251
|
Apoptosis in pneumovirus infection. Viruses 2013; 5:406-22. [PMID: 23344499 PMCID: PMC3564127 DOI: 10.3390/v5010406] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 01/15/2013] [Accepted: 01/18/2013] [Indexed: 12/13/2022] Open
Abstract
Pneumovirus infections cause a wide spectrum of respiratory disease in humans and animals. The airway epithelium is the major site of pneumovirus replication. Apoptosis or regulated cell death, may contribute to the host anti-viral response by limiting viral replication. However, apoptosis of lung epithelial cells may also exacerbate lung injury, depending on the extent, the timing and specific location in the lungs. Differential apoptotic responses of epithelial cells versus innate immune cells (e.g., neutrophils, macrophages) during pneumovirus infection can further contribute to the complex and delicate balance between host defense and disease pathogenesis. The purpose of this manuscript is to give an overview of the role of apoptosis in pneumovirus infection. We will examine clinical and experimental data concerning the various pro-apoptotic stimuli and the roles of apoptotic epithelial and innate immune cells during pneumovirus disease. Finally, we will discuss potential therapeutic interventions targeting apoptosis in the lungs.
Collapse
|
252
|
Direct and indirect anti-inflammatory effects of tulathromycin in bovine macrophages: inhibition of CXCL-8 secretion, induction of apoptosis, and promotion of efferocytosis. Antimicrob Agents Chemother 2013; 57:1385-93. [PMID: 23295921 DOI: 10.1128/aac.01598-12] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Recent evidence indicates that immunomodulation by antibiotics may enhance their clinical efficacy. Specifically, drug-induced leukocyte apoptosis and macrophage efferocytosis have been shown to promote the resolution of inflammation in a variety of disease settings. Tulathromycin is a new macrolide antibiotic for the treatment of bovine respiratory disease. The direct antimicrobial effects of the drug alone do not fully justify its superior clinical efficacy, and we hypothesize that tulathromycin may have immunomodulating properties. We recently reported that tulathromycin promotes apoptosis and inhibits proinflammatory NF-κB signaling in bovine neutrophils. In this study, we investigated the direct and indirect anti-inflammatory effects of tulathromycin in bovine macrophages. The findings indicate that bovine monocyte-derived macrophages and alveolar macrophages readily phagocytose tulathromycin-induced apoptotic neutrophils both in vitro and in the airways of Mannheimia haemolytica-infected calves. Moreover, tulathromycin promotes delayed, concentration-dependent apoptosis, but not necrosis, in bovine macrophages in vitro. Activation of caspase-3 and detection of mono- and oligonucleosomes in bovine monocyte-derived macrophages treated with tulathromycin was observed 12 h posttreatment; pretreatment with a pan-caspase inhibitor (ZVAD) blocked the proapoptotic effects of the drug. Lastly, tulathromycin inhibited the secretion of proinflammatory CXCL-8 in lipopolysaccharide (LPS)-stimulated bovine macrophages; this effect was independent of caspase activation or programmed cell death. Taken together, these immunomodulating effects observed in bovine macrophages help further elucidate the mechanisms through which tulathromycin confers anti-inflammatory and proresolution benefits. Furthermore, these findings offer novel insights on how antibiotics may offer anti-inflammatory benefits by modulating macrophage-mediated events that play a key role in inflammation.
Collapse
|
253
|
Akbarshahi H, Menzel M, Posaric Bauden M, Rosendahl A, Andersson R. Enrichment of murine CD68+ CCR2+ and CD68+ CD206+ lung macrophages in acute pancreatitis-associated acute lung injury. PLoS One 2012; 7:e42654. [PMID: 23110041 PMCID: PMC3478261 DOI: 10.1371/journal.pone.0042654] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 07/09/2012] [Indexed: 01/12/2023] Open
Abstract
Acute lung injury (ALI) is an important cause of mortality in critically ill patients. Acute pancreatitis (AP) is one of the risk factors for developing this syndrome. Among the inflammatory cells, macrophages have a key role in determining the severity of the acute lung injury. In the lungs, macrophages constitute a heterogeneous cell population distributed in different compartments. Changes in not only the macrophage count, but also in their phenotype have been seen during the course of lung injury. A murine ductal ligation model of acute pancreatitis showed substantial morphological changes in the pancreas and lungs. Immunohistochemistry showed neutrophil recruitment into both organs after 9 hours and later on. F4/80(+) cells in the pancreas increased in the ligated animals, though there was not a significant difference in their number in the lungs as compared to sham operated animals. Flow cytometry analysis of lung macrophages demonstrated an enrichment of F4/80(-) CD68(+)CCR2(+) and F4/80(-) CD68(+)CD206(+) lung macrophages in ligated animals (AP) as compared to the sham operated group. The level of interleukin-6 in plasma increased 3 hours after ligation compared to the sham operated group, as a first indicator of a systemic inflammatory response.This study suggests a role for F4/80(-) CD68(+) macrophages in the pathogenesis of acute lung injury in acute pancreatitis. Studying lung macrophages for different phenotypic markers, their polarization, activation and recruitment, in the context of acute lung injury, is a novel area to potentially identify interventions which may improve the outcome of acute lung injury.
Collapse
Affiliation(s)
- Hamid Akbarshahi
- Department of Surgery, Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Mandy Menzel
- Department of Surgery, Clinical Sciences Lund, Lund University, Lund, Sweden
| | | | - Ann Rosendahl
- Department of Surgery, Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Roland Andersson
- Department of Surgery, Clinical Sciences Lund, Skåne University Hospital and Lund University, Lund, Sweden
| |
Collapse
|
254
|
Vadász I, Brochard L. Update in acute lung injury and mechanical ventilation 2011. Am J Respir Crit Care Med 2012; 186:17-23. [PMID: 22753685 DOI: 10.1164/rccm.201203-0582up] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- István Vadász
- Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center, Klinikstrasse 33, Giessen, Germany.
| | | |
Collapse
|
255
|
Matthay MA, Ware LB, Zimmerman GA. The acute respiratory distress syndrome. J Clin Invest 2012; 122:2731-40. [PMID: 22850883 DOI: 10.1172/jci60331] [Citation(s) in RCA: 1376] [Impact Index Per Article: 105.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The acute respiratory distress syndrome (ARDS) is an important cause of acute respiratory failure that is often associated with multiple organ failure. Several clinical disorders can precipitate ARDS, including pneumonia, sepsis, aspiration of gastric contents, and major trauma. Physiologically, ARDS is characterized by increased permeability pulmonary edema, severe arterial hypoxemia, and impaired carbon dioxide excretion. Based on both experimental and clinical studies, progress has been made in understanding the mechanisms responsible for the pathogenesis and the resolution of lung injury, including the contribution of environmental and genetic factors. Improved survival has been achieved with the use of lung-protective ventilation. Future progress will depend on developing novel therapeutics that can facilitate and enhance lung repair.
Collapse
Affiliation(s)
- Michael A Matthay
- Cardiovascular Research Institute and Departments of Medicine and Anesthesia, UCSF, San Francisco, CA, USA.
| | | | | |
Collapse
|
256
|
Mizgerd JP. Respiratory infection and the impact of pulmonary immunity on lung health and disease. Am J Respir Crit Care Med 2012; 186:824-9. [PMID: 22798317 DOI: 10.1164/rccm.201206-1063pp] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Acute lower respiratory tract infection is responsible for an inordinate disease burden. Pulmonary immunity determines the outcomes of these infections. The innate and adaptive immune responses to microbes in the lung are critical to maintaining a healthy respiratory system and preventing pulmonary disease. In addition to balancing antimicrobial defense against the risk of lung injury during the immediate infection, the shaping of pulmonary immunity by respiratory infection contributes to the pathophysiology of many and even perhaps most chronic pulmonary diseases. This Pulmonary Perspective aims to communicate two interconnected points. First, tremendous morbidity and mortality result from inadequate, misguided, or excessive pulmonary immunity. Second, our understanding of pulmonary immunity is at an exciting stage of rapid developments and discoveries, but many questions remain. Further advances in pulmonary immunity and elucidation of the cellular and molecular responses to microbes in the lung are needed to develop novel approaches to predicting, preventing, and curing respiratory disease.
Collapse
Affiliation(s)
- Joseph P Mizgerd
- Boston University School of Medicine, The Pulmonary Center, 72 East Concord Street, Boston, MA 02118, USA.
| |
Collapse
|
257
|
Johnston LK, Rims CR, Gill SE, McGuire JK, Manicone AM. Pulmonary macrophage subpopulations in the induction and resolution of acute lung injury. Am J Respir Cell Mol Biol 2012; 47:417-26. [PMID: 22721830 DOI: 10.1165/rcmb.2012-0090oc] [Citation(s) in RCA: 261] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Macrophages are key orchestrators of the inflammatory and repair responses in the lung, and the diversity of their function is indicated by their polarized states and distinct subpopulations and localization in the lung. Here, we characterized the pulmonary macrophage populations in the interstitial and alveolar compartments during the induction and resolution of acute lung injury induced by Pseudomonas aeruginosa infection. We identified macrophage subpopulations and polarity according to FACS analysis of cell surface protein markers, combined with cell sorting for gene expression using real-time PCR. With these techniques, we validated a novel, alternatively activated (M2) marker (transferrin receptor), and we described three interstitial and alveolar macrophage subpopulations in the lung whose distribution and functional state evolved from the induction to resolution phases of lung injury. Together, these findings indicate the presence and evolution of distinct macrophage subsets in the lung that serve specific niches in regulating the inflammatory response and its resolution. Alterations in the balance and function of these subpopulations could lead to nonresolving acute lung injury.
Collapse
Affiliation(s)
- Laura K Johnston
- Center for Lung Biology, University of Washington, 815 Mercer Street, Seattle, WA 98109, USA
| | | | | | | | | |
Collapse
|
258
|
Herold S, Ludwig S, Pleschka S, Wolff T. Apoptosis signaling in influenza virus propagation, innate host defense, and lung injury. J Leukoc Biol 2012; 92:75-82. [PMID: 22345705 DOI: 10.1189/jlb.1011530] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Programmed cell death is a crucial cellular response frequently observed in IV-infected tissue. This article reviews the current knowledge on the molecular virus-host interactions that induce apoptosis pathways in an IV-infected cell and the functional implications of these cellular signaling events on viral propagation at distinct steps during the viral replication cycle. Furthermore, it summarizes the role of IV-induced apoptosis pathways in equilibrating the host's antiviral immune response between effective viral clearance and development of severe apoptotic lung injury.
Collapse
Affiliation(s)
- Susanne Herold
- University of Giessen Lung Center, Department of Internal Medicine II, Giessen, Germany.
| | | | | | | |
Collapse
|
259
|
Analysis of cell cycle and replication of mouse macrophages after in vivo and in vitro Cryptococcus neoformans infection using laser scanning cytometry. Infect Immun 2012; 80:1467-78. [PMID: 22252872 DOI: 10.1128/iai.06332-11] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
We investigated the outcome of the interaction of Cryptococcus neoformans with murine macrophages using laser scanning cytometry (LSC). Previous results in our lab had shown that phagocytosis of C. neoformans promoted cell cycle progression. LSC allowed us to simultaneously measure the phagocytic index, macrophage DNA content, and 5-ethynyl-2'-deoxyuridine (EdU) incorporation such that it was possible to study host cell division as a function of phagocytosis. LSC proved to be a robust, reliable, and high-throughput method for quantifying phagocytosis. Phagocytosis of C. neoformans promoted cell cycle progression, but infected macrophages were significantly less likely to complete mitosis. Hence, we report a new cytotoxic effect associated with intracellular C. neoformans residence that manifested itself in impaired cell cycle completion as a consequence of a block in the G(2)/M stage of the mitotic cell cycle. Cell cycle arrest was not due to increased cell membrane permeability or DNA damage. We investigated alveolar macrophage replication in vivo and demonstrated that these cells are capable of low levels of cell division in the presence or absence of C. neoformans infection. In summary, we simultaneously studied phagocytosis, the cell cycle state of the host cell and pathogen-mediated cytotoxicity, and our results demonstrate a new cytotoxic effect of C. neoformans infection on murine macrophages: fungus-induced cell cycle arrest. Finally, we provide evidence for alveolar macrophage proliferation in vivo.
Collapse
|
260
|
Abstract
In simple terms, inflammation can be defined as a beneficial, nonspecific response of tissues to injury that generally leads to restoration of normal structure and function. In this concept, resolution of the inflammatory response, once it has achieved its protective and pro-immunogenic functions, becomes a critical determinant of what might be considered the paradox of inflammation. On one hand, inflammation is essential to resolve tissue injury and maintain homeostasis. On the other, inflammation is a key participant in the great majority of human diseases. Accordingly, to achieve complete resolution of inflammation, it is necessary to both turn off inflammatory mediator production and inflammatory cell accumulation and to remove inflammatory cells and debris without initiating an autoimmune response. Much of this process involves key activities of the mononuclear phagocyte series of cells, including resident and recruited macrophages. Recognition of activated and dying acute inflammatory cells by mononuclear phagocytes has been shown to (a) enhance macropinocytic activity for removal of debris, (b) enhance uptake of the effete inflammatory cells themselves, (c) induce inflammosuppressive and immunosuppressive mediators such as TGFβ and IL-10 that can down-regulate and limit proinflammatory mediator production, and (d) induce production of growth factors for tissue cells that may play key roles in tissue repair. Defects in these highly regulated processes are associated with persistent inflammation and/or autoimmunity in overaggressive resolution mechanisms such as nonresolving fibrosis or persistent tissue destruction as in emphysema.
Collapse
Affiliation(s)
- William J Janssen
- Departments of Medicine, Pediatrics and Immunology, National Jewish Health and University of Colorado, Denver, Colorado 80206, USA.
| | | |
Collapse
|
261
|
Misharin AV, Scott Budinger GR, Perlman H. The lung macrophage: a Jack of all trades. Am J Respir Crit Care Med 2011; 184:497-8. [PMID: 21885631 DOI: 10.1164/rccm.201107-1343ed] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
262
|
Tighe RM, Li Z, Potts EN, Frush S, Liu N, Gunn MD, Foster WM, Noble PW, Hollingsworth JW. Ozone inhalation promotes CX3CR1-dependent maturation of resident lung macrophages that limit oxidative stress and inflammation. THE JOURNAL OF IMMUNOLOGY 2011; 187:4800-8. [PMID: 21930959 PMCID: PMC3197861 DOI: 10.4049/jimmunol.1101312] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Inhalation of ambient ozone alters populations of lung macrophages. However, the impact of altered lung macrophage populations on the pathobiology of ozone is poorly understood. We hypothesized that subpopulations of macrophages modulate the response to ozone. We exposed C57BL/6 mice to ozone (2 ppm × 3 h) or filtered air. At 24 h after exposure, the lungs were harvested and digested and the cells underwent flow cytometry. Analysis revealed a novel macrophage subset present in ozone-exposed mice, which were distinct from resident alveolar macrophages and identified by enhanced Gr-1(+) expression [Gr-1 macrophages (Gr-1 Macs)]. Further analysis showed that Gr-1(+) Macs exhibited high expression of MARCO, CX3CR1, and NAD(P)H:quinone oxioreductase 1. Gr-1(+) Macs were present in the absence of CCR2, suggesting that they were not derived from a CCR2-dependent circulating intermediate. Using PKH26-PCL to label resident phagocytic cells, we demonstrated that Gr-1 Macs were derived from resident lung cells. This new subset was diminished in the absence of CX3CR1. Interestingly, CX3CR1-null mice exhibited enhanced responses to ozone, including increased airway hyperresponsiveness, exacerbated neutrophil influx, accumulation of 8-isoprostanes and protein carbonyls, and increased expression of cytokines (CXCL2, IL-1β, IL-6, CCL2, and TNF-α). Our results identify a novel subset of lung macrophages, which are derived from a resident intermediate, are dependent upon CX3CR1, and appear to protect the host from the biological response to ozone.
Collapse
Affiliation(s)
- Robert M Tighe
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | | | | | | | |
Collapse
|