | - Shengrui Liu
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, China.
| |
Collapse
|
276
|
Li Y, Zhang T, Kang Y, Wang P, Yu W, Wang J, Li W, Jiang X, Zhou Y. Integrated metabolome, transcriptome analysis, and multi-flux full-length sequencing offer novel insights into the function of lignin biosynthesis as a Sesuvium portulacastrum response to salt stress. Int J Biol Macromol 2023; 237:124222. [PMID: 36990407 DOI: 10.1016/j.ijbiomac.2023.124222] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023]
Abstract
Sesuvium portulacastrum is a typical halophyte. However, few studies have investigated its salt-tolerant molecular mechanism. In this study, metabolome, transcriptome, and multi-flux full-length sequencing analysis were conducted to investigate the significantly different metabolites (SDMs) and differentially expressed genes (DEGs) of S. portulacastrum samples under salinity. The complete-length transcriptome of S. portulacastrum was developed, which contained 39,659 non-redundant unigenes. RNA-seq results showed that 52 DEGs involved in lignin biosynthesis may be responsible for S. portulacastrum salt tolerance. Furthermore, 130 SDMs were identified, and the salt response could be attributed to the p-coumaryl alcohol-rich in lignin biosynthesis. The co-expression network that was constructed after comparing the different salt treatment processes showed that the p-Coumaryl alcohol was linked to 30 DEGs. Herein, 8 structures genes, i.e., Sp4CL, SpCAD, SpCCR, SpCOMT, SpF5H, SpCYP73A, SpCCoAOMT, and SpC3'H were identified as significant factors in regulating lignin biosynthesis. Further investigation revealed that 64 putative transcription factors (TFs) may interact with the promoters of the above-mentioned genes. Together, the data revealed a potential regulatory network comprising important genes, putative TFs, and metabolites involved in the lignin biosynthesis of S. portulacastrum roots under salt stress, which could serve as a rich useful genetic resource for breeding excellent salt-tolerant plants.
Collapse
|
277
|
Lei Y, Hannoufa A, Yu P. Effect of Transparent Testa8 (TT8) gene and Homeobox12 (HB12) gene silencing in alfalfa (Medicago sativa L.) on molecular structure spectral profile in relation to energy, degradation, and fermentation characteristics in ruminant systems. ANIMAL NUTRITION 2023. [DOI: 10.1016/j.aninu.2023.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
278
|
Su S, Shen Q, Wang S, Song G. Discovery, disassembly, depolymerization and derivatization of catechyl lignin in Chinese tallow seed coats. Int J Biol Macromol 2023; 239:124256. [PMID: 36996963 DOI: 10.1016/j.ijbiomac.2023.124256] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/21/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023]
Abstract
The search for feedstock of catechyl lignin (C-lignin) is great interest and importance, as C-lignin featuring homogeneity and linearity is considered as an "ideal lignin" archetype for valorization and exits in only a few plant seed coats. In this study, naturally occurring C-lignin is first discovered in the seed coats of Chinese tallow, which has the highest content of C-lignin (15.4 wt%) as compared with other known feedstocks. An optimized extraction procedure by ternary deep eutectic solvents (DESs) enables the complete disassembly of C-lignin and G/S-lignin coexisted in Chinese tallow seed coats, and characterizations revealed that the as-separated C-lignin sample is abundant in benzodioxane units with no observation of β-O-4 structures from G/S-lignin. Catalytic depolymerization of C-lignin results in a simplex catechol product in 129 mg per gram seed coats, being higher than other reported feedstocks. Derivatizing the "black" C-lignin via the nucleophilic isocyanation of benzodioxane γ-OH leads to a "whitened C-lignin" with uniform laminar structure and excellent crystallization ability, being conducive to fabricating functional materials. Overall, this contribution showed that Chinses tallow seed coats are suitable feedstock for acquiring C-lignin biopolymer.
Collapse
|
279
|
Jiang B, Jiao H, Guo X, Chen G, Guo J, Wu W, Jin Y, Cao G, Liang Z. Lignin-Based Materials for Additive Manufacturing: Chemistry, Processing, Structures, Properties, and Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206055. [PMID: 36658694 PMCID: PMC10037990 DOI: 10.1002/advs.202206055] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/05/2022] [Indexed: 06/17/2023]
Abstract
The utilization of lignin, the most abundant aromatic biomass component, is at the forefront of sustainable engineering, energy, and environment research, where its abundance and low-cost features enable widespread application. Constructing lignin into material parts with controlled and desired macro- and microstructures and properties via additive manufacturing has been recognized as a promising technology and paves the way to the practical application of lignin. Considering the rapid development and significant progress recently achieved in this field, a comprehensive and critical review and outlook on three-dimensional (3D) printing of lignin is highly desirable. This article fulfils this demand with an overview on the structure of lignin and presents the state-of-the-art of 3D printing of pristine lignin and lignin-based composites, and highlights the key challenges. It is attempted to deliver better fundamental understanding of the impacts of morphology, microstructure, physical, chemical, and biological modifications, and composition/hybrids on the rheological behavior of lignin/polymer blends, as well as, on the mechanical, physical, and chemical performance of the 3D printed lignin-based materials. The main points toward future developments involve hybrid manufacturing, in situ polymerization, and surface tension or energy driven molecular segregation are also elaborated and discussed to promote the high-value utilization of lignin.
Collapse
Affiliation(s)
- Bo Jiang
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest ResourcesInternational Innovation Center for Forest Chemicals and MaterialsNanjing Forestry UniversityNanjing210037China
| | - Huan Jiao
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest ResourcesInternational Innovation Center for Forest Chemicals and MaterialsNanjing Forestry UniversityNanjing210037China
| | - Xinyu Guo
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest ResourcesInternational Innovation Center for Forest Chemicals and MaterialsNanjing Forestry UniversityNanjing210037China
| | - Gegu Chen
- Beijing Key Laboratory of Lignocellulosic ChemistryBeijing Forestry UniversityBeijing100083China
| | - Jiaqi Guo
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest ResourcesInternational Innovation Center for Forest Chemicals and MaterialsNanjing Forestry UniversityNanjing210037China
| | - Wenjuan Wu
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest ResourcesInternational Innovation Center for Forest Chemicals and MaterialsNanjing Forestry UniversityNanjing210037China
| | - Yongcan Jin
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest ResourcesInternational Innovation Center for Forest Chemicals and MaterialsNanjing Forestry UniversityNanjing210037China
| | - Guozhong Cao
- Department of Materials Science and EngineeringUniversity of WashingtonSeattleWA98195‐2120USA
| | - Zhiqiang Liang
- Institute of Functional Nano & Soft Materials Laboratory (FUNSOM)Jiangsu Key Laboratory for Carbon‐Based Functional Materials & DevicesJoint International Research Laboratory of Carbon‐Based Functional Materials and DevicesSoochow UniversitySuzhou215123China
| |
Collapse
|
280
|
Wang Y, Liu X, Treydte K, Zhang Z, Kang H, Zeng X, Xu G, Wu Q, Kang S. Permafrost degradation alters the environmental signals recorded in tree-ring lignin methoxy group δ 2H in northeastern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 860:160519. [PMID: 36442636 DOI: 10.1016/j.scitotenv.2022.160519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 06/16/2023]
Abstract
Climate warming has profoundly altered the status of permafrost and has caused extensive permafrost degradation in the Northern Hemisphere. However, long-term observations investigating the hydrological dynamics of permafrost and its ecological effects on plant growth are lacking. Previous studies have reported tree-ring stable hydrogen isotope ratios of lignin methoxy groups (δ2HLM) as an archive of hydrological signals. This study sampled tree-ring cores from a Larix gmelinii forest in Nanwenghe Forest Park, Northeastern China, and separately measured the tree-ring δ2HLM for earlywood and latewood from 1900 to 2020. Earlywood and latewood δ2HLM values, as well as the difference between them, showed no significant long-term trend from 1900 to 1987; however, they both exhibited significant increasing trends since 1988 at rates of 2.6 ‰ and 4.9 ‰ per decade, respectively. This variance changes the magnitude of the difference between the two chronologies and can be explained by the shift in source water δ2H values during tree growth. Based on a structural equation model analysis, when the influence of permafrost melting weakened due to permafrost degradation, the growing season temperature was better recorded in latewood δ2HLM through the effects of precipitation δ2H from July to September. Based on the environmental response of tree-ring δ2HLM in the permafrost region, permafrost degradation influences the source water δ2H values of trees, thereby affecting the expression of temperature signals in tree-ring δ2HLM. The novel results in this study provide a new perspective on permafrost degradation based on the dynamic responses of tree-ring δ2HLM to source water δ2H during permafrost degradation.
Collapse
Affiliation(s)
- Yabo Wang
- School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China
| | - Xiaohong Liu
- School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China; State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China.
| | - Kerstin Treydte
- Research Unit Forest Dynamics, Swiss Federal Institute for Forest Snow and Landscape Research WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
| | - Zhongqiong Zhang
- State Key Laboratory of Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Huhu Kang
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaomin Zeng
- School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China
| | - Guobao Xu
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Qingbai Wu
- State Key Laboratory of Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Shichang Kang
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
281
|
Wang Y, Chen M, Yang Y, Ralph J, Pan X. Efficient O-demethylation of lignin-derived aromatic compounds under moderate conditions. RSC Adv 2023; 13:5925-5932. [PMID: 36816077 PMCID: PMC9936356 DOI: 10.1039/d3ra00245d] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 02/09/2023] [Indexed: 02/19/2023] Open
Abstract
Lignin is a potential feedstock to produce renewable aromatic chemicals. However, lignin-derived aromatics are heavily methoxylated, which affects their reactivity in some downstream valorization attempts. Herein, we report an efficient method for the demethylation of the aromatics derived from lignin depolymerization using acidic concentrated lithium bromide (ACLB) under moderate conditions (e.g., 1.5 M HCl, 110 °C, and 2 h). Aromatics with one or two methoxy groups (G-type and S-type), alkyl hydroxyl and carbonyl groups, and electron-donating and electron-withdrawing substituents were used to investigate the demethylation mechanisms. S-type aromatics were demethylated faster than their G-type analogs. Alkyl hydroxyl groups were brominated under the conditions. Carbonyl groups (aldehydes and ketones) promoted unwelcome condensation. Electron-donating substituents promoted demethylation, whereas electron-withdrawing substituents retarded the demethylation. An ortho-carboxylic group enhanced the demethylation because of the formation of a stable intermediate.
Collapse
Affiliation(s)
- Yueqing Wang
- Department of Biological Systems Engineering, University of Wisconsin-Madison 460 Henry Mall Madison WI 53706 USA
| | - Mingjie Chen
- Wisconsin Energy Institute, University of Wisconsin–Madison1552 University AvenueMadisonWI 53726USA
| | - Yang Yang
- Department of Chemistry, University of Wisconsin–Madison1101 University AvenueMadisonWI 53706USA
| | - John Ralph
- Wisconsin Energy Institute, University of Wisconsin–Madison1552 University AvenueMadisonWI 53726USA
| | - Xuejun Pan
- Department of Biological Systems Engineering, University of Wisconsin-Madison 460 Henry Mall Madison WI 53706 USA
| |
Collapse
|
282
|
Saivish MV, Pacca CC, da Costa VG, de Lima Menezes G, da Silva RA, Nebo L, da Silva GCD, de Aguiar Milhim BHG, da Silva Teixeira I, Henrique T, Mistrão NFB, Hernandes VM, Zini N, de Carvalho AC, Fontoura MA, Rahal P, Sacchetto L, Marques RE, Nogueira ML. Caffeic Acid Has Antiviral Activity against Ilhéus Virus In Vitro. Viruses 2023; 15:494. [PMID: 36851709 PMCID: PMC9961518 DOI: 10.3390/v15020494] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 01/28/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
Ilhéus virus (ILHV) is a neglected mosquito-borne flavivirus. ILHV infection may lead to Ilhéus fever, an emerging febrile disease like dengue fever with the potential to evolve into a severe neurological disease characterized by meningoencephalitis; no specific treatments are available for this disease. This study assessed the antiviral properties of caffeic acid, an abundant component of plant-based food products that is also compatible with the socioeconomic limitations associated with this neglected infectious disease. The in vitro activity of caffeic acid on ILHV replication was investigated in Vero and A549 cell lines using plaque assays, quantitative RT-PCR, and immunofluorescence assays. We observed that 500 µM caffeic acid was virucidal against ILHV. Molecular docking indicated that caffeic acid might interact with an allosteric binding site on the envelope protein.
Collapse
Affiliation(s)
- Marielena Vogel Saivish
- Laboratório de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto 15090-000, SP, Brazil
- Brazilian Biosciences National Laboratory, Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas 13083-100, SP, Brazil
| | - Carolina Colombelli Pacca
- Laboratório de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto 15090-000, SP, Brazil
- Laboratório de Estudos Genômicos, Departamento de Biologia, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista, São José do Rio Preto 15054-000, SP, Brazil
- Faceres Medical School, São José do Rio Preto 15090-000, SP, Brazil
| | - Vivaldo Gomes da Costa
- Laboratório de Estudos Genômicos, Departamento de Biologia, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista, São José do Rio Preto 15054-000, SP, Brazil
| | - Gabriela de Lima Menezes
- Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, Natal 59072-970, RN, Brazil
- Unidade Especial de Ciências Exatas, Universidade Federal de Jataí, Jataí 75801-615, GO, Brazil
| | | | - Liliane Nebo
- Unidade Especial de Ciências Exatas, Universidade Federal de Jataí, Jataí 75801-615, GO, Brazil
| | - Gislaine Celestino Dutra da Silva
- Laboratório de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto 15090-000, SP, Brazil
| | - Bruno Henrique Gonçalves de Aguiar Milhim
- Laboratório de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto 15090-000, SP, Brazil
| | - Igor da Silva Teixeira
- Laboratório de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto 15090-000, SP, Brazil
| | - Tiago Henrique
- Laboratório de Marcadores Moleculares e Bioinformática, Departamento de Biologia Molecular, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto 15090-000, SP, Brazil
| | - Natalia Franco Bueno Mistrão
- Laboratório de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto 15090-000, SP, Brazil
| | - Victor Miranda Hernandes
- Laboratório de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto 15090-000, SP, Brazil
| | - Nathalia Zini
- Laboratório de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto 15090-000, SP, Brazil
| | - Ana Carolina de Carvalho
- Brazilian Biosciences National Laboratory, Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas 13083-100, SP, Brazil
| | - Marina Alves Fontoura
- Brazilian Biosciences National Laboratory, Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas 13083-100, SP, Brazil
| | - Paula Rahal
- Laboratório de Estudos Genômicos, Departamento de Biologia, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista, São José do Rio Preto 15054-000, SP, Brazil
| | - Lívia Sacchetto
- Laboratório de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto 15090-000, SP, Brazil
| | - Rafael Elias Marques
- Brazilian Biosciences National Laboratory, Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas 13083-100, SP, Brazil
| | - Maurício Lacerda Nogueira
- Laboratório de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto 15090-000, SP, Brazil
- Brazilian Biosciences National Laboratory, Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas 13083-100, SP, Brazil
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
283
|
Bai Y, Ali S, Liu S, Zhou J, Tang Y. Characterization of plant laccase genes and their functions. Gene 2023; 852:147060. [PMID: 36423777 DOI: 10.1016/j.gene.2022.147060] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 11/11/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022]
Abstract
Laccase is a copper-containing polyphenol oxidase found in different organisms. The multigene family that encodes laccases is widely distributed in plant genomes. Plant laccases oxidize monolignols to produce lignin which is important for plant growth and stress responses. Industrial applications of fungal and bacterial laccases are extensively explored and addressed. Recently many studies have focused on the significance of plant laccase, particularly in crop yield, and its functions in different environmental conditions. This review summarizes the transcriptional and posttranscriptional regulation of plant laccase genes and their functions in plant growth and development. It especially describes the responses of laccase genes to various stresses and their contributions to plant biotic and abiotic stress resistance. In-depth explanations and scientific advances will serve as foundations for research into plant laccase genes' function, mechanism, and possible applications.
Collapse
Affiliation(s)
- Yongsheng Bai
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Longhua Institute of Innovative Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, Guangdong, PR China
| | - Shahid Ali
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Longhua Institute of Innovative Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, Guangdong, PR China; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Shuai Liu
- Shaanxi Academy of Traditional Chinese Medicine, Xi'an, Shaanxi 710003, China
| | - Jiajie Zhou
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Longhua Institute of Innovative Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, Guangdong, PR China
| | - Yulin Tang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Longhua Institute of Innovative Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, Guangdong, PR China.
| |
Collapse
|
284
|
Moreno-Robles A, Cala Peralta A, Zorrilla JG, Soriano G, Masi M, Vilariño-Rodríguez S, Cimmino A, Fernández-Aparicio M. Structure-Activity Relationship (SAR) Study of trans-Cinnamic Acid and Derivatives on the Parasitic Weed Cuscuta campestris. PLANTS (BASEL, SWITZERLAND) 2023; 12:697. [PMID: 36840045 PMCID: PMC9962612 DOI: 10.3390/plants12040697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/11/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
Cuscuta campestris Yunck. is a parasitic weed responsible for severe yield losses in crops worldwide. The selective control of this weed is scarce due to the difficult application of methods that kill the parasite without negatively affecting the infected crop. trans-Cinnamic acid is secreted by plant roots naturally into the rhizosphere, playing allelopathic roles in plant-plant communities, although its activity in C. campestris has never been investigated. In the search for natural molecules with phytotoxic activity against parasitic weeds, this work hypothesized that trans-cinnamic acid could be active in inhibiting C. campestris growth and that a study of a series of analogs could reveal key structural features for its growth inhibition activity. In the present structure-activity relationship (SAR) study, we determined in vitro the inhibitory activity of trans-cinnamic acid and 24 analogs. The results showed that trans-cinnamic acid's growth inhibition of C. campestris seedlings is enhanced in eight of its derivatives, namely hydrocinnamic acid, 3-phenylpropionaldehyde, trans-cinnamaldehyde, trans-4-(trifluoromethyl)cinnamic acid, trans-3-chlorocinnamic acid, trans-4-chlorocinnamic acid, trans-4-bromocinnamic acid, and methyl trans-cinnamate. Among the derivatives studied, the methyl ester derivative of trans-cinnamic acid was the most active compound. The findings of this SAR study provide knowledge for the design of herbicidal treatments with enhanced activity against parasitic weeds.
Collapse
Affiliation(s)
- Antonio Moreno-Robles
- Department of Plant Breeding, Institute for Sustainable Agriculture (IAS), CSIC, Avenida Menéndez Pidal s/n, 14004 Córdoba, Spain
| | - Antonio Cala Peralta
- Allelopathy Group, Department of Organic Chemistry, Facultad de Ciencias, Institute of Biomolecules (INBIO), University of Cadiz, C/Avenida República Saharaui, s/n, 11510 Puerto Real, Spain
| | - Jesús G. Zorrilla
- Allelopathy Group, Department of Organic Chemistry, Facultad de Ciencias, Institute of Biomolecules (INBIO), University of Cadiz, C/Avenida República Saharaui, s/n, 11510 Puerto Real, Spain
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Via Cintia, 80126 Naples, Italy
| | - Gabriele Soriano
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Via Cintia, 80126 Naples, Italy
| | - Marco Masi
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Via Cintia, 80126 Naples, Italy
| | | | - Alessio Cimmino
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Via Cintia, 80126 Naples, Italy
| | - Mónica Fernández-Aparicio
- Department of Plant Breeding, Institute for Sustainable Agriculture (IAS), CSIC, Avenida Menéndez Pidal s/n, 14004 Córdoba, Spain
| |
Collapse
|
285
|
Rahnama M, Maclean P, Fleetwood DJ, Johnson RD. Comparative Transcriptomics Profiling of Perennial Ryegrass Infected with Wild Type or a Δ velA Epichloë festucae Mutant Reveals Host Processes Underlying Mutualistic versus Antagonistic Interactions. J Fungi (Basel) 2023; 9:jof9020190. [PMID: 36836305 PMCID: PMC9959145 DOI: 10.3390/jof9020190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/05/2023] [Accepted: 01/07/2023] [Indexed: 02/05/2023] Open
Abstract
Epichloë species form bioprotective endophytic symbioses with many cool-season grasses, including agriculturally important forage grasses. Despite its importance, relatively little is known about the molecular details of the interaction and the regulatory genes involved. VelA is a key global regulator in fungal secondary metabolism and development. In previous studies, we showed the requirement of velA for E. festucae to form a mutualistic interaction with Lolium perenne. We showed that VelA regulates the expression of genes encoding proteins involved in membrane transport, fungal cell wall biosynthesis, host cell wall degradation, and secondary metabolism, along with several small-secreted proteins in Epichloë festucae. Here, by a comparative transcriptomics analysis on perennial ryegrass seedlings and mature plants, which are endophyte free or infected with wild type (mutualistic interaction) or mutant ΔvelA E. festucae (antagonistic or incompatible interaction), regulatory effects of the endophytic interaction on perennial ryegrass development was studied. We show that ΔvelA mutant associations influence the expression of genes involved in primary metabolism, secondary metabolism, and response to biotic and abiotic stresses compared with wild type associations, providing an insight into processes defining mutualistic versus antagonistic interactions.
Collapse
Affiliation(s)
- Mostafa Rahnama
- Department of Biology, Tennessee Tech University, Cookeville, TN 38505, USA
- AgResearch, Grasslands Research Centre, Palmerston North 4442, New Zealand
- Correspondence: (M.R.); (R.D.J.)
| | - Paul Maclean
- AgResearch, Grasslands Research Centre, Palmerston North 4442, New Zealand
| | | | - Richard D. Johnson
- AgResearch, Grasslands Research Centre, Palmerston North 4442, New Zealand
- Correspondence: (M.R.); (R.D.J.)
| |
Collapse
|
286
|
Sun M, Zhang Y, Bai H, Sun G, Zhang J, Shi L. Population diversity analyses provide insights into key horticultural traits of Chinese native thymes. HORTICULTURE RESEARCH 2023; 10:uhac262. [PMID: 36778183 PMCID: PMC9907056 DOI: 10.1093/hr/uhac262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Revised: 12/02/2022] [Accepted: 11/25/2022] [Indexed: 06/18/2023]
Abstract
Chinese native thymes (CNTs) in the genus Thymus (family Lamiaceae) are rich in bioactive terpenes, which exert antiviral, anti-inflammatory, antioxidation, immunological, and antimicrobial effects. Plants exhibit morphological variation, including erect-type and creeping-type growth forms; however, the molecular mechanisms underlying important horticultural traits have not been determined. Here, we collected 39 CNTs providing strategic plant resources for studies of lignin, terpenoids, and glandular trichomes of thymes. Using resequencing data as well as phenotypic, metabonomic, phylogenetic, population genetic, and transcriptomic analyses, we identified and characterized key genes involved in lignin biosynthesis, terpenoid biosynthesis, and glandular trichome formation. We found many regulatory genes or transcription factors related to these three important horticultural traits, including genes encoding caffeic acid O-methyltransferase (COMT), terpene synthase (TPS), v-myb avian myeloblastosis viral oncogene homolog (MYB), and homeodomain-leucine zipper (HD-ZIP). Population diversity analyses provided insights into growth form, terpenoid, and glandular trichome evolution in CNTs. Furthermore, our results revealed that T. mongolicus accessions might be wild ancestors, and T. quinquecostatus, T. quinquecostatus var. asiaticus, and T. quinquecostatus var. przewalskii might be transitional accessions that derived from T. mongolicus accessions. Finally, T. nervulosus, T. inaequalis, T. mandschuricus, T. curtus, T. amurensis, T. proximus, T. altaicus, T. roseus, and T. marschallianus showed high divergence. We found evidence for introgression between erect-type European cultivated thymes and CNTs. These findings improve our understanding of the determinants of variation in horticultural traits and provide candidate loci for research and breeding.
Collapse
Affiliation(s)
| | | | - Hongtong Bai
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Guofeng Sun
- China National Botanical Garden, Beijing 100093, China
| | | | - Lei Shi
- Corresponding author. E-mail: ,
| |
Collapse
|
287
|
Jeon HS, Jang E, Kim J, Kim SH, Lee MH, Nam MH, Tobimatsu Y, Park OK. Pathogen-induced autophagy regulates monolignol transport and lignin formation in plant immunity. Autophagy 2023; 19:597-615. [PMID: 35652914 PMCID: PMC9851231 DOI: 10.1080/15548627.2022.2085496] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The evolutionary plant-pathogen arms race has equipped plants with the immune system that can defend against pathogens. Pattern-triggered immunity and effector-triggered immunity are two major branches of innate immunity that share immune responses, including oxidative bursts, transcriptional reprogramming, and cell wall modifications such as lignin deposition. In a previous study, we reported that lignin rapidly accumulates in pathogen-infected Arabidopsis leaves and acts as a mechanical barrier, spatially restricting pathogens and cell death. Lignin deposition into the cell wall is a three-step process: monolignol biosynthesis, transport, and polymerization. While monolignol biosynthesis and polymerization are relatively well understood, the mechanism of monolignol transport remains unclear. In this study, we show that macroautophagy/autophagy modulates pathogen-induced lignin formation. Lignification and other immune responses were impaired in autophagy-defective atg (autophagy-related) mutants. In microscopy analyses, monolignols formed punctate structures in response to pathogen infection and colocalized with autophagic vesicles. Furthermore, autophagic activity and lignin accumulation were both enhanced in dnd1 (defense, no death 1) mutant with elevated disease resistance but no cell death and crossing dnd1-1 with atg mutants resulted in a lignin deficit, further supporting that lignin formation requires autophagy. Collectively, these findings demonstrate that lignification, particularly monolignol transport, is achieved through autophagic membrane trafficking in plant immunity.Abbreviations: ABC transporter: ATP-binding cassette transporter; ACD2/AT4G37000: accelerated cell death 2; ATG: autophagy-related; C3'H/AT2G40890: p-coumaroyl shikimate 3-hydroxylase; C4H/AT2G30490: cinnamate 4-hydroxylase; CA: coniferyl alcohol; CaMV: cauliflower mosaic virus; CASP: Casparian strip membrane domain protein; CASPL: CASP-like protein; CBB: Coomassie Brilliant Blue; CCoAOMT1/AT4G34050: caffeoyl-CoA O-methyltransferase 1; CCR1/AT1G15950: cinnamoyl-CoA reductase 1; CFU: colony-forming unit; COMT1/AT5G54160: caffeic acid O-methyltransferase 1; Con A: concanamycin A; DMAC: dimethylaminocoumarin; DND1/AT5G15410: defense, no death 1; CNGC2: cyclic nucleotide-gated channel 2; ER: endoplasmic reticulum; ESB1/AT2G28670/DIR10: enhanced suberin 1; ETI: effector-triggered immunity; EV: extracellular vesicle; F5H/AT4G36220: ferulate-5-hydroxylase; Fluo-3 AM: Fluo-3 acetoxymethyl ester; GFP: green fluorescent protein; HCT/AT5G48930: p-hydroxycinnamoyl-CoA:quinate/shikimate p-hydroxycinnamoyltransferase; HR: hypersensitive response; LAC: laccase; LTG: LysoTracker Green; LSD1/AT4G200380: lesion stimulating disease 1; PAL1/AT2G37040: phenylalanine ammonia-lyase 1; PAMP: pathogen-associated molecular patterns; PCD: programmed cell death; PE: phosphatidylethanolamine; PRX: peroxidase; Pst DC3000: Pseudomonas syringe pv. tomato DC3000; PTI: pattern-triggered immunity; SA: salicylic acid; SD: standard deviation; SID2/AT1G7410: SA induction-deficient 2; UGT: UDP-glucosyltransferase; UPLC: ultraperformance liquid chromatography; UPS: unconventional protein secretion; V-ATPase: vacuolar-type H+-translocating ATPase.
Collapse
Affiliation(s)
- Hwi Seong Jeon
- Department of Life Sciences, Korea University, Seoul, Korea
| | - Eunjeong Jang
- Department of Life Sciences, Korea University, Seoul, Korea
| | - Jinwoo Kim
- Seoul Center, Korea Basic Science Institute, Seoul, Korea
| | - Seu Ha Kim
- Department of Life Sciences, Korea University, Seoul, Korea
| | | | - Myung Hee Nam
- Seoul Center, Korea Basic Science Institute, Seoul, Korea
| | - Yuki Tobimatsu
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto, Japan
| | - Ohkmae K. Park
- Department of Life Sciences, Korea University, Seoul, Korea,CONTACT Ohkmae K. Park Department of Life Sciences, Korea University, Seoul02841, Korea
| |
Collapse
|
288
|
Gou M, Balint-Kurti P, Xu M, Yang Q. Quantitative disease resistance: Multifaceted players in plant defense. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:594-610. [PMID: 36448658 DOI: 10.1111/jipb.13419] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
In contrast to large-effect qualitative disease resistance, quantitative disease resistance (QDR) exhibits partial and generally durable resistance and has been extensively utilized in crop breeding. The molecular mechanisms underlying QDR remain largely unknown but considerable progress has been made in this area in recent years. In this review, we summarize the genes that have been associated with plant QDR and their biological functions. Many QDR genes belong to the canonical resistance gene categories with predicted functions in pathogen perception, signal transduction, phytohormone homeostasis, metabolite transport and biosynthesis, and epigenetic regulation. However, other "atypical" QDR genes are predicted to be involved in processes that are not commonly associated with disease resistance, such as vesicle trafficking, molecular chaperones, and others. This diversity of function for QDR genes contrasts with qualitative resistance, which is often based on the actions of nucleotide-binding leucine-rich repeat (NLR) resistance proteins. An understanding of the diversity of QDR mechanisms and of which mechanisms are effective against which classes of pathogens will enable the more effective deployment of QDR to produce more durably resistant, resilient crops.
Collapse
Affiliation(s)
- Mingyue Gou
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
- The Shennong Laboratory, Zhengzhou, 450002, China
| | - Peter Balint-Kurti
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, 27695, USA
- Plant Science Research Unit, USDA-ARS, Raleigh, NC, 27695, USA
| | - Mingliang Xu
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Center for Crop Functional Genomics and Molecular Breeding, College of Agronomy, China Agricultural University, Beijing, 100193, China
| | - Qin Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Maize Biology and Genetic Breeding in Arid Area of Northwest Region of the Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, 712100, China
| |
Collapse
|
289
|
Vilms Pedersen S, Brewer JR, Hedegaard MAB, Arnspang Christensen E. Spectral Unmixing for Label-Free, In-Liquid Characterization of Biomass Microstructure and Biopolymer Content by Coherent Raman Imaging. Anal Chem 2023; 95:2168-2175. [PMID: 36638088 DOI: 10.1021/acs.analchem.2c02349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Characterization of lignocellulosic biomass microstructure with chemical specificity and under physiological conditions could provide invaluable insights to our understanding of plant tissue development, microstructure, origins of recalcitrance, degradation, and solubilization. However, most methods currently available are either destructive, are not compatible with hosting a physiological environment, or introduces exogenous probes, complicating their use for studying changes in microstructure and mechanisms of plant development, recalcitrance, or degradation in situ. To address these challenges, we here present a multi-modal chemically specific imaging technique based on coherent anti-Stokes Raman scattering (CARS) microspectroscopy with simplex maximization and entropy-based spectral unmixing enabling label-free, chemically specific characterization of plant microstructure in liquid. We describe how spatial drift of samples suspended in liquid can introduce artifacts in spectral unmixing procedures for single-frequency CARS and propose a mitigative strategy toward these effects using simultaneously acquired forward-scattered CARS signals and epi-detected autofluorescence. We further apply the technique for chemical and microstructural characterization of untreated and liquid hot water pretreated rapeseed straw by CARS and show how the framework can be extended for 3D imaging with chemical specificity. Finally, we provide examples of the intricate chemical and microstructural details recovered by this hybrid imaging technique, including discerning between primary and secondary cell walls, localization of aqueous components to cell lumina, and the presence of funnel-type pits in samples ofBrassica napus.
Collapse
Affiliation(s)
- Simon Vilms Pedersen
- Department of Green Technology, SDU Biotechnology, University of Southern Denmark, Odense 5230, Denmark
| | - Jonathan R Brewer
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense 5230, Denmark
| | - Martin A B Hedegaard
- Department of Green Technology, SDU Biotechnology, University of Southern Denmark, Odense 5230, Denmark
| | - Eva Arnspang Christensen
- Department of Green Technology, SDU Biotechnology, University of Southern Denmark, Odense 5230, Denmark
| |
Collapse
|
290
|
Karagoz P, Khiawjan S, Marques MPC, Santzouk S, Bugg TDH, Lye GJ. Pharmaceutical applications of lignin-derived chemicals and lignin-based materials: linking lignin source and processing with clinical indication. BIOMASS CONVERSION AND BIOREFINERY 2023; 14:26553-26574. [PMID: 39493283 PMCID: PMC11525408 DOI: 10.1007/s13399-023-03745-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 12/23/2022] [Accepted: 12/31/2022] [Indexed: 11/05/2024]
Abstract
Lignocellulosic biomass is one of the most abundant bioresources on Earth. Over recent decades, various valorisation techniques have been developed to produce value-added products from the cellulosic and hemicellulosic fractions of this biomass. Lignin is the third major component accounting for 10-30% (w/w). However, it currently remains a largely unused fraction due to its recalcitrance and complex structure. The increase in the global demand for lignocellulosic biomass, for energy and chemical production, is increasing the amount of waste lignin available. Approaches to date for valorizing this renewable but heterogeneous chemical resource have mainly focused on production of materials and fine chemicals. Greater value could be gained by developing higher value pharmaceutical applications which would help to improve integrated biorefinery economics. In this review, different lignin extraction methods, such as organosolv and ionic liquid, and the properties and potential of the extracted chemical building blocks are first summarized with respect to pharmaceutical use. The review then discusses the many recent advances made regarding the medical or therapeutic potential of lignin-derived materials such as antimicrobial, antiviral, and antitumor compounds and in controlled drug delivery. The aim is to draw out the link between the source and the processing of the biomass and potential clinical applications. We then highlight four key areas for future research if therapeutic applications of lignin-derived products are to become commercially viable. These relate to the availability and processing of lignocellulosic biomass, technologies for the purification of specific compounds, enhancements in process yield, and progression to human clinical trials.
Collapse
Affiliation(s)
- Pinar Karagoz
- Department of Biochemical Engineering, The Advanced Centre for Biochemical Engineering, University College London, Gower Street, London, WC1E 6BT UK
- School of Engineering and Innovation, The Open University, Milton Keynes, MK7 6AA UK
| | - Sansanee Khiawjan
- Department of Biochemical Engineering, The Advanced Centre for Biochemical Engineering, University College London, Gower Street, London, WC1E 6BT UK
| | - Marco P. C. Marques
- Department of Biochemical Engineering, The Advanced Centre for Biochemical Engineering, University College London, Gower Street, London, WC1E 6BT UK
| | - Samir Santzouk
- Panax-Homeopathy and Phytotherapy Laboratory, Agrinio, Greece
| | | | - Gary J. Lye
- Department of Biochemical Engineering, The Advanced Centre for Biochemical Engineering, University College London, Gower Street, London, WC1E 6BT UK
| |
Collapse
|
291
|
Chandrakanth NN, Zhang C, Freeman J, de Souza WR, Bartley LE, Mitchell RA. Modification of plant cell walls with hydroxycinnamic acids by BAHD acyltransferases. FRONTIERS IN PLANT SCIENCE 2023; 13:1088879. [PMID: 36733587 PMCID: PMC9887202 DOI: 10.3389/fpls.2022.1088879] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/28/2022] [Indexed: 06/18/2023]
Abstract
In the last decade it has become clear that enzymes in the "BAHD" family of acyl-CoA transferases play important roles in the addition of phenolic acids to form ester-linked moieties on cell wall polymers. We focus here on the addition of two such phenolics-the hydroxycinnamates, ferulate and p-coumarate-to two cell wall polymers, glucuronoarabinoxylan and to lignin. The resulting ester-linked feruloyl and p-coumaroyl moities are key features of the cell walls of grasses and other commelinid monocots. The capacity of ferulate to participate in radical oxidative coupling means that its addition to glucuronoarabinoxylan or to lignin has profound implications for the properties of the cell wall - allowing respectively oxidative crosslinking to glucuronoarabinoxylan chains or introducing ester bonds into lignin polymers. A subclade of ~10 BAHD genes in grasses is now known to (1) contain genes strongly implicated in addition of p-coumarate or ferulate to glucuronoarabinoxylan (2) encode enzymes that add p-coumarate or ferulate to lignin precursors. Here, we review the evidence for functions of these genes and the biotechnological applications of manipulating them, discuss our understanding of mechanisms involved, and highlight outstanding questions for future research.
Collapse
Affiliation(s)
| | - Chengcheng Zhang
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, United States
| | - Jackie Freeman
- Plant Sciences, Rothamsted Research, West Common, Harpenden, Hertfordshire, United Kingdom
| | | | - Laura E. Bartley
- Institute of Biological Chemistry, Washington State University, Pullman, WA, United States
| | - Rowan A.C. Mitchell
- Plant Sciences, Rothamsted Research, West Common, Harpenden, Hertfordshire, United Kingdom
| |
Collapse
|
292
|
Li W, Hao Z, Yang L, Xia H, Tu Z, Cui Z, Wu J, Li H. Genome-wide identification and characterization of LcCCR13 reveals its potential role in lignin biosynthesis in Liriodendron chinense. FRONTIERS IN PLANT SCIENCE 2023; 13:1110639. [PMID: 36726672 PMCID: PMC9884966 DOI: 10.3389/fpls.2022.1110639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 12/23/2022] [Indexed: 06/18/2023]
Abstract
Introduction Wood formation is closely related to lignin biosynthesis. Cinnamoyl-CoA reductase (CCR) catalyzes the conversion of cinnamoyl-CoA to cinnamaldehydes, which is the initiation of the lignin biosynthesis pathway and a crucial point in the manipulation of associated traits. Liriodendron chinense is an economically significant timber tree. Nevertheless, the underlying mechanism of wood formation in it remains unknown; even the number of LcCCR family members in this species is unclear. Materials and Results This study aimed to perform a genome-wide identification of genes(s) involved in lignin biosynthesis in L. chinense via RT-qPCR assays and functional verification. Altogether, 13 LcCCR genes were identified that were divided into four major groups based on structural and phylogenetic features. The gene structures and motif compositions were strongly conserved between members of the same groups. Subsequently, the expression patterns analysis based on RNA-seq data indicated that LcCCR5/7/10/12/13 had high expression in the developing xylem at the stem (DXS). Furthermore, the RT-qPCR assays showed that LcCCR13 had the highest expression in the stem as compared to other tissues. Moreover, the overexpression of the LcCCR13 in transgenic tobacco plants caused an improvement in the CCR activity and lignin content, indicating that it plays a key role in lignin biosynthesis in the stems. Discussion Our research lays a foundation for deeper investigation of the lignin synthesis and uncovers the genetic basis of wood formation in L. chinense.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Huogen Li
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
293
|
Gu S, Zhuang J, Zhang Z, Chen W, Xu H, Zhao M, Ma D. Multi-omics approach reveals the contribution of OsSEH1 to rice cold tolerance. FRONTIERS IN PLANT SCIENCE 2023; 13:1110724. [PMID: 36714747 PMCID: PMC9880419 DOI: 10.3389/fpls.2022.1110724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 12/21/2022] [Indexed: 06/18/2023]
Abstract
As low environmental temperature adversely affects the growth, development and geographical distribution, plants have evolved multiple mechanisms involving changing physiological and metabolic processes to adapt to cold stress. In this study, we revealed that nucleoporin-coding gene OsSEH1 was a positive regulator of cold stress in rice. Physiological assays showed that the activity of antioxidant enzymes showed a significant difference between osseh1 knock-out lines and wild type under cold stress. Metabolome analysis revealed that the contents of large-scale flavonoids serving as ROS scavengers were lower in osseh1 mutants compared with wild type under cold stress. Transcriptome analysis indicated that the DEGs between osseh1 knock-out lines and wild type plants were enriched in defense response, regulation of hormone levels and oxidation-reduction process. Integration of transcriptomic and metabolic profiling revealed that OsSEH1 plays a role in the oxidation-reduction process by coordinately regulating genes expression and metabolite accumulation involved in phenylpropanoid and flavonoid biosynthetic pathway. In addition, Exogenous ABA application assays indicated that osseh1 lines had hypersensitive phenotypes compared with wild type plants, suggesting that OsSEH1 may mediate cold tolerance by regulating ABA levels.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Dianrong Ma
- *Correspondence: Minghui Zhao, ; Dianrong Ma,
| |
Collapse
|
294
|
Olk DC, Dinnes DL, Hatfield RD, Scoresby JR, Darlington JW. Variable humic product effects on maize structural biochemistry across annual weather patterns and soil types in two Iowa (U.S.A.) production fields. FRONTIERS IN PLANT SCIENCE 2023; 13:1058141. [PMID: 36714749 PMCID: PMC9878286 DOI: 10.3389/fpls.2022.1058141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/21/2022] [Indexed: 06/18/2023]
Abstract
Agronomic benefits of humic product application to crops are receiving increasing attention, though underlying biochemical changes remain unexplored, especially in field settings. In this study, maize (Zea mays L.) concentrations of 11 phenol and five carbohydrate monomers were determined in whole plant stover (four growing seasons) and roots (two growing seasons) at physiological maturity for two rainfed fields in Iowa (USA) having humic product applications. Stover and root tissues tended toward greater phenol concentrations in a drier upland transect but greater carbohydrate concentrations in a wetter lowland transect. Two humic treatments further accentuated these trends in upland roots. Their phenol content increased significantly with humic application in the droughtier season of root sampling (2013). Phenol increases above the unamended control averaged 20% for each monomer. Total phenols increased above the control by 12% and 19% for the two humic treatments. Five carbohydrate monomers in the upland roots did not respond to humic application. In the second year of root sampling (2014), which had abundant rainfall, upland root phenols did not respond substantively to humic application, but root carbohydrates increased on average by 11 or 20% for the two humic treatments compared to the control, reaching significance (P< 0.10) in 7 of 10 cases. Upland stover phenol concentrations responded differently to humic product application in each of four years, ranging from numeric increases in the droughtiest year (2012) to significant decreases with abundant rainfall (2014). In the lowland transect, root phenols and carbohydrates and stover phenols responded inconsistently to humic application in four years. Stover carbohydrates did not respond consistently to humic application in either transect. The phenols that were more responsive to humic application or to droughtier conditions included p-coumaric acid and syringaldehyde, which are heavily involved in late-season maize lignification. In summary, humic product application further promoted root lignification, a natural response to drought. Yet under non-drought conditions it promoted root carbohydrate production. Carbohydrate production might be the intrinsic plant response to humic product application in stress-free conditions. These results indicate complex interactions in field conditions between plant biochemistry, environmental signals, and the humic product.
Collapse
Affiliation(s)
- D. C. Olk
- U.S. Department of Agriculture – Agricultural Research Service, National Laboratory for Agriculture and the Environment, Ames, IA, United States
| | - D. L. Dinnes
- U.S. Department of Agriculture – Agricultural Research Service, National Laboratory for Agriculture and the Environment, Ames, IA, United States
| | - R. D. Hatfield
- U.S. Department of Agriculture – Agricultural Research Service, U.S. Dairy Forage Research Center, Madison, WI, United States
- Retired, Princeton, WI, United States
| | - J. R. Scoresby
- Minerals Technologies, Inc., New York, NY, United States
- Retired, Homedale, ID, United States
| | | |
Collapse
|
295
|
More A, Elder T, Pajer N, Argyropoulos DS, Jiang Z. Novel and Integrated Process for the Valorization of Kraft Lignin to Produce Lignin-Containing Vitrimers. ACS OMEGA 2023; 8:1097-1108. [PMID: 36643463 PMCID: PMC9835646 DOI: 10.1021/acsomega.2c06445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
The valorization of lignin into value-added products by oxidative conversion is a widely studied strategy. However, in many cases, this approach has limited scope for integration into industrial processes. The objective of our work is to maximize overall lignin utilization to produce diverse value-added products with a focus on integration in the existing industrial pulp and paper processes. The utilization of the sequential oxidation strategy using oxygen and ozone resulted in kraft lignin with a marked improvement in carboxyl content and also allowed the formation of vanillin and vanillic acid in the oxygen stage. The sequentially oxidized lignin (OxL-COOH) was then cured with poly(ethylene glycol) diglycidyl ether (PEG-epoxy) to form high-lignin-content (>48 wt %) vitrimers with high thermal stability, fast relaxation, swelling, and self-healing due to the presence of bond-exchangeable cross-linked networks. Overall, this study provides a novel approach for the multidimensional valorization of lignin and demonstrates an integrated approach for kraft lignin valorization in the pulp and paper industry.
Collapse
Affiliation(s)
- Ajinkya More
- Alabama
Center for Paper and Bioresource Engineering (AC-PABE), Department
of Chemical Engineering, Auburn University, Auburn, Alabama36849, United States
| | - Thomas Elder
- United
States Department of Agriculture, U.S. Forest
Service, Southern Research
Station, Auburn, Alabama36849, United States
| | - Nicolò Pajer
- Department
of Molecular Sciences and Nanosystems, Ca’
Foscari University of Venice, Via Torino 155, Venezia, Mestre30172, Italy
| | - Dimitris S. Argyropoulos
- Department
of Forest Biomaterials, NC State University, Campus Box 8005, Raleigh, North Carolina27695-8005, United States
| | - Zhihua Jiang
- Alabama
Center for Paper and Bioresource Engineering (AC-PABE), Department
of Chemical Engineering, Auburn University, Auburn, Alabama36849, United States
| |
Collapse
|
296
|
Miao W, Li F, Lu J, Wang D, Chen M, Tang L, Xu Z, Chen W. Biochar application enhanced rice biomass production and lodging resistance via promoting co-deposition of silica with hemicellulose and lignin. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 855:158818. [PMID: 36122710 DOI: 10.1016/j.scitotenv.2022.158818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 08/20/2022] [Accepted: 09/12/2022] [Indexed: 06/15/2023]
Abstract
Biochar, an environmentally friendly soil amendment, is created via a series of thermochemical processes from carbon-rich organic matter. The biochar addition enhances soil characteristics dramatically and increases crop growth and yields. However, the mechanism by which biochar improves plant lodging resistance, which is heavily influenced by cell walls, remains unknown. Three rice cultivars were grown in an experimental field provided with four concentrations of biochar (10, 20, 30, 40 t ha-1). The biochar application enhanced biomass production and lodging resistance in all three cultivars by up to 29 % and 22 %, respectively, with the largest improvement at a biochar application rate of 30 t ha-1. Biochar application significantly enhanced stem cell wall-related characteristics, with an increase in stem breaking force, wall thickness, and plumpness of 52 %, 32 %, and 21 %, respectively, which are suggested to be major contributors to enhanced lodging resistance and biomass yield. Notably, cell wall composition and silica content analysis indicated a significant increase in hemicellulose, lignin, and silica content in biochar-treated samples up to 36 %, 13 %, and 58 %, respectively, when compared to plants not treated with biochar. Integrative analysis suggested that silica, hemicellulose, and lignin were co-deposited in cell walls, which influenced biomass production and lodging resistance. Furthermore, the transcriptome profile revealed that biochar application increased the expression of genes involved in biomass production, cell wall formation, and silica deposition. This study suggests that biochar application might improve both biomass production and lodging resistance by promoting the co-deposition of silicon with hemicellulose and lignin in cell walls.
Collapse
Affiliation(s)
- Wei Miao
- Rice Research Institute, Shenyang Agricultural University, Key Laboratory of Northern geng Super Rice Breeding, Ministry of Education, Shenyang 110866, China.
| | - Fengcheng Li
- Rice Research Institute, Shenyang Agricultural University, Key Laboratory of Northern geng Super Rice Breeding, Ministry of Education, Shenyang 110866, China.
| | - Jiancheng Lu
- Rice Research Institute, Shenyang Agricultural University, Key Laboratory of Northern geng Super Rice Breeding, Ministry of Education, Shenyang 110866, China
| | - Donglei Wang
- Rice Research Institute, Shenyang Agricultural University, Key Laboratory of Northern geng Super Rice Breeding, Ministry of Education, Shenyang 110866, China
| | - Mingkai Chen
- Rice Research Institute, Shenyang Agricultural University, Key Laboratory of Northern geng Super Rice Breeding, Ministry of Education, Shenyang 110866, China
| | - Liang Tang
- Rice Research Institute, Shenyang Agricultural University, Key Laboratory of Northern geng Super Rice Breeding, Ministry of Education, Shenyang 110866, China.
| | - Zhengjin Xu
- Rice Research Institute, Shenyang Agricultural University, Key Laboratory of Northern geng Super Rice Breeding, Ministry of Education, Shenyang 110866, China
| | - Wenfu Chen
- Rice Research Institute, Shenyang Agricultural University, Key Laboratory of Northern geng Super Rice Breeding, Ministry of Education, Shenyang 110866, China.
| |
Collapse
|
297
|
Dong X, Mayes HB, Morreel K, Katahira R, Li Y, Ralph J, Black BA, Beckham GT. Energy-Resolved Mass Spectrometry as a Tool for Identification of Lignin Depolymerization Products. CHEMSUSCHEM 2023; 16:e202201441. [PMID: 36197743 DOI: 10.1002/cssc.202201441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Lignin is the largest source of bio-based aromatic compounds in nature, and its valorization is essential to the sustainability of lignocellulosic biorefining. Characterizing lignin-derived compounds remains challenging due to the heterogeneity of this biopolymer. Tandem mass spectrometry is a promising tool for lignin structural analytics, as fragmentation patterns of model compounds can be extrapolated to identify characteristic moieties in complex samples. This work extended previous resonance excitation-type collision-induced dissociation (CID) methods that identified lignin oligomers containing β-O-4, β-5, and β-β bonds, to also identify characteristics of 5-5, β-1, and 4-O-5 dimers, enabled by quadrupole time-of-flight (QTOF) CID with energy-resolved mass spectrometry (ERMS). Overall, QTOF-ERMS offers in-depth structural information and could ultimately contribute to tools for high-throughput lignin dimer identification.
Collapse
Affiliation(s)
- Xueming Dong
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401, USA
| | - Heather B Mayes
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401, USA
| | - Kris Morreel
- RIC Group, President Kennedypark 26, 8500, Kortrijk, Belgium
| | - Rui Katahira
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401, USA
| | - Yanding Li
- Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, 1552 University Ave., Madison, WI, 53726, USA
| | - John Ralph
- Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, 1552 University Ave., Madison, WI, 53726, USA
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Dr, Madison, WI, 53706, USA
| | - Brenna A Black
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401, USA
| | - Gregg T Beckham
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
| |
Collapse
|
298
|
Wang C, Chen Y, Cui C, Shan F, Zhang R, Lyu X, Lyu L, Chang H, Yan C, Ma C. Blue Light Regulates Cell Wall Structure and Carbohydrate Metabolism of Soybean Hypocotyl. Int J Mol Sci 2023; 24:1017. [PMID: 36674538 PMCID: PMC9864885 DOI: 10.3390/ijms24021017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 12/31/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023] Open
Abstract
Soybean stem elongation and thickening are related to cell wall composition. Plant morphogenesis can be influenced by blue light, which can regulate cell wall structure and composition, and affect stem growth and development. Here, using proteomics and metabolomics, differentially expressed proteins and metabolites of hypocotyls grown in the dark and under blue light were studied to clarify the effects of blue light on the cell wall structure and carbohydrate metabolism pathway of soybean hypocotyls. Results showed that 1120 differential proteins were upregulated and 797 differential proteins were downregulated under blue light treatment, while 63 differential metabolites were upregulated and 36 differential metabolites were downregulated. Blue light promoted the establishment of cell wall structure and composition by regulating the expression of both the enzymes and metabolites related to cell wall structural composition and nonstructural carbohydrates. Thus, under blue light, the cross-sectional area of the hypocotyl and xylem were larger, the longitudinal length of pith cells was smaller, elongation of the soybean hypocotyl was inhibited, and diameter was increased.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Chao Yan
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China
| | - Chunmei Ma
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
299
|
Sarkar D, Kulke M, Vermaas JV. LongBondEliminator: A Molecular Simulation Tool to Remove Ring Penetrations in Biomolecular Simulation Systems. Biomolecules 2023; 13:biom13010107. [PMID: 36671493 PMCID: PMC9856086 DOI: 10.3390/biom13010107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/30/2022] [Accepted: 01/01/2023] [Indexed: 01/07/2023] Open
Abstract
We develop a workflow, implemented as a plugin to the molecular visualization program VMD, that can fix ring penetrations with minimal user input. LongBondEliminator, detects ring piercing artifacts by the long, strained bonds that are the local minimum energy conformation during minimization for some assembled simulation system. The LongBondEliminator tool then automatically treats regions near these long bonds using multiple biases applied through NAMD. By combining biases implemented through the collective variables module, density-based forces, and alchemical techniques in NAMD, LongBondEliminator will iteratively alleviate long bonds found within molecular simulation systems. Through three concrete examples with increasing complexity, a lignin polymer, an viral capsid assembly, and a large, highly glycosylated protein aggrecan, we demonstrate the utility for this method in eliminating ring penetrations from classical MD simulation systems. The tool is available via gitlab as a VMD plugin, and has been developed to be generically useful across a variety of biomolecular simulations.
Collapse
|
300
|
Meng G, Rasmussen SK, Christensen CSL, Fan W, Torp AM. Molecular breeding of barley for quality traits and resilience to climate change. Front Genet 2023; 13:1039996. [PMID: 36685930 PMCID: PMC9851277 DOI: 10.3389/fgene.2022.1039996] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/19/2022] [Indexed: 01/06/2023] Open
Abstract
Barley grains are a rich source of compounds, such as resistant starch, beta-glucans and anthocyanins, that can be explored in order to develop various products to support human health, while lignocellulose in straw can be optimised for feed in husbandry, bioconversion into bioethanol or as a starting material for new compounds. Existing natural variations of these compounds can be used to breed improved cultivars or integrated with a large number of mutant lines. The technical demands can be in opposition depending on barley's end use as feed or food or as a source of biofuel. For example beta-glucans are beneficial in human diets but can lead to issues in brewing and poultry feed. Barley breeders have taken action to integrate new technologies, such as induced mutations, transgenics, marker-assisted selection, genomic selection, site-directed mutagenesis and lastly machine learning, in order to improve quality traits. Although only a limited number of cultivars with new quality traits have so far reached the market, research has provided valuable knowledge and inspiration for future design and a combination of methodologies to achieve the desired traits. The changes in climate is expected to affect the quality of the harvested grain and it is already a challenge to mitigate the unpredictable seasonal and annual variations in temperature and precipitation under elevated [CO2] by breeding. This paper presents the mutants and encoded proteins, with a particular focus on anthocyanins and lignocellulose, that have been identified and characterised in detail and can provide inspiration for continued breeding to achieve desired grain and straw qualities.
Collapse
Affiliation(s)
- Geng Meng
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
| | - Søren K. Rasmussen
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | | | - Weiyao Fan
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Anna Maria Torp
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| |
Collapse
|