251
|
Tayarani N MH. Applications of artificial intelligence in battling against covid-19: A literature review. CHAOS, SOLITONS, AND FRACTALS 2021; 142:110338. [PMID: 33041533 PMCID: PMC7532790 DOI: 10.1016/j.chaos.2020.110338] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/01/2020] [Indexed: 05/14/2023]
Abstract
Colloquially known as coronavirus, the Severe Acute Respiratory Syndrome CoronaVirus 2 (SARS-CoV-2), that causes CoronaVirus Disease 2019 (COVID-19), has become a matter of grave concern for every country around the world. The rapid growth of the pandemic has wreaked havoc and prompted the need for immediate reactions to curb the effects. To manage the problems, many research in a variety of area of science have started studying the issue. Artificial Intelligence is among the area of science that has found great applications in tackling the problem in many aspects. Here, we perform an overview on the applications of AI in a variety of fields including diagnosis of the disease via different types of tests and symptoms, monitoring patients, identifying severity of a patient, processing covid-19 related imaging tests, epidemiology, pharmaceutical studies, etc. The aim of this paper is to perform a comprehensive survey on the applications of AI in battling against the difficulties the outbreak has caused. Thus we cover every way that AI approaches have been employed and to cover all the research until the writing of this paper. We try organize the works in a way that overall picture is comprehensible. Such a picture, although full of details, is very helpful in understand where AI sits in current pandemonium. We also tried to conclude the paper with ideas on how the problems can be tackled in a better way and provide some suggestions for future works.
Collapse
Affiliation(s)
- Mohammad-H Tayarani N
- Biocomputation Group, School of Computer Science, University of Hertfordshire, Hatfield, AL10 9AB, United Kingdom
| |
Collapse
|
252
|
Das N, Topalovic M, Janssens W. AIM in Respiratory Disorders. Artif Intell Med 2021. [DOI: 10.1007/978-3-030-58080-3_178-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
253
|
Zhou T, Lu H, Yang Z, Qiu S, Huo B, Dong Y. The ensemble deep learning model for novel COVID-19 on CT images. Appl Soft Comput 2021; 98:106885. [PMID: 33192206 PMCID: PMC7647900 DOI: 10.1016/j.asoc.2020.106885] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/13/2020] [Accepted: 10/31/2020] [Indexed: 01/04/2023]
Abstract
The rapid detection of the novel coronavirus disease, COVID-19, has a positive effect on preventing propagation and enhancing therapeutic outcomes. This article focuses on the rapid detection of COVID-19. We propose an ensemble deep learning model for novel COVID-19 detection from CT images. 2933 lung CT images from COVID-19 patients were obtained from previous publications, authoritative media reports, and public databases. The images were preprocessed to obtain 2500 high-quality images. 2500 CT images of lung tumor and 2500 from normal lung were obtained from a hospital. Transfer learning was used to initialize model parameters and pretrain three deep convolutional neural network models: AlexNet, GoogleNet, and ResNet. These models were used for feature extraction on all images. Softmax was used as the classification algorithm of the fully connected layer. The ensemble classifier EDL-COVID was obtained via relative majority voting. Finally, the ensemble classifier was compared with three component classifiers to evaluate accuracy, sensitivity, specificity, F value, and Matthews correlation coefficient. The results showed that the overall classification performance of the ensemble model was better than that of the component classifier. The evaluation indexes were also higher. This algorithm can better meet the rapid detection requirements of the novel coronavirus disease COVID-19.
Collapse
Affiliation(s)
- Tao Zhou
- School of Computer Science and Engineering, North minzu University, Yinchuan 750021, China
- Ningxia Key Laboratory of Intelligent Information and Big Data Processing, Yinchuan 750021, China
| | - Huiling Lu
- School of Science, Ningxia Medical University, Yinchuan 750004, China
| | - Zaoli Yang
- College of Economics and Management, Beijing University of Technology, Beijing 100124, China
| | - Shi Qiu
- Key Laboratory of Spectral Imaging Technology CAS, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an 710119, China
| | - Bingqiang Huo
- School of Computer Science and Engineering, North minzu University, Yinchuan 750021, China
| | - Yali Dong
- School of Computer Science and Engineering, North minzu University, Yinchuan 750021, China
| |
Collapse
|
254
|
Diagnostic tools and automated decision support systems for COVID-19. RESEARCHES AND APPLICATIONS OF ARTIFICIAL INTELLIGENCE TO MITIGATE PANDEMICS 2021. [PMCID: PMC8084750 DOI: 10.1016/b978-0-323-90959-4.00002-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
This chapter explores the primary and auxiliary diagnostic tools for COVID-19 including molecular, serology, and medical imaging-based techniques, and highlights some Artificial Intelligence (AI)-based systems for automated diagnosis. As a molecular testing method, real-time reverse transcription-polymerase chain reaction can be used for the qualitative detection of RNA of the pathogen in the specimens of the suspected individuals. This viral RNA identification test is explained with necessary details about the assay procedure, along with its sensitivity to the early diagnosis and some associated challenges regarding the stability of its detection with clinically confirmed cases. On the other hand, serology tests are blood-based tests that are used to identify the exposure of a particular pathogen in the specimen by examining the immune response. For serology-based diagnosis, a general description of different assay procedures, with their uses and benefits, is discussed. Medical imaging is another well-practiced diagnostic technique. Specifically, chest X-ray and CT scan are two popular noninvasive imaging modalities that can be used not only for diagnosis and monitoring of the disease progression but also in confirming the clinical tests and observations, and suggesting treatment and post-hospitalization patient management procedures. The current advancements in AI make the development of computer-aided automated diagnosis (CAD) methods remarkably easier, flexible, and accurate through exploiting all the latest technologies. These methods could utilize the available diagnostic images with clinical features even for early-stage diagnosis. Using such CAD systems can largely expedite the medical image screening process, which subsequently could reduce the burden on the clinicians at the outbreak sites. This chapter discusses the current research efforts for AI-based automated diagnosis system developments, along with analyzing the uses and benefits of these methods.
Collapse
|
255
|
Zhou M, Yang D, Chen Y, Xu Y, Xu JF, Jie Z, Yao W, Jin X, Pan Z, Tan J, Wang L, Xia Y, Zou L, Xu X, Wei J, Guan M, Yan F, Feng J, Zhang H, Qu J. Deep learning for differentiating novel coronavirus pneumonia and influenza pneumonia. ANNALS OF TRANSLATIONAL MEDICINE 2021. [PMID: 33569413 DOI: 10.1101/2020.03.24.20043117] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
BACKGROUND Chest computed tomography (CT) has been found to have high sensitivity in diagnosing novel coronavirus pneumonia (NCP) at the early stage, giving it an advantage over nucleic acid detection during the current pandemic. In this study, we aimed to develop and validate an integrated deep learning framework on chest CT images for the automatic detection of NCP, focusing particularly on differentiating NCP from influenza pneumonia (IP). METHODS A total of 148 confirmed NCP patients [80 male; median age, 51.5 years; interquartile range (IQR), 42.5-63.0 years] treated in 4 NCP designated hospitals between January 11, 2020 and February 23, 2020 were retrospectively enrolled as a training cohort, along with 194 confirmed IP patients (112 males; median age, 65.0 years; IQR, 55.0-78.0 years) treated in 5 hospitals from May 2015 to February 2020. An external validation set comprising 57 NCP patients and 50 IP patients from 8 hospitals was also enrolled. Two deep learning schemes (the Trinary scheme and the Plain scheme) were developed and compared using receiver operating characteristic (ROC) curves. RESULTS Of the NCP lesions, 96.6% were >1 cm and 76.8% were of a density <-500 Hu, indicating them to have less consolidation than IP lesions, which had nodules ranging from 5-10 mm. The Trinary scheme accurately distinguished NCP from IP lesions, with an area under the curve (AUC) of 0.93. For patient-level classification in the external validation set, the Trinary scheme outperformed the Plain scheme (AUC: 0.87 vs. 0.71) and achieved human specialist-level performance. CONCLUSIONS Our study has potentially provided an accurate tool on chest CT for early diagnosis of NCP with high transferability and showed high efficiency in differentiating between NCP and IP; these findings could help to reduce misdiagnosis and contain the pandemic transmission.
Collapse
Affiliation(s)
- Min Zhou
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dexiang Yang
- Department of Respiratory Medicine, Tongling People's Hospital, Tongling, China
| | - Yong Chen
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanping Xu
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jin-Fu Xu
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhijun Jie
- Department of Respiratory and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Weiwu Yao
- Department of Radiology, Shanghai Tongren Hospital Affiliated to Jiao Tong University School of medicine, Shanghai, China
| | - Xiaoyan Jin
- Department of Pulmonary and Critical Care Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zilai Pan
- Department of Radiology, Ruijin North Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingwen Tan
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lan Wang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yihan Xia
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | - Xin Xu
- Haohua Technology Co., Ltd., Shanghai, China
| | - Jingqi Wei
- Haohua Technology Co., Ltd., Shanghai, China
| | | | - Fuhua Yan
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | - Huan Zhang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jieming Qu
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
256
|
Conclusions. RESEARCHES AND APPLICATIONS OF ARTIFICIAL INTELLIGENCE TO MITIGATE PANDEMICS 2021. [PMCID: PMC8085314 DOI: 10.1016/b978-0-323-90959-4.00006-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This chapter presents the usage of data science, which further helps in exploring the global pandemic COVID-19. This disease suppresses an overwhelming burden, not only to healthcare systems but to the world's economy too. In this era of techniques and technologies, it is believed that data science can better utilize scarce healthcare resources. In this chapter, we provide an introduction of data science and its applications, which helps in combating different aspects of COVID-19. Publicly available datasets related to disease are used as community resources. Different kinds of datasets are used to analyze various aspects of pandemic at different scales. These different kinds of datasets can be audio, video, textual, speech, and sensor data. More than hundreds of research articles are also studied to prepare a bibliometric study. Apart from grabbing all the advantages from datasets, this paper highlights a few challenges, such as surety of correct data, need of multidisciplinary collaboration, new data modality, security issues, and availability of data.
Collapse
|
257
|
Zhu X, Song B, Shi F, Chen Y, Hu R, Gan J, Zhang W, Li M, Wang L, Gao Y, Shan F, Shen D. Joint prediction and time estimation of COVID-19 developing severe symptoms using chest CT scan. Med Image Anal 2021; 67:101824. [PMID: 33091741 PMCID: PMC7547024 DOI: 10.1016/j.media.2020.101824] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 08/23/2020] [Accepted: 09/25/2020] [Indexed: 02/08/2023]
Abstract
With the rapidly worldwide spread of Coronavirus disease (COVID-19), it is of great importance to conduct early diagnosis of COVID-19 and predict the conversion time that patients possibly convert to the severe stage, for designing effective treatment plans and reducing the clinicians' workloads. In this study, we propose a joint classification and regression method to determine whether the patient would develop severe symptoms in the later time formulated as a classification task, and if yes, the conversion time will be predicted formulated as a classification task. To do this, the proposed method takes into account 1) the weight for each sample to reduce the outliers' influence and explore the problem of imbalance classification, and 2) the weight for each feature via a sparsity regularization term to remove the redundant features of the high-dimensional data and learn the shared information across two tasks, i.e., the classification and the regression. To our knowledge, this study is the first work to jointly predict the disease progression and the conversion time, which could help clinicians to deal with the potential severe cases in time or even save the patients' lives. Experimental analysis was conducted on a real data set from two hospitals with 408 chest computed tomography (CT) scans. Results show that our method achieves the best classification (e.g., 85.91% of accuracy) and regression (e.g., 0.462 of the correlation coefficient) performance, compared to all comparison methods. Moreover, our proposed method yields 76.97% of accuracy for predicting the severe cases, 0.524 of the correlation coefficient, and 0.55 days difference for the conversion time.
Collapse
Affiliation(s)
- Xiaofeng Zhu
- Center for Future Media and school of computer science and technology, University of Electronic Science and Technology of China, Chengdu 611731, China.
| | - Bin Song
- Department of Radiology, Sichuan University West China Hospital, Chengdu 610041, China.
| | - Feng Shi
- Department of Research and Development, Shanghai United Imaging Intelligence Co., Ltd., Shanghai 200232, China
| | - Yanbo Chen
- Department of Research and Development, Shanghai United Imaging Intelligence Co., Ltd., Shanghai 200232, China
| | - Rongyao Hu
- Center for Future Media and school of computer science and technology, University of Electronic Science and Technology of China, Chengdu 611731, China; School of Natural and Computational Sciences, Massey University Auckland, Auckland 0745, New Zealand
| | - Jiangzhang Gan
- Center for Future Media and school of computer science and technology, University of Electronic Science and Technology of China, Chengdu 611731, China; School of Natural and Computational Sciences, Massey University Auckland, Auckland 0745, New Zealand
| | - Wenhai Zhang
- Department of Research and Development, Shanghai United Imaging Intelligence Co., Ltd., Shanghai 200232, China
| | - Man Li
- Department of Research and Development, Shanghai United Imaging Intelligence Co., Ltd., Shanghai 200232, China
| | - Liye Wang
- Department of Research and Development, Shanghai United Imaging Intelligence Co., Ltd., Shanghai 200232, China
| | - Yaozong Gao
- Department of Research and Development, Shanghai United Imaging Intelligence Co., Ltd., Shanghai 200232, China
| | - Fei Shan
- Department of Radiology, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China.
| | - Dinggang Shen
- Department of Research and Development, Shanghai United Imaging Intelligence Co., Ltd., Shanghai 200232, China; School of Biomedical Engineering, ShanghaiTech University, Shanghai 201210, China; Department of Brain and Cognitive Engineering, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
258
|
Mei J, Hu W, Chen Q, Li C, Chen Z, Fan Y, Tian S, Zhang Z, Li B, Ye Q, Yue J, Wang QL. Development and external validation of a COVID-19 mortality risk prediction algorithm: a multicentre retrospective cohort study. BMJ Open 2020; 10:e044028. [PMID: 33361083 PMCID: PMC7768618 DOI: 10.1136/bmjopen-2020-044028] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVE This study aimed to develop and externally validate a COVID-19 mortality risk prediction algorithm. DESIGN Retrospective cohort study. SETTING Five designated tertiary hospitals for COVID-19 in Hubei province, China. PARTICIPANTS We routinely collected medical data of 1364 confirmed adult patients with COVID-19 between 8 January and 19 March 2020. Among them, 1088 patients from two designated hospitals in Wuhan were used to develop the prognostic model, and 276 patients from three hospitals outside Wuhan were used for external validation. All patients were followed up for a maximal of 60 days after the diagnosis of COVID-19. METHODS The model discrimination was assessed by the area under the receiver operating characteristic curve (AUC) and Somers' D test, and calibration was examined by the calibration plot. Decision curve analysis was conducted. MAIN OUTCOME MEASURES The primary outcome was all-cause mortality within 60 days after the diagnosis of COVID-19. RESULTS The full model included seven predictors of age, respiratory failure, white cell count, lymphocytes, platelets, D-dimer and lactate dehydrogenase. The simple model contained five indicators of age, respiratory failure, coronary heart disease, renal failure and heart failure. After cross-validation, the AUC statistics based on derivation cohort were 0.96 (95% CI, 0.96 to 0.97) for the full model and 0.92 (95% CI, 0.89 to 0.95) for the simple model. The AUC statistics based on the external validation cohort were 0.97 (95% CI, 0.96 to 0.98) for the full model and 0.88 (95% CI, 0.80 to 0.96) for the simple model. Good calibration accuracy of these two models was found in the derivation and validation cohort. CONCLUSION The prediction models showed good model performance in identifying patients with COVID-19 with a high risk of death in 60 days. It may be useful for acute risk classification. WEB CALCULATOR We provided a freely accessible web calculator (https://www.whuyijia.com/).
Collapse
Affiliation(s)
- Jin Mei
- Central Laboratory, Ningbo First Hospital, Zhejiang University, Ningbo, China
| | - Weihua Hu
- Department of Respiratory and Critical Care, Jingzhou First People's Hospital, Jingzhou, China
| | - Qijian Chen
- Emergency Department, Fifth Hospital in Wuhan, Wuhan, Hubei, China
| | - Chang Li
- Department of Cardiology, Hubei No.3 People's Hospital of Jianghan University, Wuhan, Hubei, China
| | - Zaishu Chen
- Department of Cardiology, Internal Medicine, Jiayu People's Hospital, Jiayu, China
| | - Yanjie Fan
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Shuwei Tian
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Zhuheng Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Bin Li
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Qifa Ye
- Institute of Hepatobiliary Diseases of Wuhan University, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jiang Yue
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
- Hubei Province Key Laboratory of Allergy and Immunology, Wuhan, China
| | - Qiao-Li Wang
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
259
|
Li J, Chen Y, Chen S, Wang S, Zhang D, Wang J, Postmus D, Zeng H, Qin G, Shen Y, Jiang J, Yu Y. Derivation and validation of a prognostic model for predicting in-hospital mortality in patients admitted with COVID-19 in Wuhan, China: the PLANS (platelet lymphocyte age neutrophil sex) model. BMC Infect Dis 2020; 20:959. [PMID: 33334318 PMCID: PMC7744735 DOI: 10.1186/s12879-020-05688-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 12/07/2020] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Previous published prognostic models for COVID-19 patients have been suggested to be prone to bias due to unrepresentativeness of patient population, lack of external validation, inappropriate statistical analyses, or poor reporting. A high-quality and easy-to-use prognostic model to predict in-hospital mortality for COVID-19 patients could support physicians to make better clinical decisions. METHODS Fine-Gray models were used to derive a prognostic model to predict in-hospital mortality (treating discharged alive from hospital as the competing event) in COVID-19 patients using two retrospective cohorts (n = 1008) in Wuhan, China from January 1 to February 10, 2020. The proposed model was internally evaluated by bootstrap approach and externally evaluated in an external cohort (n = 1031). RESULTS The derivation cohort was a case-mix of mild-to-severe hospitalized COVID-19 patients (43.6% females, median age 55). The final model (PLANS), including five predictor variables of platelet count, lymphocyte count, age, neutrophil count, and sex, had an excellent predictive performance (optimism-adjusted C-index: 0.85, 95% CI: 0.83 to 0.87; averaged calibration slope: 0.95, 95% CI: 0.82 to 1.08). Internal validation showed little overfitting. External validation using an independent cohort (47.8% female, median age 63) demonstrated excellent predictive performance (C-index: 0.87, 95% CI: 0.85 to 0.89; calibration slope: 1.02, 95% CI: 0.92 to 1.12). The averaged predicted cumulative incidence curves were close to the observed cumulative incidence curves in patients with different risk profiles. CONCLUSIONS The PLANS model based on five routinely collected predictors would assist clinicians in better triaging patients and allocating healthcare resources to reduce COVID-19 fatality.
Collapse
Affiliation(s)
- Jiong Li
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuntao Chen
- Department of Epidemiology, University Medical Center Groningen, Groningen, The Netherlands
| | - Shujing Chen
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Sihua Wang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dingyu Zhang
- Department of Tuberculosis and Respiratory Disease, Jinyintan Hospital, Wuhan, China
| | - Junfeng Wang
- Julius Center for Health Science and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Douwe Postmus
- Department of Epidemiology, University Medical Center Groningen, Groningen, The Netherlands
| | - Hesong Zeng
- Department of Cardiology, Tongji Hospital, School of Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Guoyou Qin
- Department of Biostatistics, School of Public Health, and The Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China
| | - Yin Shen
- Eye Center, Medical Research Institute, Wuhan University Renmin Hospital, Wuhan University, Wuhan, China.
| | - Jinjun Jiang
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Yongfu Yu
- Department of Biostatistics, School of Public Health, and The Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China.
| |
Collapse
|
260
|
Macedo MCF, Pinheiro IM, Carvalho CJL, Fraga HCJR, Araujo IPC, Montes SS, Araujo OAC, Alves LA, Saba H, Araújo MLV, Queiroz ITL, Sampaio RL, Souza MSPL, da Silva ACFN, Souza ACS. Correlation between hospitalized patients' demographics, symptoms, comorbidities, and COVID-19 pandemic in Bahia, Brazil. PLoS One 2020; 15:e0243966. [PMID: 33318711 PMCID: PMC7735911 DOI: 10.1371/journal.pone.0243966] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/01/2020] [Indexed: 12/19/2022] Open
Abstract
In this paper, we provide a retrospective cohort study with patients that have been hospitalized for general or intensive care unit admission due to COVID-19, between March 3 and July 29, 2020, in the state of Bahia, Brazil. We aim to correlate those patients' demographics, symptoms and comorbidities, with the risk of mortality from COVID-19, length of hospital stay, and time from diagnosis to definitive outcome. On the basis of a dataset provided by the Health Secretary of the State of Bahia, we selected 3,896 hospitalized patients from a total of 154,868 COVID-19 patients that included non-hospitalized patients and patients with invalid registration in the dataset. Then, we statistically analyzed whether there was a significant correlation between the patient record data and the COVID-19 pandemic, and our main findings reinforced by the use of a multivariable logistic regression were that older age (Odds Ratio [OR] = 1.03, 95% Confidence Interval [CI] = 1.03-1.04, p-value (p) <0.001), an initial symptom of shortness of breath (OR = 1.88, 95% CI = 1.60-2.20, p < 0.001), and the presence of comorbidities, mainly chronic kidney disease (OR = 2.41, 95% CI = 1.67-3.48, p < 0.001) are related to an increased risk of mortality from COVID-19. On the other hand, sore throat (OR = 0.74, 95% CI = 0.58-0.95, p = 0.02) and length of hospital stay (OR = 0.96, 95% CI = 0.58-0.95, p < 0.001) are more related to a reduced risk of mortality from COVID-19. Moreover, a multivariable linear regression conducted with statistically significant variables (p < 0.05) showed that age (OR = 0.97, 95% CI = 0.95-0.98, p < 0.001) and time from diagnosis to definitive outcome (OR = 1.67, 95% CI = 1.64-1.71, p < 0.001) are associated with the length of hospital stay.
Collapse
Affiliation(s)
- Márcio C. F. Macedo
- Department of Computer Science, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Isabelle M. Pinheiro
- Department of Radiology, Federal Institute of Bahia, Salvador, Bahia, Brazil
- Graduate Program in Knowledge Diffusion, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Caio J. L. Carvalho
- Department of Computer Science, Federal University of Bahia, Salvador, Bahia, Brazil
- Supercomputing Center for Industrial Innovation, SENAI CIMATEC, Salvador, Bahia, Brazil
| | - Hilda C. J. R. Fraga
- Graduate Program in Knowledge Diffusion, Federal University of Bahia, Salvador, Bahia, Brazil
- Oswaldo Cruz Foundation, Salvador, Bahia, Brazil
| | - Isaac P. C. Araujo
- Department of Electrical Engineering, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Simone S. Montes
- Graduate Program in Knowledge Diffusion, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Otávio A. C. Araujo
- Department of Computer Science, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Lucas A. Alves
- Department of Electrical Engineering, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Hugo Saba
- Graduate Program in Knowledge Diffusion, Federal University of Bahia, Salvador, Bahia, Brazil
- Department of Exact and Earth Sciences, University of the State of Bahia, Salvador, Bahia, Brazil
| | - Márcio L. V. Araújo
- Graduate Program in Knowledge Diffusion, Federal University of Bahia, Salvador, Bahia, Brazil
- Department of Technical Education, Federal Institute of Bahia, Santo Amaro, Bahia, Brazil
- Health Secretary of the State of Bahia, Salvador, Bahia, Brazil
| | - Ivonete T. L. Queiroz
- Department of Technical Education, Federal Institute of Bahia, Barreiras, Bahia, Brazil
| | - Romilson L. Sampaio
- Graduate Program in Knowledge Diffusion, Federal University of Bahia, Salvador, Bahia, Brazil
- Department of Computer Science, Federal Institute of Bahia, Salvador, Bahia, Brazil
| | | | | | - Antonio C. S. Souza
- Graduate Program in Knowledge Diffusion, Federal University of Bahia, Salvador, Bahia, Brazil
- Department of Computer Science, Federal Institute of Bahia, Salvador, Bahia, Brazil
| |
Collapse
|
261
|
Chen Y, Jiang G, Li Y, Tang Y, Xu Y, Ding S, Xin Y, Lu Y. A Survey on Artificial Intelligence in Chest Imaging of COVID-19. BIO INTEGRATION 2020. [DOI: 10.15212/bioi-2020-0015] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Abstract The coronavirus disease 2019 (COVID-19) has infected more than 9.3 million people and has caused over 0.47 million deaths worldwide as of June 24, 2020. Chest imaging techniques including computed tomography and X-ray scans are indispensable tools in COVID-19 diagnosis
and its management. The strong infectiousness of this disease brings a huge burden for radiologists. In order to overcome the difficulty and improve accuracy of the diagnosis, artificial intelligence (AI)-based imaging analysis methods are explored. This survey focuses on the development of
chest imaging analysis methods based on AI for COVID-19 in the past few months. Specially, we first recall imaging analysis methods of two typical viral pneumonias, which can provide a reference for studying the disease on chest images. We further describe the development of AI-assisted diagnosis
and assessment for the disease, and find that AI techniques have great advantage in this application.
Collapse
Affiliation(s)
- Yun Chen
- School of Mathematics and Computational Science, Xiangtan University, Xiangtan, China
| | - Gongfa Jiang
- School of Data and Computer Science, Sun Yat-sen University, Guangzhou, China
| | - Yue Li
- School of Data and Computer Science, Sun Yat-sen University, Guangzhou, China
| | - Yutao Tang
- School of Data and Computer Science, Sun Yat-sen University, Guangzhou, China
| | - Yanfang Xu
- School of Mathematics, Sun Yat-sen University, Guangzhou, China
| | - Siqi Ding
- School of Mathematics, Sun Yat-sen University, Guangzhou, China
| | - Yanqi Xin
- School of Data and Computer Science, Sun Yat-sen University, Guangzhou, China
| | - Yao Lu
- School of Data and Computer Science, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
262
|
Wu D, Gong K, Arru CD, Homayounieh F, Bizzo B, Buch V, Ren H, Kim K, Neumark N, Xu P, Liu Z, Fang W, Xie N, Tak WY, Park SY, Lee YR, Kang MK, Park JG, Carriero A, Saba L, Masjedi M, Talari H, Babaei R, Mobin HK, Ebrahimian S, Dayan I, Kalra MK, Li Q. Severity and Consolidation Quantification of COVID-19 From CT Images Using Deep Learning Based on Hybrid Weak Labels. IEEE J Biomed Health Inform 2020; 24:3529-3538. [PMID: 33044938 PMCID: PMC8545170 DOI: 10.1109/jbhi.2020.3030224] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 08/19/2020] [Accepted: 09/26/2020] [Indexed: 11/09/2022]
Abstract
Early and accurate diagnosis of Coronavirus disease (COVID-19) is essential for patient isolation and contact tracing so that the spread of infection can be limited. Computed tomography (CT) can provide important information in COVID-19, especially for patients with moderate to severe disease as well as those with worsening cardiopulmonary status. As an automatic tool, deep learning methods can be utilized to perform semantic segmentation of affected lung regions, which is important to establish disease severity and prognosis prediction. Both the extent and type of pulmonary opacities help assess disease severity. However, manually pixel-level multi-class labelling is time-consuming, subjective, and non-quantitative. In this article, we proposed a hybrid weak label-based deep learning method that utilize both the manually annotated pulmonary opacities from COVID-19 pneumonia and the patient-level disease-type information available from the clinical report. A UNet was firstly trained with semantic labels to segment the total infected region. It was used to initialize another UNet, which was trained to segment the consolidations with patient-level information using the Expectation-Maximization (EM) algorithm. To demonstrate the performance of the proposed method, multi-institutional CT datasets from Iran, Italy, South Korea, and the United States were utilized. Results show that our proposed method can predict the infected regions as well as the consolidation regions with good correlation to human annotation.
Collapse
Affiliation(s)
- Dufan Wu
- Department of RadiologyMassachusetts General HospitalBostonMA02114USA
| | - Kuang Gong
- Department of RadiologyMassachusetts General HospitalBostonMA02114USA
| | | | | | - Bernardo Bizzo
- MGH & BWH Center for Clinical Data ScienceBostonMA02114USA
| | - Varun Buch
- MGH & BWH Center for Clinical Data ScienceBostonMA02114USA
| | - Hui Ren
- Department of RadiologyMassachusetts General HospitalBostonMA02114USA
| | - Kyungsang Kim
- Department of RadiologyMassachusetts General HospitalBostonMA02114USA
| | - Nir Neumark
- MGH & BWH Center for Clinical Data ScienceBostonMA02114USA
| | - Pengcheng Xu
- Department of RadiologyMassachusetts General HospitalBostonMA02114USA
| | - Zhiyuan Liu
- Department of RadiologyMassachusetts General HospitalBostonMA02114USA
| | - Wei Fang
- Department of RadiologyMassachusetts General HospitalBostonMA02114USA
| | - Nuobei Xie
- Department of RadiologyMassachusetts General HospitalBostonMA02114USA
| | - Won Young Tak
- Department of Internal Medicine, School of MedicineKyungpook National UniversityDaegu41944South Korea
| | - Soo Young Park
- Department of Internal Medicine, School of MedicineKyungpook National UniversityDaegu41944South Korea
| | - Yu Rim Lee
- Department of Internal Medicine, School of MedicineKyungpook National UniversityDaegu41944South Korea
| | - Min Kyu Kang
- Department of Internal MedicineYeungnam University College of MedicineDaegu41944South Korea
| | - Jung Gil Park
- Department of Internal MedicineYeungnam University College of MedicineDaegu41944South Korea
| | - Alessandro Carriero
- RadiologiaAzienda Ospedaliera Universitaria Maggiore della Carità28100NovaraItaly
| | - Luca Saba
- RadiologiaAzienda Ospedaliera Universitaria Policlinico di Cagliari09124CagliariItaly
| | - Mahsa Masjedi
- Department of RadiologyShahid Beheshti HospitalKashan00000Iran
| | | | - Rosa Babaei
- Department of Radiology, Firoozgar HospitalIran University of Medical SciencesTehran48711-15937Iran
| | - Hadi Karimi Mobin
- Department of Radiology, Firoozgar HospitalIran University of Medical SciencesTehran48711-15937Iran
| | - Shadi Ebrahimian
- Department of RadiologyMassachusetts General HospitalBostonMA02114USA
| | - Ittai Dayan
- MGH & BWH Center for Clinical Data ScienceBostonMA02114USA
| | | | - Quanzheng Li
- Department of RadiologyMassachusetts General HospitalBostonMA02114USA
| |
Collapse
|
263
|
Rasheed J, Jamil A, Hameed AA, Aftab U, Aftab J, Shah SA, Draheim D. A survey on artificial intelligence approaches in supporting frontline workers and decision makers for the COVID-19 pandemic. CHAOS, SOLITONS, AND FRACTALS 2020; 141:110337. [PMID: 33071481 PMCID: PMC7547637 DOI: 10.1016/j.chaos.2020.110337] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/01/2020] [Indexed: 05/04/2023]
Abstract
While the world has experience with many different types of infectious diseases, the current crisis related to the spread of COVID-19 has challenged epidemiologists and public health experts alike, leading to a rapid search for, and development of, new and innovative solutions to combat its spread. The transmission of this virus has infected more than 18.92 million people as of August 6, 2020, with over half a million deaths across the globe; the World Health Organization (WHO) has declared this a global pandemic. A multidisciplinary approach needs to be followed for diagnosis, treatment and tracking, especially between medical and computer sciences, so, a common ground is available to facilitate the research work at a faster pace. With this in mind, this survey paper aimed to explore and understand how and which different technological tools and techniques have been used within the context of COVID-19. The primary contribution of this paper is in its collation of the current state-of-the-art technological approaches applied to the context of COVID-19, and doing this in a holistic way, covering multiple disciplines and different perspectives. The analysis is widened by investigating Artificial Intelligence (AI) approaches for the diagnosis, anticipate infection and mortality rate by tracing contacts and targeted drug designing. Moreover, the impact of different kinds of medical data used in diagnosis, prognosis and pandemic analysis is also provided. This review paper covers both medical and technological perspectives to facilitate the virologists, AI researchers and policymakers while in combating the COVID-19 outbreak.
Collapse
Affiliation(s)
- Jawad Rasheed
- Department of Computer Engineering, Istanbul Sabahattin Zaim University, Istanbul 34303, Turkey
| | - Akhtar Jamil
- Department of Computer Engineering, Istanbul Sabahattin Zaim University, Istanbul 34303, Turkey
| | - Alaa Ali Hameed
- Department of Computer Engineering, Istanbul Sabahattin Zaim University, Istanbul 34303, Turkey
| | - Usman Aftab
- Department of Pharmacology, University of Health Sciences, Lahore 54700, Pakistan
| | - Javaria Aftab
- Department of Chemistry, Istanbul Technical University, Istanbul 34467, Turkey
| | - Syed Attique Shah
- Department of IT, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta 87300, Pakistan
| | - Dirk Draheim
- Information Systems Group, Tallinn University of Technology, Akadeemia tee 15a, 12618, Tallinn, Estonia
| |
Collapse
|
264
|
Qian X, Fu H, Shi W, Chen T, Fu Y, Shan F, Xue X. M 3Lung-Sys: A Deep Learning System for Multi-Class Lung Pneumonia Screening From CT Imaging. IEEE J Biomed Health Inform 2020; 24:3539-3550. [PMID: 33048773 PMCID: PMC8545176 DOI: 10.1109/jbhi.2020.3030853] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/26/2020] [Accepted: 10/06/2020] [Indexed: 11/10/2022]
Abstract
To counter the outbreak of COVID-19, the accurate diagnosis of suspected cases plays a crucial role in timely quarantine, medical treatment, and preventing the spread of the pandemic. Considering the limited training cases and resources (e.g, time and budget), we propose a Multi-task Multi-slice Deep Learning System (M 3Lung-Sys) for multi-class lung pneumonia screening from CT imaging, which only consists of two 2D CNN networks, i.e., slice- and patient-level classification networks. The former aims to seek the feature representations from abundant CT slices instead of limited CT volumes, and for the overall pneumonia screening, the latter one could recover the temporal information by feature refinement and aggregation between different slices. In addition to distinguish COVID-19 from Healthy, H1N1, and CAP cases, our M 3Lung-Sys also be able to locate the areas of relevant lesions, without any pixel-level annotation. To further demonstrate the effectiveness of our model, we conduct extensive experiments on a chest CT imaging dataset with a total of 734 patients (251 healthy people, 245 COVID-19 patients, 105 H1N1 patients, and 133 CAP patients). The quantitative results with plenty of metrics indicate the superiority of our proposed model on both slice- and patient-level classification tasks. More importantly, the generated lesion location maps make our system interpretable and more valuable to clinicians.
Collapse
Affiliation(s)
- Xuelin Qian
- Shanghai Key Lab of Intelligent Information Processing, School of Computer ScienceFudan UniversityShanghai200433China
| | - Huazhu Fu
- Inception Institute of Artificial IntelligenceAbu DhabiUAE
| | - Weiya Shi
- Department of Radiology, Shanghai Public Health Clinical CenterFudan UniversityShanghai201508China
| | - Tao Chen
- School of Information Science and TechnologyFudan UniversityShanghai200433China
| | - Yanwei Fu
- School of Data Science, MOE Frontiers Center for Brain Science, Shanghai Key Lab of Intelligent Information ProcessingFudan UniversityShanghai200433China
| | - Fei Shan
- Department of Radiology, Shanghai Public Health Clinical CenterFudan UniversityShanghai201508China
| | - Xiangyang Xue
- Shanghai Key Lab of Intelligent Information Processing, School of Computer ScienceFudan UniversityShanghai200433China
| |
Collapse
|
265
|
Asadzadeh A, Pakkhoo S, Saeidabad MM, Khezri H, Ferdousi R. Information technology in emergency management of COVID-19 outbreak. INFORMATICS IN MEDICINE UNLOCKED 2020; 21:100475. [PMID: 33204821 PMCID: PMC7661942 DOI: 10.1016/j.imu.2020.100475] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 12/20/2022] Open
Abstract
Emergency management of the emerging infectious disease outbreak is critical for public health threats. Currently, control of the COVID-19 outbreak is an international concern and has become a crucial challenge in many countries. This article reviews significant information technologyIT) applications in emergency management of COVID-19 by considering the prevention/mitigation, preparedness, response, and recovery phases of the crisis. This review was conducted using MEDLINE PubMed), Embase, IEEE, and Google Scholar. Expert opinions were collected to show existence gaps, useful technologies for each phase of emergency management, and future direction. Results indicated that various IT-based systems such as surveillance systems, artificial intelligence, computational methods, Internet of things, remote sensing sensor, online service, and GIS geographic information system) could have different outbreak management applications, especially in response phases. Information technology was applied in several aspects, such as increasing the accuracy of diagnosis, early detection, ensuring healthcare providers' safety, decreasing workload, saving time and cost, and drug discovery. We categorized these applications into four core topics, including diagnosis and prediction, treatment, protection, and management goals, which were confirmed by five experts. Without applying IT, the control and management of the crisis could be difficult on a large scale. For reducing and improving the hazard effect of disaster situations, the role of IT is inevitable. In addition to the response phase, communities should be considered to use IT capabilities in prevention, preparedness, and recovery phases. It is expected that IT will have an influential role in the recovery phase of COVID-19. Providing IT infrastructure and financial support by the governments should be more considered in facilitating IT capabilities.
Collapse
Affiliation(s)
- Afsoon Asadzadeh
- Department of Health Information Technology, School of Management and Medical Informatics, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saba Pakkhoo
- Department of Health Information Technology, School of Management and Medical Informatics, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahsa Mirzaei Saeidabad
- Department of Health Information Technology, School of Management and Medical Informatics, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hero Khezri
- Department of Health Information Technology, School of Management and Medical Informatics, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Ferdousi
- Department of Health Information Technology, School of Management and Medical Informatics, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
266
|
Golinelli D, Boetto E, Carullo G, Nuzzolese AG, Landini MP, Fantini MP. Adoption of Digital Technologies in Health Care During the COVID-19 Pandemic: Systematic Review of Early Scientific Literature. J Med Internet Res 2020; 22:e22280. [PMID: 33079693 PMCID: PMC7652596 DOI: 10.2196/22280] [Citation(s) in RCA: 232] [Impact Index Per Article: 46.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/25/2020] [Accepted: 09/15/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The COVID-19 pandemic is favoring digital transitions in many industries and in society as a whole. Health care organizations have responded to the first phase of the pandemic by rapidly adopting digital solutions and advanced technology tools. OBJECTIVE The aim of this review is to describe the digital solutions that have been reported in the early scientific literature to mitigate the impact of COVID-19 on individuals and health systems. METHODS We conducted a systematic review of early COVID-19-related literature (from January 1 to April 30, 2020) by searching MEDLINE and medRxiv with appropriate terms to find relevant literature on the use of digital technologies in response to the pandemic. We extracted study characteristics such as the paper title, journal, and publication date, and we categorized the retrieved papers by the type of technology and patient needs addressed. We built a scoring rubric by cross-classifying the patient needs with the type of technology. We also extracted information and classified each technology reported by the selected articles according to health care system target, grade of innovation, and scalability to other geographical areas. RESULTS The search identified 269 articles, of which 124 full-text articles were assessed and included in the review after screening. Most of the selected articles addressed the use of digital technologies for diagnosis, surveillance, and prevention. We report that most of these digital solutions and innovative technologies have been proposed for the diagnosis of COVID-19. In particular, within the reviewed articles, we identified numerous suggestions on the use of artificial intelligence (AI)-powered tools for the diagnosis and screening of COVID-19. Digital technologies are also useful for prevention and surveillance measures, such as contact-tracing apps and monitoring of internet searches and social media usage. Fewer scientific contributions address the use of digital technologies for lifestyle empowerment or patient engagement. CONCLUSIONS In the field of diagnosis, digital solutions that integrate with traditional methods, such as AI-based diagnostic algorithms based both on imaging and clinical data, appear to be promising. For surveillance, digital apps have already proven their effectiveness; however, problems related to privacy and usability remain. For other patient needs, several solutions have been proposed, such as telemedicine or telehealth tools. These tools have long been available, but this historical moment may actually be favoring their definitive large-scale adoption. It is worth taking advantage of the impetus provided by the crisis; it is also important to keep track of the digital solutions currently being proposed to implement best practices and models of care in future and to adopt at least some of the solutions proposed in the scientific literature, especially in national health systems, which have proved to be particularly resistant to the digital transition in recent years.
Collapse
Affiliation(s)
- Davide Golinelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Erik Boetto
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Gherardo Carullo
- Department of Italian and Supranational Public Law, University of Milan, Milan, Italy
| | | | | | - Maria Pia Fantini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
267
|
Trivizakis E, Tsiknakis N, Vassalou EE, Papadakis GZ, Spandidos DA, Sarigiannis D, Tsatsakis A, Papanikolaou N, Karantanas AH, Marias K. Advancing COVID-19 differentiation with a robust preprocessing and integration of multi-institutional open-repository computer tomography datasets for deep learning analysis. Exp Ther Med 2020; 20:78. [PMID: 32968435 PMCID: PMC7500043 DOI: 10.3892/etm.2020.9210] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 09/11/2020] [Indexed: 12/15/2022] Open
Abstract
The coronavirus pandemic and its unprecedented consequences globally has spurred the interest of the artificial intelligence research community. A plethora of published studies have investigated the role of imaging such as chest X-rays and computer tomography in coronavirus disease 2019 (COVID-19) automated diagnosis. Οpen repositories of medical imaging data can play a significant role by promoting cooperation among institutes in a world-wide scale. However, they may induce limitations related to variable data quality and intrinsic differences due to the wide variety of scanner vendors and imaging parameters. In this study, a state-of-the-art custom U-Net model is presented with a dice similarity coefficient performance of 99.6% along with a transfer learning VGG-19 based model for COVID-19 versus pneumonia differentiation exhibiting an area under curve of 96.1%. The above was significantly improved over the baseline model trained with no segmentation in selected tomographic slices of the same dataset. The presented study highlights the importance of a robust preprocessing protocol for image analysis within a heterogeneous imaging dataset and assesses the potential diagnostic value of the presented COVID-19 model by comparing its performance to the state of the art.
Collapse
Affiliation(s)
- Eleftherios Trivizakis
- Computational Biomedicine Laboratory (CBML), Foundation for Research and Technology Hellas (FORTH), 70013 Heraklion, Greece
- Department of Radiology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Nikos Tsiknakis
- Computational Biomedicine Laboratory (CBML), Foundation for Research and Technology Hellas (FORTH), 70013 Heraklion, Greece
| | - Evangelia E. Vassalou
- Department of Medical Imaging, University Hospital of Heraklion, 71110 Heraklion, Greece
- Department of Radiology, Sitia District Hospital, 72300 Lasithi, Greece
| | - Georgios Z. Papadakis
- Computational Biomedicine Laboratory (CBML), Foundation for Research and Technology Hellas (FORTH), 70013 Heraklion, Greece
- Department of Radiology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Dimosthenis Sarigiannis
- HERACLES Research Center on the Exposome and Health, Centre for Interdisciplinary Research and Innovation, Aristotle University of Thessaloniki, 57001 Thermi, Greece
- University School for Advanced Studies IUSS, I-27100 Pavia, Italy
| | - Aristidis Tsatsakis
- Department of Forensic Sciences and Toxicology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Nikolaos Papanikolaou
- Computational Biomedicine Laboratory (CBML), Foundation for Research and Technology Hellas (FORTH), 70013 Heraklion, Greece
- Computational Clinical Imaging Group, Centre for the Unknown, Champalimaud Foundation, 1400-038 Lisbon, Portugal
| | - Apostolos H. Karantanas
- Computational Biomedicine Laboratory (CBML), Foundation for Research and Technology Hellas (FORTH), 70013 Heraklion, Greece
- Department of Radiology, Medical School, University of Crete, 71003 Heraklion, Greece
- Department of Medical Imaging, University Hospital of Heraklion, 71110 Heraklion, Greece
| | - Kostas Marias
- Computational Biomedicine Laboratory (CBML), Foundation for Research and Technology Hellas (FORTH), 70013 Heraklion, Greece
- Department of Electrical and Computer Engineering, Hellenic Mediterranean University, 71410 Heraklion, Greece
| |
Collapse
|
268
|
Tseng VS, Jia-Ching Ying J, Wong ST, Cook DJ, Liu J. Computational Intelligence Techniques for Combating COVID-19: A Survey. IEEE COMPUT INTELL M 2020. [DOI: 10.1109/mci.2020.3019873] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
269
|
Hassantabar S, Ahmadi M, Sharifi A. Diagnosis and detection of infected tissue of COVID-19 patients based on lung x-ray image using convolutional neural network approaches. CHAOS, SOLITONS, AND FRACTALS 2020; 140:110170. [PMID: 32834651 PMCID: PMC7388764 DOI: 10.1016/j.chaos.2020.110170] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 07/27/2020] [Indexed: 05/02/2023]
Abstract
COVID-19 pandemic has challenged the world science. The international community tries to find, apply, or design novel methods for diagnosis and treatment of COVID-19 patients as soon as possible. Currently, a reliable method for the diagnosis of infected patients is a reverse transcription-polymerase chain reaction. The method is expensive and time-consuming. Therefore, designing novel methods is important. In this paper, we used three deep learning-based methods for the detection and diagnosis of COVID-19 patients with the use of X-Ray images of lungs. For the diagnosis of the disease, we presented two algorithms include deep neural network (DNN) on the fractal feature of images and convolutional neural network (CNN) methods with the use of the lung images, directly. Results classification shows that the presented CNN architecture with higher accuracy (93.2%) and sensitivity (96.1%) is outperforming than the DNN method with an accuracy of 83.4% and sensitivity of 86%. In the segmentation process, we presented a CNN architecture to find infected tissue in lung images. Results show that the presented method can almost detect infected regions with high accuracy of 83.84%. This finding also can be used to monitor and control patients from infected region growth.
Collapse
Affiliation(s)
- Shayan Hassantabar
- Department of Electrical Engineering, Princeton University, Princeton, NJ, USA
| | - Mohsen Ahmadi
- Department of Industrial Engineering, Urmia University of Technology, Urmia, Iran
| | - Abbas Sharifi
- Department of Mechanical Engineering, Urmia University of Technology, Urmia, Iran
| |
Collapse
|
270
|
Yoo SJ, Goo JM, Yoon SH. [Role of Chest Radiographs and CT Scans and the Application of Artificial Intelligence in Coronavirus Disease 2019]. TAEHAN YONGSANG UIHAKHOE CHI 2020; 81:1334-1347. [PMID: 36237723 PMCID: PMC9431829 DOI: 10.3348/jksr.2020.0138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/02/2020] [Accepted: 09/15/2020] [Indexed: 01/08/2023]
Abstract
Coronavirus disease (COVID-19) has threatened public health as a global pandemic. Chest CT and radiography are crucial in managing COVID-19 in addition to reverse transcription-polymerase chain reaction, which is the gold standard for COVID-19 diagnosis. This is a review of the current status of the use of chest CT and radiography in COVID-19 diagnosis and management and an introduction of early representative studies on the application of artificial intelligence to chest CT and radiography. The authors also share their experiences to provide insights into the future value of artificial intelligence.
Collapse
|
271
|
Wu J, Wang J, Nicholas S, Maitland E, Fan Q. Application of Big Data Technology for COVID-19 Prevention and Control in China: Lessons and Recommendations. J Med Internet Res 2020; 22:e21980. [PMID: 33001836 PMCID: PMC7561444 DOI: 10.2196/21980] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/28/2020] [Accepted: 09/14/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND In the prevention and control of infectious diseases, previous research on the application of big data technology has mainly focused on the early warning and early monitoring of infectious diseases. Although the application of big data technology for COVID-19 warning and monitoring remain important tasks, prevention of the disease's rapid spread and reduction of its impact on society are currently the most pressing challenges for the application of big data technology during the COVID-19 pandemic. After the outbreak of COVID-19 in Wuhan, the Chinese government and nongovernmental organizations actively used big data technology to prevent, contain, and control the spread of COVID-19. OBJECTIVE The aim of this study is to discuss the application of big data technology to prevent, contain, and control COVID-19 in China; draw lessons; and make recommendations. METHODS We discuss the data collection methods and key data information that existed in China before the outbreak of COVID-19 and how these data contributed to the prevention and control of COVID-19. Next, we discuss China's new data collection methods and new information assembled after the outbreak of COVID-19. Based on the data and information collected in China, we analyzed the application of big data technology from the perspectives of data sources, data application logic, data application level, and application results. In addition, we analyzed the issues, challenges, and responses encountered by China in the application of big data technology from four perspectives: data access, data use, data sharing, and data protection. Suggestions for improvements are made for data collection, data circulation, data innovation, and data security to help understand China's response to the epidemic and to provide lessons for other countries' prevention and control of COVID-19. RESULTS In the process of the prevention and control of COVID-19 in China, big data technology has played an important role in personal tracking, surveillance and early warning, tracking of the virus's sources, drug screening, medical treatment, resource allocation, and production recovery. The data used included location and travel data, medical and health data, news media data, government data, online consumption data, data collected by intelligent equipment, and epidemic prevention data. We identified a number of big data problems including low efficiency of data collection, difficulty in guaranteeing data quality, low efficiency of data use, lack of timely data sharing, and data privacy protection issues. To address these problems, we suggest unified data collection standards, innovative use of data, accelerated exchange and circulation of data, and a detailed and rigorous data protection system. CONCLUSIONS China has used big data technology to prevent and control COVID-19 in a timely manner. To prevent and control infectious diseases, countries must collect, clean, and integrate data from a wide range of sources; use big data technology to analyze a wide range of big data; create platforms for data analyses and sharing; and address privacy issues in the collection and use of big data.
Collapse
Affiliation(s)
- Jun Wu
- Dong Fureng Institute of Economic and Social Development, Wuhan University, Wuhan, China
| | - Jian Wang
- Dong Fureng Institute of Economic and Social Development, Wuhan University, Beijing, China
| | - Stephen Nicholas
- Australian National Institute of Management and Commerce, Sydney, Australia
- Newcastle Business School, University of Newcastle, Newcastle, Australia
| | - Elizabeth Maitland
- School of Management, University of Liverpool, Liverpool, United Kingdom
| | - Qiuyan Fan
- Dong Fureng Institute of Economic and Social Development, Wuhan University, Wuhan, China
| |
Collapse
|
272
|
Ozsahin I, Sekeroglu B, Musa MS, Mustapha MT, Uzun Ozsahin D. Review on Diagnosis of COVID-19 from Chest CT Images Using Artificial Intelligence. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2020; 2020:9756518. [PMID: 33014121 PMCID: PMC7519983 DOI: 10.1155/2020/9756518] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/28/2020] [Accepted: 09/16/2020] [Indexed: 02/07/2023]
Abstract
The COVID-19 diagnostic approach is mainly divided into two broad categories, a laboratory-based and chest radiography approach. The last few months have witnessed a rapid increase in the number of studies use artificial intelligence (AI) techniques to diagnose COVID-19 with chest computed tomography (CT). In this study, we review the diagnosis of COVID-19 by using chest CT toward AI. We searched ArXiv, MedRxiv, and Google Scholar using the terms "deep learning", "neural networks", "COVID-19", and "chest CT". At the time of writing (August 24, 2020), there have been nearly 100 studies and 30 studies among them were selected for this review. We categorized the studies based on the classification tasks: COVID-19/normal, COVID-19/non-COVID-19, COVID-19/non-COVID-19 pneumonia, and severity. The sensitivity, specificity, precision, accuracy, area under the curve, and F1 score results were reported as high as 100%, 100%, 99.62, 99.87%, 100%, and 99.5%, respectively. However, the presented results should be carefully compared due to the different degrees of difficulty of different classification tasks.
Collapse
Affiliation(s)
- Ilker Ozsahin
- Department of Biomedical Engineering, Near East University, Nicosia / TRNC, Mersin-10, 99138, Turkey
- DESAM Institute, Near East University, Nicosia / TRNC, Mersin-10, 99138, Turkey
| | - Boran Sekeroglu
- DESAM Institute, Near East University, Nicosia / TRNC, Mersin-10, 99138, Turkey
- Department of Artificial Intelligence Engineering, Near East University, Nicosia / TRNC, Mersin-10, 99138, Turkey
| | - Musa Sani Musa
- Department of Biomedical Engineering, Near East University, Nicosia / TRNC, Mersin-10, 99138, Turkey
| | - Mubarak Taiwo Mustapha
- Department of Biomedical Engineering, Near East University, Nicosia / TRNC, Mersin-10, 99138, Turkey
- DESAM Institute, Near East University, Nicosia / TRNC, Mersin-10, 99138, Turkey
| | - Dilber Uzun Ozsahin
- Department of Biomedical Engineering, Near East University, Nicosia / TRNC, Mersin-10, 99138, Turkey
- DESAM Institute, Near East University, Nicosia / TRNC, Mersin-10, 99138, Turkey
| |
Collapse
|
273
|
Ito R, Iwano S, Naganawa S. A review on the use of artificial intelligence for medical imaging of the lungs of patients with coronavirus disease 2019. Diagn Interv Radiol 2020; 26:443-448. [PMID: 32436845 PMCID: PMC7490030 DOI: 10.5152/dir.2019.20294] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/01/2020] [Accepted: 05/03/2020] [Indexed: 12/23/2022]
Abstract
The results of research on the use of artificial intelligence (AI) for medical imaging of the lungs of patients with coronavirus disease 2019 (COVID-19) has been published in various forms. In this study, we reviewed the AI for diagnostic imaging of COVID-19 pneumonia. PubMed, arXiv, medRxiv, and Google scholar were used to search for AI studies. There were 15 studies of COVID-19 that used AI for medical imaging. Of these, 11 studies used AI for computed tomography (CT) and 4 used AI for chest radiography. Eight studies presented independent test data, 5 used disclosed data, and 4 disclosed the AI source codes. The number of datasets ranged from 106 to 5941, with sensitivities ranging from 0.67-1.00 and specificities ranging from 0.81-1.00 for prediction of COVID-19 pneumonia. Four studies with independent test datasets showed a breakdown of the data ratio and reported prediction of COVID-19 pneumonia with sensitivity, specificity, and area under the curve (AUC). These 4 studies showed very high sensitivity, specificity, and AUC, in the range of 0.9-0.98, 0.91-0.96, and 0.96-0.99, respectively.
Collapse
Affiliation(s)
- Rintaro Ito
- From the Department of Innovative Biomedical Visualization (R.I. ), Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan; Department of Radiology (S.I., S.N.), Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan
| | - Shingo Iwano
- From the Department of Innovative Biomedical Visualization (R.I. ), Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan; Department of Radiology (S.I., S.N.), Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan
| | - Shinji Naganawa
- From the Department of Innovative Biomedical Visualization (R.I. ), Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan; Department of Radiology (S.I., S.N.), Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan
| |
Collapse
|
274
|
Suri JS, Puvvula A, Biswas M, Majhail M, Saba L, Faa G, Singh IM, Oberleitner R, Turk M, Chadha PS, Johri AM, Sanches JM, Khanna NN, Viskovic K, Mavrogeni S, Laird JR, Pareek G, Miner M, Sobel DW, Balestrieri A, Sfikakis PP, Tsoulfas G, Protogerou A, Misra DP, Agarwal V, Kitas GD, Ahluwalia P, Kolluri R, Teji J, Maini MA, Agbakoba A, Dhanjil SK, Sockalingam M, Saxena A, Nicolaides A, Sharma A, Rathore V, Ajuluchukwu JNA, Fatemi M, Alizad A, Viswanathan V, Krishnan PR, Naidu S. COVID-19 pathways for brain and heart injury in comorbidity patients: A role of medical imaging and artificial intelligence-based COVID severity classification: A review. Comput Biol Med 2020; 124:103960. [PMID: 32919186 PMCID: PMC7426723 DOI: 10.1016/j.compbiomed.2020.103960] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 02/05/2023]
Abstract
Artificial intelligence (AI) has penetrated the field of medicine, particularly the field of radiology. Since its emergence, the highly virulent coronavirus disease 2019 (COVID-19) has infected over 10 million people, leading to over 500,000 deaths as of July 1st, 2020. Since the outbreak began, almost 28,000 articles about COVID-19 have been published (https://pubmed.ncbi.nlm.nih.gov); however, few have explored the role of imaging and artificial intelligence in COVID-19 patients-specifically, those with comorbidities. This paper begins by presenting the four pathways that can lead to heart and brain injuries following a COVID-19 infection. Our survey also offers insights into the role that imaging can play in the treatment of comorbid patients, based on probabilities derived from COVID-19 symptom statistics. Such symptoms include myocardial injury, hypoxia, plaque rupture, arrhythmias, venous thromboembolism, coronary thrombosis, encephalitis, ischemia, inflammation, and lung injury. At its core, this study considers the role of image-based AI, which can be used to characterize the tissues of a COVID-19 patient and classify the severity of their infection. Image-based AI is more important than ever as the pandemic surges and countries worldwide grapple with limited medical resources for detection and diagnosis.
Collapse
Affiliation(s)
- Jasjit S Suri
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, USA.
| | - Anudeep Puvvula
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, USA; Annu's Hospitals for Skin and Diabetes, Nellore, AP, India
| | | | - Misha Majhail
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, USA; Oakmont High School and AtheroPoint™, Roseville, CA, USA
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria, Cagliari, Italy
| | - Gavino Faa
- Department of Pathology - AOU of Cagliari, Italy
| | - Inder M Singh
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, USA
| | | | - Monika Turk
- The Hanse-Wissenschaftskolleg Institute for Advanced Study, Delmenhorst, Germany
| | - Paramjit S Chadha
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, USA
| | - Amer M Johri
- Department of Medicine, Division of Cardiology,Queen's University, Kingston, Ontario, Canada
| | - J Miguel Sanches
- Institute of Systems and Robotics, Instituto Superior Tecnico, Lisboa, Portugal
| | - Narendra N Khanna
- Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi, India
| | | | - Sophie Mavrogeni
- Cardiology Clinic, Onassis Cardiac Surgery Center, Athens, Greece
| | - John R Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St Helena, CA, USA
| | - Gyan Pareek
- Minimally Invasive Urology Institute, Brown University, Providence, RI, USA
| | - Martin Miner
- Men's Health Center, Miriam Hospital Providence, Rhode Island, USA
| | - David W Sobel
- Minimally Invasive Urology Institute, Brown University, Providence, RI, USA
| | | | - Petros P Sfikakis
- Rheumatology Unit, National Kapodistrian University of Athens, Greece
| | - George Tsoulfas
- Aristoteleion University of Thessaloniki, Thessaloniki, Greece
| | | | | | - Vikas Agarwal
- Academic Affairs, Dudley Group NHS Foundation Trust, Dudley, UK
| | - George D Kitas
- Academic Affairs, Dudley Group NHS Foundation Trust, Dudley, UK; Arthritis Research UK Epidemiology Unit, Manchester University, Manchester, UK
| | - Puneet Ahluwalia
- Max Institute of Cancer Care, Max Superspeciality Hospital, New Delhi, India
| | | | - Jagjit Teji
- Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, USA
| | - Mustafa Al Maini
- Allergy, Clinical Immunology and Rheumatology Institute, Toronto, Canada
| | | | | | | | - Ajit Saxena
- Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi, India
| | - Andrew Nicolaides
- Vascular Screening and Diagnostic Centre and University of Nicosia Medical School, Cyprus
| | - Aditya Sharma
- Division of Cardiovascular Medicine, University of Virginia, Charlottesville, VA, USA
| | - Vijay Rathore
- Nephrology Department, Kaiser Permanente, Sacramento, CA, USA
| | | | - Mostafa Fatemi
- Dept. of Physiology & Biomedical Engg., Mayo Clinic College of Medicine and Science, MN, USA
| | - Azra Alizad
- Dept. of Radiology, Mayo Clinic College of Medicine and Science, MN, USA
| | - Vijay Viswanathan
- MV Hospital for Diabetes and Professor M Viswanathan Diabetes Research Centre, Chennai, India
| | | | - Subbaram Naidu
- Electrical Engineering Department, University of Minnesota, Duluth, MN, USA
| |
Collapse
|
275
|
Swapnarekha H, Behera HS, Nayak J, Naik B. Role of intelligent computing in COVID-19 prognosis: A state-of-the-art review. CHAOS, SOLITONS, AND FRACTALS 2020; 138:109947. [PMID: 32836916 PMCID: PMC7256553 DOI: 10.1016/j.chaos.2020.109947] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 05/26/2020] [Indexed: 05/09/2023]
Abstract
The World Health Organization (WHO) declared novel coronavirus 2019 (COVID-19), an infectious epidemic caused by SARS-CoV-2, as Pandemic in March 2020. It has affected more than 40 million people in 216 countries. Almost in all the affected countries, the number of infected and deceased patients has been enhancing at a distressing rate. As the early prediction can reduce the spread of the virus, it is highly desirable to have intelligent prediction and diagnosis tools. The inculcation of efficient forecasting and prediction models may assist the government in implementing better design strategies to prevent the spread of virus. In this paper, a state-of-the-art analysis of the ongoing machine learning (ML) and deep learning (DL) methods in the diagnosis and prediction of COVID-19 has been done. Moreover, a comparative analysis on the impact of machine learning and other competitive approaches like mathematical and statistical models on COVID-19 problem has been conducted. In this study, some factors such as type of methods(machine learning, deep learning, statistical & mathematical) and the impact of COVID research on the nature of data used for the forecasting and prediction of pandemic using computing approaches has been presented. Finally some important research directions for further research on COVID-19 are highlighted which may facilitate the researchers and technocrats to develop competent intelligent models for the prediction and forecasting of COVID-19 real time data.
Collapse
Affiliation(s)
- H Swapnarekha
- Department of Information Technology, Veer Surendra Sai University of Technology (VSSUT), Burla, Sambalpur-768018, Odisha, India
| | - Himansu Sekhar Behera
- Department of Information Technology, Veer Surendra Sai University of Technology (VSSUT), Burla, Sambalpur-768018, Odisha, India
| | - Janmenjoy Nayak
- Department of Computer Science and Engineering, Aditya Institute of Technology and Management (AITAM), Tekkali, Andhra Pradesh 532201, India
| | - Bighnaraj Naik
- Department of Computer Application, Veer Surendra Sai University of Technology (VSSUT), Burla, Sambalpur-768018, Odisha, India
| |
Collapse
|
276
|
Liu C, Wang X, Liu C, Sun Q, Peng W. Differentiating novel coronavirus pneumonia from general pneumonia based on machine learning. Biomed Eng Online 2020; 19:66. [PMID: 32814568 PMCID: PMC7436068 DOI: 10.1186/s12938-020-00809-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 08/08/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Chest CT screening as supplementary means is crucial in diagnosing novel coronavirus pneumonia (COVID-19) with high sensitivity and popularity. Machine learning was adept in discovering intricate structures from CT images and achieved expert-level performance in medical image analysis. METHODS An integrated machine learning framework on chest CT images for differentiating COVID-19 from general pneumonia (GP) was developed and validated. Seventy-three confirmed COVID-19 cases were consecutively enrolled together with 27 confirmed general pneumonia patients from Ruian People's Hospital, from January 2020 to March 2020. To accurately classify COVID-19, region of interest (ROI) delineation was implemented based on ground-glass opacities (GGOs) before feature extraction. Then, 34 statistical texture features of COVID-19 and GP ROI images were extracted, including 13 gray-level co-occurrence matrix (GLCM) features, 15 gray-level-gradient co-occurrence matrix (GLGCM) features and 6 histogram features. High-dimensional features impact the classification performance. Thus, ReliefF algorithm was leveraged to select features. The relevance of each feature was the average weights calculated by ReliefF in n times. Features with relevance larger than the empirically set threshold T were selected. After feature selection, the optimal feature set along with 4 other selected feature combinations for comparison were applied to the ensemble of bagged tree (EBT) and four other machine learning classifiers including support vector machine (SVM), logistic regression (LR), decision tree (DT), and K-nearest neighbor with Minkowski distance equal weight (KNN) using tenfold cross-validation. RESULTS AND CONCLUSIONS The classification accuracy (ACC), sensitivity (SEN), specificity (SPE) of our proposed method yield 94.16%, 88.62% and 100.00%, respectively. The area under the receiver operating characteristic curve (AUC) was 0.99. The experimental results indicate that the EBT algorithm with statistical textural features based on GGOs for differentiating COVID-19 from general pneumonia achieved high transferability, efficiency, specificity, sensitivity, and impressive accuracy, which is beneficial for inexperienced doctors to more accurately diagnose COVID-19 and essential for controlling the spread of the disease.
Collapse
Affiliation(s)
- Chenglong Liu
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
- College of Medical Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Xiaoyang Wang
- Department of Radiology, Ruian People's Hospital, Zhejiang, 325200, China
| | - Chenbin Liu
- Department of Radiation Oncology, Chinese Academy of Medical Science (CAMS) Shenzhen Cancer Hospital, Shenzhen, 518116, China
| | - Qingfeng Sun
- Infectious Disease Department, Ruian People's Hospital, Zhejiang, 325200, China
| | - Wenxian Peng
- College of Medical Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China.
| |
Collapse
|
277
|
Latif S, Usman M, Manzoor S, Iqbal W, Qadir J, Tyson G, Castro I, Razi A, Boulos MNK, Weller A, Crowcroft J. Leveraging Data Science to Combat COVID-19: A Comprehensive Review. IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE 2020; 1:85-103. [PMID: 37982070 PMCID: PMC8545032 DOI: 10.1109/tai.2020.3020521] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/07/2020] [Accepted: 08/26/2020] [Indexed: 11/17/2023]
Abstract
COVID-19, an infectious disease caused by the SARS-CoV-2 virus, was declared a pandemic by the World Health Organisation (WHO) in March 2020. By mid-August 2020, more than 21 million people have tested positive worldwide. Infections have been growing rapidly and tremendous efforts are being made to fight the disease. In this paper, we attempt to systematise the various COVID-19 research activities leveraging data science, where we define data science broadly to encompass the various methods and tools-including those from artificial intelligence (AI), machine learning (ML), statistics, modeling, simulation, and data visualization-that can be used to store, process, and extract insights from data. In addition to reviewing the rapidly growing body of recent research, we survey public datasets and repositories that can be used for further work to track COVID-19 spread and mitigation strategies. As part of this, we present a bibliometric analysis of the papers produced in this short span of time. Finally, building on these insights, we highlight common challenges and pitfalls observed across the surveyed works. We also created a live resource repository at https://github.com/Data-Science-and-COVID-19/Leveraging-Data-Science-To-Combat-COVID-19-A-Comprehensive-Review that we intend to keep updated with the latest resources including new papers and datasets.
Collapse
Affiliation(s)
- Siddique Latif
- University of Southern QueenslandSpringfieldQueensland4300Australia
- Distributed Sensing Systems Group, Data61CSIROPullenvaleQLD4069Australia
| | - Muhammad Usman
- Seoul National UniversitySeoul08700South Korea
- Center for Artificial Intelligence in Medicine and Imaging, HealthHub Company Ltd.Seoul06524South Korea
| | - Sanaullah Manzoor
- Center for Artificial Intelligence in Medicine and Imaging, HealthHub Company Ltd.Seoul06524South Korea
| | - Waleed Iqbal
- Information Technology UniversityPunjab5400Pakistan
| | | | - Gareth Tyson
- Queen Mary University of LondonLondonE1 4NSU.K.
- Queen Mary University of LondonLondonE1 4NSU.K.
| | | | | | - Maged N. Kamel Boulos
- Turner Institute for Brain and Mental Health & Monash Biomedical Imaging, Monash UniversityMelbourne3800Australia
| | - Adrian Weller
- the School of Information Management, Sun Yat-sen UniversityGuangzhou510006China
- University of CambridgeCambridgeCB2 1PZU.K.
| | - Jon Crowcroft
- Alan Turing InstituteLondonNW1 2DBU.K.
- University of CambridgeCambridgeCB2 1TNU.K.
| |
Collapse
|
278
|
Jaiswal A, Gianchandani N, Singh D, Kumar V, Kaur M. Classification of the COVID-19 infected patients using DenseNet201 based deep transfer learning. J Biomol Struct Dyn 2020; 39:5682-5689. [PMID: 32619398 DOI: 10.1080/07391102.2020.1788642] [Citation(s) in RCA: 201] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Deep learning models are widely used in the automatic analysis of radiological images. These techniques can train the weights of networks on large datasets as well as fine tuning the weights of pre-trained networks on small datasets. Due to the small COVID-19 dataset available, the pre-trained neural networks can be used for diagnosis of coronavirus. However, these techniques applied on chest CT image is very limited till now. Hence, the main aim of this paper to use the pre-trained deep learning architectures as an automated tool to detection and diagnosis of COVID-19 in chest CT. A DenseNet201 based deep transfer learning (DTL) is proposed to classify the patients as COVID infected or not i.e. COVID-19 (+) or COVID (-). The proposed model is utilized to extract features by using its own learned weights on the ImageNet dataset along with a convolutional neural structure. Extensive experiments are performed to evaluate the performance of the propose DTL model on COVID-19 chest CT scan images. Comparative analyses reveal that the proposed DTL based COVID-19 classification model outperforms the competitive approaches.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Aayush Jaiswal
- Department of Computer Science and Engineering, School of Computing and Information Technology, Manipal University Jaipur, Jaipur, India
| | - Neha Gianchandani
- Department of Computer Science and Engineering, School of Computing and Information Technology, Manipal University Jaipur, Jaipur, India
| | - Dilbag Singh
- Department of Computer Science and Engineering, School of Computing and Information Technology, Manipal University Jaipur, Jaipur, India
| | - Vijay Kumar
- Department of Computer Science and Engineering, National Institute of Technology Hamirpur, Hamirpur, India
| | - Manjit Kaur
- Department of Computer and Communication Engineering, School of Computing and Information Technology, Manipal University Jaipur, Jaipur, India
| |
Collapse
|
279
|
Wynants L, Van Calster B, Collins GS, Riley RD, Heinze G, Schuit E, Bonten MMJ, Dahly DL, Damen JAA, Debray TPA, de Jong VMT, De Vos M, Dhiman P, Haller MC, Harhay MO, Henckaerts L, Heus P, Kammer M, Kreuzberger N, Lohmann A, Luijken K, Ma J, Martin GP, McLernon DJ, Andaur Navarro CL, Reitsma JB, Sergeant JC, Shi C, Skoetz N, Smits LJM, Snell KIE, Sperrin M, Spijker R, Steyerberg EW, Takada T, Tzoulaki I, van Kuijk SMJ, van Bussel B, van der Horst ICC, van Royen FS, Verbakel JY, Wallisch C, Wilkinson J, Wolff R, Hooft L, Moons KGM, van Smeden M. Prediction models for diagnosis and prognosis of covid-19: systematic review and critical appraisal. BMJ 2020; 369:m1328. [PMID: 32265220 PMCID: PMC7222643 DOI: 10.1136/bmj.m1328] [Citation(s) in RCA: 1727] [Impact Index Per Article: 345.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/31/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To review and appraise the validity and usefulness of published and preprint reports of prediction models for diagnosing coronavirus disease 2019 (covid-19) in patients with suspected infection, for prognosis of patients with covid-19, and for detecting people in the general population at increased risk of covid-19 infection or being admitted to hospital with the disease. DESIGN Living systematic review and critical appraisal by the COVID-PRECISE (Precise Risk Estimation to optimise covid-19 Care for Infected or Suspected patients in diverse sEttings) group. DATA SOURCES PubMed and Embase through Ovid, up to 1 July 2020, supplemented with arXiv, medRxiv, and bioRxiv up to 5 May 2020. STUDY SELECTION Studies that developed or validated a multivariable covid-19 related prediction model. DATA EXTRACTION At least two authors independently extracted data using the CHARMS (critical appraisal and data extraction for systematic reviews of prediction modelling studies) checklist; risk of bias was assessed using PROBAST (prediction model risk of bias assessment tool). RESULTS 37 421 titles were screened, and 169 studies describing 232 prediction models were included. The review identified seven models for identifying people at risk in the general population; 118 diagnostic models for detecting covid-19 (75 were based on medical imaging, 10 to diagnose disease severity); and 107 prognostic models for predicting mortality risk, progression to severe disease, intensive care unit admission, ventilation, intubation, or length of hospital stay. The most frequent types of predictors included in the covid-19 prediction models are vital signs, age, comorbidities, and image features. Flu-like symptoms are frequently predictive in diagnostic models, while sex, C reactive protein, and lymphocyte counts are frequent prognostic factors. Reported C index estimates from the strongest form of validation available per model ranged from 0.71 to 0.99 in prediction models for the general population, from 0.65 to more than 0.99 in diagnostic models, and from 0.54 to 0.99 in prognostic models. All models were rated at high or unclear risk of bias, mostly because of non-representative selection of control patients, exclusion of patients who had not experienced the event of interest by the end of the study, high risk of model overfitting, and unclear reporting. Many models did not include a description of the target population (n=27, 12%) or care setting (n=75, 32%), and only 11 (5%) were externally validated by a calibration plot. The Jehi diagnostic model and the 4C mortality score were identified as promising models. CONCLUSION Prediction models for covid-19 are quickly entering the academic literature to support medical decision making at a time when they are urgently needed. This review indicates that almost all pubished prediction models are poorly reported, and at high risk of bias such that their reported predictive performance is probably optimistic. However, we have identified two (one diagnostic and one prognostic) promising models that should soon be validated in multiple cohorts, preferably through collaborative efforts and data sharing to also allow an investigation of the stability and heterogeneity in their performance across populations and settings. Details on all reviewed models are publicly available at https://www.covprecise.org/. Methodological guidance as provided in this paper should be followed because unreliable predictions could cause more harm than benefit in guiding clinical decisions. Finally, prediction model authors should adhere to the TRIPOD (transparent reporting of a multivariable prediction model for individual prognosis or diagnosis) reporting guideline. SYSTEMATIC REVIEW REGISTRATION Protocol https://osf.io/ehc47/, registration https://osf.io/wy245. READERS' NOTE This article is a living systematic review that will be updated to reflect emerging evidence. Updates may occur for up to two years from the date of original publication. This version is update 3 of the original article published on 7 April 2020 (BMJ 2020;369:m1328). Previous updates can be found as data supplements (https://www.bmj.com/content/369/bmj.m1328/related#datasupp). When citing this paper please consider adding the update number and date of access for clarity.
Collapse
Affiliation(s)
- Laure Wynants
- Department of Epidemiology, CAPHRI Care and Public Health Research Institute, Maastricht University, Peter Debyeplein 1, 6229 HA Maastricht, Netherlands
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Ben Van Calster
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Department of Biomedical Data Sciences, Leiden University Medical Centre, Leiden, Netherlands
| | - Gary S Collins
- Centre for Statistics in Medicine, Nuffield Department of Orthopaedics, Musculoskeletal Sciences, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK
| | - Richard D Riley
- Centre for Prognosis Research, School of Primary, Community and Social Care, Keele University, Keele, UK
| | - Georg Heinze
- Section for Clinical Biometrics, Centre for Medical Statistics, Informatics and Intelligent Systems, Medical University of Vienna, Vienna, Austria
| | - Ewoud Schuit
- Julius Center for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht University, Utrecht, Netherlands
- Cochrane Netherlands, University Medical Centre Utrecht, Utrecht University, Utrecht, Netherlands
| | - Marc M J Bonten
- Julius Center for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht University, Utrecht, Netherlands
- Department of Medical Microbiology, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Darren L Dahly
- HRB Clinical Research Facility, Cork, Ireland
- School of Public Health, University College Cork, Cork, Ireland
| | - Johanna A A Damen
- Julius Center for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht University, Utrecht, Netherlands
- Cochrane Netherlands, University Medical Centre Utrecht, Utrecht University, Utrecht, Netherlands
| | - Thomas P A Debray
- Julius Center for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht University, Utrecht, Netherlands
- Cochrane Netherlands, University Medical Centre Utrecht, Utrecht University, Utrecht, Netherlands
| | - Valentijn M T de Jong
- Julius Center for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht University, Utrecht, Netherlands
- Cochrane Netherlands, University Medical Centre Utrecht, Utrecht University, Utrecht, Netherlands
| | - Maarten De Vos
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Department of Electrical Engineering, ESAT Stadius, KU Leuven, Leuven, Belgium
| | - Paul Dhiman
- Centre for Statistics in Medicine, Nuffield Department of Orthopaedics, Musculoskeletal Sciences, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK
| | - Maria C Haller
- Section for Clinical Biometrics, Centre for Medical Statistics, Informatics and Intelligent Systems, Medical University of Vienna, Vienna, Austria
- Ordensklinikum Linz, Hospital Elisabethinen, Department of Nephrology, Linz, Austria
| | - Michael O Harhay
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Palliative and Advanced Illness Research Center and Division of Pulmonary and Critical Care Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Liesbet Henckaerts
- Department of Microbiology, Immunology and Transplantation, KU Leuven-University of Leuven, Leuven, Belgium
- Department of General Internal Medicine, KU Leuven-University Hospitals Leuven, Leuven, Belgium
| | - Pauline Heus
- Julius Center for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht University, Utrecht, Netherlands
- Cochrane Netherlands, University Medical Centre Utrecht, Utrecht University, Utrecht, Netherlands
| | - Michael Kammer
- Section for Clinical Biometrics, Centre for Medical Statistics, Informatics and Intelligent Systems, Medical University of Vienna, Vienna, Austria
- Department of Nephrology, Medical University of Vienna, Vienna, Austria
| | - Nina Kreuzberger
- Evidence-Based Oncology, Department I of Internal Medicine and Centre for Integrated Oncology Aachen Bonn Cologne Dusseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Anna Lohmann
- Department of Clinical Epidemiology, Leiden University Medical Centre, Leiden, Netherlands
| | - Kim Luijken
- Department of Clinical Epidemiology, Leiden University Medical Centre, Leiden, Netherlands
| | - Jie Ma
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK
| | - Glen P Martin
- Division of Informatics, Imaging and Data Science, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - David J McLernon
- Institute of Applied Health Sciences, University of Aberdeen, Aberdeen, UK
| | - Constanza L Andaur Navarro
- Julius Center for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht University, Utrecht, Netherlands
- Cochrane Netherlands, University Medical Centre Utrecht, Utrecht University, Utrecht, Netherlands
| | - Johannes B Reitsma
- Julius Center for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht University, Utrecht, Netherlands
- Cochrane Netherlands, University Medical Centre Utrecht, Utrecht University, Utrecht, Netherlands
| | - Jamie C Sergeant
- Centre for Biostatistics, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- Centre for Epidemiology Versus Arthritis, Centre for Musculoskeletal Research, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Chunhu Shi
- Division of Nursing, Midwifery and Social Work, School of Health Sciences, University of Manchester, Manchester, UK
| | - Nicole Skoetz
- Department of Nephrology, Medical University of Vienna, Vienna, Austria
| | - Luc J M Smits
- Department of Epidemiology, CAPHRI Care and Public Health Research Institute, Maastricht University, Peter Debyeplein 1, 6229 HA Maastricht, Netherlands
| | - Kym I E Snell
- Centre for Prognosis Research, School of Primary, Community and Social Care, Keele University, Keele, UK
| | - Matthew Sperrin
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - René Spijker
- Julius Center for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht University, Utrecht, Netherlands
- Cochrane Netherlands, University Medical Centre Utrecht, Utrecht University, Utrecht, Netherlands
- Amsterdam UMC, University of Amsterdam, Amsterdam Public Health, Medical Library, Netherlands
| | - Ewout W Steyerberg
- Department of Biomedical Data Sciences, Leiden University Medical Centre, Leiden, Netherlands
| | - Toshihiko Takada
- Julius Center for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht University, Utrecht, Netherlands
| | - Ioanna Tzoulaki
- Department of Epidemiology and Biostatistics, Imperial College London School of Public Health, London, UK
- Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina, Greece
| | - Sander M J van Kuijk
- Department of Clinical Epidemiology and Medical Technology Assessment, Maastricht University Medical Centre+, Maastricht, Netherlands
| | - Bas van Bussel
- Department of Epidemiology, CAPHRI Care and Public Health Research Institute, Maastricht University, Peter Debyeplein 1, 6229 HA Maastricht, Netherlands
- Department of Intensive Care, Maastricht University Medical Centre+, Maastricht University, Maastricht, Netherlands
| | - Iwan C C van der Horst
- Department of Intensive Care, Maastricht University Medical Centre+, Maastricht University, Maastricht, Netherlands
| | - Florien S van Royen
- Julius Center for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht University, Utrecht, Netherlands
| | - Jan Y Verbakel
- EPI-Centre, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Christine Wallisch
- Section for Clinical Biometrics, Centre for Medical Statistics, Informatics and Intelligent Systems, Medical University of Vienna, Vienna, Austria
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Jack Wilkinson
- Division of Informatics, Imaging and Data Science, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | | | - Lotty Hooft
- Julius Center for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht University, Utrecht, Netherlands
- Cochrane Netherlands, University Medical Centre Utrecht, Utrecht University, Utrecht, Netherlands
| | - Karel G M Moons
- Julius Center for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht University, Utrecht, Netherlands
- Cochrane Netherlands, University Medical Centre Utrecht, Utrecht University, Utrecht, Netherlands
| | - Maarten van Smeden
- Julius Center for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht University, Utrecht, Netherlands
| |
Collapse
|