251
|
Yamazumi Y, Sasaki O, Suyama-Fuchino S, Kohu K, Kamoshida Y, Harada H, Fujio K, Oda T, Akiyama T. The RNA-binding protein Mex-3B plays critical roles in the development of steroid-resistant neutrophilic airway inflammation. Biochem Biophys Res Commun 2019; 519:220-226. [PMID: 31493864 DOI: 10.1016/j.bbrc.2019.08.158] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 08/30/2019] [Indexed: 01/18/2023]
Abstract
While most asthma can be treated with steroids, about 10%, called severe asthma, is refractory to steroids. It has recently been shown that in a subgroup of severe asthma cases, neutrophils that infiltrate into the airways play an important role in inflammation. However, the mechanisms underlying this increased neutrophil infiltration are not well understood. Here, using a mouse model of steroid-resistant neutrophilic inflammation, we show that mice deficient for the RNA-binding protein Mex-3B have significantly less neutrophil infiltration in the airways than wild-type mice. We further demonstrate that Mex-3B post-transcriptionally upregulates CXCL2, a chemokine that induces neutrophil chemotaxis and migration. Moreover, we show that treatment with either anti-CXCL2 antibody or anti-Mex-3B antisense oligonucleotide suppresses neutrophilic allergic airway inflammation. These results suggest that Mex-3B-mediated induction of CXCL2 is crucial for steroid-resistant neutrophilic allergic airway inflammation. Our findings suggest new strategies for therapeutic intervention in steroid-resistant severe asthma.
Collapse
Affiliation(s)
- Yusuke Yamazumi
- Laboratory of Molecular and Genetic Information, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Oh Sasaki
- Department of Allergy and Rheumatology, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Saki Suyama-Fuchino
- Laboratory of Molecular and Genetic Information, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Kazuyoshi Kohu
- Laboratory of Molecular and Genetic Information, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Yuki Kamoshida
- Laboratory of Molecular and Genetic Information, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Hiroaki Harada
- Department of Allergy and Rheumatology, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Keishi Fujio
- Department of Allergy and Rheumatology, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Takeaki Oda
- Laboratory of Molecular and Genetic Information, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Tetsu Akiyama
- Laboratory of Molecular and Genetic Information, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan.
| |
Collapse
|
252
|
Chung KF, Adcock IM. Precision medicine for the discovery of treatable mechanisms in severe asthma. Allergy 2019; 74:1649-1659. [PMID: 30865306 DOI: 10.1111/all.13771] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 02/25/2019] [Accepted: 03/01/2019] [Indexed: 12/13/2022]
Abstract
Although the complex disease of asthma has been defined as being heterogeneous, the extent of its endophenotypes remains unclear. The pharmacological approach to initiating treatment has, until recently, been based on disease control and severity. The introduction of antibody therapies targeting the Type 2 inflammation pathway for patients with severe asthma has resulted in the recognition of an allergic and an eosinophilic phenotype, which are not mutually exclusive. Concomitantly, molecular phenotyping based on a transcriptomic analysis of bronchial epithelial and sputum cells has identified a Type 2 high inflammation cluster characterized by eosinophilia and recurrent exacerbations, as well as Type 2 low clusters linked with IL-6 trans-signalling, interferon pathways, inflammasome activation and mitochondrial oxidative phosphorylation pathways. Systems biology approaches are establishing the links between these pathways or mechanisms, and clinical and physiologic features. Validation of these pathways contributes to defining endotypes and treatable mechanisms. Precision medicine approaches are necessary to link treatable mechanisms with treatable traits and biomarkers derived from clinical, physiologic and inflammatory features of clinical phenotypes. The deep molecular phenotyping of airway samples along with noninvasive biomarkers linked to bioinformatic and machine learning techniques will enable the rapid detection of molecular mechanisms that transgresses beyond the concept of treatable traits.
Collapse
Affiliation(s)
- Kian Fan Chung
- National Heart & Lung Institute Imperial College London and Royal Brompton & Harefield NHS Trust London UK
| | - Ian M. Adcock
- National Heart & Lung Institute Imperial College London and Royal Brompton & Harefield NHS Trust London UK
| |
Collapse
|
253
|
Porcaro F, Cutrera R, Pajno GB. Options of immunotherapeutic treatments for children with asthma. Expert Rev Respir Med 2019; 13:937-949. [PMID: 31414917 DOI: 10.1080/17476348.2019.1656533] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Introduction: Asthma is the most common chronic disease in children. Avoiding triggers, and pharmacologic treatment with short acting beta-agonist, inhaler corticosteroids and anti-leukotriene are often enough to obtain symptoms control. Nevertheless, there is a subset of children with severe asthma and poor symptom control despite maximal therapy. In these patients, anti-IgE and anti-IL5 monoclonal antibodies are suggested as the fifth step of Global Initiative for Asthma guidelines. Area covered: Immunotherapeutic treatments are now suggested for asthma management. This article will discuss the available evidence on allergen immunotherapy and biologic drugs in pediatric asthma treatment. Expert opinion: Previously published studies demonstrated a good efficacy and safety profile of Allergen Immunotherapy in patients with mild-moderate asthma and sensitization to one main allergen. New understanding of mechanisms underlying severe asthma inflammation has allowed the identifications of specific biomarkers guiding the clinician in the choice of patient specific drug. Among the suggested immunotherapeutic options, omalizumab (blocking IgE) remains the first choice for atopic 'early onset' asthma in patients aged over 6 years. Instead, mepolizumab (blocking the IL5 ligand) should be considered for 'eosinophilic' asthma. Other biologic drugs are under consideration but data on the pediatric population are still lacking.
Collapse
Affiliation(s)
- Federica Porcaro
- Pediatric Pulmonology & Respiratory Intermediate Care Unit, Sleep and Long-Term Ventilation Unit, Department of Pediatrics, Bambino Gesù Children's Hospital , Rome , Italy
| | - Renato Cutrera
- Pediatric Pulmonology & Respiratory Intermediate Care Unit, Sleep and Long-Term Ventilation Unit, Department of Pediatrics, Bambino Gesù Children's Hospital , Rome , Italy
| | | |
Collapse
|
254
|
Innate lymphoid cells in asthma: pathophysiological insights from murine models to human asthma phenotypes. Curr Opin Allergy Clin Immunol 2019; 19:53-60. [PMID: 30516548 DOI: 10.1097/aci.0000000000000497] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE OF REVIEW The current review describes the role of different types of innate lymphoid cells (ILCs) in the pathogenesis of asthma inflammatory phenotypes by linking findings from murine asthma models with human studies. Novel treatment options are needed for patients with steroid-insensitive asthma. Strategies targeting ILCs, or their upstream or downstream molecules are emerging and discussed in this review. RECENT FINDINGS In eosinophilic asthma, ILCs, and especially type 2 ILCs (ILC2s), are activated by alarmins such as IL-33 upon allergen triggering of the airway epithelium. This initiates IL-5 and IL-13 production by ILC2, resulting in eosinophilic inflammation and airway hyperreactivity. Type 3 ILCs (ILC3s) have been shown to be implicated in obesity-induced asthma, via IL-1β production by macrophages, leading ILC3 and release of IL-17. ILC1s might play a role in severe asthma, but its role is currently less investigated. SUMMARY Several studies have revealed that ILC2s play a role in the induction of eosinophilic inflammation in allergic and nonallergic asthmatic patients mainly via IL-5, IL-13, IL-33 and thymic stromal lymphopoietin. Knowledge on the role of ILC3s and ILC1s in asthmatic patients is lagging behind. Further studies are needed to support the hypothesis that these other types of ILCs contribute to asthma pathogenesis, presumably in nonallergic asthma phenotypes.
Collapse
|
255
|
Targeting cytokines to treat asthma and chronic obstructive pulmonary disease. Nat Rev Immunol 2019; 18:454-466. [PMID: 29626211 DOI: 10.1038/s41577-018-0006-6] [Citation(s) in RCA: 283] [Impact Index Per Article: 47.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cytokines play a key role in orchestrating and perpetuating the chronic airway inflammation in asthma and chronic obstructive pulmonary disease (COPD), making them attractive targets for treating these disorders. Asthma and some cases of COPD are mainly driven by type 2 immune responses, which comprise increased airway eosinophils, T helper 2 (TH2) cells and group 2 innate lymphoid cells (ILC2s) and the secretion of IL-4, IL-5 and IL-13. Clinical trials of antibodies that block these interleukins have shown reduced acute exacerbations and oral corticosteroid use and improvements in lung function and symptoms in selected patients. More recent approaches that block upstream cytokines, such as thymic stromal lymphopoietin (TSLP), show promise in improving patient outcome. Importantly, the clinical trials in cytokine blockade have highlighted the crucial importance of patient selection for the successful use of these expensive therapies and the need for biomarkers to better predict drug responses.
Collapse
|
256
|
Ravi A, Chowdhury S, Dijkhuis A, Bonta PI, Sterk PJ, Lutter R. Neutrophilic inflammation in asthma and defective epithelial translational control. Eur Respir J 2019; 54:13993003.00547-2019. [PMID: 31109984 DOI: 10.1183/13993003.00547-2019] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 05/10/2019] [Indexed: 01/25/2023]
Abstract
Neutrophilic inflammation in asthma is associated with interleukin (IL)-17A, corticosteroid-insensitivity and bronchodilator-induced forced expiratory volume in 1 s (FEV1) reversibility. IL-17A synergises with tumour necrosis factor (TNF)-α in the production of the neutrophil chemokine CXCL-8 by primary bronchial epithelial cells (PBECs).We hypothesised that local neutrophilic inflammation in asthma correlates with IL-17A and TNF-α-induced CXCL-8 production by PBECs from asthma patients.PBECs from most asthma patients displayed an exaggerated CXCL-8 production in response to TNF-α and IL-17A, but not to TNF-α alone, and which was also insensitive to corticosteroids. This hyperresponsiveness of PBECs strongly correlated with CXCL-8 levels and neutrophil numbers in bronchoalveolar lavage from the corresponding patients, but not with that of eosinophils. In addition, this hyperresponsiveness also correlated with bronchodilator-induced FEV1 % reversibility. At the molecular level, epithelial hyperresponsiveness was associated with failure of the translational repressor T-cell internal antigen-1 related protein (TiAR) to translocate to the cytoplasm to halt CXCL-8 production, as confirmed by TiAR knockdown. This is in line with the finding that hyperresponsive PBECs also produced enhanced levels of other inflammatory mediators.Hyperresponsive PBECs in asthma patients may underlie neutrophilic and corticosteroid-insensitive inflammation and a reduced FEV1, irrespective of eosinophilic inflammation. Normalising cytoplasmic translocation of TiAR is a potential therapeutic target in neutrophilic, corticosteroid-insensitive asthma.
Collapse
Affiliation(s)
- Abilash Ravi
- Amsterdam UMC, University of Amsterdam, Dept of Respiratory Medicine, Amsterdam, The Netherlands.,Amsterdam UMC, University of Amsterdam, Dept of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam, The Netherlands
| | - Saheli Chowdhury
- Amsterdam UMC, University of Amsterdam, Dept of Respiratory Medicine, Amsterdam, The Netherlands.,Amsterdam UMC, University of Amsterdam, Dept of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam, The Netherlands
| | - Annemiek Dijkhuis
- Amsterdam UMC, University of Amsterdam, Dept of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam, The Netherlands
| | - Peter I Bonta
- Amsterdam UMC, University of Amsterdam, Dept of Respiratory Medicine, Amsterdam, The Netherlands
| | - Peter J Sterk
- Amsterdam UMC, University of Amsterdam, Dept of Respiratory Medicine, Amsterdam, The Netherlands
| | - René Lutter
- Amsterdam UMC, University of Amsterdam, Dept of Respiratory Medicine, Amsterdam, The Netherlands .,Amsterdam UMC, University of Amsterdam, Dept of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam, The Netherlands
| |
Collapse
|
257
|
Maselli DJ, Hanania NA. Management of asthma COPD overlap. Ann Allergy Asthma Immunol 2019; 123:335-344. [PMID: 31376487 DOI: 10.1016/j.anai.2019.07.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 07/21/2019] [Accepted: 07/21/2019] [Indexed: 12/24/2022]
Abstract
OBJECTIVE To review the latest literature on management approaches to patients with asthma chronic obstructive pulmonary disease (COPD) overlap (ACO). DATA SOURCES Studies and reports were identified from the databases of PubMed/Medline and ClinicalTrials.gov from the US National Institutes of Health and the Cochrane Register of Controlled Trials. STUDY SELECTIONS Studies on the management of asthma, COPD, and ACO were included in this review. RESULTS Patients with asthma COPD overlap tend to have greater morbidity than those with asthma or COPD alone, but the information on the best therapeutic approach to this group of patients is still limited. Current treatment recommendations rely on expert opinions, roundtable discussions, and strategy documents, because most clinical studies in asthma and COPD have excluded patients with ACO. Because of the potential risk described in patients with asthma with the use of long-acting 2 agonist monotherapy, initial therapy for patients with ACO is recommended to include a long-acting bronchodilator in conjunction with inhaled corticosteroids. Long-acting muscarinic antagonists are effective in both asthma and COPD and should be considered in ACO as an add-on treatment. If inhaler therapy is not effective, advanced therapies based on phenotyping and identification of treatable traits may be considered. CONCLUSION Few studies have evaluated prospectively therapies in the ACO population, and future studies need to determine best strategies for the treatment of these patients, focusing on targeting its different phenotypes and its treatable traits.
Collapse
Affiliation(s)
- Diego Jose Maselli
- Division of Pulmonary Diseases & Critical Care Medicine, Department of Medicine, University of Texas Health at San Antonio, San Antonio, Texas
| | - Nicola Alexander Hanania
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Baylor College of Medicine, Houston, Texas.
| |
Collapse
|
258
|
Licari A, Manti S, Castagnoli R, Marseglia A, Foiadelli T, Brambilla I, Marseglia GL. Immunomodulation in Pediatric Asthma. Front Pediatr 2019; 7:289. [PMID: 31355170 PMCID: PMC6640202 DOI: 10.3389/fped.2019.00289] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 06/27/2019] [Indexed: 01/20/2023] Open
Abstract
Childhood asthma is actually defined as a heterogeneous disease, including different clinical variants and partially sharing similar immune mechanisms. Asthma management is mainly focused on maintaining the control of the disease and reducing the risk of adverse outcomes. Most children achieve good control with standard therapies, such as low doses of inhaled corticosteroids (ICS) and/or one or more controller. These medications are targeted to suppress bronchial inflammation and to restore airway responsiveness. However, they are not disease-modifying and do not specifically target inflammatory pathways of asthma; in addition, they are not significantly effective in patients with severe uncontrolled asthma. The aim of this review is to update knowledge on current and novel therapeutic options targeted to immunomodulate inflammatory pathways underlying pediatric asthma, with particular reference on biologic therapies.
Collapse
Affiliation(s)
- Amelia Licari
- Department of Pediatrics, Fondazione IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy
| | - Sara Manti
- Unit of Pediatric Genetics and Immunology, Department of Pediatrics, University of Messina, Messina, Italy
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Riccardo Castagnoli
- Department of Pediatrics, Fondazione IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy
| | - Alessia Marseglia
- Department of Pediatrics, Fondazione IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy
| | - Thomas Foiadelli
- Department of Pediatrics, Fondazione IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy
| | - Ilaria Brambilla
- Department of Pediatrics, Fondazione IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy
| | - Gian Luigi Marseglia
- Department of Pediatrics, Fondazione IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy
| |
Collapse
|
259
|
Lin SC, Shi LS, Ye YL. Advanced Molecular Knowledge of Therapeutic Drugs and Natural Products Focusing on Inflammatory Cytokines in Asthma. Cells 2019; 8:cells8070685. [PMID: 31284537 PMCID: PMC6678278 DOI: 10.3390/cells8070685] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/28/2019] [Accepted: 07/03/2019] [Indexed: 02/07/2023] Open
Abstract
Asthma is a common respiratory disease worldwide. Cytokines play a crucial role in the immune system and the inflammatory response to asthma. Abnormal cytokine expression may lead to the development of asthma, which may contribute to pathologies of this disease. As cytokines exhibit pleiotropy and redundancy characteristics, we summarized them according to their biologic activity in asthma development. We classified cytokines in three stages as follows: Group 1 cytokines for the epithelial environment stage, Group 2 cytokines for the Th2 polarization stage, and Group 3 cytokines for the tissue damage stage. The recent cytokine-targeting therapy for clinical use (anti-cytokine antibody/anti-cytokine receptor antibody) and traditional medicinal herbs (pure compounds, single herb, or natural formula) have been discussed in this review. Studies of the Group 2 anti-cytokine/anti-cytokine receptor therapies are more prominent than the studies of the other two groups. Anti-cytokine antibodies/anti-cytokine receptor antibodies for clinical use can be applied for patients who did not respond to standard treatments. For traditional medicinal herbs, anti-asthmatic bioactive compounds derived from medicinal herbs can be divided into five classes: alkaloids, flavonoids, glycosides, polyphenols, and terpenoids. However, the exact pathways targeted by these natural compounds need to be clarified. Using relevant knowledge to develop more comprehensive strategies may provide appropriate treatment for patients with asthma in the future.
Collapse
Affiliation(s)
- Sheng-Chieh Lin
- Division of Allergy, Asthma and Immunology, Department of Pediatrics, Shuang Ho Hospital, Taipei Medical University, Taipei 23561, Taiwan
- Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| | - Li-Shian Shi
- Department of Biotechnology, National Formosa University, Yunlin 63201, Taiwan
| | - Yi-Ling Ye
- Department of Biotechnology, National Formosa University, Yunlin 63201, Taiwan.
| |
Collapse
|
260
|
Rusznak M, Peebles RS. Eosinophils Express LTA4 Hydrolase and Synthesize LTB4: Important for Asthma Pathogenesis? Am J Respir Cell Mol Biol 2019; 60:375-376. [PMID: 30433812 PMCID: PMC6444629 DOI: 10.1165/rcmb.2018-0367ed] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Mark Rusznak
- 1 Division of Allergy, Pulmonary, and Critical Care Medicine Vanderbilt University School of Medicine Nashville, Tennessee
| | - R Stokes Peebles
- 1 Division of Allergy, Pulmonary, and Critical Care Medicine Vanderbilt University School of Medicine Nashville, Tennessee
| |
Collapse
|
261
|
Abstract
Asthma is a genetically and phenotypically complex disease that has a major impact on global health. Signs and symptoms of asthma are caused by the obstruction of airflow through the airways. The epithelium that lines the airways plays a major role in maintaining airway patency and in host defense. The epithelium initiates responses to inhaled or aspirated substances, including allergens, viruses, and bacteria, and epithelial-derived cytokines are important in the recruitment and activation of immune cells in the airway. Changes in the structure and function of the airway epithelium are a prominent feature of asthma. Approximately half of individuals with asthma have evidence of active type 2 immune responses in the airway. In these individuals, epithelial cytokines promote type 2 responses, and responses to type 2 cytokines result in increased epithelial mucus production and other effects that cause airway obstruction. Recent work also implicates other epithelial responses, including interleukin-17, interferon and ER stress responses, that may contribute to asthma pathogenesis and provide new targets for therapy.
Collapse
Affiliation(s)
- Luke R Bonser
- Lung Biology Center, University of California San Francisco, San Francisco, CA, United States
| | - David J Erle
- Lung Biology Center, University of California San Francisco, San Francisco, CA, United States.
| |
Collapse
|
262
|
Krautenbacher N, Flach N, Böck A, Laubhahn K, Laimighofer M, Theis FJ, Ankerst DP, Fuchs C, Schaub B. A strategy for high-dimensional multivariable analysis classifies childhood asthma phenotypes from genetic, immunological, and environmental factors. Allergy 2019; 74:1364-1373. [PMID: 30737985 PMCID: PMC6767756 DOI: 10.1111/all.13745] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 12/22/2018] [Accepted: 01/06/2019] [Indexed: 12/14/2022]
Abstract
Background Associations between childhood asthma phenotypes and genetic, immunological, and environmental factors have been previously established. Yet, strategies to integrate high‐dimensional risk factors from multiple distinct data sets, and thereby increase the statistical power of analyses, have been hampered by a preponderance of missing data and lack of methods to accommodate them. Methods We assembled questionnaire, diagnostic, genotype, microarray, RT‐qPCR, flow cytometry, and cytokine data (referred to as data modalities) to use as input factors for a classifier that could distinguish healthy children, mild‐to‐moderate allergic asthmatics, and nonallergic asthmatics. Based on data from 260 German children aged 4‐14 from our university outpatient clinic, we built a novel multilevel prediction approach for asthma outcome which could deal with a present complex missing data structure. Results The optimal learning method was boosting based on all data sets, achieving an area underneath the receiver operating characteristic curve (AUC) for three classes of phenotypes of 0.81 (95%‐confidence interval (CI): 0.65‐0.94) using leave‐one‐out cross‐validation. Besides improving the AUC, our integrative multilevel learning approach led to tighter CIs than using smaller complete predictor data sets (AUC = 0.82 [0.66‐0.94] for boosting). The most important variables for classifying childhood asthma phenotypes comprised novel identified genes, namely PKN2 (protein kinase N2), PTK2 (protein tyrosine kinase 2), and ALPP (alkaline phosphatase, placental). Conclusion Our combination of several data modalities using a novel strategy improved classification of childhood asthma phenotypes but requires validation in external populations. The generic approach is applicable to other multilevel data‐based risk prediction settings, which typically suffer from incomplete data.
Collapse
Affiliation(s)
- Norbert Krautenbacher
- Institute of Computational Biology Helmholtz Zentrum München German Research Center for Environmental Health GmbH Neuherberg Germany
- Technische Universität München Center for Mathematics Chair of Mathematical Modeling of Biological Systems Garching Germany
| | - Nicolai Flach
- Institute of Computational Biology Helmholtz Zentrum München German Research Center for Environmental Health GmbH Neuherberg Germany
- Technische Universität München Center for Mathematics Chair of Mathematical Modeling of Biological Systems Garching Germany
| | - Andreas Böck
- Department of Pulmonary and Allergy Dr. von Hauner Children's Hospital LMU Munich Germany
| | - Kristina Laubhahn
- Department of Pulmonary and Allergy Dr. von Hauner Children's Hospital LMU Munich Germany
- Member of German Lung Centre (DZL) CPC Munich Germany
| | - Michael Laimighofer
- Institute of Computational Biology Helmholtz Zentrum München German Research Center for Environmental Health GmbH Neuherberg Germany
- Technische Universität München Center for Mathematics Chair of Mathematical Modeling of Biological Systems Garching Germany
| | - Fabian J. Theis
- Institute of Computational Biology Helmholtz Zentrum München German Research Center for Environmental Health GmbH Neuherberg Germany
- Technische Universität München Center for Mathematics Chair of Mathematical Modeling of Biological Systems Garching Germany
| | - Donna P. Ankerst
- Technische Universität München Center for Mathematics Chair of Mathematical Modeling of Biological Systems Garching Germany
- University of Texas Health Science Center at San Antonio San Antonio Texas
| | - Christiane Fuchs
- Institute of Computational Biology Helmholtz Zentrum München German Research Center for Environmental Health GmbH Neuherberg Germany
- Technische Universität München Center for Mathematics Chair of Mathematical Modeling of Biological Systems Garching Germany
- Faculty of Business Administration and Economics Bielefeld University Bielefeld Germany
| | - Bianca Schaub
- Department of Pulmonary and Allergy Dr. von Hauner Children's Hospital LMU Munich Germany
- Member of German Lung Centre (DZL) CPC Munich Germany
| |
Collapse
|
263
|
Trivedi M, Denton E. Asthma in Children and Adults-What Are the Differences and What Can They Tell us About Asthma? Front Pediatr 2019; 7:256. [PMID: 31294006 PMCID: PMC6603154 DOI: 10.3389/fped.2019.00256] [Citation(s) in RCA: 155] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 06/06/2019] [Indexed: 12/30/2022] Open
Abstract
Asthma varies considerably across the life course. Childhood asthma is known for its overall high prevalence with a male predominance prior to puberty, common remission, and rare mortality. Adult asthma is known for its female predominance, uncommon remission, and unusual mortality. Both childhood and adult asthma have variable presentations, which are described herein. Childhood asthma severity is associated with duration of asthma symptoms, medication use, lung function, low socioeconomic status, racial/ethnic minorities, and a neutrophilic phenotype. Adult asthma severity is associated with increased IgE, elevated FeNO, eosinophilia, obesity, smoking, and low socioeconomic status. Adult onset disease is associated with more respiratory symptoms and asthma medication use despite higher prebronchodilator FEV1/FVC. There is less quiescent disease in adult onset asthma and it appears to be less stable than childhood-onset disease with more relapses and less remissions.
Collapse
Affiliation(s)
- Michelle Trivedi
- Division of Pediatric Pulmonology, Department of Pediatrics, University of Massachusetts Medical School, Worcester, MA, United States
- Department of Population and Quantitative Health Sciences, University of Massachusetts Medical School, Worcester, MA, United States
| | - Eve Denton
- Department of Respiratory Medicine, Alfred Hospital, Melbourne, VIC, Australia
- Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
264
|
Eger KA, Bel EH. The emergence of new biologics for severe asthma. Curr Opin Pharmacol 2019; 46:108-115. [PMID: 31229937 DOI: 10.1016/j.coph.2019.05.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/29/2019] [Accepted: 05/15/2019] [Indexed: 02/08/2023]
Abstract
Patients with severe asthma experience severe symptoms and frequent exacerbations despite intensive treatment with inhaled and oral glucocorticoids. Biologics for severe asthma aim to reduce asthma-related and glucocorticoid-induced morbidity. Recently, new biologics targeting interleukin (IL)-5, IL-5 receptor and IL-4/IL-13, which are all cytokines involved in so-called type 2 airway inflammation, were approved for severe asthma. They show a reduction in exacerbation rate and an oral glucocorticoid-sparing effect. Studies with upstream biologics targeting alarmin cytokines such as thymic stromal lymphopoietin (TSLP) and IL-33 are underway, and newly designed bispecific antibodies targeting more than one pathway are in early phases of development. Such pathway-targeted add-on treatments will soon become standard of care for all patients with severe asthma.
Collapse
Affiliation(s)
- Katrien Ab Eger
- Amsterdam UMC, Academic Medical Centre, University of Amsterdam, Dept. of Respiratory Medicine, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Elisabeth H Bel
- Amsterdam UMC, Academic Medical Center, University of Amsterdam, Dept. of Respiratory Medicine, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands.
| |
Collapse
|
265
|
Saeki M, Nishimura T, Kitamura N, Hiroi T, Mori A, Kaminuma O. Potential Mechanisms of T Cell-Mediated and Eosinophil-Independent Bronchial Hyperresponsiveness. Int J Mol Sci 2019; 20:ijms20122980. [PMID: 31216735 PMCID: PMC6627885 DOI: 10.3390/ijms20122980] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/12/2019] [Accepted: 06/17/2019] [Indexed: 12/14/2022] Open
Abstract
Bronchial asthma is a chronic disease characterized by reversible airway obstruction, mucus production, and bronchial hyperresponsiveness (BHR). Although Th2 cell-mediated eosinophilic inflammation is an important disease mechanism in the majority of patients with bronchial asthma, recent studies suggest the possible development of Th2-independent airway inflammation and BHR. These non-Th2 endotype patients seem to consist of multiple subgroups, and often do not respond to inhaled corticosteroids. Therefore, to understand the pathogenesis of asthma, it is important to characterize these non-Th2 subgroups. Recently, we demonstrated that Th9 cells induce eosinophil infiltration and eosinophil-independent BHR, and Th9 cells-mediated BHR may be resistant to glucocorticoid. In this review, we summarize the contribution of several T cell subsets in the development of bronchial asthma and introduce our recent study demonstrating Th9 cell-mediated and eosinophil-independent BHR.
Collapse
Affiliation(s)
- Mayumi Saeki
- Allergy and Immunology Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan.
| | - Tomoe Nishimura
- Allergy and Immunology Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan.
| | - Noriko Kitamura
- Allergy and Immunology Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan.
| | - Takachika Hiroi
- Allergy and Immunology Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan.
| | - Akio Mori
- Allergy and Immunology Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan.
- Clinical Research Center for Allergy and Rheumatology, National Hospital Organization, Sagamihara National Hospital, Kanagawa 252-0392, Japan.
| | - Osamu Kaminuma
- Allergy and Immunology Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan.
- Clinical Research Center for Allergy and Rheumatology, National Hospital Organization, Sagamihara National Hospital, Kanagawa 252-0392, Japan.
- Department of Disease Model, Research Institute of Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-0037, Japan.
- Center for Life Science Research, University of Yamanashi, Yamanashi 400-8510, Japan.
| |
Collapse
|
266
|
Whitehead GS, Kang HS, Thomas SY, Medvedev A, Karcz TP, Izumi G, Nakano K, Makarov SS, Nakano H, Jetten AM, Cook DN. Therapeutic suppression of pulmonary neutrophilia and allergic airway hyperresponsiveness by a RORγt inverse agonist. JCI Insight 2019; 5:125528. [PMID: 31184998 DOI: 10.1172/jci.insight.125528] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Airway neutrophilia occurs in approximately 50% of patients with asthma and is associated with particularly severe disease. Unfortunately, this form of asthma is usually refractory to corticosteroid treatment, and there is an unmet need for new therapies. Pulmonary neutrophilic inflammation is associated with Th17 cells, whose differentiation is controlled by the nuclear receptor, RORγt. Here, we tested whether VTP-938, a selective inverse agonist of this receptor, can reduce disease parameters in animal models of neutrophilic asthma. When administered prior to allergic sensitization through the airway, the RORγt inverse agonist blunted allergen-specific Th17 cell development in lung-draining lymph nodes and attenuated allergen-induced production of IL-17. VTP-938 also reduced pulmonary production of IL-17 and airway neutrophilia when given during the allergen challenge of the model. Finally, in an environmentally relevant model of allergic responses to house dust extracts, VTP-938 suppressed production of IL-17 and neutrophilic inflammation, and also markedly diminished airway hyperresponsiveness. Together, these findings suggest that orally available inverse agonists of RORγt might provide an effective therapy to treat glucocorticoid-resistant neutrophilic asthma.
Collapse
Affiliation(s)
- Gregory S Whitehead
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina, USA
| | - Hong Soon Kang
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina, USA
| | - Seddon Y Thomas
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina, USA
| | | | - Tadeusz P Karcz
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina, USA
| | - Gentaro Izumi
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina, USA
| | - Keiko Nakano
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina, USA
| | | | - Hideki Nakano
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina, USA
| | - Anton M Jetten
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina, USA
| | - Donald N Cook
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina, USA
| |
Collapse
|
267
|
Santus P, Saad M, Damiani G, Patella V, Radovanovic D. Current and future targeted therapies for severe asthma: Managing treatment with biologics based on phenotypes and biomarkers. Pharmacol Res 2019; 146:104296. [PMID: 31173886 DOI: 10.1016/j.phrs.2019.104296] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 06/02/2019] [Accepted: 06/03/2019] [Indexed: 12/14/2022]
Abstract
Asthma is a respiratory disorder with considerable heterogeneity in aetiology, triggers, clinical characteristics and response to therapy. This diversity reflects different inflammatory pathways that can be subdivided into clinically similar categories called phenotypes, or pathogenically comparable groups called endotypes. In recent years, a great amount of research has been dedicated to the investigation and understanding of the heterogeneity of asthma pathophysiology and to the identification of treatable traits, biomarkers, mediators and therapeutic targets. Severe asthma is defined as an uncontrolled disease despite a maximal conventional therapeutic approach. While, to date, some target therapies showing improvements in lung function, asthma symptoms and a reduction of the annual rate of exacerbations in patients with severe asthma have been already approved, other treatments are currently being studied, specifically targeting Type 2 asthma. Further progress however, is still needed to tackle the molecular pathways for non-Type 2 asthma. The aim of the present narrative review is to discuss and examine the indication, mechanisms of action and therapeutic effects of currently available and emerging biologic agents for the treatment of severe asthma.
Collapse
Affiliation(s)
- Pierachille Santus
- Department of Biomedical and Clinical Sciences (DIBIC), University of Milan, Division of Pulmonary Diseases, Ospedale L. Sacco, ASST Fatebenfratelli-Sacco, Via G.B. Grassi, 74, 20157, Milan, Italy.
| | - Marina Saad
- Department of Biomedical and Clinical Sciences (DIBIC), University of Milan, Division of Pulmonary Diseases, Ospedale L. Sacco, ASST Fatebenfratelli-Sacco, Via G.B. Grassi, 74, 20157, Milan, Italy.
| | - Giovanni Damiani
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Clinical Dermatology, IRCCS Istituto Ortopedico Galeazzi, Via R. Galeazzi, 4, 20161, Milan, Italy.
| | - Vincenzo Patella
- Allergology and Clinical Immunology Unit, Department of Medical Sciences, Battipaglia Hospital, Via Fiorignano, 1, 84091, Battipaglia, Salerno, Italy.
| | - Dejan Radovanovic
- Department of Biomedical and Clinical Sciences (DIBIC), University of Milan, Division of Pulmonary Diseases, Ospedale L. Sacco, ASST Fatebenfratelli-Sacco, Via G.B. Grassi, 74, 20157, Milan, Italy.
| |
Collapse
|
268
|
Sriaroon P, Casale TB. The challenge of choosing the correct biologic for the correct asthma patient. Ann Allergy Asthma Immunol 2019; 121:385-386. [PMID: 30290891 DOI: 10.1016/j.anai.2018.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 08/20/2018] [Indexed: 10/28/2022]
Affiliation(s)
- Panida Sriaroon
- USF/All Children's Hospital Allergy/Immunology clinic, Tampa, Florida
| | - Thomas B Casale
- University of South Florida, Morsani College of Medicine, Dept of Medicine, Tampa, Florida.
| |
Collapse
|
269
|
Mokoka MC, McDonnell MJ, MacHale E, Cushen B, Boland F, Cormican S, Doherty C, Doyle F, Costello RW, Greene G. Inadequate assessment of adherence to maintenance medication leads to loss of power and increased costs in trials of severe asthma therapy: results from a systematic literature review and modelling study. Eur Respir J 2019; 53:13993003.02161-2018. [PMID: 30846467 DOI: 10.1183/13993003.02161-2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 02/20/2019] [Indexed: 01/01/2023]
Abstract
Adherence to inhaled maintenance therapy in severe asthma is rarely adequately assessed, and its influence on trial outcomes is unknown. We systematically determined how adherence to maintenance therapy is assessed in clinical trials of "add-on" therapy for severe asthma. We model the improvement in trial power that could be achieved by accurately assessing adherence.A systematic search of six major databases identified randomised trials of add-on therapy for severe asthma. The relationship between measuring adherence and study outcomes was assessed. An estimate of potential improvements in statistical power and sample size was derived using digitally recorded adherence trial data.87 randomised controlled trials enrolling 22 173 participants were included. Adherence assessment was not reported in 67 trials (n=13 931, 63%). Studies that reported adherence used a range of self-report and subjective methods. None of the studies employed an objective assessment of adherence. Studies that reported adherence had a significantly reduced pooled variance in forced expiratory volume in 1 s (FEV1) compared to those that did not assess adherence: s2=0.144 L2 versus s2=0.168 L2, p<0.0001. Power to detect clinically relevant changes in FEV1 was significantly higher in trials that reported adherence assessment (mean power achieved 59% versus 49%). Modelling suggests that up to 50% of variance in FEV1 outcomes is attributable to undetected variations in adherence. Controlling for such variations could potentially halve the required sample size.Few trials of add-on therapy monitor adherence to maintenance inhaled therapy, resulting in a greater variance in trial outcomes and inadequate power for determining efficacy.
Collapse
Affiliation(s)
- Matshediso C Mokoka
- Clinical Research Centre, Smurfit Building, Beaumont Hospital, Royal College of Surgeons in Ireland, Dublin, Ireland
| | | | - Elaine MacHale
- Clinical Research Centre, Smurfit Building, Beaumont Hospital, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Breda Cushen
- Clinical Research Centre, Smurfit Building, Beaumont Hospital, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Fiona Boland
- Data Science Centre, Royal College of Surgeons in Ireland, Dublin, Ireland
| | | | - Christina Doherty
- Beaumont Library, Beaumont Hospital, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Frank Doyle
- Dept of Psychology, Division of Population Health Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Richard W Costello
- Dept of Respiratory Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Garrett Greene
- Clinical Research Centre, Smurfit Building, Beaumont Hospital, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
270
|
Galluzzo M, D’Adamio S, Massaro A, Piccolo A, Bianchi L, Talamonti M. Spotlight on brodalumab in the treatment of plaque psoriasis: the evidence to date. Clin Cosmet Investig Dermatol 2019; 12:311-321. [PMID: 31118733 PMCID: PMC6503649 DOI: 10.2147/ccid.s165605] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 02/15/2019] [Indexed: 12/21/2022]
Abstract
The IL-17/IL-23 axis is now understood to influence psoriasis, and the development of novel IL-17 inhibitor medications marks a sea change in the treatment of psoriasis. Brodalumab is a recombinant, fully human immunoglobulin IgG2 monoclonal antibody specifically targeted against IL-17RA. This article discusses the mechanism of action and the efficacy and safety profile of brodalumab presented in the literature. Brodalumab, the latest approved anti-IL-17-class medication, is the only one that exerts its effects on IL-17C as well as on IL-17A and IL-17F, blocking the shared IL-17 receptor A. In this sense, considering the recent evidence, brodalumab could have beneficial effects not only on psoriasis, but also on atopic dermatitis. It could also serve as a therapeutic alternative in patients who develop paradoxical eczematous reactions or atopic-like dermatitis during treatment with other anti-IL-17A (secukinumab, ixekizumab).
Collapse
Affiliation(s)
- M Galluzzo
- Dermatology, Department of “Medicina dei Sistemi”, University of Rome Tor Vergata, Rome, Italy
| | - S D’Adamio
- Dermatology, Department of “Medicina dei Sistemi”, University of Rome Tor Vergata, Rome, Italy
| | - A Massaro
- Dermatology, Department of “Medicina dei Sistemi”, University of Rome Tor Vergata, Rome, Italy
| | - A Piccolo
- Dermatology, Department of “Medicina dei Sistemi”, University of Rome Tor Vergata, Rome, Italy
| | - L Bianchi
- Dermatology, Department of “Medicina dei Sistemi”, University of Rome Tor Vergata, Rome, Italy
| | - M Talamonti
- Dermatology, Department of “Medicina dei Sistemi”, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
271
|
Khadangi F, Bossé Y. Extracellular regulation of airway smooth muscle contraction. Int J Biochem Cell Biol 2019; 112:1-7. [PMID: 31042549 DOI: 10.1016/j.biocel.2019.04.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 04/25/2019] [Accepted: 04/26/2019] [Indexed: 01/22/2023]
Abstract
The molecular mechanisms governing the contraction of airway smooth muscle have always been at the forefront of asthma research. New extracellular molecules affecting the contraction of airway smooth muscle are steadily being discovered. Although interesting, this is disconcerting for researchers trying to find a mend for the significant part of asthma symptoms caused by contraction. Additional efforts are being deployed to understand the intracellular signaling pathways leading to contraction. The goal being to find common pathways that are essential to convey the contractile signal emanating from any single or combination of extracellular molecules. Not only these pathways exist and their details are being slowly unveiled, but some carry the signal inside-out to interact back with extracellular molecules. These latter represent targets with promising therapeutic potential, not only because they are molecules downstream of pathways essential for contraction but also because their extracellular location makes them readily accessible by inhaled drugs.
Collapse
|
272
|
Östling J, van Geest M, Schofield JPR, Jevnikar Z, Wilson S, Ward J, Lutter R, Shaw DE, Bakke PS, Caruso M, Dahlen SE, Fowler SJ, Horváth I, Krug N, Montuschi P, Sanak M, Sandström T, Sun K, Pandis I, Auffray C, Sousa AR, Guo Y, Adcock IM, Howarth P, Chung KF, Bigler J, Sterk PJ, Skipp PJ, Djukanović R, Vaarala O. IL-17-high asthma with features of a psoriasis immunophenotype. J Allergy Clin Immunol 2019; 144:1198-1213. [PMID: 30998987 DOI: 10.1016/j.jaci.2019.03.027] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 03/06/2019] [Accepted: 03/18/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND The role of IL-17 immunity is well established in patients with inflammatory diseases, such as psoriasis and inflammatory bowel disease, but not in asthmatic patients, in whom further study is required. OBJECTIVE We sought to undertake a deep phenotyping study of asthmatic patients with upregulated IL-17 immunity. METHODS Whole-genome transcriptomic analysis was performed by using epithelial brushings, bronchial biopsy specimens (91 asthmatic patients and 46 healthy control subjects), and whole blood samples (n = 498) from the Unbiased Biomarkers for the Prediction of Respiratory Disease Outcomes (U-BIOPRED) cohort. Gene signatures induced in vitro by IL-17 and IL-13 in bronchial epithelial cells were used to identify patients with IL-17-high and IL-13-high asthma phenotypes. RESULTS Twenty-two of 91 patients were identified with IL-17, and 9 patients were identified with IL-13 gene signatures. The patients with IL-17-high asthma were characterized by risk of frequent exacerbations, airway (sputum and mucosal) neutrophilia, decreased lung microbiota diversity, and urinary biomarker evidence of activation of the thromboxane B2 pathway. In pathway analysis the differentially expressed genes in patients with IL-17-high asthma were shared with those reported as altered in psoriasis lesions and included genes regulating epithelial barrier function and defense mechanisms, such as IL1B, IL6, IL8, and β-defensin. CONCLUSION The IL-17-high asthma phenotype, characterized by bronchial epithelial dysfunction and upregulated antimicrobial and inflammatory response, resembles the immunophenotype of psoriasis, including activation of the thromboxane B2 pathway, which should be considered a biomarker for this phenotype in further studies, including clinical trials targeting IL-17.
Collapse
Affiliation(s)
- Jörgen Östling
- Respiratory, Inflammation, Autoimmunity IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Marleen van Geest
- Respiratory, Inflammation, Autoimmunity IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - James P R Schofield
- Centre for Proteomic Research, University of Southampton, Southampton, United Kingdom; NIHR Southampton Biomedical Research Centre, Clinical and Experimental Sciences, Faculty of Research, University of Southampton, Southampton, United Kingdom
| | - Zala Jevnikar
- Respiratory, Inflammation, Autoimmunity IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Susan Wilson
- NIHR Southampton Biomedical Research Centre, Clinical and Experimental Sciences, Faculty of Research, University of Southampton, Southampton, United Kingdom; Histochemistry Research Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Jonathan Ward
- NIHR Southampton Biomedical Research Centre, Clinical and Experimental Sciences, Faculty of Research, University of Southampton, Southampton, United Kingdom
| | - Rene Lutter
- AUMC, Department of Experimental Immunology, University of Amsterdam, Amsterdam, The Netherlands; AUMC, Department of Respiratory Medicine, University of Amsterdam, Amsterdam, The Netherlands
| | - Dominick E Shaw
- Respiratory Research Unit, University of Nottingham, Nottingham, United Kingdom
| | - Per S Bakke
- Institute of Medicine, University of Bergen, Bergen, Norway
| | - Massimo Caruso
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Sven-Erik Dahlen
- Centre for Allergy Research, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Stephen J Fowler
- Respiratory and Allergy Research Group, University of Manchester, Manchester, United Kingdom
| | - Ildikó Horváth
- Department of Pulmonology, Semmelweis University, Budapest, Hungary
| | - Norbert Krug
- Fraunhofer Institute for Toxicology and Experimental Medicine Hannover, Hannover, Germany
| | - Paolo Montuschi
- Faculty of Medicine, Catholic University of the Sacred Heart, Fondazione Policlinico Agostino Gemelli IRCCS, Rome, Italy
| | - Marek Sanak
- Laboratory of Molecular Biology and Clinical Genetics, Medical College, Jagiellonian University, Krakow, Poland
| | - Thomas Sandström
- Department of Medicine, Department of Public Health and Clinical Medicine Respiratory Medicine Unit, Umeå University, Umeå, Sweden
| | - Kai Sun
- Data Science Institute, Imperial College, London, United Kingdom
| | - Ioannis Pandis
- Data Science Institute, Imperial College, London, United Kingdom
| | - Charles Auffray
- European Institute for Systems Biology and Medicine, CNRS-ENS-UCBL-INSERM, Université de Lyon, Lyon, France
| | - Ana R Sousa
- Respiratory Therapeutic Unit, GlaxoSmithKline, Stockley Park, United Kingdom
| | - Yike Guo
- Data Science Institute, Imperial College, London, United Kingdom
| | - Ian M Adcock
- Experimental Studies, Airways Disease Section, National Heart & Lung institute, Imperial College London, London, United Kingdom
| | - Peter Howarth
- NIHR Southampton Biomedical Research Centre, Clinical and Experimental Sciences, Faculty of Research, University of Southampton, Southampton, United Kingdom
| | - Kian Fan Chung
- Experimental Studies, Airways Disease Section, National Heart & Lung institute, Imperial College London, London, United Kingdom
| | | | - Peter J Sterk
- AUMC, Department of Respiratory Medicine, University of Amsterdam, Amsterdam, The Netherlands
| | - Paul J Skipp
- Centre for Proteomic Research, University of Southampton, Southampton, United Kingdom; NIHR Southampton Biomedical Research Centre, Clinical and Experimental Sciences, Faculty of Research, University of Southampton, Southampton, United Kingdom
| | - Ratko Djukanović
- NIHR Southampton Biomedical Research Centre, Clinical and Experimental Sciences, Faculty of Research, University of Southampton, Southampton, United Kingdom.
| | - Outi Vaarala
- Respiratory, Inflammation, Autoimmunity IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | | |
Collapse
|
273
|
Carr TF, Zeki AA, Kraft M. Eosinophilic and Noneosinophilic Asthma. Am J Respir Crit Care Med 2019; 197:22-37. [PMID: 28910134 DOI: 10.1164/rccm.201611-2232pp] [Citation(s) in RCA: 235] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Tara F Carr
- 1 Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Arizona, Tucson, Arizona; and
| | - Amir A Zeki
- 2 Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, University of California Davis School of Medicine, Davis, California
| | - Monica Kraft
- 1 Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Arizona, Tucson, Arizona; and
| |
Collapse
|
274
|
Domvri K, Porpodis K, Tzimagiorgis G, Chatzopoulou F, Kontakiotis T, Kyriazis G, Papakosta D. Th2/Th17 cytokine profile in phenotyped Greek asthmatics and relationship to biomarkers of inflammation. Respir Med 2019; 151:102-110. [PMID: 31047104 DOI: 10.1016/j.rmed.2019.03.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 03/18/2019] [Accepted: 03/26/2019] [Indexed: 01/05/2023]
Abstract
OBJECTIVE The aim of the present study was to investigate the Th2/Th17 pathway in asthmatic patients and also the relationship to asthma severity and biomarkers of inflammation. METHODS 90 asthmatic patients, 51 patients with severe, 39 patients with mild asthma and 98 healthy controls were included. Skin prick tests, blood eosinophils, total serum IgE and exhaled FeNO were evaluated. Serum levels of IL-4, IL-5, IL-13, IL-6, IL-17A, IL-23 and TGFβ1 were determined by Flow Cytometry using a panel kit (AimPlex Biosciences). The SNP of IL17A (rs17880588) was genotyped using reverse transcriptase polymerase chain reaction (RT-PCR). RESULTS The genotype of the SNP in IL17A (rs 17880588) was similar among all three groups. Serum levels of IL-4, IL-5, IL-13, IL-6, IL-17A and IL-23 were higher in asthmatics compared to controls (p < 0.05). In addition, IL-17A and IL-4 serum levels were found significantly elevated in patients with allergic asthma (p < 0.05). Furthermore, IL-4, IL-5, IL-13 and IL-23 were found significantly higher in patients with eosinophil cut off values above 300 cells/μl (p < 0.05). IL-17A levels were positively correlated with FeNO values in severe asthmatics with eosinophils>400 cells/μl. CONCLUSIONS The above findings suggest the coexistence of Th2/Th17 pathway in severe, eosinophilic and in allergic asthma.
Collapse
Affiliation(s)
- Kalliopi Domvri
- Department of Pneumonology, Aristotle University of Thessaloniki, General Hospital G.Papanikolaou, Thessaloniki, Greece.
| | - Konstantinos Porpodis
- Department of Pneumonology, Aristotle University of Thessaloniki, General Hospital G.Papanikolaou, Thessaloniki, Greece.
| | - Georgios Tzimagiorgis
- Laboratory of Biological Chemistry, School of Health Sciences, Medical Department, Aristotle University of Thessaloniki, Greece.
| | - Fani Chatzopoulou
- Laboratory of Biological Chemistry, School of Health Sciences, Medical Department, Aristotle University of Thessaloniki, Greece.
| | - Theodoros Kontakiotis
- Department of Pneumonology, Aristotle University of Thessaloniki, General Hospital G.Papanikolaou, Thessaloniki, Greece.
| | - George Kyriazis
- Department of Pneumonology, Aristotle University of Thessaloniki, General Hospital G.Papanikolaou, Thessaloniki, Greece.
| | - Despina Papakosta
- Department of Pneumonology, Aristotle University of Thessaloniki, General Hospital G.Papanikolaou, Thessaloniki, Greece.
| |
Collapse
|
275
|
Paul AGA, Muehling LM, Eccles JD, Woodfolk JA. T cells in severe childhood asthma. Clin Exp Allergy 2019; 49:564-581. [PMID: 30793397 DOI: 10.1111/cea.13374] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 02/05/2019] [Accepted: 02/11/2019] [Indexed: 12/17/2022]
Abstract
Severe asthma in children is a debilitating condition that accounts for a disproportionately large health and economic burden of asthma. Reasons for the lack of a response to standard anti-inflammatory therapies remain enigmatic. Work in the last decade has shed new light on the heterogeneous nature of asthma, and the varied immunopathologies of severe disease, which are leading to new treatment approaches for the individual patient. However, most studies to date that explored the immune landscape of the inflamed lower airways have focused on adults. T cells are pivotal to the inception and persistence of inflammatory processes in the diseased lungs, despite a contemporary shift in focus to immune events at the epithelial barrier. This article outlines current knowledge on the types of T cells and related cell types that are implicated in severe asthma. The potential for environmental exposures and other inflammatory cues to condition the immune environment of the lung in early life to favour pathogenic T cells and steroid resistance is discussed. The contributions of T cells and their cytokines to inflammatory processes and treatment resistance are also considered, with an emphasis on new observations in children that argue against conventional type 1 and type 2 T cell paradigms. Finally, the ability for new technologies to revolutionize our understanding of T cells in severe childhood asthma, and to guide future treatment strategies that could mitigate this disease, is highlighted.
Collapse
Affiliation(s)
- Alberta G A Paul
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Lyndsey M Muehling
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Jacob D Eccles
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Judith A Woodfolk
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia
| |
Collapse
|
276
|
Wu KK, Lee MP, Lee EB, Wu JJ. Risk of herpes zoster with IL-17 inhibitor therapy for psoriasis and other inflammatory conditions. J DERMATOL TREAT 2019; 31:359-365. [PMID: 30900514 DOI: 10.1080/09546634.2019.1597246] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Background: Psoriasis is a chronic inflammatory skin disease that has been associated with a significantly higher risk of herpes zoster (HZ). Several newer biologics such as secukinumab, ixekizumab, and brodalumab inhibit IL-17 and have been highly effective for treatment of psoriasis. However, adverse events related to the immunosuppressive properties of these biologics have been observed.Methods: This review aims to synthesize and evaluate the literature investigating the risk of HZ in patients treated with IL-17 inhibitors, with a focus on psoriasis patients. We performed searches using the PubMED database with the following search terms: 'psoriasis,' 'herpes zoster,' 'secukinumab,' 'ixekizumab,' 'brodalumab,' 'IL-17,' 'anti-IL-17,' and 'safety.' Clinical trials, cohort studies, review articles, and meta-analyses were evaluated.Results: Studies did not detect a higher risk of HZ infections in psoriasis patients treated with IL-17 inhibitors when compared to those treated with placebo or other therapies. Studies of IL-17 inhibitors for other indications including psoriatic arthritis, rheumatoid arthritis, ankylosing spondylitis, and asthma yielded similar results.Conclusion: IL-17 inhibitors do not appear to increase risk of HZ. However, IL-17 inhibitors are relatively new medications, and further long-term data may be necessary to confirm this finding. Nevertheless, HZ vaccination should be considered on a case-bycase basis prior to initiating IL-17 therapy.
Collapse
Affiliation(s)
- Kevin K Wu
- Frank H. Netter MD School of Medicine at Quinnipiac University, North Haven, CT, USA
| | | | - Erica B Lee
- John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA
| | - Jashin J Wu
- Dermatology Research and Education Foundation, Irvine, CA, USA
| |
Collapse
|
277
|
Wang L, Feng M, Li Q, Qiu C, Chen R. Advances in nanotechnology and asthma. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:180. [PMID: 31168461 DOI: 10.21037/atm.2019.04.62] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
According to the World Health Organization, Asthma is the fastest-growing disease in the world alongside HIV/AIDS, and its socioeconomic burden exceeds the sum of HIV/AIDS and tuberculosis. Its high disability and mortality rates have become serious social and public health concerns. Asthma is a heterogeneous disease in which genetic polymorphisms interact with the environmental factors. While no specific treatment has been available for asthma due to its complex pathogenesis, the advances in nanotechnology have brought new hope for the early diagnosis, treatment, and prevention of asthma. Nanotechnology can achieve targeted delivery of drugs or genes, reduce toxic effects, and improve drug bioavailability. The nano-modifications of drugs and the development of new nano-drugs have become new research directions. Studies have demonstrated the safety and effectiveness of nanocarriers. However, many challenges still need to be overcome before nanotherapy can be applied in clinical practice. In this article we review the new research highlights in this area, with an attempt to explore the great potential and feasibility of nanotechnology in treating asthma.
Collapse
Affiliation(s)
- Lingwei Wang
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen Institute of Respiratory Diseases, Shenzhen 518020, China
| | - Mengjie Feng
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen Institute of Respiratory Diseases, Shenzhen 518020, China
| | - Qiuwen Li
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen Institute of Respiratory Diseases, Shenzhen 518020, China
| | - Chen Qiu
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen Institute of Respiratory Diseases, Shenzhen 518020, China
| | - Rongchang Chen
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen Institute of Respiratory Diseases, Shenzhen 518020, China
| |
Collapse
|
278
|
Non-type 2 inflammation in severe asthma is propelled by neutrophil cytoplasts and maintained by defective resolution. Allergol Int 2019; 68:143-149. [PMID: 30573389 DOI: 10.1016/j.alit.2018.11.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 11/10/2018] [Accepted: 11/12/2018] [Indexed: 12/31/2022] Open
Abstract
Asthma is a highly prevalent heterogeneous inflammatory disorder of the airways. Not all patients respond to anti-inflammatory treatment with corticosteroids, leading to significant morbidity in severe asthma. Much attention has been paid to defining the cellular and molecular mechanisms of type 2 inflammation that are operative in asthma. Development of targeted therapies for pathologic type 2 inflammation is opening a new approach to asthma treatment; however, not all asthmatics have type 2 airway inflammation, especially those with severe corticosteroid-refractory asthma. Much less is known about non-type 2 immunological mechanisms in asthma. In health, inflammation triggers resolution mechanisms that control immune (type 1 and type 2) responses and enable the restoration of tissue homeostasis. The resolution response is comprised of cellular and molecular events, including production of specialized pro-resolving mediators (SPMs). SPMs halt leukocyte recruitment, promote macrophage efferocytosis, and restore epithelial barrier integrity, all of which are critical to resolution of inflammation in the lungs. Here, we review recent insights into the disruption of these homeostatic mechanisms and their contributions to non-type 2 inflammation in severe asthma immunopathogenesis.
Collapse
|
279
|
Abstract
Severe asthma defined as uncontrolled or refractory asthma despite adequate use of high dose of inhaled steroid and additional long acting bronchodilators is associated with a high risk of comorbidities, exacerbations and persistent asthma-related symptoms. It remains a significant health care problem and represents the majority of health costs due to asthma. A better understanding of the basic mechanisms of the disease has allowed identification of new phenotypes and endotypes and of some predictive biomarkers. In the meantime an increasing number of promising biologicals are commercialized or on development providing new hopes to achieve asthma control and decrease exacerbation rate without the use of systemic corticosteroid. The increasing number of highly expensive available molecules poses physicians a new challenge: the identification of "the good treatment for the good patient". This article discuss the different biological available or in development in the field of severe asthma based on their mechanism of action and target. One of the aims is to help clarify the clinical decision-making process taking in account both the phenotype/endotype of the patient and the characteristics of these new drugs.
Collapse
|
280
|
Martinez-Gonzalez I, Ghaedi M, Steer CA, Mathä L, Vivier E, Takei F. ILC2 memory: Recollection of previous activation. Immunol Rev 2019; 283:41-53. [PMID: 29664572 DOI: 10.1111/imr.12643] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Immunological memory, traditionally thought to belong to T and B cells, has now been extended to innate lymphocytes, including NK cells and ILC2s, myeloid cells such as macrophages, also termed "trained immunity" and more recently to epithelial stem cells. In this review, we discuss the mechanisms underlying memory generation on ILC2s and speculate about their potential role in human allergic diseases, such as asthma. Moreover, we examine the relevance of the spontaneous ILC2 activation in the lung during the neonatal period in order to efficiently respond to stimuli later in life. These "training" of neonatal ILC2s may have an impact on the generation of memory ILC2s in the adulthood.
Collapse
Affiliation(s)
- Itziar Martinez-Gonzalez
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.,Terry Fox Laboratory British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Maryam Ghaedi
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.,Terry Fox Laboratory British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Catherine A Steer
- Terry Fox Laboratory British Columbia Cancer Agency, Vancouver, BC, Canada.,Interdisciplinary Oncology Program, University of British Columbia, Vancouver, BC, Canada
| | - Laura Mathä
- Terry Fox Laboratory British Columbia Cancer Agency, Vancouver, BC, Canada.,Interdisciplinary Oncology Program, University of British Columbia, Vancouver, BC, Canada
| | - Eric Vivier
- Centre d' Immunologie de Marseille-Luminy, Université d'Aix-Marseille, INSERM, CNRS, Marseille, France.,Innate Pharma Research Labs., Innate Pharma, Marseille, France
| | - Fumio Takei
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.,Terry Fox Laboratory British Columbia Cancer Agency, Vancouver, BC, Canada
| |
Collapse
|
281
|
A Novel Insight on Endotyping Heterogeneous Severe Asthma Based on Endoplasmic Reticulum Stress: Beyond the "Type 2/Non-Type 2 Dichotomy". Int J Mol Sci 2019; 20:ijms20030713. [PMID: 30736433 PMCID: PMC6386842 DOI: 10.3390/ijms20030713] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 01/28/2019] [Accepted: 02/02/2019] [Indexed: 12/21/2022] Open
Abstract
Severe asthma is an extremely heterogeneous clinical syndrome in which diverse cellular and molecular pathobiologic mechanisms exist, namely endotypes. The current system for endotyping severe asthma is largely based on inflammatory cellular profiles and related pathways, namely the dichotomy of type 2 response (resulting in eosinophilic inflammation) and non-type 2 response (reinforcing non-eosinophilic inflammation involving neutrophils or less inflammatory cells), forming the basis of a development strategy for novel therapies. Although specific subgroups of type 2 severe asthma patients may derive benefit from modern precision medicine targeting type 2 cytokines, there is no approved and effective therapeutic agent for non-type 2 severe asthma, which comprises nearly 50% of all asthma patients. Importantly, the critical implication of endoplasmic reticulum (ER) stress and unfolded protein response—in close relation with several pivotal cellular immune/inflammatory platforms including mitochondria, NLRP3 inflammasome, and phosphoinositide 3-kinase-δ—in the generation of corticosteroid resistance is now being increasingly demonstrated in numerous experimental settings of severe asthma. Consistent with these findings, recent clinical data from a large European severe asthma cohort, in which molecular phenotyping as well as diverse clinical and physiological parameters from severe asthmatic patients were incorporated, suggest a brand new framework for endotyping severe asthma in relation to ER-associated mitochondria and inflammasome pathways. These findings highlight the view that ER stress-associated molecular pathways may serve as a unique endotype of severe asthma, and thus present a novel insight into the current knowledge and future development of treatment to overcome corticosteroid resistance in heterogeneous severe asthma.
Collapse
|
282
|
Al-Sajee D, Yin X, Gauvreau GM. An evaluation of roflumilast and PDE4 inhibitors with a focus on the treatment of asthma. Expert Opin Pharmacother 2019; 20:609-620. [PMID: 30722707 DOI: 10.1080/14656566.2019.1570132] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Asthma is a common chronic airway inflammatory disease characterized by diverse inflammatory events leading to airway hyperresponsiveness and reversible airflow obstruction. Corticosteroids have been the mainstay for asthma treatment due to their broad anti-inflammatory actions; however, other medications such as phosphodiesterase 4 inhibitors also demonstrate anti-inflammatory activity in the airways. AREAS COVERED This review describes tissue expression of phosphodiesterase 4 in the airways, the different phosphodiesterase 4 isoenzymes identified, and the anti-inflammatory activities of phosphodiesterase 4 inhibition in asthma and related findings in chronic obstructive pulmonary disease (COPD). The authors further review clinical trials demonstrating that drugs such as roflumilast have an excellent safety profile and efficacy in patients with asthma and COPD. EXPERT OPINION Phosphodiesterase 4 inhibitors suppress the activity of immune cells, an effect similar to corticosteroids although by acting through different anti-inflammatory pathways and uniquely blocking neutrophilic inflammation. Roflumilast and other phosphodiesterase 4 inhibitors have been shown to provide additive protection in asthma when added to corticosteroid and anti-leukotriene treatment. Developmental drugs with dual phosphodiesterase 3 and 4 inhibition are thought to be able to provide bronchodilation and anti-inflammatory activities and will consequently be pushed forward in their clinical development for the treatment of asthma and COPD.
Collapse
Affiliation(s)
- Dhuha Al-Sajee
- a Department of Medicine , McMaster University , Hamilton , ON , Canada
| | - Xuanzhi Yin
- a Department of Medicine , McMaster University , Hamilton , ON , Canada
| | - Gail M Gauvreau
- a Department of Medicine , McMaster University , Hamilton , ON , Canada
| |
Collapse
|
283
|
Li M, Fan X, Ji L, Fan Y, Xu L. Exacerbating effects of trimellitic anhydride in ovalbumin-induced asthmatic mice and the gene and protein expressions of TRPA1, TRPV1, TRPV2 in lung tissue. Int Immunopharmacol 2019; 69:159-168. [PMID: 30716586 DOI: 10.1016/j.intimp.2019.01.038] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 01/11/2019] [Accepted: 01/27/2019] [Indexed: 12/27/2022]
Abstract
With the increasing morbidity and mortality of asthma, asthma aggravated by environmental pollution has drawn more attention. This study investigated the exacerbating effects of trimellitic anhydride (TMA), a typical pollutant, in ovalbumin (OVA)-induced asthmatic mice and the gene and protein expressions of TRPA1, V1, V2 in lung tissue. Female BALB/c mice were respectively administered for 42 days as follow: sensitized and challenged with OVA, sensitized and challenged with TMA, sensitized with OVA and challenged with OVA plus TMA, as well as sensitized and challenged with OVA plus TMA. 24 h after the last challenge, the changes in airway resistance (RI) and lung dynamic compliance (Cdyn) were tested. The levels of the inflammatory cells in blood and bronchoalveolar lavage fluid (BALF) were determined. The gene and protein expressions of TRPA1, V1, V2 in lung tissue were examined, and levels of interleukin (IL)-4, -13, substance P (SP), prostaglandin D2 (PGD2), nerve growth factor (NGF) in BALF and the supernatant of lung homogenate were measured. The results indicated that OVA plus TMA significantly increased the amount of inflammatory cells in blood and BALF, enhanced RI while decreased Cdyn, and aggravated lung injury. Increased gene and protein expressions of TRPA1, V1, V2 in lung tissue, level of IL-4 in the supernatant of lung homogenate, levels of IL-13, SP, PGD2, NGF in BALF and the supernatant of lung homogenate were observed. It was suggested that exacerbating effects of TMA in OVA-induced asthma might be related to the regulation of TRPA1, V1, V2 and relevant neurokines.
Collapse
Affiliation(s)
- Mengwen Li
- School of Basic Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xinsheng Fan
- School of Basic Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Leilei Ji
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuhao Fan
- School of Basic Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Li Xu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
284
|
Pezzulo AA, Tudas RA, Stewart CG, Buonfiglio LGV, Lindsay BD, Taft PJ, Gansemer ND, Zabner J. HSP90 inhibitor geldanamycin reverts IL-13- and IL-17-induced airway goblet cell metaplasia. J Clin Invest 2019; 129:744-758. [PMID: 30640172 PMCID: PMC6355221 DOI: 10.1172/jci123524] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 11/20/2018] [Indexed: 12/29/2022] Open
Abstract
Goblet cell metaplasia, a disabling hallmark of chronic lung disease, lacks curative treatments at present. To identify novel therapeutic targets for goblet cell metaplasia, we studied the transcriptional response profile of IL-13-exposed primary human airway epithelia in vitro and asthmatic airway epithelia in vivo. A perturbation-response profile connectivity approach identified geldanamycin, an inhibitor of heat shock protein 90 (HSP90) as a candidate therapeutic target. Our experiments confirmed that geldanamycin and other HSP90 inhibitors prevented IL-13-induced goblet cell metaplasia in vitro and in vivo. Geldanamycin also reverted established goblet cell metaplasia. Geldanamycin did not induce goblet cell death, nor did it solely block mucin synthesis or IL-13 receptor-proximal signaling. Geldanamycin affected the transcriptome of airway cells when exposed to IL-13, but not when exposed to vehicle. We hypothesized that the mechanism of action probably involves TGF-β, ERBB, or EHF, which would predict that geldanamycin would also revert IL-17-induced goblet cell metaplasia, a prediction confirmed by our experiments. Our findings suggest that persistent airway goblet cell metaplasia requires HSP90 activity and that HSP90 inhibitors will revert goblet cell metaplasia, despite active upstream inflammatory signaling. Moreover, HSP90 inhibitors may be a therapeutic option for airway diseases with goblet cell metaplasia of unknown mechanism.
Collapse
Affiliation(s)
- Alejandro A. Pezzulo
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, and
- Pappajohn Biomedical Institute, University of Iowa, Iowa City, Iowa, USA
| | - Rosarie A. Tudas
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, and
- Pappajohn Biomedical Institute, University of Iowa, Iowa City, Iowa, USA
| | - Carley G. Stewart
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, and
- Pappajohn Biomedical Institute, University of Iowa, Iowa City, Iowa, USA
| | | | - Brian D. Lindsay
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, and
| | - Peter J. Taft
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, and
- Pappajohn Biomedical Institute, University of Iowa, Iowa City, Iowa, USA
| | - Nicholas D. Gansemer
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, and
- Pappajohn Biomedical Institute, University of Iowa, Iowa City, Iowa, USA
| | - Joseph Zabner
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, and
- Pappajohn Biomedical Institute, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
285
|
Bulek K, Chen X, Parron V, Sundaram A, Herjan T, Ouyang S, Liu C, Majors A, Zepp J, Gao J, Dongre A, Bodaszewska-Lubas M, Echard A, Aronica M, Carman J, Garantziotis S, Sheppard D, Li X. IL-17A Recruits Rab35 to IL-17R to Mediate PKCα-Dependent Stress Fiber Formation and Airway Smooth Muscle Contractility. THE JOURNAL OF IMMUNOLOGY 2019; 202:1540-1548. [PMID: 30683702 DOI: 10.4049/jimmunol.1801025] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 12/21/2018] [Indexed: 12/31/2022]
Abstract
IL-17A is a critical proinflammatory cytokine for the pathogenesis of asthma including neutrophilic pulmonary inflammation and airway hyperresponsiveness. In this study, by cell type-specific deletion of IL-17R and adaptor Act1, we demonstrated that IL-17R/Act1 exerts a direct impact on the contraction of airway smooth muscle cells (ASMCs). Mechanistically, IL-17A induced the recruitment of Rab35 (a small monomeric GTPase) and DennD1C (guanine nucleotide exchange factor [GEF]) to the IL-17R/Act1 complex in ASMCs, resulting in activation of Rab35. Rab35 knockdown showed that IL-17A-induced Rab35 activation was essential for protein kinase Cα (PKCα) activation and phosphorylation of fascin at Ser39 in ASMCs, allowing F-actin to interact with myosin to form stress fibers and enhance the contraction induced by methacholine. PKCα inhibitor or Rab35 knockdown indeed substantially reduced IL-17A-induced stress fiber formation in ASMCs and attenuated IL-17A-enhanced, methacholine-induced contraction of airway smooth muscle. Taken together, these data indicate that IL-17A promotes airway smooth muscle contraction via direct recruitment of Rab35 to IL-17R, followed by PKCα activation and stress fiber formation.
Collapse
Affiliation(s)
- Katarzyna Bulek
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195; .,Department of Immunology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| | - Xing Chen
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Vandy Parron
- Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709
| | - Aparna Sundaram
- Lung Biology Center, University of California San Francisco, San Francisco, CA 94143
| | - Tomasz Herjan
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195.,Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| | - Suidong Ouyang
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Caini Liu
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Alana Majors
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Jarod Zepp
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Ji Gao
- Discovery Biology, Bristol-Myers Squibb, Princeton, NJ 08543; and
| | - Ashok Dongre
- Discovery Biology, Bristol-Myers Squibb, Princeton, NJ 08543; and
| | - Malgorzata Bodaszewska-Lubas
- Department of Immunology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| | - Arnaud Echard
- Membrane Traffic and Cell Division Lab, Cell Biology and Infection Department, Pasteur Institute, 75015 Paris, France
| | - Mark Aronica
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Julie Carman
- Discovery Biology, Bristol-Myers Squibb, Princeton, NJ 08543; and
| | - Stavros Garantziotis
- Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709
| | - Dean Sheppard
- Lung Biology Center, University of California San Francisco, San Francisco, CA 94143
| | - Xiaoxia Li
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195;
| |
Collapse
|
286
|
Mouse models of severe asthma for evaluation of therapeutic cytokine targeting. Immunol Lett 2019; 207:73-83. [PMID: 30659868 DOI: 10.1016/j.imlet.2018.11.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 11/19/2018] [Accepted: 11/25/2018] [Indexed: 12/13/2022]
Abstract
Severe asthma is a heterogeneous inflammatory disease of the airways, which requires treatment with high-dose inhaled corticosteroids or their systemic administration, yet often remains uncontrolled despite this therapy. Over the past decades, research efforts into phenotyping of severe asthma and defining the pathological mechanisms of this disease were successful largely due to the development of appropriate animal models. Recent identification of distinct inflammatory patterns of severe asthma endotypes led to novel treatment approaches, including targeting specific cytokines or their receptors with neutralizing antibodies. Here we discuss how different experimental mouse models contributed to generation of clinically relevant findings concerning pathogenesis of severe asthma and to identification of potential targets for biologic therapy.
Collapse
|
287
|
Zhang J, Wang D, Wang L, Wang S, Roden AC, Zhao H, Li X, Prakash YS, Matteson EL, Tschumperlin DJ, Vassallo R. Profibrotic effect of IL-17A and elevated IL-17RA in idiopathic pulmonary fibrosis and rheumatoid arthritis-associated lung disease support a direct role for IL-17A/IL-17RA in human fibrotic interstitial lung disease. Am J Physiol Lung Cell Mol Physiol 2019; 316:L487-L497. [PMID: 30604628 DOI: 10.1152/ajplung.00301.2018] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Interleukin (IL)-17 is a T helper 17 cytokine implicated in the pathogenesis of many autoimmune diseases, including rheumatoid arthritis (RA). Although IL-17A has a well-established role in murine pulmonary fibrosis models, its role in the tissue remodeling and fibrosis occurring in idiopathic pulmonary fibrosis (IPF) and RA-associated interstitial lung disease (RA-ILD) is not very well defined. To address this question, we utilized complimentary studies to determine responsiveness of human normal and pathogenic lung fibroblasts to IL-17A and used lung biopsies acquired from patients with IPF and RA-ILD to determine IL-17A receptor (IL-17RA) expression. Both normal and pathogenic IPF lung fibroblasts express functional IL-17RA and respond to IL-17A stimulation with cell proliferation, generation of extracellular matrix (ECM) proteins, and induction of myofibroblast transdifferentiation. Small interfering RNA (siRNA) silencing of IL-17RA attenuated this fibroblast response to IL-17A on ECM production. These fibroblast responses to IL-17A are dependent on NF-κB-mediated signaling. In addition, inhibiting Janus activated kinase (JAK) 2 by either siRNA or a selective pharmacological inhibitor, AZD1480-but not a JAK1/JAK3 selective inhibitor, tofacitinib-also significantly reduced this IL-17A-induced fibrogenic response. Lung biopsies of RA-ILD patients demonstrate significantly higher IL-17RA expression in areas of fibroblast accumulation and fibrosis, compared with either IPF or normal lung tissue. These observations support a direct role for IL-17A in lung fibrosis that may be particularly relevant in the context of RA-ILD.
Collapse
Affiliation(s)
- Jie Zhang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic College of Medicine and Science , Rochester, Minnesota.,Division of Pulmonary Medicine, Department of Medicine, Chongqing General Hospital , Chongqing , China
| | - Dan Wang
- Department of Rheumatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine , Shanghai , China
| | - Lei Wang
- Division of Pulmonary Medicine, Department of Medicine, Guang'anmen Hospital, China Academy of Chinese Medicine Science , Beijing , China
| | - Shaohua Wang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic College of Medicine and Science , Rochester, Minnesota
| | - Anja C Roden
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine and Science , Rochester, Minnesota
| | - Hao Zhao
- Department of Emergency, Shanghai Traditional Chinese Medicine-Integrated Hospital, Shanghai University of Traditional Chinese Medicine , Shanghai , China
| | - Xiujuan Li
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic College of Medicine and Science , Rochester, Minnesota.,Division of Endocrinology, Department of Medicine, First Affiliated Hospital of Chongqing Medical University , Chongqing , China
| | - Y S Prakash
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine and Science , Rochester, Minnesota.,Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science , Rochester, Minnesota
| | - Eric L Matteson
- Division of Rheumatology, Department of Medicine, Mayo Clinic College of Medicine and Science , Rochester, Minnesota
| | - Daniel J Tschumperlin
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine and Science , Rochester, Minnesota.,Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science , Rochester, Minnesota
| | - Robert Vassallo
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic College of Medicine and Science , Rochester, Minnesota.,Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science , Rochester, Minnesota
| |
Collapse
|
288
|
Patterson AR, Bolcas P, Lampe K, Cantrell R, Ruff B, Lewkowich I, Hogan SP, Janssen EM, Bleesing J, Khurana Hershey GK, Hoebe K. Loss of GTPase of immunity-associated protein 5 (Gimap5) promotes pathogenic CD4 + T-cell development and allergic airway disease. J Allergy Clin Immunol 2019; 143:245-257.e6. [PMID: 30616774 PMCID: PMC6327968 DOI: 10.1016/j.jaci.2018.10.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 09/14/2018] [Accepted: 10/07/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND GTPase of immunity-associated protein 5 (GIMAP5) is essential for lymphocyte homeostasis and survival. Recently, human GIMAP5 single nucleotide polymorphisms have been linked to an increased risk for asthma, whereas loss of Gimap5 in mice has been associated with severe CD4+ T cell-driven immune pathology. OBJECTIVE We sought to identify the molecular and cellular mechanisms by which Gimap5 deficiency predisposes to allergic airway disease. METHODS CD4+ T-cell polarization and development of pathogenic CD4+ T cells were assessed in Gimap5-deficient mice and a human patient with a GIMAP5 loss-of-function (LOF) mutation. House dust mite-induced airway inflammation was assessed by using a complete Gimap5 LOF (Gimap5sph/sph) and conditional Gimap5fl/flCd4Cre/ert2 mice. RESULTS GIMAP5 LOF mutations in both mice and human subjects are associated with spontaneous polarization toward pathogenic TH17 and TH2 cells in vivo. Mechanistic studies in vitro reveal that impairment of Gimap5-deficient TH cell differentiation is associated with increased DNA damage, particularly during TH1-polarizing conditions. DNA damage in Gimap5-deficient CD4+ T cells could be controlled by TGF-β, thereby promoting TH17 polarization. When challenged with house dust mite in vivo, Gimap5-deficient mice displayed an exacerbated asthma phenotype (inflammation and airway hyperresponsiveness), with increased development of TH2, TH17, and pathogenic TH17/TH2 cells. CONCLUSION Activation of Gimap5-deficient CD4+ T cells is associated with increased DNA damage and reduced survival that can be overcome by TGF-β. This leads to selective survival of pathogenic TH17 cells but also TH2 cells in human subjects and mice, ultimately promoting allergic airway disease.
Collapse
Affiliation(s)
- Andrew R Patterson
- Division of Immunobiology, Cincinnati Children's Hospital Research Foundation, Cincinnati, Ohio; Immunology Graduate Program, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Paige Bolcas
- Division of Asthma Research, Cincinnati Children's Hospital Research Foundation, Cincinnati, Ohio; Immunology Graduate Program, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Kristin Lampe
- Division of Immunobiology, Cincinnati Children's Hospital Research Foundation, Cincinnati, Ohio
| | - Rachel Cantrell
- Division of Immunobiology, Cincinnati Children's Hospital Research Foundation, Cincinnati, Ohio; Immunology Graduate Program, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Brandy Ruff
- Division of Asthma Research, Cincinnati Children's Hospital Research Foundation, Cincinnati, Ohio
| | - Ian Lewkowich
- Division of Immunobiology, Cincinnati Children's Hospital Research Foundation, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Simon P Hogan
- Division of Immunobiology, Cincinnati Children's Hospital Research Foundation, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Edith M Janssen
- Division of Immunobiology, Cincinnati Children's Hospital Research Foundation, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Jack Bleesing
- Division of Bone Marrow Transplantation & Immune Deficiency, Cincinnati Children's Hospital Research Foundation, Cincinnati, Ohio
| | - Gurjit K Khurana Hershey
- Division of Asthma Research, Cincinnati Children's Hospital Research Foundation, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Kasper Hoebe
- Division of Immunobiology, Cincinnati Children's Hospital Research Foundation, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio.
| |
Collapse
|
289
|
Kim SH, Uuganbayar U, Trinh HKT, Pham DL, Kim N, Kim M, Sohn H, Park HS. Evaluation of Neutrophil Activation Status According to the Phenotypes of Adult Asthma. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2019; 11:381-393. [PMID: 30912327 PMCID: PMC6439190 DOI: 10.4168/aair.2019.11.3.381] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 12/20/2018] [Accepted: 01/13/2019] [Indexed: 12/14/2022]
Abstract
Purpose Neutrophils are considered key effector cells in the pathogenic mechanisms of airway inflammation in asthma. This study assessed the activation status of neutrophils in adult asthmatics, and the therapeutic potential of FTY720, a synthetic sphingosine-1-phosphate analog, on activated neutrophils using an in vitro stimulation model. Methods We isolated peripheral blood neutrophils (PBNs) from 59 asthmatic patients (including 20 aspirin-exacerbated respiratory disease [AERD] and 39 aspirin-tolerant asthma [ATA] groups). PBNs were stimulated with N-formyl-methionyl-leucyl-phenylalanine (fMLP) or lipopolysaccharide (LPS) and their activation status was determined based on reactive oxygen species (ROS) production, cell surface expression of CD11b, interleukin (IL)-8 and matrix metallopeptidase (MMP)-9 release. PBNs were primed with FTY720 to evaluate its anti-inflammatory action. Results In vitro PBN stimulation with fMLP or LPS induced a significant increase in ROS/CD11b/IL-8/MMP-9 levels (P < 0.05 for all). In asthmatics, fMLP-induced ROS level was significantly correlated with values of forced expiratory volume in 1 second/forced vital capacity (r = −0.278; P = 0.036), maximal mid-expiratory flow (r = −0.309; P = 0.019) and PC20 methacholine (r = −0.302; P = 0.029). In addition, ROS levels were significantly higher in patients with AERD and in those with severe asthma than in those with ATA or non-severe asthma (P < 0.05 for all). FTY720 treatment could suppress ROS/CD11b levels, and LPS-induced IL-8 and MMP-9 levels (P < 0.05 for all). Responders to FTY720 treatment had significantly higher neutrophil counts in sputum (P = 0.004). Conclusions Our findings suggest a useful in vitro PBN stimulation model for evaluating the neutrophil functional status and the therapeutic potentials of neutrophil-targeting candidates in asthmatics.
Collapse
Affiliation(s)
- Seung Hyun Kim
- Translational Research Laboratory for Inflammatory Disease, Clinical Trial Center, Ajou University Medical Center, Suwon, Korea.
| | - Udval Uuganbayar
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | - Hoang Kim Tu Trinh
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | - Duy Le Pham
- Department of Immunology, University of Medicine and Pharmacy at Ho Chi Minh City, Vietnam
| | - Namhyo Kim
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | - Minji Kim
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | - Hyeukjun Sohn
- Department of Biomedical Science, Ajou University School of Medicine, Suwon, Korea
| | - Hae Sim Park
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea.
| |
Collapse
|
290
|
Affiliation(s)
- Sung-Ryeol Kim
- Division of Allergy and Immunology, Department of Internal Medicine, Institute of Allergy, Yonsei University College of Medicine, Seoul, Korea
| | - Jae-Hyun Lee
- Division of Allergy and Immunology, Department of Internal Medicine, Institute of Allergy, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
291
|
Wei J, Ma L, Wang J, Xu Q, Chen M, Jiang M, Luo M, Wu J, She W, Chu S, Mo B. Airway reversibility in asthma and phenotypes of Th2-biomarkers, lung function and disease control. Allergy Asthma Clin Immunol 2018; 14:89. [PMID: 30603020 PMCID: PMC6307254 DOI: 10.1186/s13223-018-0315-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 12/20/2018] [Indexed: 12/30/2022] Open
Abstract
Background High bronchodilator reversibility in adult asthma is associated with distinct clinical characteristics. In this study, we aim to make a comparison with T-helper 2 (Th2)-related biomarkers, lung function and asthma control between asthmatic patients with high airway reversibility (HR) and low airway reversibility (LR). Methods Patients with asthma diagnosed by pulmonologist according to Global Initiative for Asthma guidelines were recruited from the outpatient department of our hospital from August 2014 to July 2017. Patients were divided into HR and LR subgroups based on their response to bronchodilators of lung function (HR = Δforced expiratory volume in one second (FEV1) postbronchodilator ≥ 20%). Blood eosinophil count and serum IgE level, which are biomarkers of T-helper (Th)-2 phenotypes, were detected for patients. Asthma Control Test (ACT) was used to assess asthma control after the first-month initial treatment. Results A total of 265 patients with asthma were followed 1 month after initial treatment. HR group shows a higher level of Th2-high biomarkers (blood eosinophil count (10^9/L): 0.49 ± 0.28 vs 0.36 ± 0.19, P < 0.01; IgE (ng/ml): 1306 ± 842 vs 413 ± 261, P < 0.01), lower baseline lung function (FEV1%pred: 51.91 ± 19.34% vs 60.42 ± 19.22%, P < 0.01; forced expiratory flow (FEF)25–75: 0.76 ± 0.37 vs 1.00 ± 0.67, P < 0.01; FEF25–75%pred: 21.15 ± 10.09% vs 29.06 ± 16.50%, P < 0.01), and better asthma control (ACT score: 22 ± 4 vs 20 ± 4, P = 0.01) than LR group. HR was associated with a decreased risk of uncontrolled asthma after the first-month initial treatment (adjusted OR: 0.12 [95% confidence intervals: 0.03–0.50]). Conclusions HR is a physiologic indicator of lower lung function and severer small airway obstruction, and is more related with an increased level of Th2-biomarkers than LR. Moreover, HR may indicate controlled asthma after the first-month initial treatment. This finding may contribute to identification of asthma endotype.
Collapse
Affiliation(s)
- Jianghong Wei
- 1Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guilin Medical University, Guilin, 541001 Guangxi China
| | - Libing Ma
- 1Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guilin Medical University, Guilin, 541001 Guangxi China
| | - Jiying Wang
- 1Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guilin Medical University, Guilin, 541001 Guangxi China
| | - Qing Xu
- 1Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guilin Medical University, Guilin, 541001 Guangxi China
| | - Meixi Chen
- 1Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guilin Medical University, Guilin, 541001 Guangxi China
| | - Ming Jiang
- 1Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guilin Medical University, Guilin, 541001 Guangxi China
| | - Miao Luo
- 1Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guilin Medical University, Guilin, 541001 Guangxi China
| | - Jingjie Wu
- 1Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guilin Medical University, Guilin, 541001 Guangxi China
| | - Weiwei She
- 1Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guilin Medical University, Guilin, 541001 Guangxi China
| | - Shuyuan Chu
- 1Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guilin Medical University, Guilin, 541001 Guangxi China.,2Laboratory of Respiratory Diseases, Affiliated Hospital of Guilin Medical University, Guilin, 541001 Guangxi China
| | - Biwen Mo
- 1Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guilin Medical University, Guilin, 541001 Guangxi China.,2Laboratory of Respiratory Diseases, Affiliated Hospital of Guilin Medical University, Guilin, 541001 Guangxi China
| |
Collapse
|
292
|
Gubernatorova EO, Gorshkova EA, Namakanova OA, Zvartsev RV, Hidalgo J, Drutskaya MS, Tumanov AV, Nedospasov SA. Non-redundant Functions of IL-6 Produced by Macrophages and Dendritic Cells in Allergic Airway Inflammation. Front Immunol 2018; 9:2718. [PMID: 30534125 PMCID: PMC6276801 DOI: 10.3389/fimmu.2018.02718] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 11/05/2018] [Indexed: 12/12/2022] Open
Abstract
Asthma is a common inflammatory disease of the airway caused by a combination of genetic and environmental factors and characterized by airflow obstruction, wheezing, eosinophilia, and neutrophilia of lungs and sputum. Similar to other proinflammatory cytokines, IL-6 is elevated in asthma and plays an active role in this disease. However, the exact molecular mechanism of IL-6 involvement in the pathogenesis of asthma remains largely unknown and the major cellular source of pathogenic IL-6 has not been defined. In the present study, we used conditional gene targeting to demonstrate that macrophages and dendritic cells are the critical sources of pathogenic IL-6 in acute HDM-induced asthma in mice. Complete genetic inactivation of IL-6 ameliorated the disease with significant decrease in eosinophilia in the lungs. Specific ablation of IL-6 in macrophages reduced key indicators of type 2 allergic inflammation, including eosinophil and Th2 cell accumulation in the lungs, production of IgE and expression of asthma-associated inflammatory mediators. In contrast, mice with deficiency of IL-6 in dendritic cells demonstrated attenuated neutrophilic, but regular eosinophilic response in HDM-induced asthma. Taken together, our results indicate that IL-6 plays a pathogenic role in the HDM-induced asthma model and that lung macrophages and dendritic cells are the predominant sources of pathogenic IL-6 but contribute differently to the disease.
Collapse
Affiliation(s)
- Ekaterina O Gubernatorova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.,Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Ekaterina A Gorshkova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.,Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Olga A Namakanova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.,Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Ruslan V Zvartsev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Juan Hidalgo
- Department of Cellular Biology, Physiology, and Immunology, Autonomous University of Barcelona, Barcelona, Spain
| | - Marina S Drutskaya
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.,Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Alexei V Tumanov
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Sergei A Nedospasov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.,Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
293
|
Schmidt T, Luebbe J, Paust HJ, Panzer U. Mechanisms and functions of IL-17 signaling in renal autoimmune diseases. Mol Immunol 2018; 104:90-99. [PMID: 30448610 DOI: 10.1016/j.molimm.2018.09.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 08/31/2018] [Accepted: 09/07/2018] [Indexed: 12/27/2022]
Abstract
Immune-mediated glomerular diseases (glomerulonephritis) encompass a heterogeneous collection of diseases that cause inflammation within the glomerulus and other renal compartments with significant morbidity and mortality. In general, CD4+ T cells orchestrate the immune response and play a unique role in autoimmune and chronic inflammatory diseases. In particular, the characterization of a distinct, IL-17 cytokines producing CD4+ T cell subset named TH17 cells has significantly advanced the current understanding of the pathogenic mechanisms of organ-specific immunity. Our group and others have shown that the recruitment of TH17 cells to the inflamed kidney drives renal tissue injury in experimental and possibly human crescentic glomerulonephritis (GN), but much remains to be understood about the biological functions, regulation, and signaling pathways of the TH17/IL-17 axis leading to organ damage. Here we review our current knowledge about the mechanisms and functions of IL-17 signaling in renal autoimmune diseases, with a special focus on experimental and human crescentic GN.
Collapse
Affiliation(s)
- Tilman Schmidt
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jonas Luebbe
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Section of Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hans-Joachim Paust
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Section of Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ulf Panzer
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Section of Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
294
|
Chen Y, Mao ZD, Shi YJ, Qian Y, Liu ZG, Yin XW, Zhang Q. Comprehensive analysis of miRNA-mRNA-lncRNA networks in severe asthma. Epigenomics 2018; 11:115-131. [PMID: 30426778 DOI: 10.2217/epi-2018-0132] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
AIM This study aimed to explore the molecular mechanism of severe asthma. MATERIALS & METHODS The shared and divergent differentially expressed mRNAs (DEmRNAs), miRNAs (DEmiRNAs) and lncRNAs (DElncRNAs) in asthma and severe asthma were identified by RNA-sequencing. Severe asthma-specific and shared DEmiRNA-DEmRNA-DElncRNA interaction networks were performed. RESULTS Compared with normal control, 1328 DEmRNAs, 608 DElncRNAs and 63 DEmiRNAs were identified in severe asthma. Compared with asthma, 95 DEmRNAs, 143 DElncRNAs and 96 DEmiRNAs were identified in severe asthma. MiR-133a-3p-EFHD2/CNN2-AC144831.1 interactions and miR-3613-3p-CD44/BCL11B-LINC00158/CTA-217C2.1/AC010976.2/RP11-641A6.2 interactions were speculated to involve with the development of severe asthma. The results of GSE69683 validation were generally consistent with our RNA-sequencing results. CONCLUSION This study provides clues for understanding the mechanism of severe asthma.
Collapse
Affiliation(s)
- Yi Chen
- Department of Respiratory and Critical Care Medicine, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, 29 Xinlong Road, Changzhou 213003, PR China
| | - Zheng-Dao Mao
- Department of Respiratory and Critical Care Medicine, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, 29 Xinlong Road, Changzhou 213003, PR China
| | - Yu-Jia Shi
- Department of Respiratory and Critical Care Medicine, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, 29 Xinlong Road, Changzhou 213003, PR China
| | - Yan Qian
- Department of Respiratory and Critical Care Medicine, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, 29 Xinlong Road, Changzhou 213003, PR China
| | - Zhi-Guang Liu
- Department of Respiratory and Critical Care Medicine, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, 29 Xinlong Road, Changzhou 213003, PR China
| | - Xiao-Wei Yin
- Department of Respiratory and Critical Care Medicine, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, 29 Xinlong Road, Changzhou 213003, PR China
| | - Qian Zhang
- Department of Respiratory and Critical Care Medicine, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, 29 Xinlong Road, Changzhou 213003, PR China
| |
Collapse
|
295
|
Kariyawasam HH. Chronic rhinosinusitis with nasal polyps: insights into mechanisms of disease from emerging biological therapies. Expert Rev Clin Immunol 2018; 15:59-71. [PMID: 30370785 DOI: 10.1080/1744666x.2019.1541738] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Introduction: Chronic rhinosinusitis with nasal polyps (CRSwNP) is a complex disease of the upper airway, with long-term morbidity. With detailed mechanistic studies currently lacking, understanding of the immunopathogenesis is still limited. However, outcomes from CRSwNP clinical studies using biologics that block key mediators or cells may provide some insights into how immune signaling pathways potentially integrate and modulate each other and contribute to disease. Current treatments are often ineffective and there is an urgent unmet clinical need for effective therapeutic strategies. Emerging biologics hold promise. Areas covered: This review covers the biology of CRSwNP in terms of the clinical outcomes reported from blocking immune cascades with available biologics. Immune amplification mechanisms and how biologics can potentially modulate such 'master' cytokines and signaling proteins that drive inflammation and contribute to tissue remodeling in CRSwNP are discussed. Expert commentary: Biologics have the potential to transform CRSwNP treatment. The ability to predict clinical response in a complex disease as CRSwNP to a biologic cannot necessarily be predicted by measuring a single protein or cell as a biomarker of disease. Further studies with biologics must be carefully undertaken to fully evaluate wider biomarker associated pheno-endotype responses along with any associated asthma outcome measures.
Collapse
Affiliation(s)
- Harsha H Kariyawasam
- a Rhinology Section, Specialist Allergy and Clinical Immunology , Royal National Throat Nose and Ear Hospital London and University College London Hospital NHS Foundation Trust, University College London , London , UK
| |
Collapse
|
296
|
Fong V, Hsu A, Wu E, Looney AP, Ganesan P, Ren X, Sheppard D, Wicher SA, Thompson MA, Britt RD, Prakash YS, Bhattacharya M. Arhgef12 drives IL17A-induced airway contractility and airway hyperresponsiveness in mice. JCI Insight 2018; 3:123578. [PMID: 30385725 DOI: 10.1172/jci.insight.123578] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 09/26/2018] [Indexed: 01/09/2023] Open
Abstract
Patients with severe, treatment-refractory asthma are at risk for death from acute exacerbations. The cytokine IL17A has been associated with airway inflammation in severe asthma, and novel therapeutic targets within this pathway are urgently needed. We recently showed that IL17A increases airway contractility by activating the procontractile GTPase RhoA. Here, we explore the therapeutic potential of targeting the RhoA pathway activated by IL17A by inhibiting RhoA guanine nucleotide exchange factors (RhoGEFs), intracellular activators of RhoA. We first used a ribosomal pulldown approach to profile mouse airway smooth muscle by qPCR and identified Arhgef12 as highly expressed among a panel of RhoGEFs. ARHGEF12 was also the most highly expressed RhoGEF in patients with asthma, as found by RNA sequencing. Tracheal rings from Arhgef12-KO mice and WT rings treated with a RhoGEF inhibitor had evidence of decreased contractility and RhoA activation in response to IL17A treatment. In a house dust mite model of allergic sensitization, Arhgef12-KO mice had decreased airway hyperresponsiveness without effects on airway inflammation. Taken together, our results show that Arhgef12 is necessary for IL17A-induced airway contractility and identify a therapeutic target for severe asthma.
Collapse
Affiliation(s)
- Valerie Fong
- Division of Pulmonary, Critical Care, Allergy, and Sleep, Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Austin Hsu
- Gladstone Institute of Cardiovascular Disease, San Francisco, California, USA
| | - Esther Wu
- Division of Pulmonary, Critical Care, Allergy, and Sleep, Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Agnieszka P Looney
- Division of Pulmonary, Critical Care, Allergy, and Sleep, Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Previn Ganesan
- Division of Pulmonary, Critical Care, Allergy, and Sleep, Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Xin Ren
- Division of Pulmonary, Critical Care, Allergy, and Sleep, Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Dean Sheppard
- Division of Pulmonary, Critical Care, Allergy, and Sleep, Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | | | - Michael A Thompson
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Rodney D Britt
- Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Pediatrics, The Ohio State University, Columbus, Ohio, USA
| | - Y S Prakash
- Department of Physiology and Biomedical Engineering and.,Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Mallar Bhattacharya
- Division of Pulmonary, Critical Care, Allergy, and Sleep, Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
297
|
Targeting Cytokines as Evolving Treatment Strategies in Chronic Inflammatory Airway Diseases. Int J Mol Sci 2018; 19:ijms19113402. [PMID: 30380761 PMCID: PMC6275012 DOI: 10.3390/ijms19113402] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/25/2018] [Accepted: 10/27/2018] [Indexed: 12/13/2022] Open
Abstract
Cytokines are key players in the initiation and propagation of inflammation in chronic inflammatory airway diseases such as chronic obstructive pulmonary disease (COPD), bronchiectasis and allergic asthma. This makes them attractive targets for specific novel anti-inflammatory treatment strategies. Recently, both interleukin-1 (IL-1) and IL-6 have been associated with negative health outcomes, mortality and a pro-inflammatory phenotype in COPD. IL-6 in COPD was shown to correlate negatively with lung function, and IL-1beta was induced by cigarette smoke in the bronchial epithelium, causing airway inflammation. Furthermore, IL-8 has been shown to be a pro-inflammatory marker in bronchiectasis, COPD and allergic asthma. Clinical trials using specific cytokine blockade therapies are currently emerging and have contributed to reduce exacerbations and steroid use in COPD. Here, we present a review of the current understanding of the roles of cytokines in the pathophysiology of chronic inflammatory airway diseases. Furthermore, outcomes of clinical trials in cytokine blockade as novel treatment strategies for selected patient populations with those diseases will be discussed.
Collapse
|
298
|
Yang X, Feng HR, Chen ZM, Ying SM. Biologic Targeting: New and Effective Therapeutic Approaches against Severe Asthma. Chin Med J (Engl) 2018; 131:1009-1012. [PMID: 29692369 PMCID: PMC5937305 DOI: 10.4103/0366-6999.230742] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Xin Yang
- Department of Pulmonology, The Children's Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310052, China
| | - Han-Rong Feng
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Zhi-Min Chen
- Department of Pulmonology, The Children's Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310052, China
| | - Song-Min Ying
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058; Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| |
Collapse
|
299
|
Esteban-Gorgojo I, Antolín-Amérigo D, Domínguez-Ortega J, Quirce S. Non-eosinophilic asthma: current perspectives. J Asthma Allergy 2018; 11:267-281. [PMID: 30464537 PMCID: PMC6211579 DOI: 10.2147/jaa.s153097] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Although non-eosinophilic asthma (NEA) is not the best known and most prevalent asthma phenotype, its importance cannot be underestimated. NEA is characterized by airway inflammation with the absence of eosinophils, subsequent to activation of non-predominant type 2 immunologic pathways. This phenotype, which possibly includes several not well-defined subphenotypes, is defined by an eosinophil count <2% in sputum. NEA has been associated with environmental and/or host factors, such as smoking cigarettes, pollution, work-related agents, infections, and obesity. These risk factors, alone or in conjunction, can activate specific cellular and molecular pathways leading to non-type 2 inflammation. The most relevant clinical trait of NEA is its poor response to standard asthma treatments, especially to inhaled corticosteroids, leading to a higher severity of disease and to difficult-to-control asthma. Indeed, NEA constitutes about 50% of severe asthma cases. Since most current and forthcoming biologic therapies specifically target type 2 asthma phenotypes, such as uncontrolled severe eosinophilic or allergic asthma, there is a dramatic lack of effective treatments for uncontrolled non-type 2 asthma. Research efforts are now focusing on elucidating the phenotypes underlying the non-type 2 asthma, and several studies are being conducted with new drugs and biologics aiming to develop effective strategies for this type of asthma, and various immunologic pathways are being scrutinized to optimize efficacy and to abolish possible adverse effects.
Collapse
Affiliation(s)
| | | | - Javier Domínguez-Ortega
- Department of Allergy, Hospital La Paz Institute for Health Research (IdiPAZ).,CIBER de Enfermedades Respiratorias, CIBERES, Madrid, Spain
| | - Santiago Quirce
- Department of Allergy, Hospital La Paz Institute for Health Research (IdiPAZ).,CIBER de Enfermedades Respiratorias, CIBERES, Madrid, Spain
| |
Collapse
|
300
|
Zhu L, Ciaccio CE, Casale TB. Potential new targets for drug development in severe asthma. World Allergy Organ J 2018; 11:30. [PMID: 30386455 PMCID: PMC6203275 DOI: 10.1186/s40413-018-0208-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 09/21/2018] [Indexed: 02/08/2023] Open
Abstract
In recent years there has been increasing recognition of varying asthma phenotypes that impact treatment response. This has led to the development of biological therapies targeting specific immune cells and cytokines in the inflammatory cascade. Currently, there are two primary asthma phenotypes, Type 2 hi and Type 2 lo, which are defined by eosinophilic and neutrophilic/pauci- granulocytic pattern of inflammation respectively. Most biologics focus on Type 2 hi asthma, including all four biologics approved for treatment of uncontrolled asthma in the United States — omalizumab, mepolizumab, reslizumab, and benralizumab. Potential new targets for drug development are being investigated, such as IL-13, IL-4α receptor, CRTH2, TSLP, IL-25, IL-13, IL-17A receptor, and CXCR2/IL-8. This review will discuss the role of these molecules on the inflammatory response in uncontrolled asthma and the emerging biologics that address them. Through the delineation of distinct immunological mechanisms in severe asthma, targeted biologics are promising new therapies that have the potential to improve asthma control and quality of life.
Collapse
Affiliation(s)
- Linda Zhu
- 1Department of Internal Medicine, The University of Chicago, Chicago, IL USA.,Department of Internal Medicine, NorthShore Health System, Chicago, IL USA
| | - Christina E Ciaccio
- Department of Internal Medicine, NorthShore Health System, Chicago, IL USA.,3Department of Pediatrics, The University of Chicago, 5841 South Maryland Avenue MC 5042, Chicago, IL 60637 USA
| | - Thomas B Casale
- 4Department of Medicine, The University of South Florida, Tampa, Florida, USA
| |
Collapse
|