251
|
Abstract
The present review assesses the current state of literature defining integrative autonomic-immune physiological processing, focusing on studies that have employed electrophysiological, pharmacological, molecular biological, and central nervous system experimental approaches. Central autonomic neural networks are informed of peripheral immune status via numerous communicating pathways, including neural and non-neural. Cytokines and other immune factors affect the level of activity and responsivity of discharges in sympathetic and parasympathetic nerves innervating diverse targets. Multiple levels of the neuraxis contribute to cytokine-induced changes in efferent parasympathetic and sympathetic nerve outflows, leading to modulation of peripheral immune responses. The functionality of local sympathoimmune interactions depends on the microenvironment created by diverse signaling mechanisms involving integration between sympathetic nervous system neurotransmitters and neuromodulators; specific adrenergic receptors; and the presence or absence of immune cells, cytokines, and bacteria. Functional mechanisms contributing to the cholinergic anti-inflammatory pathway likely involve novel cholinergic-adrenergic interactions at peripheral sites, including autonomic ganglion and lymphoid targets. Immune cells express adrenergic and nicotinic receptors. Neurotransmitters released by sympathetic and parasympathetic nerve endings bind to their respective receptors located on the surface of immune cells and initiate immune-modulatory responses. Both sympathetic and parasympathetic arms of the autonomic nervous system are instrumental in orchestrating neuroimmune processes, although additional studies are required to understand dynamic and complex adrenergic-cholinergic interactions. Further understanding of regulatory mechanisms linking the sympathetic nervous, parasympathetic nervous, and immune systems is critical for understanding relationships between chronic disease development and immune-associated changes in autonomic nervous system function.
Collapse
Affiliation(s)
- M J Kenney
- Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas
| | | |
Collapse
|
252
|
Kaiser D, Weise G, Möller K, Scheibe J, Pösel C, Baasch S, Gawlitza M, Lobsien D, Diederich K, Minnerup J, Kranz A, Boltze J, Wagner DC. Spontaneous white matter damage, cognitive decline and neuroinflammation in middle-aged hypertensive rats: an animal model of early-stage cerebral small vessel disease. Acta Neuropathol Commun 2014; 2:169. [PMID: 25519173 PMCID: PMC4279586 DOI: 10.1186/s40478-014-0169-8] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 11/25/2014] [Indexed: 12/11/2022] Open
Abstract
Introduction Cerebral small vessel disease (cSVD) is one of the most prevalent neurological disorders. The progressive remodeling of brain microvessels due to arterial hypertension or other vascular risk factors causes subtle, but constant cognitive decline through to manifest dementia and substantially increases the risk for stroke. Preliminary evidence suggests the contribution of the immune system to disease initiation and progression, but a more detailed understanding is impaired by the unavailability of appropriate animal models. Here, we introduce the spontaneously hypertensive rat (SHR) as a model for early onset cSVD and unveiled substantial immune changes in conjunction with brain abnormalities that resemble clinical findings. Results In contrast to age-matched normotensive Wistar Kyoto (WKY) rats, male SHR exhibited non-spatial memory deficits. Magnetic resonance imaging showed brain atrophy and a reduction of white matter volumes in SHR. Histological analyses confirmed white matter demyelination and unveiled a circumscribed blood brain barrier dysfunction in conjunction with micro- and macrogliosis in deep cortical regions. Flow cytometry and histological analyses further revealed substantial disparities in cerebral CD45high leukocyte counts and distribution patterns between SHR and WKY. SHR showed lower counts of T cells in the choroid plexus and meningeal spaces as well as decreased interleukin-10 levels in the cerebrospinal fluid. On the other hand, both T and NK cells were significantly augmented in the SHR brain microvasculature. Conclusions Our results indicate that SHR share behavioral and neuropathological characteristics with human cSVD patients and further undergird the relevance of immune responses for the initiation and progression of cSVD. Electronic supplementary material The online version of this article (doi:10.1186/s40478-014-0169-8) contains supplementary material, which is available to authorized users.
Collapse
|
253
|
Sriramula S, Xia H, Xu P, Lazartigues E. Brain-targeted angiotensin-converting enzyme 2 overexpression attenuates neurogenic hypertension by inhibiting cyclooxygenase-mediated inflammation. Hypertension 2014; 65:577-86. [PMID: 25489058 DOI: 10.1161/hypertensionaha.114.04691] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Overactivity of the renin-angiotensin system, oxidative stress, and cyclooxygenases (COX) in the brain are implicated in the pathogenesis of hypertension. We previously reported that angiotensin-converting enzyme 2 (ACE2) overexpression in the brain attenuates the development of deoxycorticosterone acetate-salt hypertension, a neurogenic hypertension model with enhanced brain renin-angiotensin system and sympathetic activity. To elucidate the mechanisms involved, we investigated whether oxidative stress, mitogen-activated protein kinase signaling and cyclooxygenase (COX) activation in the brain are modulated by ACE2 in neurogenic hypertension. Deoxycorticosterone acetate-salt hypertension significantly increased expression of Nox-2 (+61±5%), Nox-4 (+50±13%), and nitrotyrosine (+89±32%) and reduced activity of the antioxidant enzymes, catalase (-29±4%) and superoxide dismutase (-31±7%), indicating increased oxidative stress in the brain of nontransgenic mice. This increased oxidative stress was attenuated in transgenic mice overexpressing ACE2 in the brain. Deoxycorticosterone acetate-salt-induced reduction of neuronal nitric oxide synthase expression (-26±7%) and phosphorylated endothelial nitric oxide synthase/total endothelial nitric oxide synthase (-30±3%), and enhanced phosphorylation of protein kinase B and extracellular signal-regulated kinase 1/2 in the paraventricular nucleus, were reversed by ACE2 overexpression. In addition, ACE2 overexpression blunted the hypertension-mediated increase in gene and protein expression of COX-1 and COX-2 in the paraventricular nucleus. Furthermore, gene silencing of either COX-1 or COX-2 in the brain, reduced microglial activation and accompanied neuroinflammation, ultimately attenuating Deoxycorticosterone acetate-salt hypertension. Together, these data provide evidence that brain ACE2 overexpression reduces oxidative stress and COX-mediated neuroinflammation, improves antioxidant and nitric oxide signaling, and thereby attenuates the development of neurogenic hypertension.
Collapse
Affiliation(s)
- Srinivas Sriramula
- Department of Pharmacology and Experimental Therapeutics, Neurosciences and Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans
| | - Huijing Xia
- Department of Pharmacology and Experimental Therapeutics, Neurosciences and Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans
| | - Ping Xu
- Department of Pharmacology and Experimental Therapeutics, Neurosciences and Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans
| | - Eric Lazartigues
- Department of Pharmacology and Experimental Therapeutics, Neurosciences and Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans.
| |
Collapse
|
254
|
Afsar B, Takir M, Kostek O, Covic A, Kanbay M. Endocan: a new molecule playing a role in the development of hypertension and chronic kidney disease? J Clin Hypertens (Greenwich) 2014; 16:914-6. [PMID: 25376269 PMCID: PMC8031535 DOI: 10.1111/jch.12440] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 09/23/2014] [Accepted: 09/23/2014] [Indexed: 12/15/2022]
Abstract
Recently, endocan-formerly known as endothelial cell-specific molecule 1 (ESM-1)--was found to be associated with entities such as cancer, hypertension, renal transplant rejection, and chronic renal failure. Endothelial cells of many organs secrete endocan, but the exact functions of this relatively new molecule have not been elucidated completely. Emerging evidence suggests, however, that endocan plays an important role in inflammation, upregulation of cell adhesion molecules, lymphocyte functions, and endothelial cytoskeleton rearrangement. As suggested above, endocan has a prognostic impact in hypertension, transplant rejection, and chronic renal failure. In the current review, the evidence regarding endocan, hypertension, and chronic renal failure are summarized.
Collapse
Affiliation(s)
- Baris Afsar
- Department of NephrologyKonya Numune State HospitalKonyaTurkey
| | - Mumtaz Takir
- Department of MedicineIstanbul Medeniyet University School of MedicineIstanbulTurkey
| | - Osman Kostek
- Department of MedicineIstanbul Medeniyet University School of MedicineIstanbulTurkey
| | - Adrian Covic
- Department of NephrologyUniversity Hospital Dr C.I. ParhonIasiRomania
| | - Mehmet Kanbay
- Division of NephrologyDepartment of MedicineKoc University School of MedicineIstanbulTurkey
| |
Collapse
|
255
|
Reporter mouse strain provides a novel look at angiotensin type-2 receptor distribution in the central nervous system. Brain Struct Funct 2014; 221:891-912. [PMID: 25427952 DOI: 10.1007/s00429-014-0943-1] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 11/07/2014] [Indexed: 02/07/2023]
Abstract
Angiotensin-II acts at its type-1 receptor (AT1R) in the brain to regulate body fluid homeostasis, sympathetic outflow and blood pressure. However, the role of the angiotensin type-2 receptor (AT2R) in the neural control of these processes has received far less attention, largely because of limited ability to effectively localize these receptors at a cellular level in the brain. The present studies combine the use of a bacterial artificial chromosome transgenic AT2R-enhanced green fluorescent protein (eGFP) reporter mouse with recent advances in in situ hybridization (ISH) to circumvent this obstacle. Dual immunohistochemistry (IHC)/ISH studies conducted in AT2R-eGFP reporter mice found that eGFP and AT2R mRNA were highly co-localized within the brain. Qualitative analysis of eGFP immunoreactivity in the brain then revealed localization to neurons within nuclei that regulate blood pressure, metabolism, and fluid balance (e.g., NTS and median preoptic nucleus [MnPO]), as well as limbic and cortical areas known to impact stress responding and mood. Subsequently, dual IHC/ISH studies uncovered the phenotype of specific populations of AT2R-eGFP cells. For example, within the NTS, AT2R-eGFP neurons primarily express glutamic acid decarboxylase-1 (80.3 ± 2.8 %), while a smaller subset express vesicular glutamate transporter-2 (18.2 ± 2.9 %) or AT1R (8.7 ± 1.0 %). No co-localization was observed with tyrosine hydroxylase in the NTS. Although AT2R-eGFP neurons were not observed within the paraventricular nucleus (PVN) of the hypothalamus, eGFP immunoreactivity is localized to efferents terminating in the PVN and within GABAergic neurons surrounding this nucleus. These studies demonstrate that central AT2R are positioned to regulate blood pressure, metabolism, and stress responses.
Collapse
|
256
|
Shi P, Grobe JL, Desland FA, Zhou G, Shen XZ, Shan Z, Liu M, Raizada MK, Sumners C. Direct pro-inflammatory effects of prorenin on microglia. PLoS One 2014; 9:e92937. [PMID: 25302502 PMCID: PMC4193744 DOI: 10.1371/journal.pone.0092937] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 08/19/2014] [Indexed: 11/18/2022] Open
Abstract
Neuroinflammation has been implicated in hypertension, and microglia have been proposed to play an important role in the progression of this disease. Here, we have studied whether microglia are activated within cardiovascular regulatory area(s) of the brain during hypertension, especially in high blood pressure that is associated with chronic activation of the renin-angiotensin-system. In addition, we determined whether prorenin, an essential component of the renin-angiotensin-system, exerts direct pro-inflammatory effects on these microglia. Our data indicate that two rodent models which display neurogenic hypertension and over activation of the renin-angiotensin-system in the brain (sRA mice and spontaneously hypertensive rats) exhibit microglial activation, and increased levels of pro-inflammatory cytokines, in the paraventricular nucleus of the hypothalamus, an area crucial for regulation of sympathetic outflow. Further, the renin-angiotensin-system component prorenin elicits direct activation of hypothalamic microglia in culture and induction of pro-inflammatory mechanisms in these cells, effects that involve prorenin receptor-induced NFκB activation. In addition, the prorenin-elicited increases in cytokine expression were fully abolished by microglial inhibitor minocycline, and were potentiated by pre-treatment of cells with angiotensin II. Taken together with our previous data which indicate that pro-inflammatory processes in the paraventricular nucleus are involved in the hypertensive action of renin-angiotensin-system, the novel discovery that prorenin exerts direct stimulatory effects on microglial activation and pro-inflammatory cytokine production provides support for the idea that renin-angiotensin-system -induced neurogenic hypertension is not restricted to actions of angiotensin II alone.
Collapse
Affiliation(s)
- Peng Shi
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, Florida, United States of America
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Justin L. Grobe
- Department of Pharmacology, Roy J & Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Fiona A. Desland
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Guannan Zhou
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Xiao Z. Shen
- Department of Biomedical Science, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Zhiying Shan
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, Florida, United States of America
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, Michigan, United States of America
| | - Meng Liu
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Mohan K. Raizada
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Colin Sumners
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, Florida, United States of America
- * E-mail:
| |
Collapse
|
257
|
Wei SG, Zhang ZH, Yu Y, Felder RB. Central SDF-1/CXCL12 expression and its cardiovascular and sympathetic effects: the role of angiotensin II, TNF-α, and MAP kinase signaling. Am J Physiol Heart Circ Physiol 2014; 307:H1643-54. [PMID: 25260613 DOI: 10.1152/ajpheart.00432.2014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The chemokine stromal cell-derived factor-1 (SDF-1/CXCL12) and its receptors are expressed by neurons and glial cells in cardiovascular autonomic regions of the brain, including the hypothalamic paraventricular nucleus (PVN), and contribute to neurohumoral excitation in rats with ischemia-induced heart failure. The present study examined factors regulating the expression of SDF-1 in the PVN and mechanisms mediating its sympatho-excitatory effects. In urethane anesthetized rats, a 4-h intracerebroventricular (ICV) infusion of angiotensin II (ANG II) or tumor necrosis factor-α (TNF-α) in doses that increase mean blood pressure (MBP) and sympathetic drive increased the expression of SDF-1 in PVN. ICV administration of SDF-1 increased the phosphorylation of p44/42 mitogen-activated protein kinase (MAPK), JNK, and p38 MAPK in PVN, along with MBP, heart rate (HR), and renal sympathetic nerve activity (RSNA), but did not affect total p44/42 MAPK, JNK, and p38 MAPK levels. ICV pretreatment with the selective p44/42 MAPK inhibitor PD98059 prevented the SDF-1-induced increases in MBP, HR, and RSNA; ICV pretreatment with the selective JNK and p38 MAPK inhibitors attenuated but did not block these SDF-1-induced excitatory responses. ICV PD98059 also prevented the sympatho-excitatory response to bilateral PVN microinjections of SDF-1. ICV pretreatment with SDF-1 short-hairpin RNA significantly reduced ANG II- and TNF-α-induced phosphorylation of p44/42 MAPK in PVN. These findings identify TNF-α and ANG II as drivers of SDF-1 expression in PVN and suggest that the full expression of their cardiovascular and sympathetic effects depends upon SDF-1-mediated activation of p44/42 MAPK signaling.
Collapse
Affiliation(s)
- Shun-Guang Wei
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa; and
| | - Zhi-Hua Zhang
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa; and
| | - Yang Yu
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa; and
| | - Robert B Felder
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa; and Veterans Affairs Medical Center, Iowa City, Iowa
| |
Collapse
|
258
|
Song XA, Jia LL, Cui W, Zhang M, Chen W, Yuan ZY, Guo J, Li HH, Zhu GQ, Liu H, Kang YM. Inhibition of TNF-α in hypothalamic paraventricular nucleus attenuates hypertension and cardiac hypertrophy by inhibiting neurohormonal excitation in spontaneously hypertensive rats. Toxicol Appl Pharmacol 2014; 281:101-8. [PMID: 25223692 DOI: 10.1016/j.taap.2014.09.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Revised: 08/20/2014] [Accepted: 09/04/2014] [Indexed: 02/07/2023]
Abstract
We hypothesized that chronic inhibition of tumor necrosis factor-alpha (TNF-α) in the hypothalamic paraventricular nucleus (PVN) delays the progression of hypertension and attenuates cardiac hypertrophy by up-regulating anti-inflammatory cytokines, reducing pro-inflammatory cytokines (PICs), decreasing nuclear factor-κB (NF-κB) p65 and NAD(P)H oxidase activities, as well as restoring the neurotransmitters balance in the PVN of spontaneously hypertensive rats (SHR). Adult normotensive Wistar-Kyoto (WKY) and SHR rats received bilateral PVN infusion of a TNF-α blocker (pentoxifylline or etanercept) or vehicle for 4weeks. SHR rats showed higher mean arterial pressure and cardiac hypertrophy compared with WKY rats, as indicated by increased whole heart weight/body weight ratio, whole heart weight/tibia length ratio, left ventricular weight/tibia length ratio, and cardiac atrial natriuretic peptide (ANP) and beta-myosin heavy chain (β-MHC) mRNA expressions. Compared with WKY rats, SHR rats had higher PVN levels of tyrosine hydroxylase, PICs, the chemokine monocyte chemoattractant protein-1 (MCP-1), NF-κB p65 activity, mRNA expressions of NOX-2 and NOX-4, and lower PVN levels of IL-10 and 67-kDa isoform of glutamate decarboxylase (GAD67), and higher plasma norepinephrine. PVN infusion of pentoxifylline or etanercept attenuated all these changes in SHR rats. These findings suggest that SHR rats have an imbalance between excitatory and inhibitory neurotransmitters, as well as an imbalance between pro- and anti-inflammatory cytokines in the PVN; and chronic inhibition of TNF-α in the PVN delays the progression of hypertension by restoring the balances of neurotransmitters and cytokines in the PVN, and attenuating PVN NF-κB p65 activity and oxidative stress, thereby attenuating hypertension-induced sympathetic hyperactivity and cardiac hypertrophy.
Collapse
Affiliation(s)
- Xin-Ai Song
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an Jiaotong University School of Medicine, Xi'an 710061, China
| | - Lin-Lin Jia
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an Jiaotong University School of Medicine, Xi'an 710061, China
| | - Wei Cui
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an 710061, China
| | - Meng Zhang
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an Jiaotong University School of Medicine, Xi'an 710061, China
| | - Wensheng Chen
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Zu-Yi Yuan
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an 710061, China
| | - Jing Guo
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an Jiaotong University School of Medicine, Xi'an 710061, China
| | - Hui-Hua Li
- Key Laboratory of Remodeling-related Cardiovascular Diseases, Department of Pathology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Guo-Qing Zhu
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing 210029, China
| | - Hao Liu
- Department of Neurosurgery, First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an 710061, China.
| | - Yu-Ming Kang
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an Jiaotong University School of Medicine, Xi'an 710061, China.
| |
Collapse
|
259
|
Takao T, Horino T, Matsumoto R, Shimamura Y, Ogata K, Inoue K, Taniguchi Y, Taguchi T, Terada Y. Possible roles of tumor necrosis factor-α and angiotensin II type 1 receptor on high glucose-induced damage in renal proximal tubular cells. Ren Fail 2014; 37:160-4. [PMID: 25222109 DOI: 10.3109/0886022x.2014.959434] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Recent studies have identified that high glucose-induced renal tubular cell damage. We previously demonstrated that high glucose treatment induced oxidative stress in human renal proximal tubular epithelial cells (RPTECs), and angiotensin II type 1 (AT1) receptor blockers reduce high glucose-induced oxidative stress in RPTEC possibly via blockade of intracellular as well as extracellular AT1 receptor. However, exact roles of tumor necrosis factor (TNF)-α and AT1 receptor on high glucose-induced renal tubular function remain unclear. N-acetyl-beta-glucosaminidase (NAG), concentrations of TNF-α/angiotensin II and p22(phox) protein levels after high glucose treatment with or without AT1 receptor blocker or thalidomide, an inhibitor of TNF-α protein synthesis, were measured in immortalized human renal proximal tubular epithelial cells (HK2 cells). AT1 receptor knockdown was performed with AT1 receptor small interfering RNA (siRNA). High glucose treatment (30 mM) significantly increased NAG release, TNF-α/angiotensin II concentrations in cell media and p22(phox) protein levels compared with those in regular glucose medium (5.6 mM). Candesartan, an AT1R blocker, showed a significant reduction on high glucose-induced NAG release, TNF-α concentrations and p22(phox) protein levels in HK2 cells. In addition, significant decreases of NAG release, TNF-α concentrations and p22(phox) protein levels in HK2 cells were observed in high glucose-treated group with thalidomide. AT1R knockdown with siRNA markedly reversed high glucose, angiotensin II or TNF-α-induced p22(phox) protein levels in HK2 cells. TNF-α may be involved in high glucose-induced renal tubular damage in HK2 cells possibly via AT1 receptor signaling.
Collapse
Affiliation(s)
- Toshihiro Takao
- Department of Health Care Medicine, Kawasaki Medical School , Kurashiki , Japan and
| | | | | | | | | | | | | | | | | |
Collapse
|
260
|
Ji H, Zheng W, Li X, Liu J, Wu X, Zhang MA, Umans JG, Hay M, Speth RC, Dunn SE, Sandberg K. Sex-specific T-cell regulation of angiotensin II-dependent hypertension. Hypertension 2014; 64:573-82. [PMID: 24935938 PMCID: PMC4133294 DOI: 10.1161/hypertensionaha.114.03663] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Studies suggest T cells modulate arterial pressure. Because robust sex differences exist in the immune system and in hypertension, we investigated sex differences in T-cell modulation of angiotensin II-induced increases in mean arterial pressure in male (M) and female (F) wild-type and recombination-activating-gene-1-deficient (Rag1(-/-)) mice. Sex differences in peak mean arterial pressure in wild-type were lost in Rag1(-/-) mice (mm Hg: wild-type-F, 136±4.9 versus wild-type-M, 153±1.7; P<0.02; Rag1(-/-)-F, 135±2.1 versus Rag1(-/-)-M, 141±3.8). Peak mean arterial pressure was 13 mm Hg higher after adoptive transfer of male (CD3(M)→Rag1(-/-)-M) versus female (CD3(F)→Rag1(-/-)-M) T cells. CD3(M)→Rag1(-/-)-M mice exhibited higher splenic frequencies of proinflammatory interleukin-17A (2.4-fold) and tumor necrosis factor-α (2.2-fold)-producing T cells and lower plasma levels (13-fold) and renal mRNA expression (2.4-fold) of interleukin-10, whereas CD3(F)→Rag1(-/-)-M mice displayed a higher activation state in general and T-helper-1-biased renal inflammation. Greater T-cell infiltration into perivascular adipose tissue and kidney associated with increased pressor responses to angiotensin II if the T cell donor was male but not female and these sex differences in T-cell subset expansion and tissue infiltration were maintained for 7 to 8 weeks within the male host. Thus, the adaptive immune response and role of pro- and anti-inflammatory cytokine signaling in hypertension are distinct between the sexes and need to be understood to improve therapeutics for hypertension-associated disease in both men and women.
Collapse
Affiliation(s)
- Hong Ji
- From the Department of Medicine and Center for the Study of Sex Differences in Health, Aging, and Disease (H.J., W.Z., X.L., J.L., X.W., J.G.U., K.S.) and Department of Pharmacology and Physiology and Center for Development of Radioligands (R.C.S.), Georgetown University, Washington, DC; Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Science, Jilin University, Changchun, Jilin, People's Republic of China (X.L.); Biorepository and Biochemistry Laboratory, MedStar Health Research Institute, Hyattsville, MD (J.G.U.); Georgetown-Howard Universities Center for Clinical and Translational Science, Washington, DC (H.J., W.Z., X.L., J.L., X.W., J.G.U., K.S.); Department of Physiology and the Evelyn F. McKnight Brain Institute, University of Arizona at Tucson (M.H.); Department of Pharmaceutical Sciences, College of Pharmacy, Nova South Eastern University, Fort Lauderdale, FL (R.C.S.); Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada (M.A.Z., S.E.D.); Department of Immunology, University of Toronto, Toronto, Ontario, Canada (M.A.Z., S.E.D.); and Women's College Research Institute, Toronto, Ontario, Canada (S.E.D.).
| | - Wei Zheng
- From the Department of Medicine and Center for the Study of Sex Differences in Health, Aging, and Disease (H.J., W.Z., X.L., J.L., X.W., J.G.U., K.S.) and Department of Pharmacology and Physiology and Center for Development of Radioligands (R.C.S.), Georgetown University, Washington, DC; Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Science, Jilin University, Changchun, Jilin, People's Republic of China (X.L.); Biorepository and Biochemistry Laboratory, MedStar Health Research Institute, Hyattsville, MD (J.G.U.); Georgetown-Howard Universities Center for Clinical and Translational Science, Washington, DC (H.J., W.Z., X.L., J.L., X.W., J.G.U., K.S.); Department of Physiology and the Evelyn F. McKnight Brain Institute, University of Arizona at Tucson (M.H.); Department of Pharmaceutical Sciences, College of Pharmacy, Nova South Eastern University, Fort Lauderdale, FL (R.C.S.); Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada (M.A.Z., S.E.D.); Department of Immunology, University of Toronto, Toronto, Ontario, Canada (M.A.Z., S.E.D.); and Women's College Research Institute, Toronto, Ontario, Canada (S.E.D.)
| | - Xiangjun Li
- From the Department of Medicine and Center for the Study of Sex Differences in Health, Aging, and Disease (H.J., W.Z., X.L., J.L., X.W., J.G.U., K.S.) and Department of Pharmacology and Physiology and Center for Development of Radioligands (R.C.S.), Georgetown University, Washington, DC; Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Science, Jilin University, Changchun, Jilin, People's Republic of China (X.L.); Biorepository and Biochemistry Laboratory, MedStar Health Research Institute, Hyattsville, MD (J.G.U.); Georgetown-Howard Universities Center for Clinical and Translational Science, Washington, DC (H.J., W.Z., X.L., J.L., X.W., J.G.U., K.S.); Department of Physiology and the Evelyn F. McKnight Brain Institute, University of Arizona at Tucson (M.H.); Department of Pharmaceutical Sciences, College of Pharmacy, Nova South Eastern University, Fort Lauderdale, FL (R.C.S.); Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada (M.A.Z., S.E.D.); Department of Immunology, University of Toronto, Toronto, Ontario, Canada (M.A.Z., S.E.D.); and Women's College Research Institute, Toronto, Ontario, Canada (S.E.D.)
| | - Jun Liu
- From the Department of Medicine and Center for the Study of Sex Differences in Health, Aging, and Disease (H.J., W.Z., X.L., J.L., X.W., J.G.U., K.S.) and Department of Pharmacology and Physiology and Center for Development of Radioligands (R.C.S.), Georgetown University, Washington, DC; Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Science, Jilin University, Changchun, Jilin, People's Republic of China (X.L.); Biorepository and Biochemistry Laboratory, MedStar Health Research Institute, Hyattsville, MD (J.G.U.); Georgetown-Howard Universities Center for Clinical and Translational Science, Washington, DC (H.J., W.Z., X.L., J.L., X.W., J.G.U., K.S.); Department of Physiology and the Evelyn F. McKnight Brain Institute, University of Arizona at Tucson (M.H.); Department of Pharmaceutical Sciences, College of Pharmacy, Nova South Eastern University, Fort Lauderdale, FL (R.C.S.); Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada (M.A.Z., S.E.D.); Department of Immunology, University of Toronto, Toronto, Ontario, Canada (M.A.Z., S.E.D.); and Women's College Research Institute, Toronto, Ontario, Canada (S.E.D.)
| | - Xie Wu
- From the Department of Medicine and Center for the Study of Sex Differences in Health, Aging, and Disease (H.J., W.Z., X.L., J.L., X.W., J.G.U., K.S.) and Department of Pharmacology and Physiology and Center for Development of Radioligands (R.C.S.), Georgetown University, Washington, DC; Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Science, Jilin University, Changchun, Jilin, People's Republic of China (X.L.); Biorepository and Biochemistry Laboratory, MedStar Health Research Institute, Hyattsville, MD (J.G.U.); Georgetown-Howard Universities Center for Clinical and Translational Science, Washington, DC (H.J., W.Z., X.L., J.L., X.W., J.G.U., K.S.); Department of Physiology and the Evelyn F. McKnight Brain Institute, University of Arizona at Tucson (M.H.); Department of Pharmaceutical Sciences, College of Pharmacy, Nova South Eastern University, Fort Lauderdale, FL (R.C.S.); Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada (M.A.Z., S.E.D.); Department of Immunology, University of Toronto, Toronto, Ontario, Canada (M.A.Z., S.E.D.); and Women's College Research Institute, Toronto, Ontario, Canada (S.E.D.)
| | - Monan Angela Zhang
- From the Department of Medicine and Center for the Study of Sex Differences in Health, Aging, and Disease (H.J., W.Z., X.L., J.L., X.W., J.G.U., K.S.) and Department of Pharmacology and Physiology and Center for Development of Radioligands (R.C.S.), Georgetown University, Washington, DC; Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Science, Jilin University, Changchun, Jilin, People's Republic of China (X.L.); Biorepository and Biochemistry Laboratory, MedStar Health Research Institute, Hyattsville, MD (J.G.U.); Georgetown-Howard Universities Center for Clinical and Translational Science, Washington, DC (H.J., W.Z., X.L., J.L., X.W., J.G.U., K.S.); Department of Physiology and the Evelyn F. McKnight Brain Institute, University of Arizona at Tucson (M.H.); Department of Pharmaceutical Sciences, College of Pharmacy, Nova South Eastern University, Fort Lauderdale, FL (R.C.S.); Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada (M.A.Z., S.E.D.); Department of Immunology, University of Toronto, Toronto, Ontario, Canada (M.A.Z., S.E.D.); and Women's College Research Institute, Toronto, Ontario, Canada (S.E.D.)
| | - Jason G Umans
- From the Department of Medicine and Center for the Study of Sex Differences in Health, Aging, and Disease (H.J., W.Z., X.L., J.L., X.W., J.G.U., K.S.) and Department of Pharmacology and Physiology and Center for Development of Radioligands (R.C.S.), Georgetown University, Washington, DC; Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Science, Jilin University, Changchun, Jilin, People's Republic of China (X.L.); Biorepository and Biochemistry Laboratory, MedStar Health Research Institute, Hyattsville, MD (J.G.U.); Georgetown-Howard Universities Center for Clinical and Translational Science, Washington, DC (H.J., W.Z., X.L., J.L., X.W., J.G.U., K.S.); Department of Physiology and the Evelyn F. McKnight Brain Institute, University of Arizona at Tucson (M.H.); Department of Pharmaceutical Sciences, College of Pharmacy, Nova South Eastern University, Fort Lauderdale, FL (R.C.S.); Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada (M.A.Z., S.E.D.); Department of Immunology, University of Toronto, Toronto, Ontario, Canada (M.A.Z., S.E.D.); and Women's College Research Institute, Toronto, Ontario, Canada (S.E.D.)
| | - Meredith Hay
- From the Department of Medicine and Center for the Study of Sex Differences in Health, Aging, and Disease (H.J., W.Z., X.L., J.L., X.W., J.G.U., K.S.) and Department of Pharmacology and Physiology and Center for Development of Radioligands (R.C.S.), Georgetown University, Washington, DC; Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Science, Jilin University, Changchun, Jilin, People's Republic of China (X.L.); Biorepository and Biochemistry Laboratory, MedStar Health Research Institute, Hyattsville, MD (J.G.U.); Georgetown-Howard Universities Center for Clinical and Translational Science, Washington, DC (H.J., W.Z., X.L., J.L., X.W., J.G.U., K.S.); Department of Physiology and the Evelyn F. McKnight Brain Institute, University of Arizona at Tucson (M.H.); Department of Pharmaceutical Sciences, College of Pharmacy, Nova South Eastern University, Fort Lauderdale, FL (R.C.S.); Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada (M.A.Z., S.E.D.); Department of Immunology, University of Toronto, Toronto, Ontario, Canada (M.A.Z., S.E.D.); and Women's College Research Institute, Toronto, Ontario, Canada (S.E.D.)
| | - Robert C Speth
- From the Department of Medicine and Center for the Study of Sex Differences in Health, Aging, and Disease (H.J., W.Z., X.L., J.L., X.W., J.G.U., K.S.) and Department of Pharmacology and Physiology and Center for Development of Radioligands (R.C.S.), Georgetown University, Washington, DC; Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Science, Jilin University, Changchun, Jilin, People's Republic of China (X.L.); Biorepository and Biochemistry Laboratory, MedStar Health Research Institute, Hyattsville, MD (J.G.U.); Georgetown-Howard Universities Center for Clinical and Translational Science, Washington, DC (H.J., W.Z., X.L., J.L., X.W., J.G.U., K.S.); Department of Physiology and the Evelyn F. McKnight Brain Institute, University of Arizona at Tucson (M.H.); Department of Pharmaceutical Sciences, College of Pharmacy, Nova South Eastern University, Fort Lauderdale, FL (R.C.S.); Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada (M.A.Z., S.E.D.); Department of Immunology, University of Toronto, Toronto, Ontario, Canada (M.A.Z., S.E.D.); and Women's College Research Institute, Toronto, Ontario, Canada (S.E.D.)
| | - Shannon E Dunn
- From the Department of Medicine and Center for the Study of Sex Differences in Health, Aging, and Disease (H.J., W.Z., X.L., J.L., X.W., J.G.U., K.S.) and Department of Pharmacology and Physiology and Center for Development of Radioligands (R.C.S.), Georgetown University, Washington, DC; Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Science, Jilin University, Changchun, Jilin, People's Republic of China (X.L.); Biorepository and Biochemistry Laboratory, MedStar Health Research Institute, Hyattsville, MD (J.G.U.); Georgetown-Howard Universities Center for Clinical and Translational Science, Washington, DC (H.J., W.Z., X.L., J.L., X.W., J.G.U., K.S.); Department of Physiology and the Evelyn F. McKnight Brain Institute, University of Arizona at Tucson (M.H.); Department of Pharmaceutical Sciences, College of Pharmacy, Nova South Eastern University, Fort Lauderdale, FL (R.C.S.); Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada (M.A.Z., S.E.D.); Department of Immunology, University of Toronto, Toronto, Ontario, Canada (M.A.Z., S.E.D.); and Women's College Research Institute, Toronto, Ontario, Canada (S.E.D.)
| | - Kathryn Sandberg
- From the Department of Medicine and Center for the Study of Sex Differences in Health, Aging, and Disease (H.J., W.Z., X.L., J.L., X.W., J.G.U., K.S.) and Department of Pharmacology and Physiology and Center for Development of Radioligands (R.C.S.), Georgetown University, Washington, DC; Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Science, Jilin University, Changchun, Jilin, People's Republic of China (X.L.); Biorepository and Biochemistry Laboratory, MedStar Health Research Institute, Hyattsville, MD (J.G.U.); Georgetown-Howard Universities Center for Clinical and Translational Science, Washington, DC (H.J., W.Z., X.L., J.L., X.W., J.G.U., K.S.); Department of Physiology and the Evelyn F. McKnight Brain Institute, University of Arizona at Tucson (M.H.); Department of Pharmaceutical Sciences, College of Pharmacy, Nova South Eastern University, Fort Lauderdale, FL (R.C.S.); Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada (M.A.Z., S.E.D.); Department of Immunology, University of Toronto, Toronto, Ontario, Canada (M.A.Z., S.E.D.); and Women's College Research Institute, Toronto, Ontario, Canada (S.E.D.)
| |
Collapse
|
261
|
Li HB, Qin DN, Ma L, Miao YW, Zhang DM, Lu Y, Song XA, Zhu GQ, Kang YM. Chronic infusion of lisinopril into hypothalamic paraventricular nucleus modulates cytokines and attenuates oxidative stress in rostral ventrolateral medulla in hypertension. Toxicol Appl Pharmacol 2014; 279:141-9. [PMID: 24937322 DOI: 10.1016/j.taap.2014.06.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Revised: 05/07/2014] [Accepted: 06/06/2014] [Indexed: 02/05/2023]
Abstract
The hypothalamic paraventricular nucleus (PVN) and rostral ventrolateral medulla (RVLM) play a critical role in the generation and maintenance of sympathetic nerve activity. The renin-angiotensin system (RAS) in the brain is involved in the pathogenesis of hypertension. This study was designed to determine whether inhibition of the angiotensin-converting enzyme (ACE) in the PVN modulates cytokines and attenuates oxidative stress (ROS) in the RVLM, and decreases the blood pressure and sympathetic activity in renovascular hypertensive rats. Renovascular hypertension was induced in male Sprague-Dawley rats by the two-kidney one-clip (2K1C) method. Renovascular hypertensive rats received bilateral PVN infusion with ACE inhibitor lisinopril (LSP, 10μg/h) or vehicle via osmotic minipump for 4weeks. Mean arterial pressure (MAP), renal sympathetic nerve activity (RSNA), and plasma proinflammatory cytokines (PICs) were significantly increased in renovascular hypertensive rats. The renovascular hypertensive rats also had higher levels of ACE in the PVN, and lower level of interleukin-10 (IL-10) in the RVLM. In addition, the levels of PICs, the chemokine MCP-1, the subunit of NAD(P)H oxidase (gp91(phox)) and ROS in the RVLM were increased in hypertensive rats. PVN treatment with LSP attenuated those changes occurring in renovascular hypertensive rats. Our findings suggest that the beneficial effects of ACE inhibition in the PVN in renovascular hypertension are partly due to modulation cytokines and attenuation oxidative stress in the RVLM.
Collapse
Affiliation(s)
- Hong-Bao Li
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an Jiaotong University School of Medicine, Xi'an 710061, China
| | - Da-Nian Qin
- Department of Physiology, Shantou University Medical College, Shantou 515041, China.
| | - Le Ma
- Department of Public Health, Xi'an Jiaotong University School of Medicine, Xi'an 710061, China
| | - Yu-Wang Miao
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an Jiaotong University School of Medicine, Xi'an 710061, China
| | - Dong-Mei Zhang
- Department of Physiology, Dalian Medical University, Dalian 116044, China
| | - Yan Lu
- Department of Clinical Laboratory, Sanaitang Hospital, Lanzhou 730030, China
| | - Xin-Ai Song
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an Jiaotong University School of Medicine, Xi'an 710061, China
| | - Guo-Qing Zhu
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing 210029, China
| | - Yu-Ming Kang
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an Jiaotong University School of Medicine, Xi'an 710061, China.
| |
Collapse
|
262
|
Rana I, Badoer E, Alahmadi E, Leo CH, Woodman OL, Stebbing MJ. Microglia are selectively activated in endocrine and cardiovascular control centres in streptozotocin-induced diabetic rats. J Neuroendocrinol 2014; 26:413-25. [PMID: 24762326 DOI: 10.1111/jne.12161] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 03/20/2014] [Accepted: 04/16/2014] [Indexed: 12/30/2022]
Abstract
Type 1 and 2 diabetes are associated with dysfunction in multiple hormone systems, as well as increased sympathetic nerve activity, which may contribute to the development of diabetic complications. In other pathologies, such as myocardial infarction, increased sympathetic drive is associated with neuroinflammation and microglial activation in the hypothalamic paraventricular nucleus (PVN), a brain region that regulates sympathetic drive and multiple endocrine responses. In the present study, we used immunohistochemistry to study microglial and neuronal activation in the PVN and related brain regions in streptozotocin (STZ)-induced diabetic rats. As expected, STZ treatment was associated with elevated blood glucose within 1 week. STZ injections also caused neuronal activation in the PVN and superoptic nucleus (SON) but not in the nucleus tractus solitarius (NTS), which was evident by 6 weeks. STZ-treated rats showed increased plasma osmolarity, which would be expected to activate PVN and SON neurones. There was no apparent increase in histochemical markers of microglial activation, including phospho-p38, phospho-extracellular signal regulated kinase, P2X4 receptor or interleukin 1-β even at 10 weeks after STZ-treatment. However, we did see a significant increase in the percentage of microglia with an activated morphology in the PVN, SON and NTS, although not in surrounding hypothalamic, brainstem or cortical regions. These morphological changes included a significant reduction in microglial process length and were evident by 8 weeks but not 6 weeks. The delayed onset of microglial changes compared to neuronal activation in the PVN and SON suggests the over-excitation of neurones as a mechanism of microglial activation. This delayed microglial activation may, in turn, contribute to the endocrine dysregulation and the elevated sympathetic nerve activity reported in STZ-treated rats.
Collapse
Affiliation(s)
- I Rana
- School of Medical Sciences and Health Innovations Research Institute, RMIT University, Melbourne, Australia
| | | | | | | | | | | |
Collapse
|
263
|
Zubcevic J, Santisteban MM, Pitts T, Baekey DM, Perez PD, Bolser DC, Febo M, Raizada MK. Functional neural-bone marrow pathways: implications in hypertension and cardiovascular disease. Hypertension 2014; 63:e129-39. [PMID: 24688127 PMCID: PMC4295780 DOI: 10.1161/hypertensionaha.114.02440] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 03/07/2014] [Indexed: 02/07/2023]
Affiliation(s)
- Jasenka Zubcevic
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville FL 32610
| | - Monica M. Santisteban
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville FL 32610
| | - Teresa Pitts
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville FL 32610
| | - David M. Baekey
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville FL 32610
| | - Pablo D. Perez
- Department of Psychiatry, College of Medicine, University of Florida, Gainesville FL 32610
| | - Donald C. Bolser
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville FL 32610
| | - Marcelo Febo
- Department of Psychiatry, College of Medicine, University of Florida, Gainesville FL 32610
| | - Mohan K. Raizada
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville FL 32610
| |
Collapse
|
264
|
Abboud F, Kumar R. Obstructive sleep apnea and insight into mechanisms of sympathetic overactivity. J Clin Invest 2014; 124:1454-7. [PMID: 24691480 DOI: 10.1172/jci70420] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Nearly two decades ago, we evaluated ten patients with obstructive sleep apnea (OSA). We determined that alarming nocturnal oscillations in arterial pressure and sympathetic nerve activity (SNA) were caused by regulatory coupling and neural interactions among SNA, apnea, and ventilation. Patients with OSA exhibited high levels of SNA when awake, during normal ventilation, and during normoxia, which contributed to hypertension and organ damage. Additionally, we achieved a beneficial and potentially lifesaving reduction in SNA through the application of continuous positive airway pressure (CPAP), which remains a primary therapeutic approach for patients with OSA. With these results in hindsight, we herein discuss three concepts with functional and therapeutic relevance to the integrative neurobiology of autonomic cardiovascular control and to the mechanisms involved in excessive sympathoexcitation in OSA.
Collapse
|
265
|
Dange RB, Agarwal D, Masson GS, Vila J, Wilson B, Nair A, Francis J. Central blockade of TLR4 improves cardiac function and attenuates myocardial inflammation in angiotensin II-induced hypertension. Cardiovasc Res 2014; 103:17-27. [DOI: 10.1093/cvr/cvu067] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
266
|
Waki H, Gouraud SS. Brain inflammation in neurogenic hypertension. World J Hypertens 2014; 4:1-6. [DOI: 10.5494/wjh.v4.i1.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 11/14/2013] [Accepted: 12/13/2013] [Indexed: 02/06/2023] Open
Abstract
One likely mechanism of essential hypertension (EH) is increased sympathoexcitation due to abnormal functions in the cardiovascular center of the brain. Recent findings obtained using experimental animal models of EH have shown that abnormal inflammation in the cardiovascular center may contribute to the onset of hypertension. Inflammatory molecules such as cytokines and reactive oxygen species released from the inflamed vasculature and glial cells in the medulla oblongata and hypothalamus might directly or indirectly affect neuronal functions. This in turn could increase sympathetic nerve activity and consequently arterial pressure. Abnormal inflammatory responses in the brain could also be central mechanisms underlying angiotensin II-related EH. In this review, we present the current understanding of EH mechanisms with regard to inflammatory responses in the cardiovascular center.
Collapse
|
267
|
Obesity induces neuroinflammation mediated by altered expression of the renin-angiotensin system in mouse forebrain nuclei. Physiol Behav 2014; 136:31-8. [PMID: 24508821 DOI: 10.1016/j.physbeh.2014.01.016] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 01/21/2014] [Accepted: 01/27/2014] [Indexed: 12/26/2022]
Abstract
Obesity is a widespread health concern that is associated with an increased prevalence of hypertension and cardiovascular disease. Both obesity and hypertension have independently been associated with increased levels of inflammatory cytokines and immune cells within specific brain regions, as well as increased activity of the renin-angiotensin system (RAS). To test the hypothesis that high-fat diet (HFD) induced obesity leads to an angiotensin-II (Ang-II)-dependent increase in inflammatory cells within specific forebrain regions that are important for cardiovascular regulation, we first assessed microglial activation, astrocyte activation, inflammation and RAS component gene expression within selected metabolic and cardiovascular control centers of the forebrain in adult male C57BL/6 mice given either a HFD or a low-fat diet (LFD) for 8weeks. Subsequently, we assessed the necessity of the paraventricular nucleus of the hypothalamus (PVN) angiotensin type-1a (AT1a) receptor for these responses by using the Cre/lox system in mice to selectively delete the AT1a receptor from the PVN. These studies reveal that in addition to the arcuate nucleus of the hypothalamus (ARC), the PVN and the subfornical organ (SFO), two brain regions that are known to regulate blood pressure and energy balance, also initiate proinflammatory responses after the consumption of a diet high in fat. They further indicate that some, but not all, of these responses are reversed upon deletion of AT1a specifically within the PVN.
Collapse
|
268
|
Kang YM, Zhang DM, Yu XJ, Yang Q, Qi J, Su Q, Suo YP, Yue LY, Zhu GQ, Qin DN. Chronic infusion of enalaprilat into hypothalamic paraventricular nucleus attenuates angiotensin II-induced hypertension and cardiac hypertrophy by restoring neurotransmitters and cytokines. Toxicol Appl Pharmacol 2014; 274:436-44. [PMID: 24342267 DOI: 10.1016/j.taap.2013.12.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 11/21/2013] [Accepted: 12/01/2013] [Indexed: 02/05/2023]
Abstract
The renin-angiotensin system (RAS) in the brain is involved in the pathogenesis of hypertension. We hypothesized that inhibition of angiotensin-converting enzyme (ACE) in the hypothalamic paraventricular nucleus (PVN) attenuates angiotensin II (ANG II)-induced hypertension via restoring neurotransmitters and cytokines. Rats underwent subcutaneous infusions of ANG II or saline and bilateral PVN infusions of ACE inhibitor enalaprilat (ENL, 2.5μg/h) or vehicle for 4weeks. ANG II infusion resulted in higher mean arterial pressure and cardiac hypertrophy as indicated by increased whole heart weight/body weight ratio, whole heart weight/tibia length ratio, left ventricular weight/tibia length ratio, and mRNA expressions of cardiac atrial natriuretic peptide and beta-myosin heavy chain. These ANG II-infused rats had higher PVN levels of glutamate, norepinephrine, tyrosine hydroxylase, pro-inflammatory cytokines (PICs) and the chemokine monocyte chemoattractant protein-1, and lower PVN levels of gamma-aminobutyric acid, interleukin (IL)-10 and the 67-kDa isoform of glutamate decarboxylase (GAD67), and higher plasma levels of PICs, norepinephrine and aldosterone, and lower plasma IL-10, and higher renal sympathetic nerve activity. However, PVN treatment with ENL attenuated these changes. PVN microinjection of ANG II induced increases in IL-1β and IL-6, and a decrease in IL-10 in the PVN, and pretreatment with angiotensin II type 1 receptor (AT1-R) antagonist losartan attenuated these changes. These findings suggest that ANG II infusion induces an imbalance between excitatory and inhibitory neurotransmitters and an imbalance between pro- and anti-inflammatory cytokines in the PVN, and PVN inhibition of the RAS restores neurotransmitters and cytokines in the PVN, thereby attenuating ANG II-induced hypertension and cardiac hypertrophy.
Collapse
Affiliation(s)
- Yu-Ming Kang
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an Jiaotong University School of Medicine, Xi'an 710061, China.
| | - Dong-Mei Zhang
- Department of Physiology, Dalian Medical University, Dalian 116044, China
| | - Xiao-Jing Yu
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an Jiaotong University School of Medicine, Xi'an 710061, China
| | - Qing Yang
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an Jiaotong University School of Medicine, Xi'an 710061, China
| | - Jie Qi
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an Jiaotong University School of Medicine, Xi'an 710061, China
| | - Qing Su
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an Jiaotong University School of Medicine, Xi'an 710061, China
| | - Yu-Ping Suo
- Department of Obstetrics and Gynecology, Shanxi Provincial People's Hospital, Taiyuan 030012, China
| | - Li-Ying Yue
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an Jiaotong University School of Medicine, Xi'an 710061, China
| | - Guo-Qing Zhu
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing 210029, China
| | - Da-Nian Qin
- Department of Physiology, Shantou University Medical College, Shantou 515041, China.
| |
Collapse
|
269
|
Affiliation(s)
- Susan Pyner
- School of Biological and Biomedical Sciences; Durham University; Durham UK
| |
Collapse
|
270
|
Abstract
SIGNIFICANCE There is now compelling evidence to substantiate the notion that by depressing baroreflex regulation of blood pressure and augmenting central sympathetic outflow through their actions on the nucleus tractus solitarii (NTS) and rostral ventrolateral medulla (RVLM), brain stem nitric oxide synthase (NOS) and reactive oxygen species (ROS) are important contributing factors to neural mechanisms of hypertension. This review summarizes our contemporary views on the impact of NOS and ROS in the NTS and RVLM on neurogenic hypertension, and presents potential antihypertensive strategies that target brain stem NOS/ROS signaling. RECENT ADVANCES NO signaling in the brain stem may be pro- or antihypertensive depending on the NOS isoform that generates this gaseous moiety and the site of action. Elevation of the ROS level when its production overbalances its degradation in the NTS and RVLM underlies neurogenic hypertension. Interventional strategies with emphases on alleviating the adverse actions of these molecules on blood pressure regulation have been investigated. CRITICAL ISSUES The pathological roles of NOS in the RVLM and NTS in neural mechanisms of hypertension are highly complex. Likewise, multiple signaling pathways underlie the deleterious roles of brain-stem ROS in neurogenic hypertension. There are recent indications that interactions between brain stem ROS and NOS may play a contributory role. FUTURE DIRECTIONS Given the complicity of action mechanisms of brain-stem NOS and ROS in neural mechanisms of hypertension, additional studies are needed to identify the most crucial therapeutic target that is applicable not only in animal models but also in patients suffering from neurogenic hypertension.
Collapse
Affiliation(s)
- Samuel H H Chan
- Center for Translational Research in Biomedical Sciences, Kaohsiung Chang Gung Memorial Hospital , Kaohsiung, Taiwan, Republic of China
| | | |
Collapse
|
271
|
Crowley SD. The cooperative roles of inflammation and oxidative stress in the pathogenesis of hypertension. Antioxid Redox Signal 2014; 20:102-20. [PMID: 23472597 PMCID: PMC3880899 DOI: 10.1089/ars.2013.5258] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
SIGNIFICANCE Innate and adaptive immunity play fundamental roles in the development of hypertension and its complications. As effectors of the cell-mediated immune response, myeloid cells and T lymphocytes protect the host organism from infection by attacking foreign intruders with bursts of reactive oxygen species (ROS). RECENT ADVANCES While these ROS may help to preserve the vascular tone and thereby protect against circulatory collapse in the face of overwhelming infection, aberrant elaboration of ROS triggered by immune cells in the absence of a hemodynamic insult can lead to pathologic increases in blood pressure. Conversely, misdirected oxidative stress in cardiovascular control organs, including the vasculature, the kidney, and the nervous system potentiates inflammatory responses, augmenting blood pressure elevation and inciting target organ damage. CRITICAL ISSUES Inflammation and oxidative stress thereby act as cooperative and synergistic partners in the pathogenesis of hypertension. FUTURE DIRECTIONS Pharmacologic interventions for hypertensive patients will need to exploit this robust bidirectional relationship between ROS generation and immune activation in cardiovascular control organs to maximize therapeutic benefit, while limiting off-target side effects.
Collapse
Affiliation(s)
- Steven D Crowley
- Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers , Durham, North Carolina
| |
Collapse
|
272
|
Biancardi VC, Son SJ, Ahmadi S, Filosa JA, Stern JE. Circulating angiotensin II gains access to the hypothalamus and brain stem during hypertension via breakdown of the blood-brain barrier. Hypertension 2013; 63:572-9. [PMID: 24343120 DOI: 10.1161/hypertensionaha.113.01743] [Citation(s) in RCA: 193] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Angiotensin II-mediated vascular brain inflammation emerged as a novel pathophysiological mechanism in neurogenic hypertension. However, the precise underlying mechanisms and functional consequences in relation to blood-brain barrier (BBB) integrity and central angiotensin II actions mediating neurohumoral activation in hypertension are poorly understood. Here, we aimed to determine whether BBB permeability within critical hypothalamic and brain stem regions involved in neurohumoral regulation was altered during hypertension. Using digital imaging quantification after intravascularly injected fluorescent dyes and immunohistochemistry, we found increased BBB permeability, along with altered key BBB protein constituents, in spontaneously hypertensive rats within the hypothalamic paraventricular nucleus, the nucleus of the solitary tract, and the rostral ventrolateral medulla, all critical brain regions known to contribute to neurohumoral activation during hypertension. BBB disruption, including increased permeability and downregulation of constituent proteins, was prevented in spontaneously hypertensive rats treated with the AT1 receptor antagonist losartan, but not with hydralazine, a direct vasodilator. Importantly, we found circulating angiotensin II to extravasate into these brain regions, colocalizing with neurons and microglial cells. Taken together, our studies reveal a novel angiotensin II-mediated feed-forward mechanism during hypertension, by which circulating angiotensin II evokes increased BBB permeability, facilitating in turn its access to critical brain regions known to participate in blood pressure regulation.
Collapse
|
273
|
Bardgett ME, Holbein WW, Herrera-Rosales M, Toney GM. Ang II-salt hypertension depends on neuronal activity in the hypothalamic paraventricular nucleus but not on local actions of tumor necrosis factor-α. Hypertension 2013; 63:527-34. [PMID: 24324037 DOI: 10.1161/hypertensionaha.113.02429] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Development of angiotensin II (Ang II)-dependent hypertension involves microglial activation and proinflammatory cytokine actions in the hypothalamic paraventricular nucleus (PVN). Cytokines activate receptor signaling pathways that can both acutely grade neuronal discharge and trigger long-term adaptive changes that modulate neuronal excitability through gene transcription. Here, we investigated contributions of PVN cytokines to maintenance of hypertension induced by subcutaneous infusion of Ang II (150 ng/kg per min) for 14 days in rats consuming a 2% NaCl diet. Results indicate that bilateral PVN inhibition with the GABA-A receptor agonist muscimol (100 pmol/50 nL) caused significantly greater reductions of renal and splanchnic sympathetic nerve activity (SNA) and mean arterial pressure in hypertensive than in normotensive rats (P<0.01). Thus, ongoing PVN neuronal activity seems required for support of hypertension. Next, the role of the prototypical cytokine tumor necrosis factor-α was investigated. Whereas PVN injection of tumor necrosis factor-α (0.3 pmol/50 nL) acutely increased lumbar and splanchnic SNA and mean arterial pressure, interfering with endogenous tumor necrosis factor-α by injection of etanercept (10 μg/50 nL) was without effect in hypertensive and normotensive rats. Next, we determined that although microglial activation in PVN was increased in hypertensive rats, bilateral injections of minocycline (0.5 μg/50 nL), an inhibitor of microglial activation, failed to reduce lumbar or splanchnic SNA or mean arterial pressure in hypertensive or in normotensive rats. Collectively, these findings indicate that established Ang II-salt hypertension is supported by PVN neuronal activity, but short term maintenance of SNA and arterial blood pressure does not depend on ongoing local actions of tumor necrosis factor-α.
Collapse
Affiliation(s)
- Megan E Bardgett
- Department of Physiology, MC7756, University of Texas Health Science Center-San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229.
| | | | | | | |
Collapse
|
274
|
|
275
|
Hirooka Y, Kishi T, Ito K, Sunagawa K. Potential clinical application of recently discovered brain mechanisms involved in hypertension. Hypertension 2013; 62:995-1002. [PMID: 24101665 DOI: 10.1161/hypertensionaha.113.00801] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Yoshitaka Hirooka
- Department of Advanced Cardiovascular Regulation and Therapeutics, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | | | | | | |
Collapse
|
276
|
Chan SHH, Chan JYH. Angiotensin-generated reactive oxygen species in brain and pathogenesis of cardiovascular diseases. Antioxid Redox Signal 2013; 19:1074-84. [PMID: 22429119 DOI: 10.1089/ars.2012.4585] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
SIGNIFICANCE Overproduction of angiotensin II (Ang II) in brain contributes to the pathogenesis of cardiovascular diseases. One of the most promising theses that emerged during the last decade is that production of reactive oxygen species (ROS) and activation of redox-dependent signaling cascades underlie those Ang II actions. This review summarizes our status of understanding on the roles of ROS and redox-sensitive signaling in brain Ang II-dependent cardiovascular diseases, using hypertension and heart failure as illustrative examples. RECENT ADVANCES ROS generated by NADPH oxidase, mitochondrial electron transport chain, and proinflammatory cytokines activates mitogen-activated protein kinases and transcription factors, which in turn modulate ion channel functions and ultimately increase neuronal activity and sympathetic outflow in brain Ang II-dependent cardiovascular diseases. Antioxidants targeting ROS have been demonstrated to be beneficial to Ang II-induced hypertension and heart failure via protection from oxidative stress in brain regions that subserve cardiovascular regulation. CRITICAL ISSUES Intra-neuronal signaling and the downstream redox-sensitive proteins involved in controlling the neuronal discharge rate, the sympathetic outflow, and the pathogenesis of cardiovascular diseases need to be identified. The cross talk between Ang II-induced oxidative stress and neuroinflammation in neural mechanisms of cardiovascular diseases also warrants further elucidation. FUTURE DIRECTIONS Future studies are needed to identify new redox-based therapeutics that work not only in animal models, but also in patients suffering from the prevalent diseases. Upregulation of endogenous antioxidants in the regulation of ROS homeostasis is a potential therapeutic target, as are small molecule- or nanoformulated conjugate-based antioxidant therapy.
Collapse
Affiliation(s)
- Samuel H H Chan
- Center for Translational Research in Biomedical Sciences, Kaohsiung Chang Gung Memorial Hospital , Kaohsiung, Taiwan, Republic of China
| | | |
Collapse
|
277
|
Xia H, Sriramula S, Chhabra KH, Lazartigues E. Brain angiotensin-converting enzyme type 2 shedding contributes to the development of neurogenic hypertension. Circ Res 2013; 113:1087-1096. [PMID: 24014829 DOI: 10.1161/circresaha.113.301811] [Citation(s) in RCA: 137] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
RATIONALE Overactivity of the brain renin-angiotensin system is a major contributor to neurogenic hypertension. Although overexpression of angiotensin-converting enzyme type 2 (ACE2) has been shown to be beneficial in reducing hypertension by transforming angiotensin II into angiotensin-(1-7), several groups have reported decreased brain ACE2 expression and activity during the development of hypertension. OBJECTIVE We hypothesized that ADAM17-mediated ACE2 shedding results in decreased membrane-bound ACE2 in the brain, thus promoting the development of neurogenic hypertension. METHODS AND RESULTS To test this hypothesis, we used the deoxycorticosterone acetate-salt model of neurogenic hypertension in nontransgenic and syn-hACE2 mice overexpressing ACE2 in neurons. Deoxycorticosterone acetate-salt treatment in nontransgenic mice led to significant increases in blood pressure, hypothalamic angiotensin II levels, inflammation, impaired baroreflex sensitivity, and autonomic dysfunction, as well as decreased hypothalamic ACE2 activity and expression, although these changes were blunted or prevented in syn-hACE2 mice. In addition, reduction of ACE2 expression and activity in the brain paralleled an increase in ACE2 activity in the cerebrospinal fluid of nontransgenic mice after deoxycorticosterone acetate-salt treatment and were accompanied by enhanced ADAM17 expression and activity in the hypothalamus. Chronic knockdown of ADAM17 in the brain blunted the development of hypertension and restored ACE2 activity and baroreflex function. CONCLUSIONS Our data provide the first evidence that ADAM17-mediated shedding impairs brain ACE2 compensatory activity, thus contributing to the development of neurogenic hypertension.
Collapse
Affiliation(s)
- Huijing Xia
- Department of Pharmacology and Experimental Therapeutics and Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Srinivas Sriramula
- Department of Pharmacology and Experimental Therapeutics and Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Kavaljit H Chhabra
- Department of Pharmacology and Experimental Therapeutics and Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Eric Lazartigues
- Department of Pharmacology and Experimental Therapeutics and Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| |
Collapse
|
278
|
Jiang T, Gao L, Lu J, Zhang YD. ACE2-Ang-(1-7)-Mas Axis in Brain: A Potential Target for Prevention and Treatment of Ischemic Stroke. Curr Neuropharmacol 2013; 11:209-17. [PMID: 23997755 PMCID: PMC3637674 DOI: 10.2174/1570159x11311020007] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2012] [Revised: 09/12/2012] [Accepted: 10/08/2012] [Indexed: 12/20/2022] Open
Abstract
The renin-angiotensin system (RAS) in brain is a crucial regulator for physiological homeostasis and diseases of cerebrovascular system, such as ischemic stroke. Overactivation of brain Angiotensin-converting enzyme (ACE) - Angiotensin II (Ang II) - Angiotensin II type 1 receptor (AT1R) axis was found to be involved in the progress of hypertension, atherosclerosis and thrombogenesis, which increased the susceptibility to ischemic stroke. Besides, brain Ang II levels have been revealed to be increased in ischemic tissues after stroke, and contribute to neural damage through elevating oxidative stress levels and inducing inflammatory response in the ischemic hemisphere via AT1R. In recent years, new components of RAS have been discovered, including ACE2, Angiotensin-(1-7) [Ang-(1-7)] and Mas, which constitute ACE2-Ang-(1-7)-Mas axis. ACE2 converts Ang II to Ang-(1-7), and Ang-(1-7) binds with its receptor Mas, exerting benefical effects in cerebrovascular disease. Through interacting with nitric oxide and bradykinin, Ang-(1-7) could attenuate the development of hypertension and the pathologic progress of atherosclerosis. Besides, its antithrombotic activity also prevents thrombogenic events, which may contribute to reduce the risk of ischemic stroke. In addition, after ischemia insult, ACE2-Ang-(1-7)-Mas has been shown to reduce the cerebral infarct size and improve neurological deficits through its antioxidative and anti-inflammatory effects. Taken together, activation of the ACE2-Ang-(1-7)-Mas axis may become a novel therapeutic target in prevention and treatment of ischemia stroke, which deserves further investigations.
Collapse
Affiliation(s)
- Teng Jiang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, P.R. China
| | | | | | | |
Collapse
|
279
|
Ryan MJ. An update on immune system activation in the pathogenesis of hypertension. Hypertension 2013; 62:226-30. [PMID: 23734005 PMCID: PMC4365420 DOI: 10.1161/hypertensionaha.113.00603] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 05/04/2013] [Indexed: 12/22/2022]
Affiliation(s)
- Michael J Ryan
- University of Mississippi Medical Center, Department of Physiology and Biophysics, 2500 N State St, Jackson, MS 39216-4505.
| |
Collapse
|
280
|
Santisteban MM, Zubcevic J, Baekey DM, Raizada MK. Dysfunctional brain-bone marrow communication: a paradigm shift in the pathophysiology of hypertension. Curr Hypertens Rep 2013; 15:377-89. [PMID: 23715920 PMCID: PMC3714364 DOI: 10.1007/s11906-013-0361-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
It is widely accepted that the pathophysiology of hypertension involves autonomic nervous system dysfunction, as well as a multitude of immune responses. However, the close interplay of these systems in the development and establishment of high blood pressure and its associated pathophysiology remains elusive and is the subject of extensive investigation. It has been proposed that an imbalance of the neuro-immune systems is a result of an enhancement of the "proinflammatory sympathetic" arm in conjunction with dampening of the "anti-inflammatory parasympathetic" arm of the autonomic nervous system. In addition to the neuronal modulation of the immune system, it is proposed that key inflammatory responses are relayed back to the central nervous system and alter the neuronal communication to the periphery. The overall objective of this review is to critically discuss recent advances in the understanding of autonomic immune modulation, and propose a unifying hypothesis underlying the mechanisms leading to the development and maintenance of hypertension, with particular emphasis on the bone marrow, as it is a crucial meeting point for neural, immune, and vascular networks.
Collapse
Affiliation(s)
- Monica M. Santisteban
- Department of Physiology and Functional Genomics, University of Florida, College of Medicine. 1600 SW Archer Road, PO Box 100274, Gainesville, FL 32610
| | - Jasenka Zubcevic
- Department of Physiology and Functional Genomics, University of Florida, College of Medicine. 1600 SW Archer Road, PO Box 100274, Gainesville, FL 32610
| | - David M. Baekey
- Department of Physiological Sciences, University of Florida, College of Veterinary Medicine. 1600 SW Archer Road, PO Box 100144, Gainesville, FL 32610
| | - Mohan K. Raizada
- Department of Physiology and Functional Genomics, University of Florida, College of Medicine. 1600 SW Archer Road, PO Box 100274, Gainesville, FL 32610
| |
Collapse
|
281
|
McCarthy CA, Widdop RE, Deliyanti D, Wilkinson-Berka JL. Brain and retinal microglia in health and disease: An unrecognized target of the renin-angiotensin system. Clin Exp Pharmacol Physiol 2013; 40:571-9. [DOI: 10.1111/1440-1681.12099] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 04/12/2013] [Accepted: 04/15/2013] [Indexed: 12/16/2022]
Affiliation(s)
- Claudia A McCarthy
- Department of Pharmacology; Monash University; Clayton; Alfred Medical Research and Education Precinct; Melbourne Victoria Australia
| | - Robert E Widdop
- Department of Pharmacology; Monash University; Clayton; Alfred Medical Research and Education Precinct; Melbourne Victoria Australia
| | - Devy Deliyanti
- Department of Immunology; Monash University; Alfred Medical Research and Education Precinct; Melbourne Victoria Australia
| | - Jennifer L Wilkinson-Berka
- Department of Immunology; Monash University; Alfred Medical Research and Education Precinct; Melbourne Victoria Australia
| |
Collapse
|
282
|
Kishi T. Regulation of the sympathetic nervous system by nitric oxide and oxidative stress in the rostral ventrolateral medulla: 2012 Academic Conference Award from the Japanese Society of Hypertension. Hypertens Res 2013; 36:845-51. [DOI: 10.1038/hr.2013.73] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 03/01/2013] [Accepted: 03/26/2013] [Indexed: 02/07/2023]
|
283
|
Harrison DG. The mosaic theory revisited: common molecular mechanisms coordinating diverse organ and cellular events in hypertension. ACTA ACUST UNITED AC 2013; 7:68-74. [PMID: 23321405 DOI: 10.1016/j.jash.2012.11.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 11/20/2012] [Indexed: 12/12/2022]
Abstract
More than 60 years ago, Dr. Irvine Page proposed the Mosaic Theory of hypertension, which states that many factors, including genetics, environment, adaptive, neural, mechanical, and hormonal perturbations interdigitate to raise blood pressure. In the past two decades, it has become clear that common molecular and cellular events in various organs underlie many features of the Mosaic Theory. Two of these are the production of reactive oxygen species and inflammation. These factors increase neuronal firing in specific brain centers, increase sympathetic outflow, alter vascular tone and morphology, and promote sodium retention in the kidney. Moreover, factors such as genetics and environment contribute to oxidant generation and inflammation. Other common cellular signals, including calcium signaling and endoplasmic reticulum stress are similarly perturbed in different cells in hypertension and contribute to components of Page's theory. Thus, Page's Mosaic Theory formed a framework for future studies of molecular and cellular signals in the context of hypertension, and has greatly aided our understanding of this complex disease.
Collapse
Affiliation(s)
- David G Harrison
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA.
| |
Collapse
|
284
|
Dias da Silva VJ, Paton JFR. Introduction: the interplay between the autonomic and immune systems. Exp Physiol 2013; 97:1143-5. [PMID: 23114051 DOI: 10.1113/expphysiol.2011.061473] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
285
|
Kopp BL, Wick D, Herman JP. Differential effects of homotypic vs. heterotypic chronic stress regimens on microglial activation in the prefrontal cortex. Physiol Behav 2013; 122:246-52. [PMID: 23707717 DOI: 10.1016/j.physbeh.2013.05.030] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Revised: 03/19/2013] [Accepted: 05/13/2013] [Indexed: 02/03/2023]
Abstract
Stress pathology is associated with hypothalamic-pituitary-adrenal (HPA) axis dysregulation and aberrant glucocorticoid responses. Recent studies indicate increases in prefrontal cortical ionized calcium-binding adapter molecule 1 (Iba-1) staining following repeated restraint, reflecting increased microglial densities. Our experiments tested expression of Iba-1 staining in the prelimbic cortex (PL), infralimbic cortex (IL) and the hypothalamic paraventricular nucleus (PVN) following two-week exposure to repeated restraint (RR) and chronic variable stress (CVS), representing homotypic and heterotypic regimens, respectively. Unstressed animals served as controls. We specifically examined Iba-1 immunofluorescence in layers 2 and 3 versus layers 5 and 6 of the PL and IL, using both cell number and field staining density. Iba-1 field staining density was increased in both the PL and IL following RR in comparison to controls. This effect was not observed following CVS. Furthermore, PVN Iba-1 immunoreactivity was not affected by either stress regimen. Cell number did not vary within any brain areas or across stress exposures. Changes in microglial field density did not reflect changes in vascular density. Increases in PL and IL microglial density indicate selective microglial activation during RR, perhaps due to mild stress in the context of limited elevations in anti-inflammatory glucocorticoid actions. This research was supported by NIH grants [MH049698 and MH069860].
Collapse
Affiliation(s)
- Brittany L Kopp
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Metabolic Disease Institute, 2170 E. Galbraith Rd., Cincinnati, OH 45237, USA.
| | | | | |
Collapse
|
286
|
Inhibition of TNF in the brain reverses alterations in RAS components and attenuates angiotensin II-induced hypertension. PLoS One 2013; 8:e63847. [PMID: 23691105 PMCID: PMC3655013 DOI: 10.1371/journal.pone.0063847] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 04/05/2013] [Indexed: 02/07/2023] Open
Abstract
Dysfunction of brain renin-angiotensin system (RAS) components is implicated in the development of hypertension. We previously showed that angiotensin (Ang) II-induced hypertension is mediated by increased production of proinflammatory cytokines (PIC), including tumor necrosis factor (TNF), in brain cardiovascular regulatory centers such as the paraventricular nucleus (PVN). Presently, we tested the hypothesis that central TNF blockade prevents dysregulation of brain RAS components and attenuates Ang II-induced hypertension. Male Sprague-Dawley rats were implanted with radio-telemetry transmitters to measure mean arterial pressure (MAP) and subjected to intracerebroventricular (i.c.v.) infusion of etanercept (10 µg/kg/day) with/without concurrent subcutaneous 4-week Ang II (200 ng/kg/min) infusion. Chronic Ang II infusion resulted in a significant increase in MAP and cardiac hypertrophy, which was attenuated by inhibition of brain TNF with etanercept. Etanercept treatment also attenuated Ang II-induced increases in PIC and decreases in IL-10 expression in the PVN. Additionally, Ang II infusion increased expression of pro-hypertensive RAS components (ACE and AT1R), while decreasing anti-hypertensive RAS components (ACE2, Mas, and AT2 receptors), within the PVN. I.c.v. etanercept treatment reversed these changes. Ang II-infusion was associated with increased oxidative stress as indicated by increased NAD(P)H oxidase activity and super oxide production in the PVN, which was prevented by inhibition of TNF. Moreover, brain targeted TNF blockade significantly reduced Ang II-induced NOX-2 and NOX-4 mRNA and protein expression in the PVN. These findings suggest that chronic TNF blockade in the brain protects rats against Ang II-dependent hypertension and cardiac hypertrophy by restoring the balance between pro- and anti-hypertensive RAS axes and inhibiting PIC and oxidative stress genes and proteins in the PVN.
Collapse
|
287
|
Wei SG, Zhang ZH, Beltz TG, Yu Y, Johnson AK, Felder RB. Subfornical organ mediates sympathetic and hemodynamic responses to blood-borne proinflammatory cytokines. Hypertension 2013; 62:118-25. [PMID: 23670302 DOI: 10.1161/hypertensionaha.113.01404] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Proinflammatory cytokines play an important role in regulating autonomic and cardiovascular function in hypertension and heart failure. Peripherally administered proinflammatory cytokines, such as tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β), act on the brain to increase blood pressure, heart rate, and sympathetic nerve activity. These molecules are too large to penetrate the blood-brain barrier, and so the mechanisms by which they elicit these responses remain unknown. We tested the hypothesis that the subfornical organ (SFO), a forebrain circumventricular organ that lacks a blood-brain barrier, plays a major role in mediating the sympathetic and hemodynamic responses to circulating proinflammatory cytokines. Intracarotid artery injection of TNF-α (200 ng) or IL-1β (200 ng) dramatically increased mean blood pressure, heart rate, and renal sympathetic nerve activity in rats with sham lesions of the SFO (SFO-s). These excitatory responses to intracarotid artery TNF-α and IL-1β were significantly attenuated in SFO-lesioned (SFO-x) rats. Similarly, the increases in mean blood pressure, heart rate, and renal sympathetic nerve activity in response to intravenous injections of TNF-α (500 ng) or IL-1β (500 ng) in SFO-s rats were significantly reduced in the SFO-x rats. Immunofluorescent staining revealed a dense distribution of the p55 TNF-α receptor and the IL-1 receptor accessory protein, a subunit of the IL-1 receptor, in the SFO. These data suggest that SFO is a predominant site in the brain at which circulating proinflammatory cytokines act to elicit cardiovascular and sympathetic responses.
Collapse
Affiliation(s)
- Shun-Guang Wei
- Department of Internal Medicine, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA, USA
| | | | | | | | | | | |
Collapse
|
288
|
Angiotensin type 1a receptors in the paraventricular nucleus of the hypothalamus protect against diet-induced obesity. J Neurosci 2013; 33:4825-33. [PMID: 23486953 DOI: 10.1523/jneurosci.3806-12.2013] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Obesity is associated with increased levels of angiotensin-II (Ang-II), which activates angiotensin type 1a receptors (AT1a) to influence cardiovascular function and energy homeostasis. To test the hypothesis that specific AT1a within the brain control these processes, we used the Cre/lox system to delete AT1a from the paraventricular nucleus of the hypothalamus (PVN) of mice. PVN AT1a deletion did not affect body mass or adiposity when mice were maintained on standard chow. However, maintenance on a high-fat diet revealed a gene by environment interaction whereby mice lacking AT1a in the PVN had increased food intake and decreased energy expenditure that augmented body mass and adiposity relative to controls. Despite this increased adiposity, PVN AT1a deletion reduced systolic blood pressure, suggesting that this receptor population mediates the positive correlation between adiposity and blood pressure. Gene expression studies revealed that PVN AT1a deletion decreased hypothalamic expression of corticotrophin-releasing hormone and oxytocin, neuropeptides known to control food intake and sympathetic nervous system activity. Whole-cell patch-clamp recordings confirmed that PVN AT1a deletion eliminates responsiveness of PVN parvocellular neurons to Ang-II, and suggest that Ang-II responsiveness is increased in obese wild-type mice. Central inflammation is associated with metabolic and cardiovascular disorders and PVN AT1a deletion reduced indices of hypothalamic inflammation. Collectively, these studies demonstrate that PVN AT1a regulate energy balance during environmental challenges that promote metabolic and cardiovascular pathologies. The implication is that the elevated Ang-II that accompanies obesity serves as a negative feedback signal that activates PVN neurons to alleviate weight gain.
Collapse
|
289
|
Marques FZ, Morris BJ. Neurogenic hypertension: revelations from genome-wide gene expression profiling. Curr Hypertens Rep 2013; 14:485-91. [PMID: 22639016 DOI: 10.1007/s11906-012-0282-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
There is now good evidence for a role of the sympathetic nervous system in the etiology of essential hypertension in humans. Although genetic variation is expected to underlie the elevated sympathetic outflow in this complex polygenic condition, only limited information has emerged from classic molecular genetic studies. Recently, progress has been made in understanding neurogenic aspects by determination of global alterations in gene expression in key brain regions of animal models of neurogenic hypertension. Such genome-wide expression studies in the hypothalamus and brainstem support roles for factors such as neuronal nitric oxide synthase, inflammation and reactive oxygen species. A role for non-coding RNAs such as microRNAs, and epigenetic alterations await exploration. Ongoing novel approaches should provide a better understanding of the processes responsible for the increased sympathetic outflow in animal models, as well as essential hypertension in humans. Such information may lead to better therapies for neurogenic hypertension in humans.
Collapse
|
290
|
Littlejohn NK, Siel RB, Ketsawatsomkron P, Pelham CJ, Pearson NA, Hilzendeger AM, Buehrer BA, Weidemann BJ, Li H, Davis DR, Thompson AP, Liu X, Cassell MD, Sigmund CD, Grobe JL. Hypertension in mice with transgenic activation of the brain renin-angiotensin system is vasopressin dependent. Am J Physiol Regul Integr Comp Physiol 2013; 304:R818-28. [PMID: 23535460 DOI: 10.1152/ajpregu.00082.2013] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
An indispensable role for the brain renin-angiotensin system (RAS) has been documented in most experimental animal models of hypertension. To identify the specific efferent pathway activated by the brain RAS that mediates hypertension, we examined the hypothesis that elevated arginine vasopressin (AVP) release is necessary for hypertension in a double-transgenic model of brain-specific RAS hyperactivity (the "sRA" mouse model). sRA mice experience elevated brain RAS activity due to human angiotensinogen expression plus neuron-specific human renin expression. Total daily loss of the 4-kDa AVP prosegment (copeptin) into urine was grossly elevated (≥8-fold). Immunohistochemical staining for AVP was increased in the supraoptic nucleus of sRA mice (~2-fold), but no quantitative difference in the paraventricular nucleus was observed. Chronic subcutaneous infusion of a nonselective AVP receptor antagonist conivaptan (YM-087, Vaprisol, 22 ng/h) or the V(2)-selective antagonist tolvaptan (OPC-41061, 22 ng/h) resulted in normalization of the baseline (~15 mmHg) hypertension in sRA mice. Abdominal aortas and second-order mesenteric arteries displayed AVP-specific desensitization, with minor or no changes in responses to phenylephrine and endothelin-1. Mesenteric arteries exhibited substantial reductions in V(1A) receptor mRNA, but no significant changes in V(2) receptor expression in kidney were observed. Chronic tolvaptan infusion also normalized the (5 mmol/l) hyponatremia of sRA mice. Together, these data support a major role for vasopressin in the hypertension of mice with brain-specific hyperactivity of the RAS and suggest a primary role of V(2) receptors.
Collapse
Affiliation(s)
- Nicole K Littlejohn
- Department of Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
291
|
Immunohistochemical Localization of AT1a, AT1b, and AT2 Angiotensin II Receptor Subtypes in the Rat Adrenal, Pituitary, and Brain with a Perspective Commentary. Int J Hypertens 2013; 2013:175428. [PMID: 23573410 PMCID: PMC3614054 DOI: 10.1155/2013/175428] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 02/01/2013] [Accepted: 02/05/2013] [Indexed: 11/17/2022] Open
Abstract
Angiotensin II increases blood pressure and stimulates thirst and sodium appetite in the brain. It also stimulates secretion of aldosterone from the adrenal zona glomerulosa and epinephrine from the adrenal medulla. The rat has 3 subtypes of angiotensin II receptors: AT1a, AT1b, and AT2. mRNAs for all three subtypes occur in the adrenal and brain. To immunohistochemically differentiate these receptor subtypes, rabbits were immunized with C-terminal fragments of these subtypes to generate receptor subtype-specific antibodies. Immunofluorescence revealed AT1a and AT2 receptors in adrenal zona glomerulosa and medulla. AT1b immunofluorescence was present in the zona glomerulosa, but not the medulla. Ultrastructural immunogold labeling for the AT1a receptor in glomerulosa and medullary cells localized it to plasma membrane, endocytic vesicles, multivesicular bodies, and the nucleus. AT1b and AT2, but not AT1a, immunofluorescence was observed in the anterior pituitary. Stellate cells were AT1b positive while ovoid cells were AT2 positive. In the brain, neurons were AT1a, AT1b, and AT2 positive, but glia was only AT1b positive. Highest levels of AT1a, AT1b, and AT2 receptor immunofluorescence were in the subfornical organ, median eminence, area postrema, paraventricular nucleus, and solitary tract nucleus. These studies complement those employing different techniques to characterize Ang II receptors.
Collapse
|
292
|
Neuroimmune communication in hypertension and obesity: a new therapeutic angle? Pharmacol Ther 2013; 138:428-40. [PMID: 23458610 DOI: 10.1016/j.pharmthera.2013.02.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 02/12/2013] [Indexed: 12/13/2022]
Abstract
Hypertension is an epidemic health concern and a major risk factor for the development of cardiovascular disease. Although there are available treatment strategies for hypertension, numerous hypertensive patients do not have their clinical symptoms under control and it is imperative that new avenues to treat or prevent high blood pressure in these patients are developed. It is well established that increases in sympathetic nervous system (SNS) outflow and enhanced renin-angiotensin system (RAS) activity are common features of hypertension and various pathological conditions that predispose individuals to hypertension. More recently, hypertension has also become recognized as an immune condition and accumulating evidence suggests that interactions between the RAS, SNS and immune systems play a role in blood pressure regulation. This review summarizes what is known about the interconnections between the RAS, SNS and immune systems in the neural regulation of blood pressure. Based on the reviewed studies, a model for RAS/neuroimmune interactions during hypertension is proposed and the therapeutic potential of targeting RAS/neuroimmune interactions in hypertensive patients is discussed. Special emphasis is placed on the applicability of the proposed model to obesity-related hypertension.
Collapse
|
293
|
Yu Y, Xue BJ, Zhang ZH, Wei SG, Beltz TG, Guo F, Johnson AK, Felder RB. Early interference with p44/42 mitogen-activated protein kinase signaling in hypothalamic paraventricular nucleus attenuates angiotensin II-induced hypertension. Hypertension 2013; 61:842-9. [PMID: 23438934 DOI: 10.1161/hypertensionaha.111.00080] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Blood-borne angiotensin II (ANG II) can upregulate p44/42 mitogen-activated protein kinase (MAPK) signaling and ANG II type-1 receptors in the hypothalamic paraventricular nucleus (PVN), a critical cardiovascular and autonomic center. We tested the hypothesis that brain p44/42 MAPK signaling contributes to the development of ANG II-induced hypertension. The ANG II infusion (120 ng/kg per min, subcutaneously) induced increases in phosphorylated p44/42 MAPK and ANG II type-1 receptors in the PVN after 1 week, before the onset of hypertension, that were sustained as hypertension developed during a 2- or 3-week infusion protocol. Bilateral PVN microinjections of small interfering RNAs for p44/42 MAPK, at the onset of the ANG II infusion or 1 week later, prevented the early increase in p44/42 MAPK activity. The early treatment normalized ANG II type-1 receptor expression in the PVN and attenuated the hypertensive response to the 2-week infusion of ANG II. The later small interfering RNA microinjections had a transient effect on ANG II type-1 receptor expression in PVN and no effect on the hypertensive response to the 3-week infusion of ANG II. The early treatment also normalized the pressure response to ganglionic blockade. The ANG II infusion induced increases in mRNA for proinflammatory cytokines that were not affected by either small interfering RNA treatment. These results suggest that the full expression of ANG II-induced hypertension depends on p44/42 MAPK-mediated effects. A potential role for p44/42 MAPK in modulating the ANG II-induced central inflammatory response might also be considered. MAPK signaling in PVN may be a novel target for early intervention in the progression of ANG II-dependent hypertension.
Collapse
Affiliation(s)
- Yang Yu
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | | | | | | | | | | | | | | |
Collapse
|
294
|
Jiang N, Shi P, Desland F, Kitchen-Pareja MC, Sumners C. Interleukin-10 inhibits angiotensin II-induced decrease in neuronal potassium current. Am J Physiol Cell Physiol 2013; 304:C801-7. [PMID: 23426971 DOI: 10.1152/ajpcell.00398.2012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previously we demonstrated that viral-mediated increased expression of the anti-inflammatory cytokine interleukin-10 within the paraventricular nucleus of the hypothalamus significantly reduces blood pressure in normal rats made hypertensive by infusion of angiotensin II. However, the exact cellular locus of this interleukin-10 action within the paraventricular nucleus is unknown. In the present study we tested whether interleukin-10 exerts direct effects at its receptors located on hypothalamic neurons to offset the neuronal excitatory actions of angiotensin II via its type 1 receptors. The results indicated the presence of immunoreactive interleukin-10 receptors on neurons in normal rat paraventricular nucleus and that receptors for this cytokine were also expressed in neurons cultured from the hypothalamus. Patch-clamp electrophysiological recordings from these cultures revealed that extracellular application of interleukin-10 alone did not exert any alterations in neuronal membrane delayed rectifier or transient potassium currents. However, angiotensin II elicited a significant decrease in delayed rectifier potassium current, an effect that was abolished by interleukin-10 application. Since decreases in delayed rectifier potassium current contribute to increased neuronal excitability, this result is consistent with a direct inhibitory action of interleukin-10 on angiotensin-induced excitation of hypothalamic neurons. As such, these data are the first indication of a neuronal locus of action of interleukin-10 to temper the actions of angiotensin II in the hypothalamus.
Collapse
Affiliation(s)
- Nan Jiang
- Department of Physiology and Functional Genomics, McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | | | | | | | | |
Collapse
|
295
|
Bidirectional neuro-glial signaling modalities in the hypothalamus: role in neurohumoral regulation. Auton Neurosci 2013; 175:51-60. [PMID: 23375650 DOI: 10.1016/j.autneu.2012.12.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 12/17/2012] [Accepted: 12/26/2012] [Indexed: 12/20/2022]
Abstract
Maintenance of bodily homeostasis requires concerted interactions between the neuroendocrine and the autonomic nervous systems, which generate adaptive neurohumoral outflows in response to a variety of sensory inputs. Moreover, an exacerbated neurohumoral activation is recognized to be a critical component in numerous disease conditions, including hypertension, heart failure, stress, and the metabolic syndrome. Thus, the study of neurohumoral regulation in the brain is of critical physiological and pathological relevance. Most of the work in the field over the last decades has been centered on elucidating neuronal mechanisms and pathways involved in neurohumoral control. More recently however, it has become increasingly clear that non-neuronal cell types, particularly astrocytes and microglial cells, actively participate in information processing in areas of the brain involved in neuroendocrine and autonomic control. Thus, in this work, we review recent advances in our understanding of neuro-glial interactions within the hypothalamic supraoptic and paraventricular nuclei, and their impact on neurohumoral integration in these nuclei. Major topics reviewed include anatomical and functional properties of the neuro-glial microenvironment, neuron-to-astrocyte signaling, gliotransmitters, and astrocyte regulation of signaling molecules in the extracellular space. We aimed in this review to highlight the importance of neuro-glial bidirectional interactions in information processing within major hypothalamic networks involved in neurohumoral integration.
Collapse
|
296
|
Waki H, Hendy EB, Hindmarch CCT, Gouraud S, Toward M, Kasparov S, Murphy D, Paton JFR. Excessive leukotriene B4 in nucleus tractus solitarii is prohypertensive in spontaneously hypertensive rats. Hypertension 2012; 61:194-201. [PMID: 23172924 DOI: 10.1161/hypertensionaha.112.192252] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Inflammation within the brain stem microvasculature has been associated with chronic cardiovascular diseases. We found that the expression of several enzymes involved in arachidonic acid-leukotriene B4 (LTB4) production was altered in nucleus tractus solitarii (NTS) of spontaneously hypertensive rat (SHR). LTB4 produced from arachidonic acid by 5-lipoxygenase is a potent chemoattractant of leukocytes. Leukotriene B4-12-hydroxydehydrogenase (LTB4-12-HD), which degrades LTB4, was downregulated in SHR rats compared with that in Wistar-Kyoto rats. Quantitative real-time PCR revealed that LTB4-12-HD was reduced by 63% and 58% in the NTS of adult SHR and prehypertensive SHR, respectively, compared with that in age-matched Wistar-Kyoto rats (n=6). 5-lipoxygenase gene expression was upregulated in the NTS of SHR (≈50%; n=6). LTB4 levels were increased in the NTS of the SHR, (17%; n=10, P<0.05). LTB4 receptors BLT1 (but not BLT2) were expressed on astroglia in the NTS but not neurons or vessels. Microinjection of LTB4 into the NTS of Wistar-Kyoto rats increased both leukocyte adherence and arterial pressure for over 4 days (peak: +15 mm Hg; P<0.01). In contrast, blockade of NTS BLT1 receptors lowered blood pressure in the SHR (peak: -13 mm Hg; P<0.05) but not in Wistar-Kyoto rats. Thus, excessive amounts of LTB4 in NTS of SHR, possibly as a result of upregulation of 5-lipoxygenase and downregulation of LTB4-12-HD, can induce inflammation. Because blockade of NTS BLT1 receptors lowered arterial pressure in the SHR, their endogenous activity may contribute to the hypertensive state of this rodent model. Thus, inflammatory reactions in the brain stem are causally associated with neurogenic hypertension.
Collapse
Affiliation(s)
- Hidefumi Waki
- School of Physiology and Pharmacology, Bristol Heart Institute, Medical Sciences Building, University of Bristol, Bristol, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
297
|
Cates MJ, Dickinson CJ, Hart ECJ, Paton JFR. Neurogenic hypertension and elevated vertebrobasilar arterial resistance: is there a causative link? Curr Hypertens Rep 2012; 14:261-9. [PMID: 22562144 DOI: 10.1007/s11906-012-0267-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
There is evidence of sympathetic overdrive in a significant proportion of patients with essential hypertension and an animal model of the condition, the spontaneously hypertensive rat (SHR). The reasons for this remain elusive. However, there is also evidence of narrowing of the arteries supplying the brainstem in the SHR and hypertensive humans. In this review, we discuss the possible role of brainstem hypoperfusion in driving increased sympathetic activity and hypertension.
Collapse
|
298
|
Jun JY, Zubcevic J, Qi Y, Afzal A, Carvajal JM, Thinschmidt JS, Grant MB, Mocco J, Raizada MK. Brain-mediated dysregulation of the bone marrow activity in angiotensin II-induced hypertension. Hypertension 2012; 60:1316-23. [PMID: 23045460 DOI: 10.1161/hypertensionaha.112.199547] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Oxidative stress in the brain is implicated in increased sympathetic drive, inflammatory status, and vascular dysfunctions, associated with development and establishment of hypertension. However, little is known about the mechanism of this impaired brain-vascular communication. Here, we tested the hypothesis that increased oxidative stress in the brain cardioregulatory areas, such as the paraventricular nucleus of the hypothalamus, is driven by mitochondrial reactive oxygen species and leads to increased inflammatory cells (ICs) and decreased/dysfunctional endothelial progenitor cells (EPCs), thereby compromising vasculature repair and accelerating hypertension. Chronic angiotensin II infusion resulted in elevated blood pressure and sympathetic vasomotor drive, decreased spontaneous baroreflex gain, and increased microglia activation in the paraventricular nucleus. This was associated with 46% decrease in bone marrow (BM)-derived EPCs and 250% increase in BM ICs, resulting in 5-fold decrease of EPC/IC ratio in the BM. Treatment with mitochondrial-targeted antioxidant, a scavenger of mitochondrial O(2)(-·), intracerebroventricularly but not subcutaneously attenuated angiotensin II-induced hypertension, decreased activation of microglia in the paraventricular nucleus, and normalized EPCs/ICs. This functional communication between the brain and BM was confirmed by retrograde neuronal labeling from the BM with green fluorescent protein-tagged pseudorabies virus. Administration of green fluorescent protein-tagged pseudorabies virus into the BM resulted in predominant labeling of paraventricular nucleus neurons within 3 days, with some fluorescence in the nucleus tractus solitarius, the rostral ventrolateral medulla, and subfornical organ. Taken together, these data demonstrate that inhibition of mitochondrial reactive oxygen species attenuates angiotensin II-induced hypertension and corrects the imbalance in EPCs/ICs in the BM. They suggest that an imbalance in vascular reparative and ICs may perpetuate vascular pathophysiology in this model of hypertension.
Collapse
Affiliation(s)
- Joo Yun Jun
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL 32610, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
299
|
Wu KLH, Chan SHH, Chan JYH. Neuroinflammation and oxidative stress in rostral ventrolateral medulla contribute to neurogenic hypertension induced by systemic inflammation. J Neuroinflammation 2012; 9:212. [PMID: 22958438 PMCID: PMC3462714 DOI: 10.1186/1742-2094-9-212] [Citation(s) in RCA: 139] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2012] [Accepted: 08/27/2012] [Indexed: 02/07/2023] Open
Abstract
Background In addition to systemic inflammation, neuroinflammation in the brain, which enhances sympathetic drive, plays a significant role in cardiovascular diseases, including hypertension. Oxidative stress in rostral ventrolateral medulla (RVLM) that augments sympathetic outflow to blood vessels is involved in neural mechanism of hypertension. We investigated whether neuroinflammation and oxidative stress in RVLM contribute to hypertension following chronic systemic inflammation. Methods In normotensive Sprague-Dawley rats, systemic inflammation was induced by infusion of Escherichia coli lipopolysaccharide (LPS) into the peritoneal cavity via an osmotic minipump. Systemic arterial pressure and heart rate were measured under conscious conditions by the non-invasive tail-cuff method. The level of the inflammatory markers in plasma or RVLM was analyzed by ELISA. Protein expression was evaluated by Western blot or immunohistochemistry. Tissue level of superoxide anion (O2·-) in RVLM was determined using the oxidation-sensitive fluorescent probe dihydroethidium. Pharmacological agents were delivered either via infusion into the cisterna magna with an osmotic minipump or microinjection bilaterally into RVLM. Results Intraperitoneal infusion of LPS (1.2 mg/kg/day) for 14 days promoted sustained hypertension and induced a significant increase in plasma level of C-reactive protein, tumor necrosis factor-α (TNF-α), or interleukin-1β (IL-1β). This LPS-induced systemic inflammation was accompanied by activation of microglia, augmentation of IL-1β, IL-6, or TNF-α protein expression, and O2·- production in RVLM, all of which were blunted by intracisternal infusion of a cycloxygenase-2 (COX-2) inhibitor, NS398; an inhibitor of microglial activation, minocycline; or a cytokine synthesis inhibitor, pentoxifylline. Neuroinflammation in RVLM was also associated with a COX-2-dependent downregulation of endothelial nitric oxide synthase and an upregulation of intercellular adhesion molecule-1. Finally, the LPS-promoted long-term pressor response and the reduction in expression of voltage-gated potassium channel, Kv4.3 in RVLM were antagonized by minocycline, NS398, pentoxifylline, or a superoxide dismutase mimetic, tempol, either infused into cisterna magna or microinjected bilaterally into RVLM. The same treatments, on the other hand, were ineffective against LPS-induced systemic inflammation. Conclusion These results suggest that systemic inflammation activates microglia in RVLM to induce COX-2-dependent neuroinflammation that leads to an increase in O2·- production. The resultant oxidative stress in RVLM in turn mediates neurogenic hypertension.
Collapse
Affiliation(s)
- Kay L H Wu
- Center for Translational Research in Biomedical Sciences, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Kaohsiung, 83301, Taiwan
| | | | | |
Collapse
|
300
|
Kishi T, Hirooka Y. Oxidative stress in the brain causes hypertension via sympathoexcitation. Front Physiol 2012; 3:335. [PMID: 22934082 PMCID: PMC3429101 DOI: 10.3389/fphys.2012.00335] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 07/30/2012] [Indexed: 12/31/2022] Open
Abstract
Activation of the sympathetic nervous system (SNS) has an important role in the pathogenesis of hypertension, and is determined by the brain. Previous many studies have demonstrated that oxidative stress, mainly produced by angiotensin II type 1 (AT(1)) receptor and nicotinamide adenine dinucleotide phosphate (NAD (P) H) oxidase, in the autonomic brain regions was involved in the activation of the SNS of hypertension. In this concept, we have investigated the role of oxidative stress in the rostral ventrolateral medulla (RVLM), which is known as the cardiovascular center in the brainstem, in the activation of the SNS, and demonstrated that AT(1) receptor and NAD (P) H oxidase-induced oxidative stress in the RVLM causes sympathoexcitation in hypertensive rats. The mechanisms in which brain oxidative stress causes sympathoexcitation have been investigated, such as the interactions with nitric oxide (NO), effects on the signal transduction, or inflammations. Interestingly, the environmental factors of high salt intake and high calorie diet may also increase the oxidative stress in the brain, particularly in the RVLM, thereby activating the central sympathetic outflow and increasing the risk of hypertension. Furthermore, several orally administered AT(1) receptor blockers have been found to cause sympathoinhibition via reduction of oxidative stress through the inhibition of central AT(1) receptor. In conclusion, we must consider that AT(1) receptor and the related oxidative stress production in the brain cause the activation of SNS in hypertension, and that AT(1) receptor in the brain could be novel therapeutic target of the treatments for hypertension.
Collapse
Affiliation(s)
- Takuya Kishi
- Department of Advanced Therapeutics for Cardiovascular Diseases, Kyushu University Graduate School of Medical Sciences Fukuoka, Japan
| | | |
Collapse
|