251
|
Pazolli E, Alspach E, Milczarek A, Prior J, Piwnica-Worms D, Stewart SA. Chromatin remodeling underlies the senescence-associated secretory phenotype of tumor stromal fibroblasts that supports cancer progression. Cancer Res 2012; 72:2251-61. [PMID: 22422937 DOI: 10.1158/0008-5472.can-11-3386] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Age is a major risk factor for the development of cancer. Senescent fibroblasts, which accumulate with age, secrete protumorigenic factors collectively referred to as the senescence-associated secretory phenotype (SASP). Here, we examined the molecular mechanisms that control SASP activation, focusing on the known SASP factor osteopontin (OPN). We found that expression of the canonical SASP members interleukin (IL)-6 and IL-8, but not OPN, were dependent upon a persistent DNA damage response (DDR) as evidenced by ATM and NF-κB activation. Treatment with several histone deacetylase (HDAC) inhibitors robustly activated SASP in the absence of DNA breaks, suggesting that DDR-dependent SASP activation occurs in response to chromatin remodeling rather than physical breaks in DNA. In the setting of HDAC inhibition, IL-6 and IL-8 expression remained dependent upon ATM and NF-κB, while OPN expression remained independent of these factors. Further analysis revealed that HDAC1 inhibition was sufficient to induce OPN expression, which is interesting given that loss of HDAC1 expression correlates with increased OPN expression within the stromal compartment of invasive breast cancers. Importantly, fibroblasts treated with HDAC inhibitors promoted tumor growth in vivo. Our findings therefore indicate that HDAC modulation plays an important role in stromal cell activation, with important implications for the use of HDAC inhibitors in the treatment of cancer.
Collapse
Affiliation(s)
- Ermira Pazolli
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | |
Collapse
|
252
|
Dasari A, Gore L, Messersmith WA, Diab S, Jimeno A, Weekes CD, Lewis KD, Drabkin HA, Flaig TW, Camidge DR. A phase I study of sorafenib and vorinostat in patients with advanced solid tumors with expanded cohorts in renal cell carcinoma and non-small cell lung cancer. Invest New Drugs 2012; 31:115-25. [DOI: 10.1007/s10637-012-9812-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 02/28/2012] [Indexed: 01/02/2023]
|
253
|
Shi ZJ, Ouyang DY, Zhu JS, Xu LH, He XH. Histone deacetylase inhibitor suberoylanilide hydroxamic acid exhibits anti-inflammatory activities through induction of mitochondrial damage and apoptosis in activated lymphocytes. Int Immunopharmacol 2012; 12:580-7. [PMID: 22369900 DOI: 10.1016/j.intimp.2012.02.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 02/08/2012] [Accepted: 02/08/2012] [Indexed: 02/08/2023]
Abstract
Suberoylanilide hydroxamic acid (SAHA), a histone deacetylase inhibitor, has been proven to be an anti-cancer agent. Its anti-inflammatory activities have recently been observed both in in vitro and in vivo models. Yet its action on lymphocytes and the underlying mechanism are still not well known. In this study, in order to evaluate the anti-inflammatory function of SAHA, we analyzed the effects of SAHA on the proliferation, activation, cytokines secretion, cell cycle distribution and apoptosis of murine lymphocytes activated with concanavalin A (Con A). Our results demonstrated that SAHA inhibited the proliferation of Con A-activated lymphocytes in a dose-dependent manner. The expression of CD69 on CD3(+) T lymphocytes was significantly inhibited by SAHA. Intracellular cytokine staining analysis showed that SAHA could downregulate the expression of pro-inflammatory cytokines TNF-α, IL-6 and IFN-γ in T lymphocytes. Furthermore, analysis of sub-G(0)/G(1) peaks and annexin V binding populations revealed that SAHA induced apoptotic cell death in Con A-activated lymphocytes. Consistent with these results, SAHA treatment also induced a decrease of mitochondrial membrane potential and cleavage of caspase-3 and PARP in these cells. Moreover, SAHA caused an accumulation of phosphorylated histone H2A.X, indicating increased double strand DNA breaks. These findings suggest that induction of apoptosis through the mitochondrial pathway may contribute to the anti-inflammatory activities of SAHA on activated lymphocytes.
Collapse
Affiliation(s)
- Zi-jian Shi
- Institute of Tissue Transplantation and Immunology, Jinan University, Guangzhou 510632, PR China
| | | | | | | | | |
Collapse
|
254
|
Beloueche-Babari M, Arunan V, Troy H, te Poele RH, Fong ACWT, Jackson LE, Payne GS, Griffiths JR, Judson IR, Workman P, Leach MO, Chung YL. Histone deacetylase inhibition increases levels of choline kinase α and phosphocholine facilitating noninvasive imaging in human cancers. Cancer Res 2012; 72:990-1000. [PMID: 22194463 PMCID: PMC3378496 DOI: 10.1158/0008-5472.can-11-2688] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Histone deacetylase (HDAC) inhibitors are currently approved for cutaneous T-cell lymphoma and are in mid-late stage trials for other cancers. The HDAC inhibitors LAQ824 and SAHA increase phosphocholine (PC) levels in human colon cancer cells and tumor xenografts as observed by magnetic resonance spectroscopy (MRS). In this study, we show that belinostat, an HDAC inhibitor with an alternative chemical scaffold, also caused a rise in cellular PC content that was detectable by (1)H and (31)P MRS in prostate and colon carcinoma cells. In addition, (1)H MRS showed an increase in branched chain amino acid and alanine concentrations. (13)C-choline labeling indicated that the rise in PC resulted from increased de novo synthesis and correlated with an induction of choline kinase α expression. Furthermore, metabolic labeling experiments with (13)C-glucose showed that differential glucose routing favored alanine formation at the expense of lactate production. Additional analysis revealed increases in the choline/water and phosphomonoester (including PC)/total phosphate ratios in vivo. Together, our findings provide mechanistic insights into the impact of HDAC inhibition on cancer cell metabolism and highlight PC as a candidate noninvasive imaging biomarker for monitoring the action of HDAC inhibitors.
Collapse
Affiliation(s)
- Mounia Beloueche-Babari
- Cancer Research UK and EPSRC Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, Sutton, Surrey SM2 5PT, UK
| | - Vaitha Arunan
- Cancer Research UK and EPSRC Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, Sutton, Surrey SM2 5PT, UK
| | - Helen Troy
- Cancer Research UK and EPSRC Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, Sutton, Surrey SM2 5PT, UK
| | - Robert H te Poele
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, Sutton, Surrey SM2 5NG, UK
| | - Anne-Christine Wong Te Fong
- Cancer Research UK and EPSRC Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, Sutton, Surrey SM2 5PT, UK
| | - L Elizabeth Jackson
- Cancer Research UK and EPSRC Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, Sutton, Surrey SM2 5PT, UK
| | - Geoffrey S Payne
- Cancer Research UK and EPSRC Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, Sutton, Surrey SM2 5PT, UK
| | - John R Griffiths
- Cancer Research UK Cambridge Research Institute, Li Ka Shing Centre, Cambridge CB2 ORE, UK
| | - Ian R Judson
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, Sutton, Surrey SM2 5NG, UK
| | - Paul Workman
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, Sutton, Surrey SM2 5NG, UK
| | - Martin O Leach
- Cancer Research UK and EPSRC Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, Sutton, Surrey SM2 5PT, UK
| | - Yuen-Li Chung
- Cancer Research UK and EPSRC Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, Sutton, Surrey SM2 5PT, UK
| |
Collapse
|
255
|
Current management and novel agents for malignant melanoma. J Hematol Oncol 2012; 5:3. [PMID: 22333219 PMCID: PMC3293076 DOI: 10.1186/1756-8722-5-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 02/14/2012] [Indexed: 01/12/2023] Open
Abstract
Advanced malignant melanoma remains a challenging cancer. Over the past year, there have been 3 agents approved for treatment of melanoma by Food and Drug Administration. These include pegylated interferon alpha-2b for stage III melanoma, vemurafenib for unresectable or metastatic melanoma with BRAF V600E mutation, and ipilimumab for treatment of unresectable or metastatic melanoma. This review will also update on the development of novel agents, including tyrosine kinase inhibitors and adoptive cellular therapy.
Collapse
|
256
|
Yi TZ, Li J, Han X, Guo J, Qu Q, Guo L, Sun HD, Tan WH. DNMT inhibitors and HDAC inhibitors regulate E-cadherin and Bcl-2 expression in endometrial carcinoma in vitro and in vivo. Chemotherapy 2012; 58:19-29. [PMID: 22343305 DOI: 10.1159/000333077] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Accepted: 08/16/2011] [Indexed: 11/19/2022]
Abstract
BACKGROUND The effect of histone deacetylase inhibitors (HDACIs) and DNA methyltransferase inhibitors (DNMTIs) on proliferation of endometrial cancer (EC) cells in vitro and in vivo was investigated. METHODS Changes in methylation of the CDH1 promoter in HDACI- and DNMTI-treated HEC-1-B and RL-952 EC cells were detected. Nude mice with xenografted implants of human EC HEC-1-B cells were treated with valproic acid (VPA) and decitabine (DAC) and evaluated for tumor growth, CDH1 and Bcl-2 mRNA levels. RESULTS DAC, VPA and suberoylanilide hydroxamic acid (SAHA) inhibited proliferation, induced cell cycle arrest and enhanced the apoptotic index in both cell lines, DAC, VPA and SAHA upregulated E-cadherin mRNA and protein levels and downregulated Bcl-2 mRNA levels in vitro. DAC and VPA inhibited tumor growth, upregulated CDH1 mRNA and downregulated Bcl-2 mRNA levels in vivo. CONCLUSIONS A combination of HDACIs and DNMTIs suppresses the growth of EC, which is likely mediated by upregulation of E-cadherin and downregulation of Bcl-2.
Collapse
Affiliation(s)
- Tie-Zhong Yi
- Obstetrics and Gynecology Department, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | | | | | | | | | | | | | | |
Collapse
|
257
|
Berghuis D, Schilham MW, Vos HI, Santos SJ, Kloess S, Buddingh' EP, Egeler RM, Hogendoorn PC, Lankester AC. Histone deacetylase inhibitors enhance expression of NKG2D ligands in Ewing sarcoma and sensitize for natural killer cell-mediated cytolysis. Clin Sarcoma Res 2012; 2:8. [PMID: 22587892 PMCID: PMC3351702 DOI: 10.1186/2045-3329-2-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 02/08/2012] [Indexed: 12/30/2022] Open
Abstract
Background Ewing sarcoma patients have a poor prognosis despite multimodal therapy. Integration of combination immunotherapeutic strategies into first-/second-line regimens represents promising treatment options, particularly for patients with intrinsic or acquired resistance to conventional therapies. We evaluated the susceptibility of Ewing sarcoma to natural killer cell-based combination immunotherapy, by assessing the capacity of histone deacetylase inhibitors to improve immune recognition and sensitize for natural killer cell cytotoxicity. Methods Using flow cytometry, ELISA and immunohistochemistry, expression of natural killer cell receptor ligands was assessed in chemotherapy-sensitive/-resistant Ewing sarcoma cell lines, plasma and tumours. Natural killer cell cytotoxicity was evaluated in Chromium release assays. Using ATM/ATR inhibitor caffeine, the contribution of the DNA damage response pathway to histone deacetylase inhibitor-induced ligand expression was assessed. Results Despite comparable expression of natural killer cell receptor ligands, chemotherapy-resistant Ewing sarcoma exhibited reduced susceptibility to resting natural killer cells. Interleukin-15-activation of natural killer cells overcame this reduced sensitivity. Histone deacetylase inhibitor-pretreatment induced NKG2D-ligand expression in an ATM/ATR-dependent manner and sensitized for NKG2D-dependent cytotoxicity (2/4 cell lines). NKG2D-ligands were expressed in vivo, regardless of chemotherapy-response and disease stage. Soluble NKG2D-ligand plasma concentrations did not differ between patients and controls. Conclusion Our data provide a rationale for combination immunotherapy involving immune effector and target cell manipulation in first-/second-line treatment regimens for Ewing sarcoma.
Collapse
Affiliation(s)
- Dagmar Berghuis
- Department of Pediatrics, Leiden University Medical Center, Leiden, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
258
|
Sun WJ, Zhou X, Zheng JH, Lu MD, Nie JY, Yang XJ, Zheng ZQ. Histone acetyltransferases and deacetylases: molecular and clinical implications to gastrointestinal carcinogenesis. Acta Biochim Biophys Sin (Shanghai) 2012; 44:80-91. [PMID: 22194016 DOI: 10.1093/abbs/gmr113] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Histone acetyltransferases and deacetylases are two groups of enzymes whose opposing activities govern the dynamic levels of reversible acetylation on specific lysine residues of histones and many other proteins. Gastrointestinal (GI) carcinogenesis is a major cause of morbidity and mortality worldwide. In addition to genetic and environmental factors, the role of epigenetic abnormalities such as aberrant histone acetylation has been recognized to be pivotal in regulating benign tumorigenesis and eventual malignant transformation. Here we provide an overview of histone acetylation, list the major groups of histone acetyltransferases and deacetylases, and cover in relatively more details the recent studies that suggest the links of these enzymes to GI carcinogenesis. As potential novel therapeutics for GI and other cancers, histone deacetylase inhibitors are also discussed.
Collapse
Affiliation(s)
- Wei-Jian Sun
- The 2nd Affiliated Hospital, Wenzhou Medical College, China
| | | | | | | | | | | | | |
Collapse
|
259
|
|
260
|
Tsai HC, Wei KC, Tsai CN, Huang YC, Chen PY, Chen SM, Lu YJ, Lee ST. Effect of valproic acid on the outcome of glioblastoma multiforme. Br J Neurosurg 2011; 26:347-54. [PMID: 22168970 DOI: 10.3109/02688697.2011.638996] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND Glioblastoma multiforme (GBM) is the most aggressive type of primary brain tumor. It is a rapidly progressive, highly recurrent, fatal intracranial neoplasm, and the demand for novel treatment is urgent. Valproic acid (VPA) is a potential anticancer agent that belongs to a class of histone deacetylase (HDAC) inhibitors, targeting the epigenetic control of gene functions in cancer cells. This drug has been administered for the prevention or treatment of seizure disorder in GBM patients; therefore, a retrospective analysis may further our understanding of the effect of VPA on GBM patients. MATERIALS AND METHODS A retrospective analysis of 102 patients with GBM was conducted to study the effects of VPA on disease outcome. Tumor samples from seven patients receiving VPA treatment between the first and second operations were obtained in order to verify the HDAC inhibitory activity of VPA in these patients. RESULTS In univariate analysis, administration of VPA within 2 weeks of initial diagnosis seemed to confer a survival benefit. However, stratified analysis according to chemotherapy showed that VPA did not have significant impact on the GBM patients' overall survival. Analysis of tissue samples from these patients revealed that a small subset of patients had increased histone acetylation after VPA treatment. CONCLUSION VPA treatment, when administered according to a protocol targeting seizure control, may result in HDAC inhibition in a small subset of patients, but does not significantly affect overall patient survival. Early administration of VPA as an adjunct to temozolomide chemotherapy may have its merits, but the optimal dosing schedule and target serum level require further investigation.
Collapse
Affiliation(s)
- Hong-Chieh Tsai
- Department of Neurosurgery, Chang-Gung Memorial Hospital and University, Tao-Yuan, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
261
|
Histone deacetylase inhibitors are potent inducers of gene expression in latent EBV and sensitize lymphoma cells to nucleoside antiviral agents. Blood 2011; 119:1008-17. [PMID: 22160379 DOI: 10.1182/blood-2011-06-362434] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Induction of EBV lytic-phase gene expression, combined with exposure to an antiherpes viral drug, represents a promising targeted therapeutic approach to EBV-associated lymphomas. Short-chain fatty acids or certain chemotherapeutics have been used to induce EBV lytic-phase gene expression in cultured cells and mouse models, but these studies generally have not translated into clinical application. The recent success of a clinical trial with the pan-histone deacetylase (pan-HDAC) inhibitor arginine butyrate and the antiherpes viral drug ganciclovir in the treatment of EBV lymphomas prompted us to investigate the potential of several HDAC inhibitors, including some new, highly potent compounds, to sensitize EBV(+) human lymphoma cells to antiviral agents in vitro. Our study included short-chain fatty acids (sodium butyrate and valproic acid); hydroxamic acids (oxamflatin, Scriptaid, suberoyl anilide hydroxamic acid, panobinostat [LBH589], and belinostat [PXD101]); the benzamide MS275; the cyclic tetrapeptide apicidin; and the recently discovered HDAC inhibitor largazole. With the exception of suberoyl anilide hydroxamic acid and PXD101, all of the other HDAC inhibitors effectively sensitized EBV(+) lymphoma cells to ganciclovir. LBH589, MS275, and largazole were effective at nanomolar concentrations and were 10(4) to 10(5) times more potent than butyrate. The effectiveness and potency of these HDAC inhibitors make them potentially applicable as sensitizers to antivirals for the treatment of EBV-associated lymphomas.
Collapse
|
262
|
Design, synthesis and biological evaluation of novel histone deacetylase inhibitors based on virtual screening. Acta Pharm Sin B 2011. [DOI: 10.1016/j.apsb.2011.10.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
263
|
Abstract
Parasitic diseases cause significant global morbidity and mortality, particularly in underdeveloped regions of the world. Malaria alone causes ~800000 deaths each year, with children and pregnant women being at highest risk. There is no licensed vaccine available for any human parasitic disease and drug resistance is compromising the efficacy of many available anti-parasitic drugs. This is driving drug discovery research on new agents with novel modes of action. Histone deacetylase (HDAC) inhibitors are being investigated as drugs for a range of diseases, including cancers and infectious diseases such as HIV/AIDS, and several parasitic diseases. This review focuses on the current state of knowledge of HDAC inhibitors targeted to the major human parasitic diseases malaria, schistosomiasis, trypanosomiasis, toxoplasmosis and leishmaniasis. Insights are provided into the unique challenges that will need to be considered if HDAC inhibitors are to be progressed towards clinical development as potential new anti-parasitic drugs.
Collapse
Affiliation(s)
- Katherine T Andrews
- Eskitis Institute for Cell and Molecular Therapies, Griffith University, Nathan, Queensland, Australia.
| | | | | |
Collapse
|
264
|
Preclinical evaluation of dual PI3K-mTOR inhibitors and histone deacetylase inhibitors in head and neck squamous cell carcinoma. Br J Cancer 2011; 106:107-15. [PMID: 22116303 PMCID: PMC3251846 DOI: 10.1038/bjc.2011.495] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Background: We examine the potential value of a series of clinically relevant PI3K-mTOR inhibitors alone, or in combination with histone deacetylase inhibitors, in a model of head and neck squamous cell carcinoma (HNSCC). Methods: Head and neck squamous cell carcinoma cell lines, human keratinocyte and HNSCC xenograft models were treated with histone deacetylase inhibitors (HDACIs) and new generation PI3K and dual PI3K-mTOR inhibitors either alone or in combination. Cell and tumour tissue viability and proliferation were then determined in vitro and in vivo. Results: Phosphatidylinositol-3-phosphate kinase, AKT and dual PI3K-mTOR inhibitors caused marked in vitro enhancement of cytotoxicity induced by HDACIs in HNSCC cancer cells. This effect correlates with AKT inhibition and is attenuated by expression of constitutively active AKT. Histone deacetylase inhibitor and phosphatidylinositol-3-phosphate kinase inhibitors (PI3KIs) inhibited tumour growth in xenograft models of HNSCC. Importantly, we observed intratumoural HDAC inhibition and PI3K inhibition as assessed by histone H3 acetylation status and phospho-AKT staining, respectively. However, we saw no evidence of improved efficacy with an HDACI/PI3KI combination. Interpretation: That PI3K and dual PI3K-mTOR inhibitors possess antitumour effect against HNSCC in vivo.
Collapse
|
265
|
Suliman BA, Xu D, Williams BRG. HDACi: molecular mechanisms and therapeutic implications in the innate immune system. Immunol Cell Biol 2011; 90:23-32. [DOI: 10.1038/icb.2011.92] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Bandar Ali Suliman
- College of Applied Medical Sciences, Taibah University Al‐Madinah Al‐Munawwarah Saudi Arabia
- Centre for Cancer Research, Monash Institute of Medical Research, Monash University Melbourne Victoria Australia
| | - Dakang Xu
- Centre for Cancer Research, Monash Institute of Medical Research, Monash University Melbourne Victoria Australia
| | - Bryan RG Williams
- Centre for Cancer Research, Monash Institute of Medical Research, Monash University Melbourne Victoria Australia
| |
Collapse
|
266
|
Molife LR, de Bono JS. Belinostat: clinical applications in solid tumors and lymphoma. Expert Opin Investig Drugs 2011; 20:1723-32. [PMID: 22046971 DOI: 10.1517/13543784.2011.629604] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Histone deacetylase (HDAC) inhibitors have recently emerged as a novel and active class of anticancer agents. Belinostat is one member of the class that has been tested as a single agent and in combination with other chemotherapies and biological agents in the treatment of solid tumors and lymphoma. AREAS COVERED A literature search of pre-clinical and clinical studies of belinostat was performed. The data from these studies were analysed to summarise the progress of belinostat from Phase I to a current pivotal trial in peripheral T-cell lymphoma. The parallel development of appropriate biomarker analysis is also discussed. EXPERT OPINION Belinostat has demonstrated significant clinical activity in T-cell lymphomas. Although its activity as a single agent in solid tumors has been less compelling, the emerging results from combination trials are promising. However, the basis for the activity of belinostat, like that of other HDAC inhibitors, remains to be truly defined and the identification of predictive and prognostic biomarkers of activity should be established to further progress the development of this compound.
Collapse
Affiliation(s)
- L Rhoda Molife
- Drug Development Unit, Division of Clinical Sciences, The Institute of Cancer Research/The Royal Marsden, Downs Road, Sutton, Surrey, SM2 5PT, UK.
| | | |
Collapse
|
267
|
Cianciola NL, Carlin CR, Kelley TJ. Molecular pathways for intracellular cholesterol accumulation: common pathogenic mechanisms in Niemann-Pick disease Type C and cystic fibrosis. Arch Biochem Biophys 2011; 515:54-63. [PMID: 21924233 PMCID: PMC3192251 DOI: 10.1016/j.abb.2011.08.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 08/29/2011] [Accepted: 08/30/2011] [Indexed: 12/11/2022]
Abstract
It has been less than two decades since the underlying genetic defects in Niemann-Pick disease Type C were first identified. These defects impair function of two proteins with a direct role in lipid trafficking, resulting in deposition of free cholesterol within late endosomal compartments and a multitude of effects on cell function and clinical manifestations. The rapid pace of research in this area has vastly improved our overall understanding of intracellular cholesterol homeostasis. Excessive cholesterol buildup has also been implicated in clinical manifestations associated with a number of genetically unrelated diseases including cystic fibrosis. Applying knowledge about anomalous cell signaling behavior in cystic fibrosis opens prospects for identifying similar previously unrecognized disease pathways in Niemann-Pick disease Type C. Recognition that Niemann-Pick disease Type C and cystic fibrosis both impair cholesterol regulatory pathways also provides a rationale for identifying common therapeutic targets.
Collapse
Affiliation(s)
- Nicholas L. Cianciola
- Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4970
| | - Cathleen R. Carlin
- Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4970
- Case Western Reserve University Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4970
| | - Thomas J. Kelley
- Department of Pediatrics, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4970
| |
Collapse
|
268
|
Landreville S, Agapova OA, Matatall KA, Kneass ZT, Onken MD, Lee RS, Bowcock AM, Harbour JW. Histone deacetylase inhibitors induce growth arrest and differentiation in uveal melanoma. Clin Cancer Res 2011; 18:408-16. [PMID: 22038994 DOI: 10.1158/1078-0432.ccr-11-0946] [Citation(s) in RCA: 206] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PURPOSE Metastasis is responsible for the death of most cancer patients, yet few therapeutic agents are available which specifically target the molecular events that lead to metastasis. We recently showed that inactivating mutations in the tumor suppressor gene BAP1 are closely associated with loss of melanocytic differentiation in uveal melanoma (UM) and metastasis. The purpose of this study was to identify therapeutic agents that reverse the phenotypic effects of BAP1 loss in UM. EXPERIMENTAL DESIGN In silico screens were done to identify therapeutic compounds predicted to differentiate UM cells using Gene Set Enrichment Analysis and Connectivity Map databases. Valproic acid (VPA), trichostatin A, LBH-589, and suberoylanilide hydroxamic acid were evaluated for their effects on UM cells using morphologic evaluation, MTS viability assays, bromodeoxyuridine incorporation, flow cytometry, clonogenic assays, gene expression profiling, histone acetylation and ubiquitination assays, and a murine xenograft tumorigenicity model. RESULTS Histone deacetylase (HDAC) inhibitors induced morphologic differentiation, cell-cycle exit, and a shift to a differentiated, melanocytic gene expression profile in cultured UM cells. VPA inhibited the growth of UM tumors in vivo. CONCLUSIONS These findings suggest that HDAC inhibitors may have therapeutic potential for inducing differentiation and prolonged dormancy of micrometastatic disease in UM.
Collapse
Affiliation(s)
- Solange Landreville
- Departments of Ophthalmology & Visual Sciences, Otolaryngology, and Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | | | | | |
Collapse
|
269
|
Samartzis N, Imesch P, Dedes KJ, Samartzis EP, Fedier A, Fink D, Caduff R, Fehr MK. Expression pattern of class I histone deacetylases in vulvar intraepithelial neoplasia and vulvar cancer: a tissue microarray study. BMC Cancer 2011; 11:463. [PMID: 22029821 PMCID: PMC3229619 DOI: 10.1186/1471-2407-11-463] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Accepted: 10/26/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Epigenetic regulation is an important mechanism leading to cancer initiation and promotion. Histone acetylation by histone deacetylases (HDACs) represents an important part of it. The development of HDAC inhibitors has identified the utility of HDACs as a therapeutic target. Little is known about the epigenetic regulation of vulvar intraepithelial neoplasia (VIN) and vulvar squamous cell cancer (VSCC). In this study, the expression of class I HDACs (HDAC 1, 2 and 3) was compared in a series of VIN and VSCC tissues. METHODS A tissue micro array (TMA) with specimens from 106 patients with high-grade VIN and 59 patients with vulvar cancer was constructed. The expression of HDACs 1, 2 and 3 were analyzed with immunohistochemistry (IHC). The nuclear expression pattern was evaluated in terms of intensity and percentage of stained nuclei and was compared between vulvar preinvasive lesions and vulvar cancer. RESULTS HDAC 2 expression was significantly higher in VIN than in VSCC (p < 0.001, Fisher's test). Also, 88.7% (n = 94/106) of VIN samples and only 54.5% (n = 31/57) of VSCC samples were scored at the maximum level. Conversely, HDAC 3 expression was significantly higher in VSCC (93%, 53/57) compared to VIN (73.6%, 78/106, p = 0.003), whereas only a small difference in the expression of HDAC 1 was found between these two entities of vulvar neoplasia. CONCLUSIONS These results suggest that epigenetic regulation plays a considerable role in the transformation of VIN to invasive vulvar neoplasia.
Collapse
Affiliation(s)
- Nicolas Samartzis
- Department of Gynecology, University Hospital Zurich, Frauenklinikstrasse 10, 8091 Zurich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
270
|
Zhang J, Kan S, Huang B, Hao Z, Mak TW, Zhong Q. Mule determines the apoptotic response to HDAC inhibitors by targeted ubiquitination and destruction of HDAC2. Genes Dev 2011; 25:2610-8. [PMID: 22016339 DOI: 10.1101/gad.170605.111] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Histone deacetylases (HDACs) are major epigenetic modulators involved in a broad spectrum of human diseases including cancers. Administration of HDAC inhibitors (HDACis) leads to growth inhibition, differentiation, and apoptosis of cancer cells. Understanding the regulatory mechanism of HDACs is imperative to harness the therapeutic potentials of HDACis. Here we show that HDACi- and DNA damage-induced apoptosis are severely compromised in mouse embryonic fibroblasts lacking a HECT domain ubiquitin ligase, Mule (Mcl-1 ubiquitin ligase E3). Mule specifically targets HDAC2 for ubiquitination and degradation. Accumulation of HDAC2 in Mule-deficient cells leads to compromised p53 acetylation as well as crippled p53 transcriptional activation, accumulation, and apoptotic response upon DNA damage and Nutlin-3 treatments. These defects in Mule-null cells can be partially reversed by HDACis and fully rescued by lowering the elevated HDAC2 in Mule-null cells to the normal levels as in wild-type cells. Taken together, our results reveal a critical regulatory mechanism of HDAC2 by Mule and suggest this pathway determines the cellular response to HDACis and DNA damage.
Collapse
Affiliation(s)
- Jing Zhang
- Division of Biochemistry and Molecular Biology, Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720, USA
| | | | | | | | | | | |
Collapse
|
271
|
Hao M, Zhang L, An G, Sui W, Yu Z, Zou D, Xu Y, Chang H, Qiu L. Suppressing miRNA-15a/-16 expression by interleukin-6 enhances drug-resistance in myeloma cells. J Hematol Oncol 2011; 4:37. [PMID: 21936961 PMCID: PMC3189173 DOI: 10.1186/1756-8722-4-37] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Accepted: 09/22/2011] [Indexed: 12/11/2022] Open
Abstract
The bone marrow microenvironment facilitates the survival, differentiation, and proliferation of myeloma (MM) cells. This study identified that microRNA-15a and -16 expressions tightly correlated with proliferation and drug sensitivity of MM cells. miRNA-15a/-16 expression in MM cells was significantly increased after treatment with cytotoxic agents. The interaction of bone marrow stromal cells (BMSC) with MM cells resulted in decreased miRNA-15a/-16 expression and promoted the survival of the MM cells. Interleukin-6 (IL-6) produced by BMSCs suppressed the expression of miRNA-15a and 16 in a time- and dose- dependent pattern, with the suppression on miRNA-15a being more significant than on miRNA-16. miRNA-15a-transfected MM cells were found to be arrested in G1/S checkpoint, and the transfected MM cells had decreased growth and survival. In conclusion, our data suggest that via suppressing miRNA-15a and -16 expressions, IL-6 secreted by BMSCs promotes drug-resistance in myeloma cells.
Collapse
|
272
|
Ismaili N, Amzerin M, Flechon A. Chemotherapy in advanced bladder cancer: current status and future. J Hematol Oncol 2011; 4:35. [PMID: 21906310 PMCID: PMC3178536 DOI: 10.1186/1756-8722-4-35] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Accepted: 09/09/2011] [Indexed: 11/10/2022] Open
Abstract
Bladder cancer occurs in the majority of cases in males. It represents the seventh most common cancer and the ninth most common cause of cancer deaths for men. Transitional cell carcinoma is the most predominant histological type. Bladder cancer is highly chemosensitive. In metastatic setting, chemotherapy based on cisplatin should be considered as standard treatment of choice for patients with good performance status (0-1) and good renal function-glomerular filtration rate (GFR) > 60 mL/min. The standard treatment is based on cisplatin chemotherapy regimens type MVAC, HD-MVAC, gemcitabine plus cisplatin (GC) or dose dense GC. In unfit patients, carboplatin based regimes; gemcitabine plus carboplatin or methotrexate plus carboplatin plus vinblastine (MCAVI) are reasonable options. The role of targeted therapies when used alone, or in combination with chemotherapy, or in maintenance, was evaluated; targeting angiogenesis seem to be very promising. The purpose of this literature review is to highlight the role of chemotherapy in the management of advanced transitional cell carcinoma of the bladder.
Collapse
Affiliation(s)
- Nabil Ismaili
- Medical Oncology, Centre régional d'oncologie, Agadir, Morocco
| | - Mounia Amzerin
- Medical Oncology, National institute of oncology, Rabat, Morocco
| | - Aude Flechon
- Medical Oncology, Centre Léon-Bérard, Lyon, France
| |
Collapse
|
273
|
Knipstein J, Gore L. Entinostat for treatment of solid tumors and hematologic malignancies. Expert Opin Investig Drugs 2011; 20:1455-67. [DOI: 10.1517/13543784.2011.613822] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
274
|
Pioneer factors: directing transcriptional regulators within the chromatin environment. Trends Genet 2011; 27:465-74. [PMID: 21885149 DOI: 10.1016/j.tig.2011.07.002] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 07/09/2011] [Accepted: 07/11/2011] [Indexed: 11/20/2022]
Abstract
Chromatin is a well-known obstacle to transcription as it controls DNA accessibility, which directly impacts the recruitment of the transcriptional machinery. The recent burst of functional genomic studies provides new clues as to how transcriptional competency is regulated in this context. In this review, we discuss how these studies have shed light on a specialized subset of transcription factors, defined as pioneer factors, which direct recruitment of downstream transcription factors to establish lineage-specific transcriptional programs. In particular, we present evidence of an interplay between pioneer factors and the epigenome that could be central to this process. Finally, we discuss how pioneer factors, whose expression and function are altered in tumors, are also being considered for their prognostic value and should therefore be regarded as potential therapeutic targets. Thus, pioneer factors emerge as key players that connect the epigenome and transcription in health and disease.
Collapse
|
275
|
Jacob C, Lebrun-Julien F, Suter U. How histone deacetylases control myelination. Mol Neurobiol 2011; 44:303-12. [PMID: 21861092 DOI: 10.1007/s12035-011-8198-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Accepted: 07/15/2011] [Indexed: 10/17/2022]
Abstract
Myelinated axons are a beautiful example of symbiotic interactions between two cell types: Myelinating glial cells organize axonal membranes and build their myelin sheaths to allow fast action potential conduction, while axons regulate myelination and enhance the survival of myelinating cells. Axonal demyelination, occurring in neurodegenerative diseases or after a nerve injury, results in severe motor and/or mental disabilities. Thus, understanding how the myelination process is induced, regulated, and maintained is crucial to develop new therapeutic strategies for regeneration in the nervous system. Epigenetic regulation has recently been recognized as a fundamental contributing player. In this review, we focus on the central mechanisms of gene regulation mediated by histone deacetylation and other key functions of histone deacetylases in Schwann cells and oligodendrocytes, the myelinating glia of the peripheral and central nervous systems.
Collapse
Affiliation(s)
- Claire Jacob
- Department of Biology, Institute of Cell Biology, ETH Zurich, ETH-Hönggerberg, HPM E39, Schafmattstrasse 18, CH-8093 Zürich, Switzerland.
| | | | | |
Collapse
|
276
|
Histone deacetylase inhibition as an anticancer telomerase-targeting strategy. Int J Cancer 2011; 129:2765-74. [DOI: 10.1002/ijc.26241] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Accepted: 05/30/2011] [Indexed: 01/14/2023]
|
277
|
Li M, Riddle SR, Frid MG, El Kasmi KC, McKinsey TA, Sokol RJ, Strassheim D, Meyrick B, Yeager ME, Flockton AR, McKeon BA, Lemon DD, Horn TR, Anwar A, Barajas C, Stenmark KR. Emergence of fibroblasts with a proinflammatory epigenetically altered phenotype in severe hypoxic pulmonary hypertension. THE JOURNAL OF IMMUNOLOGY 2011; 187:2711-22. [PMID: 21813768 DOI: 10.4049/jimmunol.1100479] [Citation(s) in RCA: 178] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Persistent accumulation of monocytes/macrophages in the pulmonary artery adventitial/perivascular areas of animals and humans with pulmonary hypertension has been documented. The cellular mechanisms contributing to chronic inflammatory responses remain unclear. We hypothesized that perivascular inflammation is perpetuated by activated adventitial fibroblasts, which, through sustained production of proinflammatory cytokines/chemokines and adhesion molecules, induce accumulation, retention, and activation of monocytes/macrophages. We further hypothesized that this proinflammatory phenotype is the result of the abnormal activity of histone-modifying enzymes, specifically, class I histone deacetylases (HDACs). Pulmonary adventitial fibroblasts from chronically hypoxic hypertensive calves (termed PH-Fibs) expressed a constitutive and persistent proinflammatory phenotype defined by high expression of IL-1β, IL-6, CCL2(MCP-1), CXCL12(SDF-1), CCL5(RANTES), CCR7, CXCR4, GM-CSF, CD40, CD40L, and VCAM-1. The proinflammatory phenotype of PH-Fibs was associated with epigenetic alterations as demonstrated by increased activity of HDACs and the findings that class I HDAC inhibitors markedly decreased cytokine/chemokine mRNA expression levels in these cells. PH-Fibs induced increased adhesion of THP-1 monocytes and produced soluble factors that induced increased migration of THP-1 and murine bone marrow-derived macrophages as well as activated monocytes/macrophages to express proinflammatory cytokines and profibrogenic mediators (TIMP1 and type I collagen) at the transcriptional level. Class I HDAC inhibitors markedly reduced the ability of PH-Fibs to induce monocyte migration and proinflammatory activation. The emergence of a distinct adventitial fibroblast population with an epigenetically altered proinflammatory phenotype capable of recruiting, retaining, and activating monocytes/macrophages characterizes pulmonary hypertension-associated vascular remodeling and thus could contribute significantly to chronic inflammatory processes in the pulmonary artery wall.
Collapse
Affiliation(s)
- Min Li
- Division of Critical Care Medicine, Department of Pediatrics, University of Colorado at Denver, Aurora, CO 80045, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
278
|
Gupta S, Engstrom PF, Cohen SJ. Emerging therapies for advanced gastroenteropancreatic neuroendocrine tumors. Clin Colorectal Cancer 2011; 10:298-309. [PMID: 21813338 DOI: 10.1016/j.clcc.2011.06.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 12/21/2010] [Accepted: 01/24/2011] [Indexed: 01/17/2023]
Abstract
Neuroendocrine tumors comprise a heterogeneous group of neoplasms derived from peptide- and amine-producing cells of the neuroendocrine system. Gastroenteropancreatic NET are differentiated into tumors and carcinomas based on their malignant potential and subdivided into those arising from the pancreas (islet cell tumors or pancreatic NET) and the more classical gut "carcinoids". Moderate to well differentiated NET have historically been considered rare tumors but recent epidemiological statistics suggest that their frequency has increased substantially over the past three decades. While the incidence of NET is increasing, data from both the US and UK demonstrate no improvement in outcomes over a similar time period. Due to the generally indolent biology of NET, most patients present with advanced disease before symptoms become apparent. In patients with localized NET, the 5-year survival rates after resection range from 60 to 90%, while regional lymph node involvement decreases the 5-year survival rates after surgery to 50-75%. Patients with distant metastases have a 5 year survival rate of approximately 25-40%. Conventional cytotoxic chemotherapy is of unclear benefit in patients with these generally slow growing tumors. Multiple agents have been tested in Phase 2 and Phase 3 trials. In general, the lack of major objective responses with significant toxicities has limited routine use of traditional chemotherapy agents and has emphasized the need to develop new agents in these diseases. This review will focus on emerging molecularly-targeted treatments with an emphasis on their underlying biologic and preclinical rationale.
Collapse
Affiliation(s)
- Sameer Gupta
- Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | | | | |
Collapse
|
279
|
Kemp MM, Wang Q, Fuller JH, West N, Martinez NM, Morse EM, Weïwer M, Schreiber SL, Bradner JE, Koehler AN. A novel HDAC inhibitor with a hydroxy-pyrimidine scaffold. Bioorg Med Chem Lett 2011; 21:4164-9. [PMID: 21696956 PMCID: PMC3248787 DOI: 10.1016/j.bmcl.2011.05.098] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 05/24/2011] [Accepted: 05/25/2011] [Indexed: 12/01/2022]
Abstract
Histone deacetylases (HDACs) are enzymes involved in many important biological functions. They have been linked to a variety of cancers, psychiatric disorders, and other diseases. Since small molecules can serve as probes to study the relevant biological roles of HDACs, novel scaffolds are necessary to develop more efficient, selective drug candidates. Screening libraries of molecules may yield structurally diverse probes that bind these enzymes and modulate their functions in cells. Here we report a small molecule with a novel hydroxy-pyrimidine scaffold that inhibits multiple HDAC enzymes and modulates acetylation levels in cells. Analogs were synthesized in an effort to evaluate structure-activity relationships.
Collapse
Affiliation(s)
| | - Qiu Wang
- Broad Institute of Harvard and MIT, Cambridge, MA 02142
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138
| | | | - Nathan West
- Broad Institute of Harvard and MIT, Cambridge, MA 02142
- The Dana-Farber Cancer Institute, Division of Hematologic Neoplasia, Boston, MA 02115
| | | | - Elizabeth M. Morse
- Broad Institute of Harvard and MIT, Cambridge, MA 02142
- The Dana-Farber Cancer Institute, Division of Hematologic Neoplasia, Boston, MA 02115
| | - Michel Weïwer
- Broad Institute of Harvard and MIT, Cambridge, MA 02142
| | - Stuart L. Schreiber
- Broad Institute of Harvard and MIT, Cambridge, MA 02142
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138
- Howard Hughes Medical Institute, Chevy Chase, MD 20815
| | - James E. Bradner
- Broad Institute of Harvard and MIT, Cambridge, MA 02142
- The Dana-Farber Cancer Institute, Division of Hematologic Neoplasia, Boston, MA 02115
| | | |
Collapse
|
280
|
Yamauchi Y, Izumi Y, Asakura K, Fukutomi T, Serizawa A, Kawai K, Wakui M, Suematsu M, Nomori H. Lovastatin and valproic acid additively attenuate cell invasion in ACC-MESO-1 cells. Biochem Biophys Res Commun 2011; 410:328-32. [DOI: 10.1016/j.bbrc.2011.05.149] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Accepted: 05/27/2011] [Indexed: 01/07/2023]
|
281
|
Total synthesis of largazole and analogues: HDAC inhibition, antiproliferative activity and metabolic stability. Bioorg Med Chem 2011; 19:3650-8. [DOI: 10.1016/j.bmc.2011.02.024] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 02/08/2011] [Accepted: 02/13/2011] [Indexed: 11/24/2022]
|
282
|
Abstract
While cancer treatment modalities are gradually improving due to increased knowledge about tumor heterogeneity and the cancer stem cell hypothesis, there remains a disconnect between tumor detection and mortality rates. The increasing knowledge of stem cell biology and its contribution to cancer progression illuminates the potential for chemopreventative regimens that effectively target the tissue-specific stem cell. Several signaling pathways have emerged that are critical for regulating stem cell self-renewal and multilineage differentiation over a range of tissue types, including Wnt, Hedgehog, and Notch signaling. Dysregulation of these genes can lead to cancer, which supports the cancer stem cell hypothesis. Several known chemopreventative agents have recently been shown to impact these and other pathways in the stem cell population, suggesting that their efficacies may be attributed in part to maintaining homeostasis of tissue-specific stem cells. Further understanding of the mechanisms of action of chemopreventative agents and of stem cell biology will generate better chemoprevention regimens that can be recommended especially to those in high-risk populations.
Collapse
Affiliation(s)
- Sophia L Maund
- Department of Cancer Biology, Wake Forest University School of Medicine, 1 Medical Center Blvd., Winston-Salem, NC 27157, USA
| | | |
Collapse
|
283
|
Giaccone G, Rajan A, Berman A, Kelly RJ, Szabo E, Lopez-Chavez A, Trepel J, Lee MJ, Cao L, Espinoza-Delgado I, Spittler J, Loehrer PJ. Phase II study of belinostat in patients with recurrent or refractory advanced thymic epithelial tumors. J Clin Oncol 2011; 29:2052-9. [PMID: 21502553 PMCID: PMC3107761 DOI: 10.1200/jco.2010.32.4467] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2010] [Accepted: 11/29/2010] [Indexed: 11/20/2022] Open
Abstract
PURPOSE Thymic epithelial tumors are rare malignancies, and there is no standard treatment for patients with advanced disease in whom chemotherapy has failed. Antitumor activity of histone deacetylase (HDAC) inhibitors in this disease has been documented, including one patient with thymoma treated with the pan-HDAC inhibitor belinostat. PATIENTS AND METHODS Patients with advanced thymic epithelial malignancies in whom at least one line of platinum-containing chemotherapy had failed were eligible for this study. Other eligibility criteria included adequate organ function and good performance status. Belinostat was administered intravenously at 1 g/m(2) on days 1 to 5 of a 21-day cycle until disease progression or development of intolerance. The primary objective was response rate in patients with thymoma. RESULTS Of the 41 patients enrolled, 25 had thymoma, and 16 had thymic carcinoma; patients had a median of two previous systemic regimens (range, one to 10 regimens). Treatment was well tolerated, with nausea, vomiting, and fatigue being the most frequent adverse effects. Two patients achieved partial response (both had thymoma; response rate, 8%; 95% CI, 2.2% to 25%), 25 had stable disease, and 13 had progressive disease; there were no responses among patients with thymic carcinoma. Median times to progression and survival were 5.8 and 19.1 months, respectively. Survival of patients with thymoma was significantly longer than that of patients with thymic carcinoma (median not reached v 12.4 months; P = .001). Protein acetylation, regulatory T-cell numbers, and circulating angiogenic factors did not predict outcome. CONCLUSION Belinostat has modest antitumor activity in this group of heavily pretreated thymic malignancies. However, the duration of response and disease stabilization is intriguing, and additional testing of belinostat in this disease is warranted.
Collapse
Affiliation(s)
- Giuseppe Giaccone
- Medical Oncology Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
284
|
The HDAC class I-specific inhibitor entinostat (MS-275) effectively relieves epigenetic silencing of the LAT2 gene mediated by AML1/ETO. Oncogene 2011; 30:3062-72. [PMID: 21577204 DOI: 10.1038/onc.2011.32] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The chromosomal translocation (8;21) fuses the hematopoietic transcription factor AML1 (RUNX1) with ETO (RUNX1T1, MTG8), resulting in the leukemia-specific chimeric protein AML1/ETO. This fusion protein has been implicated in epigenetic silencing, recruiting histone deacetylases (HDACs) and DNA methyltransferases to target promoters. Previously, we have identified a novel in vivo AML1/ETO target gene, LAT2 (NTAL/LAB/WBSCR5), which is involved in FcɛR I, c-Kit, B-cell and T-cell receptor signalling. We have now addressed the molecular mechanisms of AML1/ETO-mediated LAT2 repression. In Kasumi-1 cells, where AML1/ETO bound to the LAT2 gene, small interfering RNA (siRNA)-mediated AML1/ETO depletion caused upregulation of LAT2, suggesting a possible direct mechanism of repression. Expression of AML1/ETO was associated with a decrease in acetylation of histones H3, H3K9 and H4, and an increase in H3K9 and H3K27 trimethylation. The class I-specific HDAC inhibitors entinostat (MS-275) and mocetinostat (MGCD0103) induced LAT2 expression specifically in AML1/ETO-expressing cells, resulting in induction of several activating histone marks on the LAT2 gene, including trimethylation of histone H3K4. The combination of entinostat and decitabine increased acetylation of histones H3 and H4, as well as LAT2 mRNA expression, in an at least additive fashion. In conclusion, several repressive histone modifications mark the LAT2 gene in the presence of AML1/ETO, and LAT2 gene derepression is achieved by pharmacological inhibition of HDACs.
Collapse
|
285
|
Abstract
Acetylation of histone and non-histone proteins alters gene expression and induces a host of cellular effects. The acetylation process is homeostatically balanced by two groups of cellular enzymes, histone acetyltransferases (HATs) and histone deacetylases (HDACs). HAT activity relaxes the structure of the human chromatin, rendering it transcriptionally active, thereby increasing gene expression. In contrast, HDAC activity leads to gene silencing. The enzymatic balance can be ‘tipped’ by histone deacetylase inhibitors (HDACi), leading to an accumulation of acetylated proteins, which subsequently modify cellular processes including stem cell differentiation, cell cycle, apoptosis, gene expression, and angiogenesis. There is a variety of natural and synthetic HDACi available, and their pleiotropic effects have contributed to diverse clinical applications, not only in cancer but also in non-cancer areas, such as chronic inflammatory disease, bone engineering, and neurodegenerative disease. Indeed, it appears that HDACi-modulated effects may differ between ‘normal’ and transformed cells, particularly with regard to reactive oxygen species accumulation, apoptosis, proliferation, and cell cycle arrest. The potential beneficial effects of HDACi for health, resulting from their ability to regulate global gene expression by epigenetic modification of DNA-associated proteins, also offer potential for application within restorative dentistry, where they may promote dental tissue regeneration following pulpal damage.
Collapse
Affiliation(s)
- H.F. Duncan
- Division of Restorative Dentistry & Periodontology, Dublin Dental University Hospital, Trinity College Dublin, Lincoln Place, Dublin 2, Ireland
| | - A.J. Smith
- Oral Biology, School of Dentistry, University of Birmingham, St Chads Queensway, Birmingham, B4 6NN, UK
| | - G.J.P. Fleming
- Material Science Unit, Division of Oral Biosciences, Dublin Dental University Hospital, Trinity College Dublin, Lincoln Place, Dublin 2, Ireland
| | - P.R. Cooper
- Oral Biology, School of Dentistry, University of Birmingham, St Chads Queensway, Birmingham, B4 6NN, UK
| |
Collapse
|
286
|
Educational paper. The development of new therapies for pediatric oncology. Eur J Pediatr 2011; 170:555-9. [PMID: 21190039 DOI: 10.1007/s00431-010-1374-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Accepted: 11/25/2010] [Indexed: 11/27/2022]
Abstract
Although cure rates for children with cancer are approximately 70%, improvements in cure rates have slowed in the past decade, likely due to our inability to further improve outcome using currently available drugs. Novel drug approaches are needed for children with difficult-to-treat malignancies, such as stage IV neuroblastoma, sarcomas, brain tumors, and relapsed leukemia. Several novel agents show promise for improving outcome in patients with either high risk or recurrent disease. For leukemia, inhibitors of cell cycle progression, such as clofarabine and nelarabine, have shown great promise in their ability to increase treatment efficacy in high-risk disease. Targeted agents such as tyrosine kinase inhibitors, DNA binding compounds (trabectedin), and monoclonal antibodies (GD2 inhibitors for neuroblastoma and anti-CD22 antibodies for pre-B acute lymphocytic leukemia (ALL)) also show promise for future treatment. Extensive reviews of each of these agents are presented elsewhere; this article provides an overview of molecular agents at different stages of FDA/EMA approval; those that are currently approved for use in children, currently approved for use in adults, as well as those that show promise in early clinical trial testing, or are supported by strong preclinical data.
Collapse
|
287
|
Gotfryd K, Hansen M, Kawa A, Ellerbeck U, Nau H, Berezin V, Bock E, Walmod PS. The teratogenic potencies of valproic acid derivatives and their effects on biological end-points are related to changes in histone deacetylase and Erk1/2 activities. Basic Clin Pharmacol Toxicol 2011; 109:164-74. [PMID: 21439023 DOI: 10.1111/j.1742-7843.2011.00702.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Valproic acid (VPA) is a known teratogen. In the present study, the effects of VPA and seven VPA derivatives with different teratogenic potencies (isobutyl-, 5-methyl-, ethyl-, propyl-, butyl-, pentyl- and hexyl-4-yn-VPA) were investigated in L929 cells in vitro. Evaluated end-points included changes in cell proliferation, growth, cell cycle distribution, morphology, speed, glycogen synthase kinase-3β (GSK-3β) and Erk1/2 phosphorylation, and histone H3 acetylation. Changes in proliferation, growth, speed, Erk1/2 and GSK-3β-Tyr216 phosphorylation, and H3 acetylation were significantly associated with the teratogenic potencies of the VPA derivatives. However, in contrast to changes in Erk1/2 phosphorylation and H3 acetylation, significant changes in GSK-3β phosphorylation could only be obtained in response to prolonged incubation at high drug concentration. There was an association between changes in H3 acetylation and GSK-3β-Tyr216 phosphorylation, whereas none of these end-points were associated with changes in Erk1/2 phosphorylation. These results suggest that the teratogenic potencies of VPA and VPA derivatives are related to effects on both Erk1/2 and histone deacetylase activities, whereas changes in GSK-3β activity are possibly a secondary effect.
Collapse
Affiliation(s)
- Kamil Gotfryd
- Protein Laboratory, Institute of Neuroscience and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
288
|
Huang X, Wang S, Lee CK, Yang X, Liu B. HDAC inhibitor SNDX-275 enhances efficacy of trastuzumab in erbB2-overexpressing breast cancer cells and exhibits potential to overcome trastuzumab resistance. Cancer Lett 2011; 307:72-79. [PMID: 21497990 DOI: 10.1016/j.canlet.2011.03.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Revised: 03/17/2011] [Accepted: 03/20/2011] [Indexed: 12/22/2022]
Abstract
Trastuzumab (or Herceptin), as the first erbB2-targeted therapy, has been successfully used to treat breast cancer patients with erbB2-overexpressing tumors. However, resistances to trastuzumab frequently occur, and novel strategies/agents are urgently needed to abrogate the resistant phenotype. Our current study explores the potential of SNDX-275, a class I HDAC inhibitor, to overcome trastuzumab resistance and investigates the combinational effects of SNDX-275 and trastuzumab on both sensitive and resistant breast cancer cells. Cell proliferation assays showed that SNDX-275 significantly enhanced trastuzumab-induced growth inhibition in trastuzumab-sensitive, erbB2-overexpressing breast cancer cells. Importantly, SNDX-275 at its therapeutic range re-sensitized trastuzumab-resistant cells to trastuzumab-mediated growth inhibition. SNDX-275 in combination with trastuzumab resulted in a dramatic reduction of erbB3 and its phosphorylation (P-erbB3), and inhibition of Akt signaling. Apoptotic-ELISA and western blot analyses confirmed that the combinations of SNDX-275 and trastuzumab as compared to SNDX-275 alone significantly enhanced DNA fragmentation and induced more PARP cleavage and caspase-3 activation in both trastuzumab-sensitive and -resistant breast cancer cells. Furthermore, co-immunoprecipitation assays revealed that SNDX-275 mainly attenuated the interactions of erbB2 and erbB3 receptors, but had no significant effect on erbB2/IGF-1R or erbB3/IGF-1R associations in the trastuzumab-resistant breast cancer cells. These data indicated that SNDX-275 enhanced trastuzumab efficacy against erbB2-overexpressing breast cancer cells, and exhibited potential to overcome trastuzumab resistance via disrupting erbB2/erbB3 interactions and inactivating PI-3K/Akt signaling. SNDX-275 may be included in erbB2-targeted regimen as a novel strategy to treat breast cancer patients whose tumors overexpress erbB2.
Collapse
Affiliation(s)
- Xiaoping Huang
- Department of Pathology, University of Colorado Denver School of Medicine, Aurora, CO, United States
| | - Shuiliang Wang
- Department of Pathology, University of Colorado Denver School of Medicine, Aurora, CO, United States
| | - Choon-Kee Lee
- The Myeloma and Amyloidosis Program, Department of Medicine, University of Colorado Denver School of Medicine, Aurora, CO, United States
| | - XiaoHe Yang
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Bolin Liu
- Department of Pathology, University of Colorado Denver School of Medicine, Aurora, CO, United States.
| |
Collapse
|
289
|
Ball AR, Yokomori K. Damage site chromatin: open or closed? Curr Opin Cell Biol 2011; 23:277-83. [PMID: 21489773 DOI: 10.1016/j.ceb.2011.03.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Revised: 03/13/2011] [Accepted: 03/20/2011] [Indexed: 11/30/2022]
Abstract
Technical advances in recent years, such as laser microirradiation and chromatin immunoprecipitation, have led to further understanding of DNA damage responses and repair processes as they happen in vivo and have allowed us to better evaluate the activities of new factors at damage sites. Facilitated by these tools, recent studies identified the unexpected roles of heterochromatin factors in DNA damage recognition and repair, which also involves poly(ADP-ribose) polymerases (PARPs). The results suggest that chromatin at damage sites may be quite structurally dynamic during the repair process, with transient intervals of 'closed' configurations before a more 'open' arrangement that allows the repair machinery to access damaged DNA.
Collapse
Affiliation(s)
- Alexander R Ball
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA 92697-1700, USA
| | | |
Collapse
|
290
|
Theocharis S, Klijanienko J, Giaginis C, Rodriguez J, Jouffroy T, Girod A, Alexandrou P, Sastre-Garau X. Histone deacetylase-1 and -2 expression in mobile tongue squamous cell carcinoma: associations with clinicopathological parameters and patients survival. J Oral Pathol Med 2011; 40:706-14. [PMID: 21457345 DOI: 10.1111/j.1600-0714.2011.01031.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Histone deacetylases (HDACs) have been associated with tumor development and progression in several types of human malignancy and HDAC inhibitors are currently being explored as anti-cancer agents in clinical trials. The aim of the present study was to evaluate the clinical significance of HDAC-1 and -2 protein expression in mobile tongue squamous cell carcinoma (SCC). METHODS HDAC-1 and -2 protein expression was assessed immunohistochemically on 49 mobile tongue SCC tissue samples and was analyzed in relation with clinicopathological characteristics, overall and disease-free patients' survival. RESULTS HDAC-1 overexpression was significantly associated with younger patients' age (P = 0.0381) and male gender (P = 0.0345), poor histopathological grade of differentiation (P = 0.0236) and the presence of lymph node metastases (P = 0.0104). Intense HDAC-1 staining intensity was significantly associated with male gender (P = 0.0127), increased stromal infiltration reaction (P = 0.0125) and well-defined shape of tumor invasion (P = 0.0396). HDAC-2 overexpression did not show significant correlations with any clinicopathological parameters, whereas intense HDAC-2 staining intensity was significantly associated with the presence of muscular invasion (P = 0.0466) and advanced depth of invasion (P = 0.0251). Mobile tongue SCC patients with HDAC-1 overexpression presented shorter overall and disease-free survival compared to those with no evidence of HDAC-1 overexpression (log-rank test, P = 0.0651 and 0.0247, respectively). CONCLUSIONS The present study supported evidence that HDACs may participate in the formation and progression of mobile tongue SCC, reinforcing their possible use as biomarkers as also the therapeutic utility of HDAC inhibitors in mobile tongue SCC chemoprevention and treatment.
Collapse
|
291
|
Abstract
In this issue of Blood, Roger and colleagues present data on the magnitude of influence that broad-spectrum HDAC inhibitors exert on TLR-driven immune responses, thus demonstrating that HDAC inhibitors are immunosuppressive drugs.
Collapse
|
292
|
Histone deacetylase inhibitor treatment dramatically reduces cholesterol accumulation in Niemann-Pick type C1 mutant human fibroblasts. Proc Natl Acad Sci U S A 2011; 108:5620-5. [PMID: 21436030 DOI: 10.1073/pnas.1014890108] [Citation(s) in RCA: 156] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Niemann-Pick type C (NPC) disease is predominantly caused by mutations in the NPC1 protein that affect intracellular cholesterol trafficking and cause accumulation of unesterified cholesterol and other lipids in lysosomal storage organelles. We report the use of a series of small molecule histone deacetylase (HDAC) inhibitors in tissue culture models of NPC human fibroblasts. Some HDAC inhibitors lead to a dramatic correction in the NPC phenotype in cells with either one or two copies of the NPC1(I1061T) mutation, and for several of the inhibitors, correction is associated with increased expression of NPC1 protein. Increased NPC1(I1061T) protein levels may partially account for the correction of the phenotype, because this mutant can promote cholesterol efflux if it is delivered to late endosomes and lysosomes. The HDAC inhibitor treatment is ineffective in an NPC2 mutant human fibroblast line. Analysis of the isoform selectivity of the compounds used implicates HDAC1 and/or HDAC2 as likely targets for the observed correction, although other HDACs may also play a role. LBH589 (panobinostat) is an orally available HDAC inhibitor that crosses the blood-brain barrier and is currently in phase III clinical trials for several types of cancer. It restores cholesterol homeostasis in cultured NPC1 mutant fibroblasts to almost normal levels within 72 h when used at 40 nM. The findings that HDAC inhibitors can correct cholesterol storage defects in human NPC1 mutant cells provide the potential basis for treatment options for NPC disease.
Collapse
|
293
|
Valproic acid antagonizes the capacity of other histone deacetylase inhibitors to activate the Epstein-barr virus lytic cycle. J Virol 2011; 85:5628-43. [PMID: 21411522 DOI: 10.1128/jvi.02659-10] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Diverse stimuli reactivate the Epstein-Barr virus (EBV) lytic cycle in Burkitt lymphoma (BL) cells. In HH514-16 BL cells, two histone deacetylase (HDAC) inhibitors, sodium butyrate (NaB) and trichostatin A (TSA), and the DNA methyltransferase inhibitor azacytidine (AzaCdR) promote lytic reactivation. Valproic acid (VPA), which, like NaB, belongs to the short-chain fatty acid class of HDAC inhibitors, fails to induce the EBV lytic cycle in these cells. Nonetheless, VPA behaves as an HDAC inhibitor; it causes hyperacetylation of histone H3 (J. K. Countryman, L. Gradoville, and G. Miller, J. Virol. 82:4706-4719, 2008). Here we show that VPA blocked the induction of EBV early lytic proteins ZEBRA and EA-D in response to NaB, TSA, or AzaCdR. The block in lytic activation occurred prior to the accumulation of BZLF1 transcripts. Reactivation of EBV in Akata cells, in response to anti-IgG, and in Raji cells, in response to tetradecanoyl phorbol acetate (TPA), was also inhibited by VPA. MS-275 and apicidin, representing two additional classes of HDAC inhibitors, and suberoylanilide hydroxamic acid (SAHA) reactivated EBV in HH514-16 cells; this activity was also inhibited by VPA. Although VPA potently blocked the expression of viral lytic-cycle transcripts, it did not generally block the transcription of cellular genes and was not toxic. The levels and kinetics of specific cellular transcripts, such as Stat3, Frmd6, Mad1, Sepp1, c-fos, c-jun, and egr1, which were activated by NaB and TSA, were similar in HH514-16 cells treated with VPA. When combined with NaB or TSA, VPA did not inhibit the activation of these cellular genes. Changes in cellular gene expression in response to VPA, NaB, or TSA were globally similar as assessed by human genome arrays; however, VPA selectively stimulated the expression of some cellular genes, such as MEF2D, YY1, and ZEB1, that could repress the EBV lytic cycle. We describe a novel example of functional antagonism between HDAC inhibitors.
Collapse
|
294
|
Valente S, Tardugno M, Conte M, Cirilli R, Perrone A, Ragno R, Simeoni S, Tramontano A, Massa S, Nebbioso A, Miceli M, Franci G, Brosch G, Altucci L, Mai A. Novel cinnamyl hydroxyamides and 2-aminoanilides as histone deacetylase inhibitors: apoptotic induction and cytodifferentiation activity. ChemMedChem 2011; 6:698-712. [PMID: 21374822 DOI: 10.1002/cmdc.201000535] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2010] [Revised: 01/19/2011] [Indexed: 12/26/2022]
Abstract
Four novel series of cinnamyl-containing histone deacetylase (HDAC) inhibitors 1-4 are described, containing hydroxamate (1 and 3) or 2-aminoanilide (2 and 4) derivatives. When screened against class I (maize HD1-B and human HDAC1) and class II (maize HD1-A and human HDAC4) HDACs, most hydroxamates and 2-aminoanilides displayed potent and selective inhibition toward class I enzymes. Immunoblotting analyses performed in U937 leukemia cells generally revealed high acetyl-H3 and low acetyl-α-tubulin levels. Exceptions are compounds 3 f-i, 3 m-o, and 4 k, which showed higher tubulin acetylation than SAHA. In U937 cells, cell-cycle blockade in either the G₂/M or G₁/S phase was observed with 1-4. Five hydroxamates (compounds 1 h-l) effected a two- to greater than threefold greater percent apoptosis than SAHA, and in the CD11c cytodifferentiation test some 2-aminoanilides belonging to both series 2 and 4 were more active than MS-275. The highest-scoring derivatives in terms of apoptosis (1 k, 1 l) or cytodifferentiation (2 c, 4 n) also showed antiproliferative activity in U937 cells, thus representing valuable tools for study in other cancer contexts.
Collapse
Affiliation(s)
- Sergio Valente
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Chimica e Tecnologie del Farmaco, Università degli Studi di Roma "La Sapienza", P.le A. Moro 5, 00185 Roma, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
295
|
Zeglis BM, Pillarsetty N, Divilov V, Blasberg RA, Lewis JS. The synthesis and evaluation of N1-(4-(2-[18F]-fluoroethyl)phenyl)-N8-hydroxyoctanediamide ([18F]-FESAHA), a PET radiotracer designed for the delineation of histone deacetylase expression in cancer. Nucl Med Biol 2011; 38:683-96. [PMID: 21718944 DOI: 10.1016/j.nucmedbio.2010.12.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 12/03/2010] [Accepted: 12/17/2010] [Indexed: 01/25/2023]
Abstract
INTRODUCTION Given the significant utility of suberoylanilide hydroxamic acid (SAHA) in chemotherapeutic protocols, a PET tracer that mimics the histone deacetylase (HDAC) inhibition of SAHA could be a valuable tool in the diagnosis, treatment planning and treatment monitoring of cancer. Here, we describe the synthesis, characterization and evaluation of N(1)-(4-(2-[(18)F]-fluoroethyl)phenyl)-N(8)-hydroxyoctanediamide ([(18)F]-FESAHA), a PET tracer designed for the delineation of HDAC expression in cancer. METHODS FESAHA was synthesized and biologically characterized in vivo and in vitro. [(18)F]-FESAHA was then synthesized in high radiochemical purity, and the logP and serum stability of the radiotracer were determined. In vitro cellular uptake experiments and acute biodistribution and small-animal PET studies were performed with [(18)F]-FESAHA in mice bearing LNCaP xenografts. RESULTS [(18)F]-FESAHA was synthesized in high radiochemical purity via an innovative one-pot procedure. Enzymatic inhibition assays illustrated that FESAHA is a potent HDAC inhibitor, with IC(50) values from 3 nM to 1.7 μM against the 11 HDAC subtypes. Cell proliferation experiments revealed that the cytostatic properties of FESAHA very closely resemble those of SAHA in both LNCaP cells and PC-3 cells. Acute biodistribution and PET imaging experiments revealed tumor uptake of [(18)F]-FESAHA and substantially higher values in the small intestine, kidneys, liver and bone. CONCLUSION The significant non-tumor background uptake of [(18)F]-FESAHA presents a substantial obstacle to the use of the radiotracer as an HDAC expression imaging agent. The study at hand, however, does present a number of lessons critical to both the synthesis of hydroxamic acid containing PET radiotracers and imaging agents aimed at delineating HDAC expression.
Collapse
Affiliation(s)
- Brian M Zeglis
- Radiochemistry Service, Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | | | | | | | | |
Collapse
|
296
|
Abstract
INTRODUCTION Epigenetics describes the phenomenon of heritable changes in gene regulation governed by non-Mendelian processes, primarily through biochemical modifications to chromatin that occur during cell differentiation and development. Abnormal levels of DNA and/or histone modifications are observed in patients with a wide variety of chronic diseases. Drugs that target the proteins controlling these chromatin modifications can modulate the expression of clusters of genes, potentially offering higher therapeutic efficacy than classical agents with single target pharmacologies that are susceptible to biochemical pathway degeneracy. AREAS COVERED This article reviews research characterizing dysregulation of epigenetic processes in cancer, immuno-inflammatory, psychiatric, neurological, metabolic and virology disease areas, and summarizes recent developments in identifying small molecule modulators that are being used to inform target discovery and initiate drug discovery projects. EXPERT OPINION There are numerous potential opportunities for epigenetic modulators in treating a wide range of chronic diseases; however, the field is complex, involving > 300 proteins, and much work is still required to provide tools to unravel the functions of individual proteins, particularly in vivo. This groundwork is essential to allow the drug discovery community to focus on those epigenetic proteins most likely to be suitable targets for safe, efficacious new therapies.
Collapse
Affiliation(s)
- Tom D Heightman
- Astex Therapeutics Ltd., 436 Cambridge Science Park, Cambridge CB4 0QA, UK.
| |
Collapse
|
297
|
André N, Padovani L, Pasquier E. Metronomic scheduling of anticancer treatment: the next generation of multitarget therapy? Future Oncol 2011; 7:385-94. [DOI: 10.2217/fon.11.11] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Metronomic scheduling of anticancer treatment (MSAT) is progressively gaining interest after the antiangiogenic properties of metronomic chemotherapy and its potential to overcome drug resistance was initially described in 2000. MSAT has now grown beyond the anticipated scope of antiangiogenic chemotherapy, with accumulating evidence demonstrating that these treatments may also act by stimulating an antitumor immune response and could ultimately lead to reinduction of tumor dormancy. An increasing number of drugs, not initially developed as anticancer agents, are currently being used in metronomic protocols in order to increase treatment efficacy. Interestingly, these ‘repositioned’ agents can target cancer cells, the tumor vasculature or, more broadly, the tumor microenvironment. Malignant tumors are no longer regarded as simple congregations of cancer cells but as genuine tissues with various components such as blood vessels, fibroblasts, inflammatory cells and an extracellular matrix. These different components and their multiple interactions play a crucial role in tumor development and response to treatment. Therefore, future anticancer treatments will have to take into account the tumor microenvironment and aim to target the different cellular and molecular participants encompassed in a tumor, as well as their specific interactions. In this article, we explain why MSAT represents a very attractive strategy for developing next-generation multitarget therapies.
Collapse
Affiliation(s)
- Nicolas André
- INSERM-UMR 911, Cytosquelette et Intégration des Signaux du Micro-Environnement Tumoral, CRO2, Université d’Aix-Marseille, Marseille, France; Hematology & Pediatric Oncology Department, Children Hospital of ‘La Timone’, AP-HM, Bd Jean Moulin 13885, Marseille Cedex 5, France
| | - Laetitia Padovani
- Service de Radiothérapie, Hôpital pour Enfants de ‘La Timone’, AP-HM, Marseille, France
| | - Eddy Pasquier
- Children’s Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Randwick, NSW, Australia
| |
Collapse
|
298
|
Thaler F, Minucci S. Next generation histone deacetylase inhibitors: the answer to the search for optimized epigenetic therapies? Expert Opin Drug Discov 2011; 6:393-404. [PMID: 22646017 DOI: 10.1517/17460441.2011.557660] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION HDAC inhibitors have demonstrated potent anticancer activities in preclinical and clinical studies. Currently, two drugs (SAHA and romidepsin) have gained the FDA approval for the treatment of cutaneous T-cell lymphoma. Clinical efficacy of HDAC inhibitors has been observed in advanced hematological malignancies, while response in other cancers has been in most cases unpredictable and often rather limited. The search for new molecules with the potential to overcome the limitations of the first HDAC inhibitors has become a primary goal in the field of epigenetic drug discovery as well as drugs acting on other chromatin modifying enzymes. AREAS COVERED The article shortlists seven new HDAC inhibitors that have recently entered clinical studies as representative examples of next generation drugs. The most recently published preclinical profile is reviewed, together with the first clinical data for these compounds. The article then focuses on challenges faced during the progress of first generation HDAC inhibitors and analyzes whether these new compounds are likely to provide a solution to the existing issues and needs. EXPERT OPINION Next generation HDAC inhibitors have the 'best-in-class' potential, particularly regarding potency and in vivo exposure. However, several issues remain unresolved. For example, none of the presented compounds appears to have a significantly different selectivity profile towards various HDAC isoforms and, thus, none of them may provide a further elucidation between the toxicity seen in more advanced HDAC inhibitors and isoform selectivity. Additionally, a need for a continuous effort on target validation is seen as a necessary requirement for further progress in the field.
Collapse
Affiliation(s)
- Florian Thaler
- European Institute of Oncology, Drug Discovery Unit, Department of Experimental Oncology, Via Celoria 26, 20133 Milan, Italy
| | | |
Collapse
|
299
|
Pham L, Kaiser B, Romsa A, Schwarz T, Gopalakrishnan R, Jensen ED, Mansky KC. HDAC3 and HDAC7 have opposite effects on osteoclast differentiation. J Biol Chem 2011; 286:12056-65. [PMID: 21324898 DOI: 10.1074/jbc.m110.216853] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Histone deacetylases (HDACs) are negative regulators of transcription. Endochondral bone formation including chondrocyte and osteoblast maturation is regulated by HDACs. Very little is known about the role HDACs play in osteoclast differentiation. It has been previously reported that HDAC inhibitors, trichostatin A and sodium butyrate, suppress osteoclast differentiation through multiple mechanisms. In this study, we report that suppression of HDAC3 expression similar to HDAC inhibitors inhibits osteoclast differentiation, whereas osteoclasts suppressed for HDAC7 expression had accelerated differentiation when compared with control cells. Mitf, a transcription factor, is necessary for osteoclast differentiation. We demonstrate that Mitf and HDAC7 interact in RAW 264 cells and osteoclasts. The transcriptional activity of Mitf is repressed by HDAC7. Lastly, we show that either the amino or the carboxyl terminus of HDAC7 is sufficient for transcriptional repression and that the repression of HDAC7 is insensitive to trichostatin A, indicating that HDAC7 represses Mitf at least in part by deacetylation-independent mechanism.
Collapse
Affiliation(s)
- Lan Pham
- Department of Developmental and Surgical Science, University of Minnesota School of Dentistry, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | |
Collapse
|
300
|
Choi E, Lee C, Park JE, Seo JJ, Cho M, Kang JS, Kim HM, Park SK, Lee K, Han G. Structure and property based design, synthesis and biological evaluation of γ-lactam based HDAC inhibitors. Bioorg Med Chem Lett 2011; 21:1218-21. [DOI: 10.1016/j.bmcl.2010.12.079] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 12/07/2010] [Accepted: 12/16/2010] [Indexed: 01/04/2023]
|