251
|
Xu YP, Deng ZH, Zou HY, Gao SQ, Wang DM, He LM, Wei TL. [Cloning and sequencing HLA-A and -B genomic DNA and analyzing polymorphism in regulatory regions in Chinese Han individuals]. YI CHUAN = HEREDITAS 2010; 32:685-93. [PMID: 20650849 DOI: 10.3724/sp.j.1005.2010.00685] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In the present study, a high-resolute method for cloning and sequencing genomic full-length HLA-A and -B using 20 Chinese Han individuals was established. We detected 10 HLA-A allele sequences 4.2 kb in length and 6 HLA-B allele sequences 3.7 kb in length, and the sequences included all exons, all introns, 5'promoter, and 3'UTR of the two genes. All sixteen sequences have been submitted to GenBank and IMGT/HLA database. A*1153 is a novel allele, and the introns of B*151101 are firstly reported here. The 5'promoter and 3'UTR sequences of 5 HLA-A alleles and 2 HLA-B alleles are also firstly disclosed, and all other alleles have extended the genomic full length sequences released in IMGT/HLA database. The polymorphic structures of upper 5'promoter and downstream 3'UTR, which were uncovered in IMGT/HLA database, are firstly depicted in Chinese Han individuals. Twenty-six single nucleotide polymorphisms (SNPs) and one 3 bp-insertion/deletion (Indel) were located in the upper 5'promoter and 14 SNPs were located in the 3'UTR of HLA-A. In addition, five SNPs and one 1 bp-indel were located in the upper 5'promoter and 5 SNPs were located in the 3'UTR of HLA-B. Through analyzing the phylogenetic trees of 5'promoter, exons and 3'UTR of the two genes, we found that the evolution history of regulatory regions and exons is different between the two genes. The regulatory regions are tightly linked with exons in most of HLA-A alleles excluding A*24020101. On the contrary, recombinant events may occur frequently between regulatory regions and exons in most HLA-B alleles.
Collapse
Affiliation(s)
- Yun-Ping Xu
- Shenzhen Key Laboratory of Histocompatibility and Immunogenetics, ShenZhen Blood Center, Shenzhen 518035, China.
| | | | | | | | | | | | | |
Collapse
|
252
|
Castillo S, Srithayakumar V, Meunier V, Kyle CJ. Characterization of major histocompatibility complex (MHC) DRB exon 2 and DRA exon 3 fragments in a primary terrestrial rabies vector (Procyon lotor). PLoS One 2010; 5:e12066. [PMID: 20706587 PMCID: PMC2919397 DOI: 10.1371/journal.pone.0012066] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Accepted: 07/08/2010] [Indexed: 12/04/2022] Open
Abstract
The major histocompatibility complex (MHC) presents a unique system to explore links between genetic diversity and pathogens, as diversity within MHC is maintained in part by pathogen driven selection. While the majority of wildlife MHC studies have investigated species that are of conservation concern, here we characterize MHC variation in a common and broadly distributed species, the North American raccoon (Procyon lotor). Raccoons host an array of broadly distributed wildlife diseases (e.g., canine distemper, parvovirus and raccoon rabies virus) and present important human health risks as they persist in high densities and in close proximity to humans and livestock. To further explore how genetic variation influences the spread and maintenance of disease in raccoons we characterized a fragment of MHC class II DRA exon 3 (250bp) and DRB exon 2 (228 bp). MHC DRA was found to be functionally monomorphic in the 32 individuals screened; whereas DRB exon 2 revealed 66 unique alleles among the 246 individuals screened. Between two and four alleles were observed in each individual suggesting we were amplifying a duplicated DRB locus. Nucleotide differences between DRB alleles ranged from 1 to 36 bp (0.4–15.8% divergence) and translated into 1 to 21 (1.3–27.6% divergence) amino acid differences. We detected a significant excess of nonsynonymous substitutions at the peptide binding region (P = 0.005), indicating that DRB exon 2 in raccoons has been influenced by positive selection. These data will form the basis of continued analyses into the spatial and temporal relationship of the raccoon rabies virus and the immunogenetic response in its primary host.
Collapse
Affiliation(s)
- Sarrah Castillo
- Environmental and Life Sciences Gradate Program, Trent University, Peterborough, Ontario, Canada.
| | | | | | | |
Collapse
|
253
|
Bérénos C, Wegner KM, Schmid-Hempel P. Antagonistic coevolution with parasites maintains host genetic diversity: an experimental test. Proc Biol Sci 2010; 278:218-24. [PMID: 20685701 DOI: 10.1098/rspb.2010.1211] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Genetic variation in natural populations is a prime prerequisite allowing populations to respond to selection, but is under constant threat from forces that tend to reduce it, such as genetic drift and many types of selection. Haldane emphasized the potential importance of parasites as a driving force of genetic diversity. His theory has been taken for granted ever since, but despite numerous studies showing correlations between genetic diversity and parasitism, Haldane's hypothesis has rarely been tested experimentally for unambiguous support. We experimentally staged antagonistic coevolution between the host Tribolium castaneum and its natural microsporidian parasite, Nosema whitei, to test for the relative importance of two separate evolutionary forces (drift and parasite-induced selection) on the maintenance of genetic variation. Our results demonstrate that coevolution with parasites indeed counteracts drift as coevolving populations had significantly higher levels of heterozygosity and allelic diversity. Genetic drift remained a strong force, strongly reducing genetic variation and increasing genetic differentiation in small populations. To our surprise, differentiation between the evolving populations was smaller when they coevolved with parasites, suggesting parallel balancing selection. Hence, our results experimentally vindicate Haldane's original hypothesis 60 years after its conception.
Collapse
Affiliation(s)
- Camillo Bérénos
- Institute of Integrative Biology, Experimental Ecology, , ETH Zürich Universitätstrasse 16, CHN K 12.2, 8092 Zürich, Switzerland.
| | | | | |
Collapse
|
254
|
Lank SM, Wiseman RW, Dudley DM, O'Connor DH. A novel single cDNA amplicon pyrosequencing method for high-throughput, cost-effective sequence-based HLA class I genotyping. Hum Immunol 2010; 71:1011-7. [PMID: 20650293 DOI: 10.1016/j.humimm.2010.07.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Revised: 07/12/2010] [Accepted: 07/30/2010] [Indexed: 01/11/2023]
Abstract
Human leukocyte antigen (HLA) genotype influences the immune response to pathogens and transplanted tissues; accurate HLA genotyping is critical for clinical and research applications. Sequence-based HLA typing is limited by the cost of Sanger sequencing genomic DNA (gDNA) and resolving cis/trans ambiguities, hindering both studies correlating high-resolution genotype with clinical outcomes, and population-specific allele frequency surveys. We present an assay for sequence-based HLA genotyping by titanium read length clonal Roche/454 pyrosequencing of a single, universally diagnostic polymerase chain reaction (PCR) amplicon from HLA class I cDNA that captures most of exons 2, 3, and 4 used for traditional sequence-based typing. The amplicon is predicted to unambiguously resolve 85% of known alleles. A panel of 48 previously HLA-typed samples was assayed with this method, demonstrating 100% non-null allele typing concordance. We show that this technique can multiplex at least 768 patients per sequencing run with multiplex identifier sequence bar-coding. Unprecedented typing throughput results from a novel single cDNA-PCR amplicon strategy requiring only 1 PCR amplification per sample. This method dramatically reduces cost for genotyping of large cohorts.
Collapse
Affiliation(s)
- Simon M Lank
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | | | | |
Collapse
|
255
|
BROUWER LYANNE, BARR IAIN, Van De POL MARTIJN, BURKE TERRY, KOMDEUR JAN, RICHARDSON DAVIDS. MHC-dependent survival in a wild population: evidence for hidden genetic benefits gained through extra-pair fertilizations. Mol Ecol 2010; 19:3444-55. [DOI: 10.1111/j.1365-294x.2010.04750.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
256
|
Characterisation of MHC class II DRB genes in the northern tree shrew (Tupaia belangeri). Immunogenetics 2010; 62:613-22. [PMID: 20661731 DOI: 10.1007/s00251-010-0466-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Accepted: 07/08/2010] [Indexed: 12/31/2022]
Abstract
Genes of the major histocompatibility complex (MHC) mainly code for proteins of the immune system of jawed vertebrates. In particular, MHC class I and II cell surface proteins are crucial for the self/non-self discrimination of the adaptive immune system and are the most polymorphic genes in vertebrates. Positive selection, gene duplications and pseudogenes shape the face of the MHC and reflect a highly dynamic evolution. Here, we present for the first time data of the highly polymorphic MHC class II DRB exon 2 of a representative of the mammalian order scandentia, the northern tree shrew Tupaia belangeri. We found up to eight different alleles per individual and determined haplotype constitution by intensively studying their inheritance. The alleles were assigned to four putative loci, all of which were polymorphic. Only the most polymorphic locus was subject to positive selection within the antigen binding sites and only alleles of this locus were transcribed.
Collapse
|
257
|
Chen YY, Zhang YY, Zhang HM, Ge YF, Wan QH, Fang SG. Natural selection coupled with intragenic recombination shapes diversity patterns in the major histocompatibility complex class II genes of the giant panda. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2010; 314:208-23. [PMID: 19950128 DOI: 10.1002/jez.b.21327] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Ample variations of the major histocompatibility complex (MHC) genes are essential for vertebrates to adapt to various environmental conditions. In this study, we investigated the genetic variations and evolutionary patterns of seven functional MHC class II genes (one DRA, two DRB, two DQA, and two DQB) of the giant panda. The results showed the presence of two monomorphic loci (DRA and DQB2) and five polymorphic loci with different numbers of alleles (seven at DRB1, six at DRB3, seven at DQA1, four at DQA2, six at DQB1). The presence of balancing selection in the giant panda was supported by the following pieces of evidence: (1) The observed heterozygosity was higher than expected. (2) Amino acid heterozygosity was significantly higher at antigen-binding sites (ABS) compared with non-ABS sequences. (3) The selection parameter omega (d(N)/d(S)) was significantly higher at ABS compared with non-ABS sequences. (4) Approximately 95.45% of the positively selected codons (P>0.95) were located at or adjacent to an ABS. Furthermore, this study showed that (1) The Qinling subspecies exhibited high omega values across each locus (all >1), supporting its extensive positive selection. (2) The Sichuan subspecies displayed small omega at DRB1 (omega<0.72) and DQA2 (omega<0.48), suggesting that these sites underwent strong purifying selection. (3) Intragenic recombination was detected in DRB1, DQA1, and DQB1. The molecular diversity in classic Aime-MHC class II genes implies that the giant panda had evolved relatively abundant variations in its adaptive immunity along the history of host-pathogen co-evolution. Collectively, these findings indicate that natural selection accompanied by recombination drives the contrasting diversity patterns of the MHC class II genes between the two studied subspecies of giant panda.
Collapse
Affiliation(s)
- Yi-Yan Chen
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
| | | | | | | | | | | |
Collapse
|
258
|
Ballingall KT, Rocchi MS, McKeever DJ, Wright F. Trans-species polymorphism and selection in the MHC class II DRA genes of domestic sheep. PLoS One 2010; 5:e11402. [PMID: 20613987 PMCID: PMC2894946 DOI: 10.1371/journal.pone.0011402] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Accepted: 06/11/2010] [Indexed: 11/18/2022] Open
Abstract
Highly polymorphic genes with central roles in lymphocyte mediated immune surveillance are grouped together in the major histocompatibility complex (MHC) in higher vertebrates. Generally, across vertebrate species the class II MHC DRA gene is highly conserved with only limited allelic variation. Here however, we provide evidence of trans-species polymorphism at the DRA locus in domestic sheep (Ovis aries). We describe variation at the Ovar-DRA locus that is far in excess of anything described in other vertebrate species. The divergent DRA allele (Ovar-DRA*0201) differs from the sheep reference sequences by 20 nucleotides, 12 of which appear non-synonymous. Furthermore, DRA*0201 is paired with an equally divergent DRB1 allele (Ovar-DRB1*0901), which is consistent with an independent evolutionary history for the DR sub-region within this MHC haplotype. No recombination was observed between the divergent DRA and B genes in a range of breeds and typical levels of MHC class II DR protein expression were detected at the surface of leukocyte populations obtained from animals homozygous for the DRA*0201, DRB1*0901 haplotype. Bayesian phylogenetic analysis groups Ovar-DRA*0201 with DRA sequences derived from species within the Oryx and Alcelaphus genera rather than clustering with other ovine and caprine DRA alleles. Tests for Darwinian selection identified 10 positively selected sites on the branch leading to Ovar-DRA*0201, three of which are predicted to be associated with the binding of peptide antigen. As the Ovis, Oryx and Alcelaphus genera have not shared a common ancestor for over 30 million years, the DRA*0201 and DRB1*0901 allelic pair is likely to be of ancient origin and present in the founding population from which all contemporary domestic sheep breeds are derived. The conservation of the integrity of this unusual DR allelic pair suggests some selective advantage which is likely to be associated with the presentation of pathogen antigen to T-cells and the induction of protective immunity.
Collapse
Affiliation(s)
- Keith T Ballingall
- Division of Epidemiology and Population Biology, Moredun Research Institute, Penicuik, United Kingdom.
| | | | | | | |
Collapse
|
259
|
Richman AD, Herrera M LG, Ortega-García S, Flores-Martínez JJ, Arroyo-Cabrales J, Morales-Malacara JB. Class II DRB polymorphism and sequence diversity in two vesper bats in the genus Myotis. Int J Immunogenet 2010; 37:401-5. [PMID: 21182749 DOI: 10.1111/j.1744-313x.2010.00941.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Almost no studies have been done with respect to major histocompatibility complex (MHC) polymorphism and sequence diversity in bats, although they account for one in five living mammalian species. We analysed MHC Class II DRB polymorphism and sequence diversity in two Mexican verpertilionid bat species, the widespread continental species Myotis velifer and the narrowly distributed (and endangered) island endemic Myotis vivesi. We find extensive DRB polymorphism in the widespread M. velifer, similar to that commonly reported in other mammals. The geographically restricted M. vivesi by contrast shows only very limited polymorphism. We conclude that M. vivesi has undergone a dramatic loss of MHC polymorphism. The significance of this inference in light of other information on population structure and genetic diversity in this species is discussed.
Collapse
Affiliation(s)
- A D Richman
- Plant Sciences Department, Montana State University, Bozeman, MT, USA
| | | | | | | | | | | |
Collapse
|
260
|
Wang D, Zhong L, Wei Q, Gan X, He S. Evolution of MHC class I genes in two ancient fish, paddlefish (Polyodon spathula
) and Chinese sturgeon (Acipenser sinensis
). FEBS Lett 2010; 584:3331-9. [DOI: 10.1016/j.febslet.2010.05.065] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Revised: 05/13/2010] [Accepted: 05/24/2010] [Indexed: 10/19/2022]
|
261
|
Gómez D, Conejeros P, Marshall SH, Consuegra S. MHC evolution in three salmonid species: a comparison between class II alpha and beta genes. Immunogenetics 2010; 62:531-42. [PMID: 20521040 DOI: 10.1007/s00251-010-0456-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Accepted: 05/15/2010] [Indexed: 11/26/2022]
Abstract
The genes of the major histocompatibility complex (MHC) are amongst the most variable in vertebrates and represent some of the best candidates to study processes of adaptive evolution. However, despite the number of studies available, most of the information on the structure and function of these genes come from studies in mammals and birds in which the MHC class I and II genes are tightly linked and class II alpha exhibits low variability in many cases. Teleost fishes are among the most primitive vertebrates with MHC and represent good organisms for the study of MHC evolution because their class I and class II loci are not physically linked, allowing for independent evolution of both classes of genes. We have compared the diversity and molecular mechanisms of evolution of classical MH class II alpha and class II beta loci in farm populations of three salmonid species: Oncorhynchus kisutch, Oncorhynchus mykiss and Salmo salar. We found single classical class II loci and high polymorphism at both class II alpha and beta genes in the three species. Mechanisms of evolution were common for both class II genes, with recombination and point mutation involved in generating diversity and positive selection acting on the peptide-binding residues. These results suggest that the maintenance of variability at the class IIalpha gene could be a mechanism to increase diversity in the MHC class II in salmonids in order to compensate for the expression of one single classical locus and to respond to a wider array of parasites.
Collapse
Affiliation(s)
- Daniela Gómez
- Instituto de Biología, Facultad de Ciencias Básicas y Matemáticas, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | | | | | | |
Collapse
|
262
|
Koehler RN, Walsh AM, Sanders-Buell EE, Eller LA, Eller M, Currier JR, Bautista CT, Wabwire-Mangen F, Hoelscher M, Maboko L, Kim J, Michael NL, Robb ML, McCutchan FE, Kijak GH. High-throughput high-resolution class I HLA genotyping in East Africa. PLoS One 2010; 5:e10751. [PMID: 20505773 PMCID: PMC2873994 DOI: 10.1371/journal.pone.0010751] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Accepted: 04/14/2010] [Indexed: 11/18/2022] Open
Abstract
HLA, the most genetically diverse loci in the human genome, play a crucial role in host-pathogen interaction by mediating innate and adaptive cellular immune responses. A vast number of infectious diseases affect East Africa, including HIV/AIDS, malaria, and tuberculosis, but the HLA genetic diversity in this region remains incompletely described. This is a major obstacle for the design and evaluation of preventive vaccines. Available HLA typing techniques, that provide the 4-digit level resolution needed to interpret immune responses, lack sufficient throughput for large immunoepidemiological studies. Here we present a novel HLA typing assay bridging the gap between high resolution and high throughput. The assay is based on real-time PCR using sequence-specific primers (SSP) and can genotype carriers of the 49 most common East African class I HLA-A, -B, and -C alleles, at the 4-digit level. Using a validation panel of 175 samples from Kampala, Uganda, previously defined by sequence-based typing, the new assay performed with 100% sensitivity and specificity. The assay was also implemented to define the HLA genetic complexity of a previously uncharacterized Tanzanian population, demonstrating its inclusion in the major East African genetic cluster. The availability of genotyping tools with this capacity will be extremely useful in the identification of correlates of immune protection and the evaluation of candidate vaccine efficacy.
Collapse
Affiliation(s)
- Rebecca N. Koehler
- United States Military HIV Research Program/Henry M. Jackson Foundation, Rockville, Maryland, United States of America
| | - Anne M. Walsh
- United States Military HIV Research Program/Henry M. Jackson Foundation, Rockville, Maryland, United States of America
| | - Eric E. Sanders-Buell
- United States Military HIV Research Program/Henry M. Jackson Foundation, Rockville, Maryland, United States of America
| | - Leigh Anne Eller
- Makerere University Walter Reed Research Project, Henry M. Jackson Foundation, Kampala, Uganda
| | - Michael Eller
- Makerere University Walter Reed Research Project, Henry M. Jackson Foundation, Kampala, Uganda
| | - Jeffrey R. Currier
- United States Military HIV Research Program/Henry M. Jackson Foundation, Rockville, Maryland, United States of America
| | - Christian T. Bautista
- United States Military HIV Research Program/Henry M. Jackson Foundation, Rockville, Maryland, United States of America
| | | | - Michael Hoelscher
- Department of Infectious Diseases and Tropical Medicine, University of Munich, Munich, Germany
- Mbeya Medical Research Program, Mbeya, Tanzania
| | | | - Jerome Kim
- United States Military HIV Research Program/Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Nelson L. Michael
- United States Military HIV Research Program/Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Merlin L. Robb
- United States Military HIV Research Program/Henry M. Jackson Foundation, Rockville, Maryland, United States of America
| | - Francine E. McCutchan
- United States Military HIV Research Program/Henry M. Jackson Foundation, Rockville, Maryland, United States of America
| | - Gustavo H. Kijak
- United States Military HIV Research Program/Henry M. Jackson Foundation, Rockville, Maryland, United States of America
- * E-mail:
| |
Collapse
|
263
|
[Single nucleotide polymorphisms in 22 HLA-Cw alleles in Chinese Han population]. YI CHUAN = HEREDITAS 2010; 32:473-9. [PMID: 20466636 DOI: 10.3724/sp.j.1005.2010.00473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
To analyze the molecular genetic polymorphism of full-length HLA-Cw gene, a total of 28 samples with known genotypes from Chinese Han population were amplified by long-range PCR using high-fidelity Pfu polymerase. A fragment 4.5 kb in length of HLA-Cw gene was subjected to cloning and haplotype sequencing. The single nucleotide polymorphisms (SNPs) in all segments of the whole region of HLA-Cw gene were analyzed. As a result, we detected 22 different HLA-Cw alleles in 28 samples, all of which were submitted to GenBank and the IMGT/HLA Database. Among the 22 HLA-Cw alleles, the intronic sequences of Cw*030301, Cw*0706 and Cw*140201 were firstly elucidated. The novel intronic sequence and the SNPs information may help to design allele-specific primers for accurate sequence-based typing (SBT) and to avoid allele dropout events in SBT test. We aligned all the diploid sequences using ClustalX program and imported them into Dnasp4.0 to calculate polymorphism in all coding- and non-coding regions. We found 244 SNPs and 10 insertion/deletions (Indels). According to the analysis of polymorphism level, phylogenetic trees and frequency spectrum, we proposed that the evolution of intron 4 and exon 5 was under balancing selection. Selection on these segments indicated that they may be functionally important in evolution of HLA-Cw gene. The full-length sequences obtained and related SNPs information can be used as resources of markers for high-resolution typing, complex diseases association studies and human evolution.
Collapse
|
264
|
Are there Ubiquitous Parasite-driven Major Histocompatibility Complex Selection Mechanisms in Gray Mouse Lemurs? INT J PRIMATOL 2010. [DOI: 10.1007/s10764-010-9411-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
265
|
Burri R, Salamin N, Studer RA, Roulin A, Fumagalli L. Adaptive Divergence of Ancient Gene Duplicates in the Avian MHC Class II. Mol Biol Evol 2010; 27:2360-74. [DOI: 10.1093/molbev/msq120] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
266
|
Galan M, Guivier E, Caraux G, Charbonnel N, Cosson JF. A 454 multiplex sequencing method for rapid and reliable genotyping of highly polymorphic genes in large-scale studies. BMC Genomics 2010; 11:296. [PMID: 20459828 PMCID: PMC2876125 DOI: 10.1186/1471-2164-11-296] [Citation(s) in RCA: 161] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Accepted: 05/11/2010] [Indexed: 11/10/2022] Open
Abstract
Background High-throughput sequencing technologies offer new perspectives for biomedical, agronomical and evolutionary research. Promising progresses now concern the application of these technologies to large-scale studies of genetic variation. Such studies require the genotyping of high numbers of samples. This is theoretically possible using 454 pyrosequencing, which generates billions of base pairs of sequence data. However several challenges arise: first in the attribution of each read produced to its original sample, and second, in bioinformatic analyses to distinguish true from artifactual sequence variation. This pilot study proposes a new application for the 454 GS FLX platform, allowing the individual genotyping of thousands of samples in one run. A probabilistic model has been developed to demonstrate the reliability of this method. Results DNA amplicons from 1,710 rodent samples were individually barcoded using a combination of tags located in forward and reverse primers. Amplicons consisted in 222 bp fragments corresponding to DRB exon 2, a highly polymorphic gene in mammals. A total of 221,789 reads were obtained, of which 153,349 were finally assigned to original samples. Rules based on a probabilistic model and a four-step procedure, were developed to validate sequences and provide a confidence level for each genotype. The method gave promising results, with the genotyping of DRB exon 2 sequences for 1,407 samples from 24 different rodent species and the sequencing of 392 variants in one half of a 454 run. Using replicates, we estimated that the reproducibility of genotyping reached 95%. Conclusions This new approach is a promising alternative to classical methods involving electrophoresis-based techniques for variant separation and cloning-sequencing for sequence determination. The 454 system is less costly and time consuming and may enhance the reliability of genotypes obtained when high numbers of samples are studied. It opens up new perspectives for the study of evolutionary and functional genetics of highly polymorphic genes like major histocompatibility complex genes in vertebrates or loci regulating self-compatibility in plants. Important applications in biomedical research will include the detection of individual variation in disease susceptibility. Similarly, agronomy will benefit from this approach, through the study of genes implicated in productivity or disease susceptibility traits.
Collapse
Affiliation(s)
- Maxime Galan
- INRA EFPA, UMR CBGP (INRA/IRD/Cirad/Montpellier SupAgro), Campus international de Baillarguet, CS 30016, F-34988 Montferrier-sur-Lez cedex, France.
| | | | | | | | | |
Collapse
|
267
|
Liu JX, Ely B. Evolution of an MHC class Ia gene fragment in four North American Morone species. JOURNAL OF FISH BIOLOGY 2010; 76:1984-1994. [PMID: 20557651 DOI: 10.1111/j.1095-8649.2010.02588.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
A nucleotide sequence analysis of a fragment of a Morone MHC class Ia gene detected high levels of polymorphism in striped bass Morone saxatilis, white perch Morone americana and yellow bass Morone mississippiensis. Extremely low levels of MHC diversity, however, were detected in white bass Morone chrysops, suggesting the possibility of a severe population bottleneck for this species.
Collapse
Affiliation(s)
- J-X Liu
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | | |
Collapse
|
268
|
Anmarkrud JA, Johnsen A, Bachmann L, Lifjeld JT. Ancestral polymorphism in exon 2 of bluethroat (Luscinia svecica) MHC class II B genes. J Evol Biol 2010; 23:1206-17. [PMID: 20456568 DOI: 10.1111/j.1420-9101.2010.01999.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The genes of the major histocompatibility complex (MHC) are important model genes for understanding selective forces in evolution. Here, we document, using a cloning and sequencing approach, high polymorphism at the exon 2 of the MHC class II B (MHCIIB) genes in the bluethroat (Luscinia svecica); a minimum of 61 unique alleles were detected in 20 individuals, and at least 11 functional loci. In addition, several pseudogenes were revealed. The specimens originated from three different bluethroat subspecies (azuricollis, cyanecula and svecica), and we also analysed four specimens of the closely related thrush nightingale (L. luscinia) for comparison. Phylogenetic analyses of the functional alleles revealed 258 equally parsimonious trees with poor statistical support for the majority of nodes. The distribution of the sequences in the trees point to an ancestral origin of the polymorphism in MHC class II B genes, a portion of which predated the phylogenetic split between the bluethroat and the thrush nightingale. Strong signatures of balancing selection were uncovered for the codons coding for the peptide-binding residues of the functional MHCIIB exon 2 alleles. Our results highlight the importance of duplication and recombination events for shaping passerine MHC and give insights in the evolutionary dynamics of MHC variation among closely related taxa.
Collapse
Affiliation(s)
- Jarl A Anmarkrud
- National Centre for Biosystematics, Natural History Museum, University of Oslo, Blindern, Oslo, Norway.
| | | | | | | |
Collapse
|
269
|
Lineage pattern, trans-species polymorphism, and selection pressure among the major lineages of feline MHC-DRB peptide-binding region. Immunogenetics 2010; 62:307-17. [PMID: 20372886 DOI: 10.1007/s00251-010-0440-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Accepted: 03/16/2010] [Indexed: 10/19/2022]
Abstract
The long-term evolution of major histocompatibility complex (MHC) involves the birth-and-death process and independent divergence of loci during episodes punctuated by natural selection. Here, we investigated the molecular signatures of natural selection at exon-2 of MHC class II DRB gene which includes a part of the peptide-binding region (PBR) in seven of eight putative extant Felidae lineages. The DRB alleles in felids can be mainly divided into five lineages. Signatures of trans-species polymorphism among major allelic lineages indicate that balancing selection has maintained the MHC polymorphism for a long evolutionary time. Analysis based on maximum likelihood models of codon substitution revealed overall purifying selection acting on the feline DRB. Sites that have undergone positive selection and those that are under divergent selective pressure among lineages were detected and found to fall within the putative PBR. This study increased our understanding of the nature of selective forces acting on DRB during feline radiation.
Collapse
|
270
|
Du H, Zheng J, Wu M, Zhao Q, Wang D. High MHC DQB variation and asymmetric allelic distribution in the endangered Yangtze finless porpoise, Neophocaena phocaenoides asiaeorientalis. Biochem Genet 2010; 48:433-49. [PMID: 20087659 DOI: 10.1007/s10528-009-9327-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2008] [Accepted: 11/05/2009] [Indexed: 10/20/2022]
Abstract
The endangered Yangtze finless porpoise is found in the middle and lower reaches of the Yangtze River and its adjoining big lakes. To explore the major histocompatibility complex (MHC) genetic diversity and allelic distribution patterns across its range, we investigated variation at DQB exon 2. From 76 porpoises, we identified 18 DQB sequences. The freshwater Yangtze populations had much higher allelic diversity than marine populations. Among these freshwater populations, the middle-reach population had higher allelic diversity than the lower-reach population. The high DQB diversity level, relative to that of a neutral mtDNA locus, suggests that balancing selection is acting at the DQB gene and that rapid evolution and local positive selection play critical roles in generating and retaining high MHC diversity in the freshwater population. As the balancing selection might be driven by environmental pathogens, we suggest that maintaining MHC variation should be a high priority in the conservation and management of this endangered population, especially as an ex situ conservation strategy.
Collapse
Affiliation(s)
- Hejun Du
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | | | | | | | | |
Collapse
|
271
|
Major histocompatibility complex variation and evolution at a single, expressed DQA locus in two genera of elephants. Immunogenetics 2010; 62:85-100. [DOI: 10.1007/s00251-009-0413-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Accepted: 11/12/2009] [Indexed: 10/20/2022]
|
272
|
Andrés AM, Hubisz MJ, Indap A, Torgerson DG, Degenhardt JD, Boyko AR, Gutenkunst RN, White TJ, Green ED, Bustamante CD, Clark AG, Nielsen R. Targets of balancing selection in the human genome. Mol Biol Evol 2009; 26:2755-64. [PMID: 19713326 PMCID: PMC2782326 DOI: 10.1093/molbev/msp190] [Citation(s) in RCA: 190] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2009] [Indexed: 12/29/2022] Open
Abstract
Balancing selection is potentially an important biological force for maintaining advantageous genetic diversity in populations, including variation that is responsible for long-term adaptation to the environment. By serving as a means to maintain genetic variation, it may be particularly relevant to maintaining phenotypic variation in natural populations. Nevertheless, its prevalence and specific targets in the human genome remain largely unknown. We have analyzed the patterns of diversity and divergence of 13,400 genes in two human populations using an unbiased single-nucleotide polymorphism data set, a genome-wide approach, and a method that incorporates demography in neutrality tests. We identified an unbiased catalog of genes with signatures of long-term balancing selection, which includes immunity genes as well as genes encoding keratins and membrane channels; the catalog also shows enrichment in functional categories involved in cellular structure. Patterns are mostly concordant in the two populations, with a small fraction of genes showing population-specific signatures of selection. Power considerations indicate that our findings represent a subset of all targets in the genome, suggesting that although balancing selection may not have an obvious impact on a large proportion of human genes, it is a key force affecting the evolution of a number of genes in humans.
Collapse
Affiliation(s)
- Aida M Andrés
- Department of Molecular Biology and Genetics, Cornell University, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
273
|
Bamshad M, Stephens JC. Assessing human variation data for signatures of natural selection. Cold Spring Harb Protoc 2009; 2009:pdb.top61. [PMID: 20150073 DOI: 10.1101/pdb.top61] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
In this article, we highlight some of the different types of natural selection, their effects on patterns of DNA variation, and some of the statistical tests that are commonly used to detect such effects. We also explain some of the relative strengths and weaknesses of different strategies that can be used to detect signatures of natural selection at individual loci. These strategies are illustrated by their application to empirical data from gene variants that are often associated with differences in disease susceptibility. We briefly outline some of the methods proposed to scan the genome for evidence of selection. Finally, we discuss some of the problems associated with identifying signatures of selection and with making inferences about the nature of the selective process.
Collapse
|
274
|
Eimes JA, Bollmer JL, Dunn PO, Whittingham LA, Wimpee C. Mhc class II diversity and balancing selection in greater prairie-chickens. Genetica 2009; 138:265-71. [PMID: 19851875 DOI: 10.1007/s10709-009-9417-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Accepted: 10/09/2009] [Indexed: 10/20/2022]
Abstract
The major histocompatibility complex (Mhc) of domestic chickens has been characterized as small and relatively simple compared with that of mammals. However, there is growing evidence that the Mhc of many bird lineages may be more complex, even within the Order Galliformes. In this study, we measured genetic variation and balancing selection at Mhc loci in another galliform, the greater prairie-chicken. We cloned and sequenced a 239 bp fragment of Mhc Class II beta-chain (BLB) exon 2 in 14 individuals. There was a total of 10 unique sequences and a minimum of four BLB loci. The d(N)/d(S) ratio at peptide-binding codons was significantly greater than one, suggesting balancing selection is acting on the BLB. We also recovered two YLB sequences, which clustered tightly with YLB sequences from three other species: domestic chicken, black grouse and common quail. The relatively large number of loci revealed in our study suggests that even closely related galliforms differ in the level of Mhc variation and structure.
Collapse
Affiliation(s)
- John A Eimes
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA.
| | | | | | | | | |
Collapse
|
275
|
Diversity and evolution of MHII β genes in a non-model percid species—The Eurasian perch (Perca fluviatilis L.). Mol Immunol 2009; 46:3399-410. [DOI: 10.1016/j.molimm.2009.07.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Revised: 07/14/2009] [Accepted: 07/16/2009] [Indexed: 11/20/2022]
|
276
|
Mason RAB, Browning TL, Eldridge MDB. Reduced MHC class II diversity in island compared to mainland populations of the black-footed rock-wallaby (Petrogale lateralis lateralis). CONSERV GENET 2009. [DOI: 10.1007/s10592-009-9993-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
277
|
Evans ML, Neff BD, Heath DD. MHC genetic structure and divergence across populations of Chinook salmon (Oncorhynchus tshawytscha). Heredity (Edinb) 2009; 104:449-59. [PMID: 19773808 DOI: 10.1038/hdy.2009.121] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The major histocompatibility complex (MHC) is thought to be under strong selection pressure because of its integral role in pathogen recognition. Consequently, patterns of MHC genetic variation should reflect selection pressures across the landscape. We examined genetic variation and population genetic structure at the MHC class I-A1 and class II-B1 exons in five Chinook salmon (Oncorhynchus tshawytscha) populations from two geographic regions in British Columbia, Canada. We then compared estimates of population structure at the MHC genes with neutral estimates based on microsatellites to examine the potential for local adaptation at the MHC. Chinook salmon are in decline throughout much of their native range and understanding the degree of local adaptation exhibited by the MHC may be important in conservation planning. Comparisons among populations yielded higher G'(ST) estimates for the MHC class I than expected under neutrality based on the microsatellites. In contrast, the MHC class II tended to exhibit lower G'(ST) values than did the microsatellites. These results suggest that across populations unique selection pressures are driving allele frequency differences at the MHC class I but that the MHC class II may be the subject of homogenizing selection. Rates of nonsynonymous versus synonymous substitutions found in codons associated within the MHC class I and II peptide-binding regions provided strong evidence of positive selection. Together, these results support the hypothesis that selection is influencing genetic variation at the MHC, but suggest that selection pressures may vary at the two classes of loci both at the sequence and population levels.
Collapse
Affiliation(s)
- M L Evans
- Department of Biology, University of Western Ontario, Ontario, Canada
| | | | | |
Collapse
|
278
|
Dionne M, Miller KM, Dodson JJ, Bernatchez L. MHC standing genetic variation and pathogen resistance in wild Atlantic salmon. Philos Trans R Soc Lond B Biol Sci 2009; 364:1555-65. [PMID: 19414470 DOI: 10.1098/rstb.2009.0011] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Pathogens are increasingly emerging in human-altered environments as a serious threat to biodiversity. In this context of rapid environmental changes, improving our knowledge on the interaction between ecology and evolution is critical. The objective of this study was to evaluate the influence of an immunocompetence gene, the major histocompatibility complex (MHC) class IIbeta, on the pathogen infection levels in wild Atlantic salmon populations, Salmo salar, and identify selective agents involved in contemporary coevolution. MHC variability and bacterial infection rate were determined throughout the summer in juvenile salmon from six rivers belonging to different genetic and ecological regions in Québec, Canada. A total of 13 different pathogens were identified in kidney by DNA sequence analysis, including a predominant myxozoa, most probably recently introduced in North America. Infection rates were the highest in southern rivers at the beginning of the summer (average 47.6+/-6.3% infected fish). One MHC allele conferred a 2.9 times greater chance of being resistant to myxozoa, while another allele increased susceptibility by 3.4 times. The decrease in frequency of the susceptibility allele but not other MHC or microsatellite alleles during summer was suggestive of a mortality event from myxozoa infection. These results supported the hypothesis of pathogen-driven selection in the wild by means of frequency-dependent selection or change in selection through time and space rather than heterozygous advantage, and underline the importance of MHC standing genetic variation for facing pathogens in a changing environment.
Collapse
Affiliation(s)
- Mélanie Dionne
- Département de Biologie, Université Laval, Québec, Canada.
| | | | | | | |
Collapse
|
279
|
Glaberman S, Moreno MA, Caccone A. Characterization and evolution of MHC class II B genes in Galápagos marine iguanas (Amblyrhynchus cristatus). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2009; 33:939-947. [PMID: 19454336 DOI: 10.1016/j.dci.2009.03.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2008] [Revised: 02/10/2009] [Accepted: 03/14/2009] [Indexed: 05/27/2023]
Abstract
Major histocompatibility complex (MHC) class II molecules play a key role in the adaptive immune system of vertebrates. Class II B genes appear to evolve in a very different manner in mammals and birds. Orthology is commonly observed among mammal loci, while genes tend to cluster phylogenetically within bird species. Here we present class II B data from a representative of another major group of amniotes, the squamates (i.e. lizards, snakes, amphisbaenians), with the ultimate goal of placing mammalian and avian MHC evolution into a broader context. In this study, eight class II B cDNA sequences were obtained from the Galápagos marine iguana (Amblyrhynchus cristatus) which were divided into five locus groups, Amcr-DAB1 through -DAB5, based on similarities along most of the coding and noncoding portions of the transcribed gene. All marine iguana sequences were monophyletic with respect to class II genes from other vertebrates indicating that they originated from a common ancestral locus after squamates split from other reptiles. The beta-1 domain, which is involved in antigen binding, exhibited signatures of positive selection as well as interlocus gene conversion in both long and short tracts-a pattern also observed in birds and fish, but not in mammals. On the other hand, the beta-2 domain was divergent between gene groups, which is characteristic of mammals. Based on these results, we preliminarily show that squamate class II B genes have been shaped by a unique blend of evolutionary forces that have been observed in differing degrees in other vertebrates.
Collapse
Affiliation(s)
- Scott Glaberman
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520-8105, United States.
| | | | | |
Collapse
|
280
|
Selection at the MHC class IIB locus across guppy (Poecilia reticulata) populations. Heredity (Edinb) 2009; 104:155-67. [DOI: 10.1038/hdy.2009.99] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
281
|
Promerová M, Albrecht T, Bryja J. Extremely high MHC class I variation in a population of a long-distance migrant, the Scarlet Rosefinch (Carpodacus erythrinus). Immunogenetics 2009; 61:451-61. [PMID: 19452149 DOI: 10.1007/s00251-009-0375-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2008] [Accepted: 04/20/2009] [Indexed: 11/25/2022]
Affiliation(s)
- M Promerová
- Department of Population Biology, Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, Studenec 122, 675 02 Konesín, Czech Republic.
| | | | | |
Collapse
|
282
|
Garamszegi LZ, de Groot NG, Bontrop RE. Correlated evolution of nucleotide substitution rates and allelic variation in Mhc-DRB lineages of primates. BMC Evol Biol 2009; 9:73. [PMID: 19361342 PMCID: PMC2674423 DOI: 10.1186/1471-2148-9-73] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Accepted: 04/12/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The major histocompatibility complex (MHC) is a key model of genetic polymorphism. Selection pressure by pathogens or other microevolutionary forces may result in a high rate of non-synonymous substitutions at the codons specifying the contact residues of the antigen binding sites (ABS), and the maintenance of extreme MHC allelic variation at the population/species level. Therefore, selection forces favouring MHC variability for any reason should cause a correlated evolution between substitution rates and allelic polymorphism. To investigate this prediction, we characterised nucleotide substitution rates and allelic polymorphism (i.e. the number of alleles detected in relation to the number of animals screened) of several Mhc class II DRB lineages in 46 primate species, and tested for a correlation between them. RESULTS First, we demonstrate that species-specific and lineage-specific evolutionary constraints favour species- and lineage-dependent substitution rate at the codons specifying the ABS contact residues (i.e. certain species and lineages can be characterised by high substitution rate, while others have low rate). Second, we show that although the degree of the non-synonymous substitution rate at the ABS contact residues was systematically higher than the degree of the synonymous substitution rate, these estimates were strongly correlated when we controlled for species-specific and lineage-specific effects, and also for the fact that different studies relied on different sample size. Such relationships between substitution rates of different types could even be extended to the non-contact residues of the molecule. Third, we provide statistical evidence that increased substitution rate along a MHC gene may lead to allelic variation, as a high substitution rate can be observed in those lineages in which many alleles are maintained. Fourth, we show that the detected patterns were independent of phylogenetic constraints. When we used phylogenetic models that control for similarity between species, due to common descent, and focused on variations within a single lineage (DRB1*03), the positive relationship between different substitution rates and allelic polymorphisms was still robust. Finally, we found the same effects to emerge in the analyses that eliminated within-species variation in MHC traits by using strictly single population-level studies. However, in a set of contrasting analyses, in which we focused on the non-functional DRB6 locus, the correlation between substitution rates and allelic variation was not prevalent. CONCLUSION Our results indicate that positive selection for the generation of allelic polymorphism acting on the functional part of the protein has consequences for the nucleotide substitution rate along the whole exon 2 sequence of the Mhc-DRB gene. Additionally, we proved that an increased substitution rate can promote allelic variation within lineages. Consequently, the evolution of different characteristics of genetic polymorphism is not independent.
Collapse
Affiliation(s)
- László Z Garamszegi
- Department of Biology, University of Antwerp, Campus Drie Eiken Universiteitsplein 1, B-2610 Wilrijk, Belgium
- Department of Evolutionary Ecology, Estación Biológica de Doñana-CSIC, c/Americo Vespucio, s/n, 41092, Sevilla, Spain
| | - Natasja G de Groot
- Department of Comparative Genetics and Refinement, Biomedical Primate Research Centre, PO Box 3306, 2280 GH Rijswijk, the Netherlands
| | - Ronald E Bontrop
- Department of Comparative Genetics and Refinement, Biomedical Primate Research Centre, PO Box 3306, 2280 GH Rijswijk, the Netherlands
| |
Collapse
|
283
|
McCleskey TM, Buchner V, Field RW, Scott BL. Recent advances in understanding the biomolecular basis of chronic beryllium disease: a review. REVIEWS ON ENVIRONMENTAL HEALTH 2009; 24:75-115. [PMID: 19658317 DOI: 10.1515/reveh.2009.24.2.75] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
In this review we summarize the work conducted over the past decade that has advanced our knowledge of pulmonary diseases associated with exposure to beryllium that has provided a molecular-based understanding of the chemistry, immunopathology, and immunogenetics of beryllium toxicity. Beryllium is a strong and lightweight metal that generates and reflects neutrons, resists corrosion, is transparent to X-rays, and conducts electricity. Beryllium is one of the most toxic elements on the periodic table, eliciting in susceptible humans (a) an allergic immune response known as beryllium sensitization (BeS); (b) acute beryllium disease, an acutely toxic, pneumonitis-like lung condition resulting from exposure to high beryllium concentrations that are rarely seen in modern industry; and (c) chronic beryllium disease (CBD) following either high or very low levels of exposure. Because of its exceptional strength, stability, and heat-absorbing capability, beryllium is used in many important technologies in the modern world. In the early 1940s, beryllium was recognized as posing an occupational hazard in manufacturing and production settings. Although acute beryllium disease is now rare, beryllium is an insidious poison with a latent toxicity and the risk of developing CBD persists. Chronic beryllium disease-a systemic granulomatous lung disorder caused by a specific delayed immune response to beryllium within a few months to several decades after exposure-has been called the "unrecognized epidemic". Although not a disease in itself, BeS, the innate immune response to beryllium identified by an abnormal beryllium lymphocyte proliferation test result, is a population-based predictor of CBD. Genetic susceptibility to CBD is associated with alleles of the major histocompatibility gene, human leukocyte antigen DP (HLA-DP) containing glutamic acid at the 69th position of the beta chain (HLA-DPbeta-E69). Other genes are likely to be involved in the disease process, and research on this issue is in progress. The current Occupational Safety & Health Administration permissible exposure limit of 2 microg/m3 has failed to protect workers from BeS/CBD. As a safe exposure limit that will not lead to BeS or CBD has not yet been determined, the realization that the risk of CBD persists has led to a renaissance in research on the effects of the metal on human health. Current data support further reductions in exposure levels to help minimize the incidence of CBD. Steps that would directly impact both the power of epidemiologic studies and the cost of surveillance would be to develop and validate improved screening and diagnostic tests, and to identify more genetic factors that affect either sensitization or disease process. The major focus of this review is the recent research on the cellular and molecular basis of beryllium sensitization and disease, using a multidisciplinary approach of bioinorganic chemistry and immunology. First we present a historical background of beryllium exposure and disease, followed by occurrence of beryllium in the environment, toxicokinetics, biological effects, beryllium lung disease, and other human health effects.
Collapse
Affiliation(s)
- T Mark McCleskey
- Biosciences Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| | | | | | | |
Collapse
|
284
|
Mona S, Crestanello B, Bankhead-Dronnet S, Pecchioli E, Ingrosso S, D'Amelio S, Rossi L, Meneguz PG, Bertorelle G. Disentangling the effects of recombination, selection, and demography on the genetic variation at a major histocompatibility complex class II gene in the alpine chamois. Mol Ecol 2009; 17:4053-67. [PMID: 19238706 DOI: 10.1111/j.1365-294x.2008.03892.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The major histocompatibility complex (MHC) harbours some of the most polymorphic loci in vertebrate genomes. MHC genes are thought to be subject to some form of balancing selection, most likely pathogen-mediated selection. Hence, MHC genes are excellent candidates for exploring adaptive processes. In this study, we investigated the genetic variation at exon 2 of the DRB class II MHC locus in 191 alpine chamois (Rupicapra rupicapra) from 10 populations in the eastern Alps of Italy. In particular, we were interested in distinguishing and estimating the relative impact of selective and demographic factors, while taking into account the confounding effect of recombination. The extremely high d(n)/d(s) ratio and the presence of trans-species polymorphisms suggest that a strong long-term balancing selection effect has been operating at this locus throughout the evolutionary history of this species. We analysed patterns of genetic variation within and between populations, and the mitochondrial D-loop polymorphism patterns were analysed to provide a baseline indicator of the effects of demographic processes. These analyses showed that (i) the chamois experienced a demographic decline in the last 5000-30 000 years, most likely related to the postglacial elevation in temperature; (ii) this demographic process can explain the results of neutrality tests applied to MHC variation within populations, but cannot justify the much weaker divergence between populations implied by MHC as opposed to mitochondrial DNA; (iii) similar sets of divergent alleles are probably maintained with similar frequencies by balancing selection in different populations, and this mechanism is also operating in small isolated populations, which are strongly affected by drift.
Collapse
Affiliation(s)
- S Mona
- Department of Biology and Evolution, University of Ferrara, Via Borsari 46, 44100 Ferrara, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
285
|
MHC class II variation in the endangered European mink Mustela lutreola (L. 1761)—consequences for species conservation. Immunogenetics 2009; 61:281-8. [PMID: 19263000 DOI: 10.1007/s00251-009-0362-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2008] [Accepted: 02/13/2009] [Indexed: 10/21/2022]
|
286
|
Putaporntip C, Jongwutiwes S, Hughes AL. Natural selection maintains a stable polymorphism at the circumsporozoite protein locus of Plasmodium falciparum in a low endemic area. INFECTION GENETICS AND EVOLUTION 2009; 9:567-73. [PMID: 19460323 DOI: 10.1016/j.meegid.2009.02.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2008] [Revised: 02/06/2009] [Accepted: 02/16/2009] [Indexed: 11/29/2022]
Abstract
Circumsporozoite protein gene sequences of Plasmodium falciparum were collected in 1996-1997 and in 2006-2007 from a single endemic area in Thailand. Repeat units were more similar within the same haplotype than between haplotypes, supporting the hypothesis that repeat arrays evolve by a process of concerted evolution. There was evidence that natural selection has favored amino acid changes in the Th2R and Th3R T-cell epitope regions. One haplotype in these epitopes, designated *5/*1, occurred in approximately 70% of sequences in both collection periods. The most common other haplotypes differed from *5/*1 by at least two amino acid replacements; and divergence in the epitopes was correlated with divergence in the repeats. These patterns are most consistent with balancing selection driven by interactions with the immune system of the vertebrate host, probably involving both T-cell recognition of the Th2R and Th3R epitopes and antibody responses to the repeats.
Collapse
Affiliation(s)
- Chaturong Putaporntip
- Department of Parasitology, Faculty of Medicine, Molecular Biology of Malaria and Opportunistic Parasites Research Unit, Chulalongkorn University, Bangkok, Thailand
| | | | | |
Collapse
|
287
|
Teacher AGF, Garner TWJ, Nichols RA. Evidence for directional selection at a novel major histocompatibility class I marker in wild common frogs (Rana temporaria) exposed to a viral pathogen (Ranavirus). PLoS One 2009; 4:e4616. [PMID: 19240796 PMCID: PMC2643007 DOI: 10.1371/journal.pone.0004616] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Accepted: 01/21/2009] [Indexed: 11/23/2022] Open
Abstract
Whilst the Major Histocompatibility Complex (MHC) is well characterized in the anuran Xenopus, this region has not previously been studied in another popular model species, the common frog (Rana temporaria). Nor, to date, have there been any studies of MHC in wild amphibian host-pathogen systems. We characterise an MHC class I locus in the common frog, and present primers to amplify both the whole region, and specifically the antigen binding region. As no more than two expressed haplotypes were found in over 400 clones from 66 individuals, it is likely that there is a single class I locus in this species. This finding is consistent with the single class I locus in Xenopus, but contrasts with the multiple loci identified in axolotls, providing evidence that the diversification of MHC class I into multiple loci likely occurred after the Caudata/Anura divergence (approximately 350 million years ago) but before the Ranidae/Pipidae divergence (approximately 230 mya). We use this locus to compare wild populations of common frogs that have been infected with a viral pathogen (Ranavirus) with those that have no history of infection. We demonstrate that certain MHC supertypes are associated with infection status (even after accounting for shared ancestry), and that the diseased populations have more similar supertype frequencies (lower FST) than the uninfected. These patterns were not seen in a suite of putatively neutral microsatellite loci. We interpret this pattern at the MHC locus to indicate that the disease has imposed selection for particular haplotypes, and hence that common frogs may be adapting to the presence of Ranavirus, which currently kills tens of thousands of amphibians in the UK each year.
Collapse
Affiliation(s)
- Amber G F Teacher
- School of Biological and Chemical Sciences, Queen Mary, University of London, London, United Kingdom.
| | | | | |
Collapse
|
288
|
Johnson WE, Sawyer SL. Molecular evolution of the antiretroviral TRIM5 gene. Immunogenetics 2009; 61:163-76. [PMID: 19238338 DOI: 10.1007/s00251-009-0358-y] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Accepted: 01/28/2009] [Indexed: 01/08/2023]
Abstract
In 2004, the first report of TRIM5alpha as a cellular antiretroviral factor triggered intense interest among virologists, particularly because some primate orthologs of TRIM5alpha have activity against HIV. Since that time, a complex and eventful evolutionary history of the TRIM5 locus has emerged. A review of the TRIM5 literature constitutes a veritable compendium of evolutionary phenomena, including elevated rates of nonsynonymous substitution, divergence in subdomains due to short insertions and deletions, expansions and contractions in gene copy number, pseudogenization, balanced polymorphism, trans-species polymorphism, convergent evolution, and the acquisition of new domains by exon capture. Unlike most genes, whose history is dominated by long periods of purifying selection interspersed with rare instances of genetic innovation, analysis of restriction factor loci is likely to be complicated by the unpredictable and more-or-less constant influence of positive selection. In this regard, the molecular evolution and population genetics of restriction factor loci most closely resemble patterns that have been documented for immunity genes, such as class I and II MHC genes, whose products interact directly with microbial targets. While the antiretroviral activity encoded by TRIM5 provides plausible mechanistic hypotheses for these unusual evolutionary observations, evolutionary analyses have reciprocated by providing significant insights into the structure and function of the TRIM5alpha protein. Many of the lessons learned from TRIM5 should be applicable to the study of other restriction factor loci, and molecular evolutionary analysis could facilitate the discovery of new antiviral factors, particularly among the many TRIM genes whose functions remain as yet unidentified.
Collapse
Affiliation(s)
- Welkin E Johnson
- Department of Microbiology and Molecular Genetics, New England Primate Research Center, Harvard Medical School, Southborough, MA, USA.
| | | |
Collapse
|
289
|
Silva MC, Edwards SV. Structure and evolution of a new avian MHC class II B gene in a sub-Antarctic seabird, the thin-billed prion (Procellariiformes: Pachyptila belcheri). J Mol Evol 2009; 68:279-91. [PMID: 19209378 DOI: 10.1007/s00239-009-9200-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Revised: 01/09/2009] [Accepted: 01/12/2009] [Indexed: 10/21/2022]
Abstract
The major histocompatibility complex encodes molecules that present foreign peptides to T cells of the immune system. The peptide binding region (PBR) of these molecules is among the most polymorphic regions found in vertebrate taxa. Genomic cloning approaches are improving our understanding of the evolution of this multigene family in nonmodel avian groups. By building a cosmid library, a new MHC class II B gene, Pabe-DAB1, was isolated and characterized at the genomic level in a sub-Antarctic seabird, the thin-billed prion (Pachyptila belcheri). Pabe-DAB1 exhibits the hallmark structural features of functional MHC class II loci. Direct sequencing of the PBR encoding exon in a panel of prions revealed significantly higher levels of genetic diversity compared to two noncoding neutral loci, with most alleles differing by at least one replacement substitution in the peptide binding codons. We estimated evolutionary dynamics for Pabe-DAB1 using a variety of Bayesian and other approaches. Evidence for balancing selection comes from a spatially variable ratio of nonsynonymous-to-synonymous substitutions (mean d (N)/d (S) = 2.87) in the PBR, with sites predicted to be functionally relevant exhibiting the highest omega values. We estimate the population recombination rate to be approximately 0.3 per site per generation, indicating an important role for recombination in generating polymorphism at this locus. Pabe-DAB1 is among the few avian class II loci characterized at the genomic level and with a known intron-exon structure, a feature that greatly facilitated the amplification and sequencing of a single MHC locus in this species.
Collapse
Affiliation(s)
- Mónica C Silva
- Department of Biology, University of Washington, Box 351800, Seattle, WA 98195, USA.
| | | |
Collapse
|
290
|
Turner SM, Chaves-Campos J, DeWoody JA. Parental relatedness and major histocompatibility effects on early embryo survivorship in Atlantic salmon. Genetica 2009; 137:99-109. [PMID: 19184462 DOI: 10.1007/s10709-009-9354-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Accepted: 01/16/2009] [Indexed: 11/29/2022]
Abstract
Salmon have provided key insights into the relative influence of natural and sexual selection on major histocompatibility complex (MHC) variation. Natural selection on salmon MHC genes has been demonstrated in pathogen studies, and there is evidence of MHC-based mate choice (sexual selection). We tested whether parental MHC genes affect survivorship of juvenile Atlantic salmon (Salmo salar) by quantifying the influence of parental genome-wide relatedness and MHC genotype on survivorship to the swim-up stage. Thirteen microsatellite loci were used to estimate the influence of genome-wide relatedness between parents on offspring survivorship and MHC genotypes were determined by sequencing part of the class IIbeta gene. Our results revealed no significant relationship between early offspring survivorship and genome-wide relatedness, predicted MHC heterozygosity, or MHC allelic similarity. Overall, our data are consistent with the contention that excess MHC heterozygosity in Atlantic salmon juveniles is due to sexual selection as well as differential survival of offspring due to MHC genotype.
Collapse
Affiliation(s)
- Sara M Turner
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN 47907, USA.
| | | | | |
Collapse
|
291
|
Oliver MK, Lambin X, Cornulier T, Piertney SB. Spatio-temporal variation in the strength and mode of selection acting on major histocompatibility complex diversity in water vole (Arvicola terrestris) metapopulations. Mol Ecol 2009; 18:80-92. [PMID: 19140966 DOI: 10.1111/j.1365-294x.2008.04015.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Patterns of spatio-temporal genetic variation at a class II major histocompatibility complex (MHC) locus and multiple microsatellite loci were analysed within and between three water vole metapopulations in Scotland, UK. Comparisons of MHC and microsatellite spatial genetic differentiation, based on standardised tests between two demographically asynchronous zones within a metapopulation, suggested that spatial MHC variation was affected by balancing selection, directional selection and random genetic drift, but that the relative effects of these microevolutionary forces vary temporally. At the metapopulation level, between-year differentiation for MHC loci was significantly correlated with that of microsatellites, signifying that neutral factors such as migration and drift were primarily responsible for overall temporal genetic change at the metapopulation scale. Between metapopulations, patterns of genetic differentiation implied that, at large spatial scales, MHC variation was primarily affected by directional selection and drift. Levels of MHC heterozygosity in excess of Hardy-Weinberg expectations were consistent with overdominant balancing selection operating on MHC variation within metapopulations. However, this effect was not constant among all samples, indicating temporal variation in the strength of selection relative to other factors. The results highlight the benefit of contrasting variation at MHC with neutral markers to separate the effects of stochastic and deterministic microevolutionary forces, and add to a growing body of evidence showing that the mode and relative strength of selection acting on MHC diversity varies both spatially and temporally.
Collapse
Affiliation(s)
- Matthew K Oliver
- School of Biological Sciences, University of Aberdeen, Zoology Building, Aberdeen AB24 2TZ, Scotland, UK.
| | | | | | | |
Collapse
|
292
|
Goüy de Bellocq J, Suchentrunk F, Baird SJE, Schaschl H. Evolutionary history of an MHC gene in two leporid species: characterisation of Mhc-DQA in the European brown hare and comparison with the European rabbit. Immunogenetics 2008; 61:131-44. [PMID: 19104797 DOI: 10.1007/s00251-008-0349-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2008] [Accepted: 12/02/2008] [Indexed: 10/21/2022]
Abstract
We surveyed the genetic diversity of the expressed major histocompatibility complex class II DQA locus in natural populations of European brown hares, Lepus europaeus, from Austria and Belgium (267 individuals in total). Based on cDNA sequences, we designed hare-specific primers to amplify the highly variable second exon of the DQA gene. Using cloning-sequencing methodology and capillary electrophoresis single-strand conformation polymorphism, we found ten alleles of the DQA exon 2 locus across these two European regions, of which eight are described for the first time. To search for signals of selection and recombination in the evolution of the DQA gene within the leporids, we augmented our sample with orthologous DQA alleles from the European rabbit, Oryctolagus cuniculus, in order to carry out a species level, species pairwise comparison. We found evidence of recombination in the history of the DQA sequences in leporids with some recombinant alleles bridging the species divide. In both species, selection on peptide binding site codons can be detected, though stronger for the rabbit. This result suggests that there may be a differential selection pressure in the deeper evolutionary history of these two species due to differences in several demographic and ecological traits likely subjecting them to differential selection by parasites. Finally, evolutionary relationships show a widespread and statistically significant intermingling of alleles from the two species. The many macroparasites shared between hares and rabbits may explain this pattern of trans-species polymorphism.
Collapse
Affiliation(s)
- Joëlle Goüy de Bellocq
- Research Institute of Wildlife Ecology, University of Veterinary Medicine, Vienna, Vienna, Austria.
| | | | | | | |
Collapse
|
293
|
Ekblom R, Saether SA, Fiske P, Kålås JA, Höglund J. Balancing selection, sexual selection and geographic structure in MHC genes of Great Snipe. Genetica 2008; 138:453-61. [PMID: 19052880 DOI: 10.1007/s10709-008-9335-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2008] [Accepted: 11/17/2008] [Indexed: 11/28/2022]
Affiliation(s)
- Robert Ekblom
- Population Biology, Evolutionary Biology Center, Uppsala University, Norbyvägen 18D, 752 36 Uppsala, Sweden.
| | | | | | | | | |
Collapse
|
294
|
Takeshima S, Matsumoto Y, Chen J, Yoshida T, Mukoyama H, Aida Y. Evidence for cattle major histocompatibility complex (BoLA) class IIDQA1gene heterozygote advantage against clinical mastitis caused byStreptococciandEscherichiaspecies. ACTA ACUST UNITED AC 2008; 72:525-31. [DOI: 10.1111/j.1399-0039.2008.01140.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
295
|
Butlin RK, Galindo J, Grahame JW. Review. Sympatric, parapatric or allopatric: the most important way to classify speciation? Philos Trans R Soc Lond B Biol Sci 2008; 363:2997-3007. [PMID: 18522915 DOI: 10.1098/rstb.2008.0076] [Citation(s) in RCA: 191] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The most common classification of modes of speciation begins with the spatial context in which divergence occurs: sympatric, parapatric or allopatric. This classification is unsatisfactory because it divides a continuum into discrete categories, concentrating attention on the extremes, and it subordinates other dimensions on which speciation processes vary, such as the forces driving differentiation and the genetic basis of reproductive isolation. It also ignores the fact that speciation is a prolonged process that commonly has phases in different spatial contexts. We use the example of local adaptation and partial reproductive isolation in the intertidal gastropod Littorina saxatilis to illustrate the inadequacy of the spatial classification of speciation modes. Parallel divergence in shell form in response to similar environmental gradients in England, Spain and Sweden makes this an excellent model system. However, attempts to demonstrate 'incipient' and 'sympatric' speciation involve speculation about the future and the past. We suggest that it is more productive to study the current balance between local adaptation and gene flow, the interaction between components of reproductive isolation and the genetic basis of differentiation.
Collapse
Affiliation(s)
- Roger K Butlin
- Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK.
| | | | | |
Collapse
|
296
|
Abstract
In the majority of sexual organisms, reproduction occurs almost exclusively through the combination of distinct and alternate forms, called sexes or mating types. In some fungi, there can be dozens to hundreds of alternate alleles that determine compatible mating types. Such extensive polymorphism is expected to be maintained by balancing selection, and in extreme cases may give rise to trans-specific polymorphism. Here, we analyzed sequences of two pheromone receptors in the Microbotryum fungal species complex (Basidiomycota), which has only two alternate mating types. Several lines of evidence strongly suggest that the pheromone receptors are two allelic sequences acting to determine the alternate A1 and A2 mating types required for mating in Microbotryum. Phylogenetic trees of pheromone receptors in the Microbotryum species complex indicated a trans-specific polymorphism: the Microbotryum sequences from a given mating type were all more similar to the pheromone receptors of distantly related classes of fungi than to the alternate pheromone receptor in the Microbotryum species. A phylogenetic tree built using other known pheromone receptors from basidiomycetes showed that trans-specific polymorphism is widespread. The pheromone receptor alleles from Microbotryum appeared as the oldest, being at least 370 million years old. This represents the oldest known trans-specific polymorphism known in any organism so far, which may be due to the existence of sex chromosomes, obligate sexuality, mitochondrial inheritance linked to the mating type, and a highly selfing mating system in Microbotryum.
Collapse
|
297
|
Busch JD, Waser PM, DeWoody JA. Characterization of expressed class II MHC sequences in the banner-tailed kangaroo rat (Dipodomys spectabilis) reveals multiple DRB loci. Immunogenetics 2008; 60:677-88. [DOI: 10.1007/s00251-008-0323-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Accepted: 07/16/2008] [Indexed: 11/24/2022]
|
298
|
Takemoto Y, Naruse T, Namba K, Kitaichi N, Ota M, Shindo Y, Mizuki N, Gul A, Madanat W, Chams H, Davatchi F, Inoko H, Ohno S, Kimura A. Re-evaluation of heterogeneity in HLA-B*510101 associated with Behçet’s disease. ACTA ACUST UNITED AC 2008; 72:347-53. [DOI: 10.1111/j.1399-0039.2008.01111.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
299
|
Cagliani R, Fumagalli M, Riva S, Pozzoli U, Comi GP, Menozzi G, Bresolin N, Sironi M. The signature of long-standing balancing selection at the human defensin beta-1 promoter. Genome Biol 2008; 9:R143. [PMID: 18817538 PMCID: PMC2592704 DOI: 10.1186/gb-2008-9-9-r143] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2008] [Revised: 05/21/2008] [Accepted: 09/25/2008] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Defensins, small endogenous peptides with antimicrobial activity, are pivotal components of the innate immune response. A large cluster of defensin genes is located on human chromosome 8p; among them the beta defensin 1 (DEFB1) promoterhas been extensively studied since discovery that specific polymorphisms and haplotypes associate with asthma and atopy, susceptibility to severe sepsis, as well as HIV and Candida infection predisposition. RESULTS Here, we characterize the sequence variation and haplotype structure of the DEFB1 promoter region in six human populations. In all of them, we observed high levels of nucleotide variation, an excess of intermediate-frequency alleles, reduced population differentiation and a genealogy with common haplotypes separated by deep branches. Indeed, a significant departure from the expectation of evolutionary neutrality was observed in all populations and the possibility that this is due to demographic history alone was ruled out. Also, we verified that the selection signature is restricted to the promoter region and not due to a linked balanced polymorphism. A phylogeny-based estimation indicated that the two major haplotype clades separated around 4.5 million years ago, approximately the time when the human and chimpanzee lineages split. CONCLUSION Altogether, these features represent strong molecular signatures of long-term balancing selection, a process that is thought to be extremely rare outside major histocompatibility complex genes. Our data indicate that the DEFB1 promoter region carries functional variants and support previous hypotheses whereby alleles predisposing to atopic disorders are widespread in modern societies because they conferred resistance to pathogens in ancient settings.
Collapse
Affiliation(s)
- Rachele Cagliani
- Scientific Institute IRCCS E. Medea, Bioinformatic Lab, Via don L. Monza 20, 23842 Bosisio Parini (LC), Italy
| | - Matteo Fumagalli
- Scientific Institute IRCCS E. Medea, Bioinformatic Lab, Via don L. Monza 20, 23842 Bosisio Parini (LC), Italy
- Bioengineering Department, Politecnico di Milano, Pzza L. da Vinci, 32, 20133 Milan, Italy
| | - Stefania Riva
- Scientific Institute IRCCS E. Medea, Bioinformatic Lab, Via don L. Monza 20, 23842 Bosisio Parini (LC), Italy
| | - Uberto Pozzoli
- Scientific Institute IRCCS E. Medea, Bioinformatic Lab, Via don L. Monza 20, 23842 Bosisio Parini (LC), Italy
| | - Giacomo P Comi
- Dino Ferrari Centre, Department of Neurological Sciences, University of Milan, IRCCS Ospedale Maggiore Policlinico, Mangiagalli and Regina Elena Foundation, Via F. Sforza 35, 20100 Milan, Italy
| | - Giorgia Menozzi
- Scientific Institute IRCCS E. Medea, Bioinformatic Lab, Via don L. Monza 20, 23842 Bosisio Parini (LC), Italy
| | - Nereo Bresolin
- Scientific Institute IRCCS E. Medea, Bioinformatic Lab, Via don L. Monza 20, 23842 Bosisio Parini (LC), Italy
- Dino Ferrari Centre, Department of Neurological Sciences, University of Milan, IRCCS Ospedale Maggiore Policlinico, Mangiagalli and Regina Elena Foundation, Via F. Sforza 35, 20100 Milan, Italy
| | - Manuela Sironi
- Scientific Institute IRCCS E. Medea, Bioinformatic Lab, Via don L. Monza 20, 23842 Bosisio Parini (LC), Italy
| |
Collapse
|
300
|
Affiliation(s)
- Xiaonan Yang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai and National Engineering Center for BioChip at Shanghai, Shanghai 201203, China;
- Laboratory of Microbial Molecular Physiology, Institute of Plant Physiology and Ecology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Hongliang Yang
- Laboratory of Microbial Molecular Physiology, Institute of Plant Physiology and Ecology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- Department of Microbiology and Parasitology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Gangqiao Zhou
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 102206, China
| | - Guo-Ping Zhao
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai and National Engineering Center for BioChip at Shanghai, Shanghai 201203, China;
- Laboratory of Microbial Molecular Physiology, Institute of Plant Physiology and Ecology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|