251
|
Wu T, Liu Y, Wen D, Tseng Z, Tahmasian M, Zhong M, Rafii S, Stadtfeld M, Hochedlinger K, Xiao A. Histone variant H2A.X deposition pattern serves as a functional epigenetic mark for distinguishing the developmental potentials of iPSCs. Cell Stem Cell 2014; 15:281-294. [PMID: 25192463 DOI: 10.1016/j.stem.2014.06.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 04/27/2014] [Accepted: 06/05/2014] [Indexed: 01/05/2023]
Abstract
For future application of induced pluripotent stem cell (iPSC) technology, the ability to assess the overall quality of iPSC clones will be an important issue. Here we show that the histone variant H2A.X is a functional marker that can distinguish the developmental potentials of mouse iPSC lines. We found that H2A.X is specifically targeted to and negatively regulates extraembryonic lineage gene expression in embryonic stem cells (ESCs) and prevents trophectoderm lineage differentiation. ESC-specific H2A.X deposition patterns are faithfully recapitulated in iPSCs that support the development of "all-iPS" animals via tetraploid complementation, the most stringent test available of iPSC quality. In contrast, iPSCs that fail to support all-iPS embryonic development show aberrant H2A.X deposition, upregulation of extraembryonic lineage genes, and a predisposition to extraembryonic differentiation. Thus, our work has highlighted an epigenetic mechanism for maintaining cell lineage commitment in ESCs and iPSCs that can be used to distinguish the quality of iPSC lines.
Collapse
Affiliation(s)
- Tao Wu
- Yale Stem Cell Center and Department of Genetics, Yale School of Medicine, New Haven, CT 06520, USA
| | - Yifei Liu
- Yale Stem Cell Center and Department of Genetics, Yale School of Medicine, New Haven, CT 06520, USA
| | - Duancheng Wen
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Zito Tseng
- Yale Stem Cell Center and Department of Genetics, Yale School of Medicine, New Haven, CT 06520, USA
| | - Martik Tahmasian
- Yale Stem Cell Center and Department of Genetics, Yale School of Medicine, New Haven, CT 06520, USA
| | - Mei Zhong
- Yale Stem Cell Center and Department of Cell Biology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Shahin Rafii
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Matthias Stadtfeld
- Massachusetts General Hospital Cancer Center, Howard Hughes Medical Institute and Department of Stem Cell and Regenerative Medicine, Harvard University, Boston, MA 02114, USA
| | - Konrad Hochedlinger
- Massachusetts General Hospital Cancer Center, Howard Hughes Medical Institute and Department of Stem Cell and Regenerative Medicine, Harvard University, Boston, MA 02114, USA
| | - Andrew Xiao
- Yale Stem Cell Center and Department of Genetics, Yale School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
252
|
Artus J, Chazaud C. A close look at the mammalian blastocyst: epiblast and primitive endoderm formation. Cell Mol Life Sci 2014; 71:3327-38. [PMID: 24794628 PMCID: PMC11113690 DOI: 10.1007/s00018-014-1630-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 04/14/2014] [Accepted: 04/15/2014] [Indexed: 10/25/2022]
Abstract
During early development, the mammalian embryo undergoes a series of profound changes that lead to the formation of two extraembryonic tissues--the trophectoderm and the primitive endoderm. These tissues encapsulate the pluripotent epiblast at the time of implantation. The current model proposes that the formation of these lineages results from two consecutive binary cell fate decisions. The first controls the formation of the trophectoderm and the inner cell mass, and the second controls the formation of the primitive endoderm and the epiblast within the inner cell mass. While early mammalian embryos develop with extensive plasticity, the embryonic pattern prior to implantation is remarkably reproducible. Here, we review the molecular mechanisms driving the cell fate decision between primitive endoderm and epiblast in the mouse embryo and integrate data from recent studies into the current model of the molecular network regulating the segregation between these lineages and their subsequent differentiation.
Collapse
Affiliation(s)
- Jérôme Artus
- Institut Pasteur, Mouse Functional Genetics, CNRS URA2578, 75015 Paris, France
| | - Claire Chazaud
- Clermont Université, Laboratoire GReD, Université d’Auvergne, BP 10448, 63000 Clermont-Ferrand, France
- Inserm, UMR1103, 63001 Clermont-Ferrand, France
- CNRS, UMR6293, 63001 Clermont-Ferrand, France
| |
Collapse
|
253
|
Graf A, Krebs S, Heininen-Brown M, Zakhartchenko V, Blum H, Wolf E. Genome activation in bovine embryos: Review of the literature and new insights from RNA sequencing experiments. Anim Reprod Sci 2014; 149:46-58. [DOI: 10.1016/j.anireprosci.2014.05.016] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Revised: 05/09/2014] [Accepted: 05/26/2014] [Indexed: 11/30/2022]
|
254
|
Bai H, Sakurai T, Bai R, Godkin JD, Imakawa K. Localization of GATA2 in the nuclear and cytoplasmic regions of ovine conceptuses. Anim Sci J 2014; 85:981-5. [PMID: 25163535 DOI: 10.1111/asj.12267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 05/22/2014] [Indexed: 11/30/2022]
Abstract
GATA transcription factors are emerging as critical regulators in trophoblast development and its gene regulation. The purpose of this study was to examine the expression and cellular localization of GATA2 in ovine conceptuses during the peri-implantation period. In Western blot analyses, GATA2 proteins were found in days 15, 17 and 21 ovine conceptuses (day 0=day of estrus). Using immunohistochemistry and immunofluorescence analyses, we found that GATA2 was localized in days 15, 17 and 21 ovine conceptuses, and more importantly, GATA2 protein was detected in both nuclear and cytoplasmic regions of the trophectoderm. To our knowledge, the present study is the first to demonstrate that GATA2 is localized in two cellular compartments of the trophectoderm in ovine and many other mammalian species, and suggests that the difference in GATA2 location plays a role in the regulation of down-stream genes during the early pregnancy period.
Collapse
Affiliation(s)
- Hanako Bai
- Laboratory of Theriogenology and Animal Breeding, Graduate School of Agricultural and Life Science, The University of Tokyo, Tokyo, Japan
| | | | | | | | | |
Collapse
|
255
|
Rayon T, Menchero S, Nieto A, Xenopoulos P, Crespo M, Cockburn K, Cañon S, Sasaki H, Hadjantonakis AK, de la Pompa JL, Rossant J, Manzanares M. Notch and hippo converge on Cdx2 to specify the trophectoderm lineage in the mouse blastocyst. Dev Cell 2014; 30:410-22. [PMID: 25127056 DOI: 10.1016/j.devcel.2014.06.019] [Citation(s) in RCA: 171] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 05/12/2014] [Accepted: 06/23/2014] [Indexed: 11/15/2022]
Abstract
The first lineage choice in mammalian embryogenesis is that between the trophectoderm, which gives rise to the trophoblast of the placenta, and the inner cell mass, from which is derived the embryo proper and the yolk sac. The establishment of these lineages is preceded by the inside-versus-outside positioning of cells in the early embryo and stochastic expression of key transcription factors, which is then resolved into lineage-restricted expression. The regulatory inputs that drive this restriction and how they relate to cell position are largely unknown. Here, we show an unsuspected role of Notch signaling in regulating trophectoderm-specific expression of Cdx2 in cooperation with TEAD4. Notch activity is restricted to outer cells and is able to influence positional allocation of blastomeres, mediating preferential localization to the trophectoderm. Our results show that multiple signaling inputs at preimplantation stages specify the first embryonic lineages.
Collapse
Affiliation(s)
- Teresa Rayon
- Stem Cell Biology Program, Department of Cardiovascular Development and Repair, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Sergio Menchero
- Stem Cell Biology Program, Department of Cardiovascular Development and Repair, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Andres Nieto
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children Research Institute, 555 University Avenue, Toronto, ON M5G 1X8, Canada
| | | | - Miguel Crespo
- Stem Cell Biology Program, Department of Cardiovascular Development and Repair, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Katie Cockburn
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children Research Institute, 555 University Avenue, Toronto, ON M5G 1X8, Canada; Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Susana Cañon
- Stem Cell Biology Program, Department of Cardiovascular Development and Repair, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Hiroshi Sasaki
- Institute of Molecular Embryology and Genetics, Department of Cell Fate Control, Kumamoto University, 2-2-1 Honjo, Kumamoto 860-0811, Japan
| | | | - Jose Luis de la Pompa
- Cardiovascular Developmental Biology Program, Department of Cardiovascular Development and Repair, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Janet Rossant
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children Research Institute, 555 University Avenue, Toronto, ON M5G 1X8, Canada; Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Miguel Manzanares
- Stem Cell Biology Program, Department of Cardiovascular Development and Repair, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain.
| |
Collapse
|
256
|
Krings G, Nystrom M, Mehdi I, Vohra P, Chen YY. Diagnostic utility and sensitivities of GATA3 antibodies in triple-negative breast cancer. Hum Pathol 2014; 45:2225-32. [PMID: 25150746 DOI: 10.1016/j.humpath.2014.06.022] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 06/24/2014] [Accepted: 06/28/2014] [Indexed: 11/19/2022]
Abstract
GATA3 is implicated in mammary epithelial development and breast cancer progression and is an evolving immunohistochemical marker in breast cancer. Often associated with estrogen receptor (ER) signaling, GATA3 expression has been reported in ER-negative breast cancers, but systematic evaluation of GATA3 expression in a large set of triple-negative breast cancers (TNBC) is lacking. Given low sensitivities of mammaglobin (MGB) and GCDFP15 in metastatic TNBC, additional markers for site of origin identification would be useful in this context. We examined immunohistochemical expression of GATA3 in a large group of treatment-naive TNBC (n = 111) and ER-positive (n = 39) and HER2-positive (n = 31) breast cancers with commonly used antibody clones, HG3-31 (GATA3-H) and L50-823 (GATA3-L), and compared GATA3, MGB, and GCDFP15. Respectively, GATA3-L and GATA3-H were positive in 66% and 44% of TNBC (P = .002), 93% and 79% of ER-/HER2+ tumors (P = .596), and 100% of ER+/HER2- and ER+/HER2+ tumors (P = 1.00 each). GATA3-L was technically and diagnostically more sensitive than GATA3-H in TNBC and was technically more sensitive in other subtypes. MGB (26%) and GCDFP15 (16%) were less sensitive for TNBC than other subtypes (P < .001). Notably, 56% and 36% of MGB-/GCDFP15- TNBC were positive with GATA3-L and GATA3-H, respectively (P = .027). Seventy percent of TNBC were positive for GATA3-L, MGB, or GCDFP15 compared with 49% using GATA3-H in the panel. GATA3 is a diagnostically useful marker for TNBC and is more sensitive than MGB and GCDFP15 combined. GATA3-L is more sensitive for TNBC than GATA3-H, and an immunopanel of GATA3-L, MGB, and GCDFP15 provides optimal diagnostic sensitivity for TNBC.
Collapse
Affiliation(s)
- Gregor Krings
- Department of Pathology, University of California San Francisco, San Francisco, CA 94143.
| | - Michael Nystrom
- Department of Pathology, University of California San Francisco, San Francisco, CA 94143
| | - Irum Mehdi
- Department of Pathology, University of California San Francisco, San Francisco, CA 94143
| | - Poonam Vohra
- Department of Pathology, University of California San Francisco, San Francisco, CA 94143
| | - Yunn-Yi Chen
- Department of Pathology, University of California San Francisco, San Francisco, CA 94143
| |
Collapse
|
257
|
Duan L, Wang Z, Shen J, Shan Z, Shen X, Wu Y, Sun R, Li T, Yuan R, Zhao Q, Bai G, Gu Y, Jin L, Lei L. Comparison of reprogramming genes in induced pluripotent stem cells and nuclear transfer cloned embryos. Stem Cell Rev Rep 2014; 10:548-60. [PMID: 24828831 DOI: 10.1007/s12015-014-9516-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The most effective reprogramming methods, somatic cell nuclear transfer (SCNT) and induced pluripotent stem cells (iPSCs), are widely used in biological research and regenerative medicine, yet the mechanism that reprograms somatic cells to totipotency remains unclear and thus reprogramming efficiency is still low. Microarray technology has been employed in analyzing the transcriptomes changes during iPS reprogramming. Unfortunately, it is difficult to obtain enough DNA from SCNT reconstructed embryos to take advantage of this technology. In this study, we aimed to identify critical genes from the transcriptional profile for iPS reprogramming and compared expression levels of these genes in SCNT reprogramming. By integrating gene expression information from microarray databases and published studies comparing somatic cells with either miPSCs or mouse embryonic stem cells (ESCs), we obtained two lists of co-upregulated genes. The gene ontology (GO) enriched analysis of these two lists demonstrated that the reprogramming process is associated with numerous biological processes. Specifically, we selected 32 genes related to heterochromatin, embryonic development, and cell cycle from our co-upregulated gene datasets and examined the gene expression level in iPSCs and SCNT embryos by qPCR. The results revealed that some reprogramming related genes in iPSCs were also expressed in SCNT reprogramming. We established the network of gene interactions that occur with genes differentially expressed in iPS and SCNT reprogramming and then performed GO analysis on the genes in the network. The network genes function in chromatin organization, heterochromatin, transcriptional regulation, and cell cycle. Further researches to improve reprogramming efficiency, especially in SCNT, will focus on functional studies of these selected genes.
Collapse
Affiliation(s)
- Lian Duan
- Department of Histology and Embryology, Harbin Medical University, 194 Xuefu Road, Harbin, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
258
|
Abstract
The Hippo signaling pathway, consisting of a highly conserved kinase cascade (MST and Lats) and downstream transcription coactivators (YAP and TAZ), plays a key role in tissue homeostasis and organ size control by regulating tissue-specific stem cells. Moreover, this pathway plays a prominent role in tissue repair and regeneration. Dysregulation of the Hippo pathway is associated with cancer development. Recent studies have revealed a complex network of upstream inputs, including cell density, mechanical sensation, and G-protein-coupled receptor (GPCR) signaling, that modulate Hippo pathway activity. This review focuses on the role of the Hippo pathway in stem cell biology and its potential implications in tissue homeostasis and cancer.
Collapse
Affiliation(s)
- Jung-Soon Mo
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego La Jolla, CA, USA
| | - Hyun Woo Park
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego La Jolla, CA, USA
| | - Kun-Liang Guan
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego La Jolla, CA, USA
| |
Collapse
|
259
|
Wu G, Schöler HR. Role of Oct4 in the early embryo development. CELL REGENERATION 2014; 3:7. [PMID: 25408886 PMCID: PMC4230828 DOI: 10.1186/2045-9769-3-7] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 04/25/2014] [Indexed: 02/07/2023]
Abstract
Oct4 is a key component of the pluripotency regulatory network, and its reciprocal interaction with Cdx2 has been shown to be a determinant of either the self-renewal of embryonic stem cells (ESCs) or their differentiation into trophoblast. Oct4 of maternal origin is postulated to play critical role in defining totipotency and inducing pluripotency during embryonic development. However, the genetic elimination of maternal Oct4 using a Cre-lox approach in mouse revealed that the establishment of totipotency in maternal Oct4–depleted embryos was not affected, and that these embryos could complete full-term development without any obvious defect. These results indicate that Oct4 is not essential for the initiation of pluripotency, in contrast to its critical role in maintaining pluripotency. This conclusion is further supported by the formation of Oct4-GFP– and Nanog- expressing inner cell masses (ICMs) in embryos with complete inactivation of both maternal and zygotic Oct4 expression and the reprogramming of fibroblasts into fully pluripotent cells by Oct4-deficient oocytes.
Collapse
Affiliation(s)
- Guangming Wu
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, 48149 Münster, Germany
| | - Hans R Schöler
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, 48149 Münster, Germany ; Medical Faculty, University of Münster, Domagkstr. 3, 48149 Münster, Germany
| |
Collapse
|
260
|
Hirate Y, Sasaki H. The role of angiomotin phosphorylation in the Hippo pathway during preimplantation mouse development. Tissue Barriers 2014; 2:e28127. [PMID: 24843842 PMCID: PMC4022607 DOI: 10.4161/tisb.28127] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Revised: 02/01/2014] [Accepted: 02/05/2014] [Indexed: 11/19/2022] Open
Abstract
The Hippo signaling pathway regulates a number of cellular events, including the control of cell fates in preimplantation mouse embryos. The inner and outer cells of the embryo show high and low levels of Hippo signaling, respectively. This position-dependent Hippo signaling promotes the specification of distinct cell fates. In a recent paper, we identified the molecular mechanism that controls Hippo signaling in preimplantation embryos. The junction-associated scaffold protein Angiomotin (Amot) plays a key role in this mechanism. At the adherens junctions of the inner cells, Amot activates the Hippo pathway by recruiting and activating the protein kinase large tumor suppressor (Lats). In contrast, Amot at the apical membrane of the outer cells suppresses Hippo signaling by interacting with F-actin. The phosphorylation of Amot inhibits its interaction with F-actin and activates Hippo signaling. We propose that Amot acts as a molecular switch for the Hippo pathway and links F-actin with Lats activity.
Collapse
Affiliation(s)
- Yoshikazu Hirate
- Department of Cell Fate Control; Institute of Molecular Embryology and Genetics; Kumamoto University; Kumamoto, Japan
| | - Hiroshi Sasaki
- Department of Cell Fate Control; Institute of Molecular Embryology and Genetics; Kumamoto University; Kumamoto, Japan
| |
Collapse
|
261
|
GATA3: a multispecific but potentially useful marker in surgical pathology: a systematic analysis of 2500 epithelial and nonepithelial tumors. Am J Surg Pathol 2014; 38:13-22. [PMID: 24145643 DOI: 10.1097/pas.0b013e3182a0218f] [Citation(s) in RCA: 491] [Impact Index Per Article: 44.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
GATA3 is a transcription factor important in the differentiation of breast epithelia, urothelia, and subsets of T lymphocytes. It has been suggested to be useful in the evaluation of carcinomas of mammary or urothelial origin or metastatic carcinomas, but its distribution in normal and neoplastic tissues is incompletely mapped. In this study, we examined normal developing and adult tissues and 2040 epithelial and 460 mesenchymal or neuroectodermal neoplasms for GATA3 expression to explore its diagnostic value in surgical pathology, using monoclonal antibody (clone L50-823) and Leica Bond automated immunohistochemistry. GATA3 was expressed in trophoblast, fetal and adult epidermis, adult mammary and some salivary gland and sweat gland ductal epithelia, urothelia, distal nephron in developing and adult tissues, some prostatic basal cells, and subsets of T lymphocytes. It was expressed stronger in fetal than in adult mesothelia and was absent in respiratory and gastrointestinal epithelia. In epithelial neoplasms, GATA3 was expressed in >90% of primary and metastatic ductal and lobular carcinomas of the breast, urothelial, and cutaneous basal cell carcinomas and trophoblastic and endodermal sinus tumors. In metastatic breast carcinomas, it was more sensitive than GCDFP. Among squamous cell carcinomas, the expression was highest in the skin (81%) and lower in cervical (33%), laryngeal (16%), and pulmonary tumors (12%). Common positivity was found in skin adnexal tumors (100%), mesothelioma (58%), salivary gland (43%), and pancreatic (37%) ductal carcinomas, whereas frequency of expression in adenocarcinomas of lung, stomach, colon, endometrium, ovary, and prostate was <10%. Chromophobe renal cell carcinoma was a unique renal tumor with frequent positivity (51%), whereas oncocytomas were positive in 17% of cases but other types only rarely. Among mesenchymal and neuroectodermal tumors, paragangliomas were usually positive, which sets these tumors apart from epithelial neuroendocrine tumors. Mesenchymal tumors were only sporadically positive, except epithelia of biphasic synovial sarcomas. GATA3 is a useful marker in the characterization of not only mammary and urothelial but also renal and germ cell tumors, mesotheliomas, and paragangliomas. The multiple specificities of GATA3 should be taken into account when using this marker to detect metastatic mammary or urothelial carcinomas.
Collapse
|
262
|
Le Bin GC, Muñoz-Descalzo S, Kurowski A, Leitch H, Lou X, Mansfield W, Etienne-Dumeau C, Grabole N, Mulas C, Niwa H, Hadjantonakis AK, Nichols J. Oct4 is required for lineage priming in the developing inner cell mass of the mouse blastocyst. Development 2014; 141:1001-10. [PMID: 24504341 PMCID: PMC3929414 DOI: 10.1242/dev.096875] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The transcription factor Oct4 is required in vitro for establishment and maintenance of embryonic stem cells and for reprogramming somatic cells to pluripotency. In vivo, it prevents the ectopic differentiation of early embryos into trophoblast. Here, we further explore the role of Oct4 in blastocyst formation and specification of epiblast versus primitive endoderm lineages using conditional genetic deletion. Experiments involving mouse embryos deficient for both maternal and zygotic Oct4 suggest that it is dispensable for zygote formation, early cleavage and activation of Nanog expression. Nanog protein is significantly elevated in the presumptive inner cell mass of Oct4 null embryos, suggesting an unexpected role for Oct4 in attenuating the level of Nanog, which might be significant for priming differentiation during epiblast maturation. Induced deletion of Oct4 during the morula to blastocyst transition disrupts the ability of inner cell mass cells to adopt lineage-specific identity and acquire the molecular profile characteristic of either epiblast or primitive endoderm. Sox17, a marker of primitive endoderm, is not detected following prolonged culture of such embryos, but can be rescued by provision of exogenous FGF4. Interestingly, functional primitive endoderm can be rescued in Oct4-deficient embryos in embryonic stem cell complementation assays, but only if the host embryos are at the pre-blastocyst stage. We conclude that cell fate decisions within the inner cell mass are dependent upon Oct4 and that Oct4 is not cell-autonomously required for the differentiation of primitive endoderm derivatives, as long as an appropriate developmental environment is established.
Collapse
Affiliation(s)
- Gloryn Chia Le Bin
- Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
263
|
Latos P, Hemberger M. Review: The transcriptional and signalling networks of mouse trophoblast stem cells. Placenta 2014; 35 Suppl:S81-5. [DOI: 10.1016/j.placenta.2013.10.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 10/22/2013] [Accepted: 10/23/2013] [Indexed: 02/02/2023]
|
264
|
Derivation and maintenance of murine trophoblast stem cells under defined conditions. Stem Cell Reports 2014; 2:232-42. [PMID: 24527396 PMCID: PMC3923226 DOI: 10.1016/j.stemcr.2013.12.013] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 12/19/2013] [Accepted: 12/20/2013] [Indexed: 11/20/2022] Open
Abstract
Trophoblast stem cells (TSCs) are in vitro equivalents to the precursor cells of the placenta. TSCs are cultured in serum-rich medium with fibroblast growth factor 4, heparin, and embryonic-fibroblast-conditioned medium. Here, we developed a simple medium consisting of ten chemically defined ingredients for culture of TSCs on Matrigel or synthetic substrates, named TX medium. Gene expression and DNA methylation profiling demonstrated the faithful propagation of expression profiles and epigenomic characteristics of TSCs cultured in TX. Further, TX medium supported the de novo derivation of TSC lines. Finally, TSCs cultured in TX differentiate into all derivatives of the trophectodermal lineage in vitro, give rise to hemorrhagic lesions in nude mice, and chimerize the placenta, indicating that they retained all hallmarks of TSCs. TX media formulation no longer requires fetal bovine serum and conditioned medium, which facilitates and standardizes the culture of this extraembryonic lineage.
Collapse
|
265
|
Valdez Magaña G, Rodríguez A, Zhang H, Webb R, Alberio R. Paracrine effects of embryo-derived FGF4 and BMP4 during pig trophoblast elongation. Dev Biol 2014; 387:15-27. [PMID: 24445281 DOI: 10.1016/j.ydbio.2014.01.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 01/10/2014] [Accepted: 01/11/2014] [Indexed: 02/02/2023]
Abstract
The crosstalk between the epiblast and the trophoblast is critical in supporting the early stages of conceptus development. FGF4 and BMP4 are inductive signals that participate in the communication between the epiblast and the extraembryonic ectoderm (ExE) of the developing mouse embryo. Importantly, however, it is unknown whether a similar crosstalk operates in species that lack a discernible ExE and develop a mammotypical embryonic disc (ED). Here we investigated the crosstalk between the epiblast and the trophectoderm (TE) during pig embryo elongation. FGF4 ligand and FGFR2 were detected primarily on the plasma membrane of TE cells of peri-elongation embryos. The binding of this growth factor to its receptor triggered a signal transduction response evidenced by an increase in phosphorylated MAPK/ERK. Particular enrichment was detected in the periphery of the ED in early ovoid embryos, indicating that active FGF signalling was operating during this stage. Gene expression analysis shows that CDX2 and ELF5, two genes expressed in the mouse ExE, are only co-expressed in the Rauber's layer, but not in the pig mural TE. Interestingly, these genes were detected in the nascent mesoderm of early gastrulating embryos. Analysis of BMP4 expression by in situ hybridisation shows that this growth factor is produced by nascent mesoderm cells. A functional test in differentiating epiblast shows that CDX2 and ELF5 are activated in response to BMP4. Furthermore, the effects of BMP4 were also demonstrated in the neighbouring TE cells, as demonstrated by an increase in phosphorylated SMAD1/5/8. These results show that BMP4 produced in the extraembryonic mesoderm is directly influencing the SMAD response in the TE of elongating embryos. These results demonstrate that paracrine signals from the embryo, represented by FGF4 and BMP4, induce a response in the TE prior to the extensive elongation. The study also confirms that expression of CDX2 and ELF5 is not conserved in the mural TE, indicating that although the signals that coordinate conceptus growth are similar between rodents and pigs, the gene regulatory network of the trophoblast lineage is not conserved in these species.
Collapse
Affiliation(s)
- Griselda Valdez Magaña
- Division of Animal Sciences, School of Biosciences, University of Nottingham, College Rd, LE12 5RD, Loughborough, UK
| | - Aida Rodríguez
- Division of Animal Sciences, School of Biosciences, University of Nottingham, College Rd, LE12 5RD, Loughborough, UK
| | - Haixin Zhang
- Division of Animal Sciences, School of Biosciences, University of Nottingham, College Rd, LE12 5RD, Loughborough, UK
| | - Robert Webb
- Division of Animal Sciences, School of Biosciences, University of Nottingham, College Rd, LE12 5RD, Loughborough, UK
| | - Ramiro Alberio
- Division of Animal Sciences, School of Biosciences, University of Nottingham, College Rd, LE12 5RD, Loughborough, UK.
| |
Collapse
|
266
|
Abstract
Morphogenesis is the remarkable process by which cells self-assemble into complex tissues and organs that exhibit specialized form and function during embryological development. Many of the genes and chemical cues that mediate tissue and organ formation have been identified; however, these signals alone are not sufficient to explain how tissues and organs are constructed that exhibit their unique material properties and three-dimensional forms. Here, we review work that has revealed the central role that physical forces and extracellular matrix mechanics play in the control of cell fate switching, pattern formation, and tissue development in the embryo and how these same mechanical signals contribute to tissue homeostasis and developmental control throughout adult life.
Collapse
Affiliation(s)
- Tadanori Mammoto
- Vascular Biology Program, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115;
| | | | | |
Collapse
|
267
|
Lanner F. Lineage specification in the early mouse embryo. Exp Cell Res 2013; 321:32-9. [PMID: 24333597 DOI: 10.1016/j.yexcr.2013.12.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 11/30/2013] [Accepted: 12/03/2013] [Indexed: 11/30/2022]
Abstract
Before the mammalian embryo is ready to implant in the uterine wall, the single cell zygote must divide and differentiate into three distinct tissues; trophectoderm (prospective placenta), primitive endoderm (prospective yolk sac), and pluripotent epiblast cells which will form the embryo proper. In this review I will discuss our current understanding of how positional information, cell polarization, signaling pathways, and transcription factor networks converge to drive and regulate the progressive segregation of the first three cell types in the mouse embryo.
Collapse
Affiliation(s)
- Fredrik Lanner
- Karolinska Institutet, Department of Clinical Science, Intervention and Technology, Karolinska Universitetssjukhuset, K 57 CLINTEC, 141 86 Stockholm, Sweden.
| |
Collapse
|
268
|
Miri K, Latham K, Panning B, Zhong Z, Andersen A, Varmuza S. The imprinted polycomb group gene Sfmbt2 is required for trophoblast maintenance and placenta development. Development 2013; 140:4480-9. [PMID: 24154523 PMCID: PMC3817938 DOI: 10.1242/dev.096511] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 08/19/2013] [Indexed: 12/27/2022]
Abstract
Imprinted genes play important roles in placenta development and function. Parthenogenetic embryos, deficient in paternally expressed imprinted genes, lack extra-embryonic tissues of the trophoblast lineage. Parthenogenetic trophoblast stem cells (TSCs) are extremely difficult to derive, suggesting that an imprinted gene(s) is necessary for TSC establishment or maintenance. In a candidate study, we were able to narrow the list to one known paternally expressed gene, Sfmbt2. We show that mouse embryos inheriting a paternal Sfmbt2 gene trap null allele have severely reduced placentae and die before E12.5 due to reduction of all trophoblast cell types. We infected early embryos with lentivirus vectors expressing anti-Sfmbt2 shRNAs and found that TSC derivation was significantly reduced. Together, these observations support the hypothesis that loss of SFMBT2 results in defects in maintenance of trophoblast cell types necessary for development of the extra-embryonic tissues, the placenta in particular.
Collapse
Affiliation(s)
- Kamelia Miri
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Sreet, Toronto, Ontario M5S 3G5, Canada
| | - Keith Latham
- The Fels Institute of Cancer Research and Molecular Biology and Department of Biochemistry, Temple University School of Medicine, 3307 North Broad Street, Philadelphia, PA 19140, USA
| | - Barbara Panning
- Biochemistry and Biophysics Department, University of California at San Francisco, Genentech Hall, 600 16th Street, San Francisco, CA 94158-2517, USA
| | - Zhisheng Zhong
- The Fels Institute of Cancer Research and Molecular Biology and Department of Biochemistry, Temple University School of Medicine, 3307 North Broad Street, Philadelphia, PA 19140, USA
| | - Angela Andersen
- Biochemistry and Biophysics Department, University of California at San Francisco, Genentech Hall, 600 16th Street, San Francisco, CA 94158-2517, USA
| | - Susannah Varmuza
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Sreet, Toronto, Ontario M5S 3G5, Canada
| |
Collapse
|
269
|
Jerabek S, Merino F, Schöler HR, Cojocaru V. OCT4: dynamic DNA binding pioneers stem cell pluripotency. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1839:138-54. [PMID: 24145198 DOI: 10.1016/j.bbagrm.2013.10.001] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 10/02/2013] [Accepted: 10/06/2013] [Indexed: 12/12/2022]
Abstract
OCT4 was discovered more than two decades ago as a transcription factor specific to early embryonic development. Early studies with OCT4 were descriptive and looked at determining the functional roles of OCT4 in the embryo as well as in pluripotent cell lines derived from embryos. Later studies showed that OCT4 was one of the transcription factors in the four-factor cocktail required for reprogramming somatic cells into induced pluripotent stem cells (iPSCs) and that it is the only factor that cannot be substituted in this process by other members of the same protein family. In recent years, OCT4 has emerged as a master regulator of the induction and maintenance of cellular pluripotency, with crucial roles in the early stages of differentiation. Currently, mechanistic studies look at elucidating the molecular details of how OCT4 contributes to establishing selective gene expression programs that define different developmental stages of pluripotent cells. OCT4 belongs to the POU family of proteins, which have two conserved DNA-binding domains connected by a variable linker region. The functions of OCT4 depend on its ability to recognize and bind to DNA regulatory regions alone or in cooperation with other transcription factors and on its capacity to recruit other factors required to regulate the expression of specific sets of genes. Undoubtedly, future iPSC-based applications in regenerative medicine will benefit from understanding how OCT4 functions. Here we provide an integrated view of OCT4 research conducted to date by reviewing the different functional roles for OCT4 and discussing the current progress in understanding their underlying molecular mechanisms. This article is part of a Special Issue entitled: Chromatin and epigenetic regulation of animal development.
Collapse
Affiliation(s)
- Stepan Jerabek
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, 48149 Münster, Germany
| | - Felipe Merino
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, 48149 Münster, Germany
| | - Hans Robert Schöler
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, 48149 Münster, Germany.
| | - Vlad Cojocaru
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, 48149 Münster, Germany.
| |
Collapse
|
270
|
Adachi K, Nikaido I, Ohta H, Ohtsuka S, Ura H, Kadota M, Wakayama T, Ueda HR, Niwa H. Context-dependent wiring of Sox2 regulatory networks for self-renewal of embryonic and trophoblast stem cells. Mol Cell 2013; 52:380-92. [PMID: 24120664 DOI: 10.1016/j.molcel.2013.09.002] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 07/08/2013] [Accepted: 08/29/2013] [Indexed: 01/03/2023]
Abstract
Sox2 is a transcription factor required for the maintenance of pluripotency. It also plays an essential role in different types of multipotent stem cells, raising the possibility that Sox2 governs the common stemness phenotype. Here we show that Sox2 is a critical downstream target of fibroblast growth factor (FGF) signaling, which mediates self-renewal of trophoblast stem cells (TSCs). Sustained expression of Sox2 together with Esrrb or Tfap2c can replace FGF dependency. By comparing genome-wide binding sites of Sox2 in embryonic stem cells (ESCs) and TSCs combined with inducible knockout systems, we found that, despite the common role in safeguarding the stem cell state, Sox2 regulates distinct sets of genes with unique functions in these two different yet developmentally related types of stem cells. Our findings provide insights into the functional versatility of transcription factors during embryogenesis, during which they can be recursively utilized in a variable manner within discrete network structures.
Collapse
Affiliation(s)
- Kenjiro Adachi
- Laboratory for Pluripotent Stem Cell Studies, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe 6500047, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
271
|
Bai H, Sakurai T, Godkin JD, Imakawa K. Expression and potential role of GATA factors in trophoblast development. J Reprod Dev 2013; 59:1-6. [PMID: 23428586 PMCID: PMC3943230 DOI: 10.1262/jrd.2012-100] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Despite exhaustive studies, molecular mechanisms governing blastocyst formation,
implantation to the uterine endometrium and placentation have not been definitively
characterized. GATA family proteins are a group of zinc finger transcription factors, for
which gene ablations eventually result in embryonic death later in pregnancy. These
findings suggested that GATA factors are not essential for early embryonic development.
However, recent studies from our laboratory and others have revealed that GATA proteins
are involved in the regulation of key genes expressed by the trophectoderm that underpin
the transition from the morula to trophoblast, and trophectoderm maintenance.
Consequently, it is important to consider the current understanding how GATA factors
govern early trophectoderm development.
Collapse
Affiliation(s)
- Hanako Bai
- Laboratory of Animal Breeding, Graduate School of Agricultural and Life Science, The University of Tokyo, Tokyo 113-8657, Japan
| | | | | | | |
Collapse
|
272
|
Schiffmacher AT, Keefer CL. CDX2 regulates multiple trophoblast genes in bovine trophectoderm CT-1 cells. Mol Reprod Dev 2013; 80:826-39. [PMID: 23836438 DOI: 10.1002/mrd.22212] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 06/27/2013] [Indexed: 11/06/2022]
Abstract
The bovine trophectoderm (TE) undergoes a dramatic morphogenetic transition prior to uterine endometrial attachment. Many studies have documented trophoblast-specific gene expression profiles at various pre-attachment stages, yet genetic interactions within the transitioning TE gene regulatory network are not well characterized. During bovine embryogenesis, transcription factors OCT4 and CDX2 are co-expressed during early trophoblast elongation. In this study, the bovine trophectoderm-derived CT-1 cell line was utilized as a genetic model to examine the roles of CDX2 and OCT4 within the bovine trophoblast gene regulatory network. An RT-PCR screen for TE-lineage transcription factors identified expression of CDX2, ERRB, ID2, SOX15, ELF5, HAND1, and ASCL2. CT-1 cells also express a nuclear-localized, 360 amino acid OCT4 ortholog of the pluripotency-specific human OCT4A. To delineate the roles of CDX2 and OCT4 within the CT-1 gene network, CDX2 and OCT4 levels were manipulated via overexpression and siRNA-mediated knockdown. An increase in CDX2 negatively regulated OCT4 expression, but increased expression of IFNT, HAND1, ASCL2, SOX15, and ELF5. A reduction of CDX2 levels exhibited a reciprocal effect, resulting in decreased expression of IFNT, HAND1, ASCL2, and SOX15. Both overexpression and knockdown of CDX2 increased ETS2 transcription. In contrast to CDX2, manipulation of OCT4 levels only revealed a positive autoregulatory mechanism and upregulation of ASCL2. Together, these results suggest that CDX2 is a core regulator of multiple trophoblast genes within CT-1 cells.
Collapse
Affiliation(s)
- Andrew T Schiffmacher
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland
| | | |
Collapse
|
273
|
Paul S, Knott JG. Epigenetic control of cell fate in mouse blastocysts: the role of covalent histone modifications and chromatin remodeling. Mol Reprod Dev 2013; 81:171-82. [PMID: 23893501 DOI: 10.1002/mrd.22219] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 07/19/2013] [Indexed: 12/31/2022]
Abstract
The first cell-fate decision in mammalian preimplantation embryos is the segregation of the inner cell mass (ICM) and trophectoderm (TE) cell lineages. The ICM develops into the embryo proper, whereas the TE ensures embryo implantation and is the source of the extra-embryonic trophoblast cell lineages, which contribute to the functional components of the placenta. The development of a totipotent zygote into a multi-lineage blastocyst is associated with the generation of distinct transcriptional programs. Several key transcription factors participate in the ICM and TE-specific transcriptional networks, and recent studies indicate that post-translational histone modifications as well as ATP-dependent chromatin remodeling complexes converge with these transcriptional networks to regulate ICM and TE lineage specification. This review will discuss our current understanding and future perspectives related to transcriptional and epigenetic regulatory mechanisms that are implicated in the initial mammalian lineage commitment steps, with a focus on events in mice.
Collapse
Affiliation(s)
- Soumen Paul
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas; Institute of Reproductive Health and Regenerative Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | | |
Collapse
|
274
|
Madeja ZE, Sosnowski J, Hryniewicz K, Warzych E, Pawlak P, Rozwadowska N, Plusa B, Lechniak D. Changes in sub-cellular localisation of trophoblast and inner cell mass specific transcription factors during bovine preimplantation development. BMC DEVELOPMENTAL BIOLOGY 2013; 13:32. [PMID: 23941255 PMCID: PMC3751447 DOI: 10.1186/1471-213x-13-32] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 08/07/2013] [Indexed: 02/27/2023]
Abstract
Background Preimplantation bovine development is emerging as an attractive experimental model, yet little is known about the mechanisms underlying trophoblast (TE)/inner cell mass (ICM) segregation in cattle. To gain an insight into these processes we have studied protein and mRNA distribution during the crucial stages of bovine development. Protein distribution of lineage specific markers OCT4, NANOG, CDX2 were analysed in 5-cell, 8–16 cell, morula and blastocyst stage embryos. ICM/TE mRNA levels were compared in hatched blastocysts and included: OCT4, NANOG, FN-1, KLF4, c-MYC, REX1, CDX2, KRT-18 and GATA6. Results At the mRNA level the observed distribution patterns agree with the mouse model. CDX2 and OCT4 proteins were first detected in 5-cell stage embryos. NANOG appeared at the morula stage and was located in the cytoplasm forming characteristic rings around the nuclei. Changes in sub-cellular localisation of OCT4, NANOG and CDX2 were noted from the 8–16 cell onwards. CDX2 initially co-localised with OCT4, but at the blastocyst stage a clear lineage segregation could be observed. Interestingly, we have observed in a small proportion of embryos (2%) that CDX2 immunolabelling overlapped with mitotic chromosomes. Conclusions Cell fate specification in cattle become evident earlier than presently anticipated – around the time of bovine embryonic genome activation. There is an intriguing possibility that for proper lineage determination certain transcription factors (such as CDX2) may need to occupy specific regions of chromatin prior to its activation in the interphase nucleus. Our observation suggests a possible role of CDX2 in the process of epigenetic regulation of embryonic cell fate.
Collapse
Affiliation(s)
- Zofia E Madeja
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Wolynska 33, Poznan 60-673, Poland.
| | | | | | | | | | | | | | | |
Collapse
|
275
|
Wu G, Han D, Gong Y, Sebastiano V, Gentile L, Singhal N, Adachi K, Fischedick G, Ortmeier C, Sinn M, Radstaak M, Tomilin A, Schöler HR. Establishment of totipotency does not depend on Oct4A. Nat Cell Biol 2013; 15:1089-97. [PMID: 23934214 PMCID: PMC3845671 DOI: 10.1038/ncb2816] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 07/02/2013] [Indexed: 12/11/2022]
Abstract
Oct4A is a core component of the regulatory network of pluripotent cells, and by itself can reprogram neural stem cells into pluripotent cells in mouse and humans. However, its role in defining totipotency and inducing pluripotency during embryonic development is still unclear. We genetically eliminated maternal Oct4A using a Cre-lox approach in mouse and found that the establishment of totipotency was not affected, as shown by the generation of live pups. After complete inactivation of both maternal and zygotic Oct4A expression, the embryos still formed Oct4-GFP– and Nanog–expressing inner cell masses, albeit non-pluripotent, indicating that Oct4A is not a determinant for the pluripotent cell lineage separation. Interestingly, Oct4A-deficient oocytes were able to reprogram fibroblasts into pluripotent cells. Our results clearly demonstrate that, in contrast to its role in the maintenance of pluripotency, maternal Oct4A is crucial for neither the establishment of totipotency in embryos, nor the induction of pluripotency in somatic cells using oocytes.
Collapse
Affiliation(s)
- Guangming Wu
- Max Planck Institute for Molecular Biomedicine, Department of Cell and Developmental Biology, Röntgenstrasse 20, 48149 Münster, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
276
|
Kaneko KJ, DePamphilis ML. TEAD4 establishes the energy homeostasis essential for blastocoel formation. Development 2013; 140:3680-90. [PMID: 23903192 DOI: 10.1242/dev.093799] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
It has been suggested that during mouse preimplantation development, the zygotically expressed transcription factor TEAD4 is essential for specification of the trophectoderm lineage required for producing a blastocyst. Here we show that blastocysts can form without TEAD4 but that TEAD4 is required to prevent oxidative stress when blastocoel formation is accompanied by increased oxidative phosphorylation that leads to the production of reactive oxygen species (ROS). Both two-cell and eight-cell Tead4(-/-) embryos developed into blastocysts when cultured under conditions that alleviate oxidative stress, and Tead4(-/-) blastocysts that formed under these conditions expressed trophectoderm-associated genes. Therefore, TEAD4 is not required for specification of the trophectoderm lineage. Once the trophectoderm was specified, Tead4 was not essential for either proliferation or differentiation of trophoblast cells in culture. However, ablation of Tead4 in trophoblast cells resulted in reduced mitochondrial membrane potential. Moreover, Tead4 suppressed ROS in embryos and embryonic fibroblasts. Finally, ectopically expressed TEAD4 protein could localize to the mitochondria as well as to the nucleus, a property not shared by other members of the TEAD family. These results reveal that TEAD4 plays a crucial role in maintaining energy homeostasis during preimplantation development.
Collapse
Affiliation(s)
- Kotaro J Kaneko
- National Institute of Child Health and Human Development, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892-2753, USA.
| | | |
Collapse
|
277
|
Reprogramming of human fibroblasts to pluripotency with lineage specifiers. Cell Stem Cell 2013; 13:341-50. [PMID: 23871606 DOI: 10.1016/j.stem.2013.06.019] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 06/20/2013] [Accepted: 06/26/2013] [Indexed: 12/18/2022]
Abstract
Since the initial discovery that OCT4, SOX2, KLF4, and c-MYC overexpression sufficed for the induction of pluripotency in somatic cells, methodologies replacing the original factors have enhanced our understanding of the reprogramming process. However, unlike in mouse, OCT4 has not been replaced successfully during reprogramming of human cells. Here we report on a strategy to accomplish this replacement. Through a combination of transcriptome and bioinformatic analysis we have identified factors previously characterized as being lineage specifiers that are able to replace OCT4 and SOX2 in the reprogramming of human fibroblasts. Our results show that it is possible to replace OCT4 and SOX2 simultaneously with alternative lineage specifiers in the reprogramming of human cells. At a broader level, they also support a model in which counteracting lineage specification networks underlies the induction of pluripotency.
Collapse
|
278
|
Hirate Y, Hirahara S, Inoue KI, Suzuki A, Alarcon VB, Akimoto K, Hirai T, Hara T, Adachi M, Chida K, Ohno S, Marikawa Y, Nakao K, Shimono A, Sasaki H. Polarity-dependent distribution of angiomotin localizes Hippo signaling in preimplantation embryos. Curr Biol 2013; 23:1181-94. [PMID: 23791731 DOI: 10.1016/j.cub.2013.05.014] [Citation(s) in RCA: 323] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Revised: 05/07/2013] [Accepted: 05/08/2013] [Indexed: 12/18/2022]
Abstract
BACKGROUND In preimplantation mouse embryos, the first cell fate specification to the trophectoderm or inner cell mass occurs by the early blastocyst stage. The cell fate is controlled by cell position-dependent Hippo signaling, although the mechanisms underlying position-dependent Hippo signaling are unknown. RESULTS We show that a combination of cell polarity and cell-cell adhesion establishes position-dependent Hippo signaling, where the outer and inner cells are polar and nonpolar, respectively. The junction-associated proteins angiomotin (Amot) and angiomotin-like 2 (Amotl2) are essential for Hippo pathway activation and appropriate cell fate specification. In the nonpolar inner cells, Amot localizes to adherens junctions (AJs), and cell-cell adhesion activates the Hippo pathway. In the outer cells, the cell polarity sequesters Amot from basolateral AJs to apical domains, thereby suppressing Hippo signaling. The N-terminal domain of Amot is required for actin binding, Nf2/Merlin-mediated association with the E-cadherin complex, and interaction with Lats protein kinase. In AJs, S176 in the N-terminal domain of Amot is phosphorylated by Lats, which inhibits the actin-binding activity, thereby stabilizing the Amot-Lats interaction to activate the Hippo pathway. CONCLUSIONS We propose that the phosphorylation of S176 in Amot is a critical step for activation of the Hippo pathway in AJs and that cell polarity disconnects the Hippo pathway from cell-cell adhesion by sequestering Amot from AJs. This mechanism converts positional information into differential Hippo signaling, thereby leading to differential cell fates.
Collapse
Affiliation(s)
- Yoshikazu Hirate
- Department of Cell Fate Control, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
279
|
Frum T, Halbisen MA, Wang C, Amiri H, Robson P, Ralston A. Oct4 cell-autonomously promotes primitive endoderm development in the mouse blastocyst. Dev Cell 2013; 25:610-22. [PMID: 23747191 DOI: 10.1016/j.devcel.2013.05.004] [Citation(s) in RCA: 153] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Revised: 04/10/2013] [Accepted: 05/06/2013] [Indexed: 01/18/2023]
Abstract
In embryonic stem (ES) cells and in early mouse embryos, the transcription factor Oct4 is an essential regulator of pluripotency. Oct4 transcriptional targets have been described in ES cell lines; however, the molecular mechanisms by which Oct4 regulates establishment of pluripotency in the epiblast (EPI) have not been fully elucidated. Here, we show that neither maternal nor zygotic Oct4 is required for the formation of EPI cells in the blastocyst. Rather, Oct4 is first required for development of the primitive endoderm (PE), an extraembryonic lineage. EPI cells promote PE fate in neighboring cells by secreting Fgf4, and Oct4 is required for expression of Fgf4, but we show that Oct4 promotes PE development cell-autonomously, downstream of Fgf4 and Mapk. Finally, we show that Oct4 is required for the expression of multiple EPI and PE genes as well as multiple metabolic pathways essential for the continued growth of the preimplantation embryo.
Collapse
Affiliation(s)
- Tristan Frum
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | | | | | | | | | | |
Collapse
|
280
|
Fujimori H, Mukai H, Murakami Y, Hemberger M, Hippo Y, Masutani M. The H19 induction triggers trophoblast lineage commitment in mouse ES cells. Biochem Biophys Res Commun 2013; 436:313-8. [PMID: 23743205 DOI: 10.1016/j.bbrc.2013.05.100] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 05/23/2013] [Indexed: 10/26/2022]
Abstract
Trophoblast lineage differentiation is properly regulated to support embryogenesis. Besides normal developmental process, during germ cell tumor formation or development of other reproductive system diseases, unregulated trophoblast differentiation is also observed and affects the pathogenesis of the diseases. During normal embryogenesis, cell fate of late-stage blastcyst is regulated by a reciprocal repression of the key transcriptional factors; Oct3/4 dominancy inhibits Cdx2 expression in inner cell mass (ICM) and leads them to epiblast/primitive ectoderm but Cdx2 dominancy in trophectoderm (TE) leads them to trophoblast lineage. In contrast during early blastcyst stage, the Cdx2 expression is restricted in TE and not present in ICM, although Oct3/4 signaling does not inhibit the Cdx2 expression in ICM, implying that some factors could be inactivated leading to the suppressed Cdx2 expression in ICM of early blastcyst. ES cells (ESCs), which are derived from ICM, could be a unique model to study trophoblast differentiation in an ectopic context. We previously showed that poly(ADP-ribose) polymerase-1 (Parp-1) deficient ESCs highly expressed non-coding RNA H19 and could differentiate into trophoblast lineage. The expression of H19 is known to start at pre-blastcyst stage during mouse development, and the gene shows high expression only in trophoectoderm (TE) at blastcyst stage. However, its role in trophoblast differentiation has not been clarified yet. Thus, we hypothesized that the H19 activation may act as a trigger for induction of trophoblast differentiation cascade in mouse ESCs. To investigate this issue, we asked whether a forced H19 expression drives ESCs into trophoblast lineage or not. We demonstrated that the H19 induction leads to trophoblast lineage commitment through induction of the Cdx2 expression. We also showed that the expression of Cdx2 is induced in ESCs by forced H19 expression even under a high level of Oct3/4, which could act as a suppressor for Cdx2 expression. It is thus suggested that the H19 induction promotes trophoblast lineage commitment against the repression pressure by Oct3/4 in differentiating ESCs. Taken together, this study suggests that the H19 expression is able to function as a cascade activator of trophoblast lineage commitment possibly by overriding the Oct3/4 action in ESCs.
Collapse
Affiliation(s)
- Hiroaki Fujimori
- Division of Genome Stability Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | | | | | | | | | | |
Collapse
|
281
|
Chitwood JL, Rincon G, Kaiser GG, Medrano JF, Ross PJ. RNA-seq analysis of single bovine blastocysts. BMC Genomics 2013; 14:350. [PMID: 23705625 PMCID: PMC3668197 DOI: 10.1186/1471-2164-14-350] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 05/14/2013] [Indexed: 11/22/2022] Open
Abstract
Background Use of RNA-Seq presents unique benefits in terms of gene expression analysis because of its wide dynamic range and ability to identify functional sequence variants. This technology provides the opportunity to assay the developing embryo, but the paucity of biological material available from individual embryos has made this a challenging prospect. Results We report here the first application of RNA-Seq for the analysis of individual blastocyst gene expression, SNP detection, and characterization of allele specific expression (ASE). RNA was extracted from single bovine blastocysts (n = 5), amplified, and analyzed using high-throughput sequencing. Approximately 38 million sequencing reads were generated per embryo and 9,489 known bovine genes were found to be expressed, with a high correlation of expression levels between samples (r > 0.97). Transcriptomic data was analyzed to identify SNP in expressed genes, and individual SNP were examined to characterize allele specific expression. Expressed biallelic SNP variants with allelic imbalances were observed in 473 SNP, where one allele represented between 65-95% of a variant’s transcripts. Conclusions This study represents the first application of RNA-seq technology in single bovine embryos allowing a representation of the embryonic transcriptome and the analysis of transcript sequence variation to describe specific allele expression.
Collapse
Affiliation(s)
- James L Chitwood
- Department of Animal Science, University of California, Davis, Davis, CA, USA
| | | | | | | | | |
Collapse
|
282
|
Bruce AW. Generating different genetic expression patterns in the early embryo: insights from the mouse model. Reprod Biomed Online 2013; 27:586-92. [PMID: 23768616 DOI: 10.1016/j.rbmo.2013.03.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 03/02/2013] [Accepted: 03/19/2013] [Indexed: 11/26/2022]
Abstract
The divergence of two differentiating extraembryonic cell types (trophectoderm and primitive endoderm) from the pluripotent epiblast population (the source of fetal progenitor cells) by the blastocyst stage of mouse development relies upon the activation and execution of lineage-specific gene expression programmes. While our understanding of the central transcription factor 'effectors' directing these cell-fate choices has accumulated rapidly, what is less clear is how the differential expression of such genes within the diverging lineages is initially generated. This review summarizes and consolidates current understanding. I introduce the traditional concept and importance of a cell's spatial location within the embryo, referencing recent mechanistic and molecular insights relating to cell fate. Additionally, I address the growing body of evidence that suggests that heterogeneities among blastomeres precede, and possibly inform, their spatial segregation in the embryo. I also discuss whether the origins of such early heterogeneity are stochastic and/or indicative of intrinsic properties of the embryo. Lastly, I argue that the robustness and regulative capacity of preimplantation embryonic development may reflect the existence of multiple converging, if not wholly redundant, mechanisms that act together to generate the necessary diversity of inter-cell-lineage gene expression patterns.
Collapse
Affiliation(s)
- Alexander W Bruce
- Laboratory of Developmental Biology and Genetics, Department of Molecular Biology, Faculty of Science, University of South Bohemia, Branišovská 31, 37005 České Budějovice (Budweis), Czech Republic; Institute of Entomology, Biology Centre of the Czech Academy of Sciences in České Budějovice, Branišovská 31, 37005 České Budějovice (Budweis), Czech Republic.
| |
Collapse
|
283
|
EED and KDM6B coordinate the first mammalian cell lineage commitment to ensure embryo implantation. Mol Cell Biol 2013; 33:2691-705. [PMID: 23671187 DOI: 10.1128/mcb.00069-13] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The first mammalian cell lineage commitment is the formation of the trophectoderm (TE) and the inner cell mass (ICM) lineages during preimplantation development. Proper development of the TE and ICM lineages is dependent upon establishment of specific transcriptional programs. However, the epigenetic mechanisms that functionally contribute to establish TE- and ICM-specific transcriptional programs are poorly understood. Here, we show that proper development of the TE and ICM lineages is coordinated via combinatorial regulation of embryonic ectoderm development (EED) and lysine-specific demethylase 6B (KDM6B). During blastocyst formation, the relative levels of EED and KDM6B expression determine altered polycomb repressor 2 (PRC2) complex recruitment and incorporation of the repressive histone H3 lysine 27 trimethylation (H3K27Me3) mark at the chromatin domains of TE-specific master regulators CDX2 and GATA3, leading to their activation in the TE lineage and repression in the ICM lineage. Furthermore, ectopic gain of EED along with depletion of KDM6B in preimplantation mouse embryos abrogates CDX2 and GATA3 expression in the nascent TE lineage. The loss of CDX2 and GATA3 in the nascent TE lineage results in improper TE development, leading to failure in embryo implantation to the uterus. Our study delineates a novel epigenetic mechanism that orchestrates proper development of the first mammalian cell lineages.
Collapse
|
284
|
Luo XJ, Deng M, Xie X, Huang L, Wang H, Jiang L, Liang G, Hu F, Tieu R, Chen R, Gan L. GATA3 controls the specification of prosensory domain and neuronal survival in the mouse cochlea. Hum Mol Genet 2013; 22:3609-23. [PMID: 23666531 DOI: 10.1093/hmg/ddt212] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
HDR syndrome (also known as Barakat syndrome) is a developmental disorder characterized by hypoparathyroidism, sensorineural deafness and renal disease. Although genetic mapping and subsequent functional studies indicate that GATA3 haplo-insufficiency causes human HDR syndrome, the role of Gata3 in sensorineural deafness and auditory system development is largely unknown. In this study, we show that Gata3 is continuously expressed in the developing mouse inner ear. Conditional knockout of Gata3 in the developing inner ear disrupts the morphogenesis of mouse inner ear, resulting in a disorganized and shortened cochlear duct with significant fewer hair cells and supporting cells. Loss of Gata3 function leads to the failure in the specification of prosensory domain and subsequently, to increased cell death in the cochlear duct. Moreover, though the initial generation of cochleovestibular ganglion (CVG) cells is not affected in Gata3-null mice, spiral ganglion neurons (SGNs) are nearly depleted due to apoptosis. Our results demonstrate the essential role of Gata3 in specifying the prosensory domain in the cochlea and in regulating the survival of SGNs, thus identifying a molecular mechanism underlying human HDR syndrome.
Collapse
Affiliation(s)
- Xiong-jian Luo
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
285
|
Morrison JT, Bantilan NS, Wang VN, Nellett KM, Cruz YP. Expression patterns of Oct4, Cdx2, Tead4, and Yap1 proteins during blastocyst formation in embryos of the marsupial,Monodelphis domesticaWagner. Evol Dev 2013; 15:171-85. [DOI: 10.1111/ede.12031] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- J. T. Morrison
- Department of Biology; Oberlin College; Oberlin, OH 44074; USA
| | - N. S. Bantilan
- Department of Biology; Oberlin College; Oberlin, OH 44074; USA
| | - V. N. Wang
- Department of Biology; Oberlin College; Oberlin, OH 44074; USA
| | - K. M. Nellett
- Department of Biology; Oberlin College; Oberlin, OH 44074; USA
| | - Y. P. Cruz
- Department of Biology; Oberlin College; Oberlin, OH 44074; USA
| |
Collapse
|
286
|
Sakurai T, Bai H, Bai R, Sato D, Arai M, Okuda K, Ideta A, Aoyagi Y, Godkin JD, Imakawa K. Down-regulation of interferon tau gene transcription with a transcription factor, EOMES. Mol Reprod Dev 2013; 80:371-83. [PMID: 23606646 DOI: 10.1002/mrd.22171] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 03/03/2013] [Indexed: 11/10/2022]
Abstract
Interferon tau (IFNT), produced for a short interval during early pregnancy by the ruminant embryonic trophectoderm, is essential for the maintenance of early pregnancy, but the mechanism by which it is transcriptionally regulated has not been fully determined. To identify a transcription factor(s) involved in the down-regulation of IFNT genes, mRNAs for various known transcription factors were investigated by reverse-transcriptase and real-time PCR in conceptus tissues collected on Days 15, 17, and 21, or Days 17, 20, and 22 of ovine or bovine pregnancy, respectively. In particular, the T-box protein eomesodermin (EOMES) exhibited high mRNA expression in Day 17 or 22 ovine or bovine conceptuses. Interaction between EOMES and the identified transcription factors was studied using transient transfection, revealing that ovine/bovine IFNT-reporter transactivation was down-regulated by EOMES. Transcription factor interactions with EOMES were further studied through immunoprecipitation, demonstrating an association between EOMES and cAMP-response element binding protein (CREB)-binding protein (CREBBP). Uterine flushing media collected from cyclic or early pregnancy animals were added to bovine trophoblast CT-1 cells cultured on type-I collagen (monoculture) or bovine uterine epithelial cells (coculture) in an attempt to regulate EOMES expression. In the coculture, but not the monoculture, addition of uterine flushing from Day 17 pregnant animals resulted in increased EOMES expression in CT-1 cells. These results suggest that as conceptuses attach to the uterine epithelium, IFNT gene transcription is down-regulated by an increase in EOMES expression and EOMES-CREBBP binding in the attached trophoblast cells.
Collapse
Affiliation(s)
- Toshihiro Sakurai
- Laboratory of Animal Breeding and Reproduction, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
287
|
Imakawa K, Yasuda J, Kobayashi T, Miyazawa T. Changes in Gene Expression Associated with Conceptus Implantation to the Maternal Endometrium. ACTA ACUST UNITED AC 2013. [DOI: 10.1274/jmor.30.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
288
|
Abstract
During mammalian preimplantation development, the fertilised egg gives rise to a group of pluripotent embryonic cells, the epiblast, and to the extraembryonic lineages that support the development of the foetus during subsequent phases of development. This preimplantation period not only accommodates the first cell fate decisions in a mammal's life but also the transition from a totipotent cell, the zygote, capable of producing any cell type in the animal, to cells with a restricted developmental potential. The cellular and molecular mechanisms governing the balance between developmental potential and lineage specification have intrigued developmental biologists for decades. The preimplantation mouse embryo offers an invaluable system to study cell differentiation as well as the emergence and maintenance of pluripotency in the embryo. Here we review the most recent findings on the mechanisms controlling these early cell fate decisions. The model that emerges from the current evidence indicates that cell differentiation in the preimplantation embryo depends on cellular interaction and intercellular communication. This strategy underlies the plasticity of the early mouse embryo and ensures the correct specification of the first mammalian cell lineages.
Collapse
Affiliation(s)
- Néstor Saiz
- Faculty of Life Sciences, The University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | | |
Collapse
|
289
|
Giakoumopoulos M, Golos TG. Embryonic stem cell-derived trophoblast differentiation: a comparative review of the biology, function, and signaling mechanisms. J Endocrinol 2013; 216:R33-45. [PMID: 23291503 PMCID: PMC3809013 DOI: 10.1530/joe-12-0433] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The development of the placenta is imperative for successful pregnancy establishment, yet the earliest differentiation events of the blastocyst-derived trophectoderm that forms the placenta remain difficult to study in humans. Human embryonic stem cells (hESC) display a unique ability to form trophoblast cells when induced to differentiate either by the addition of exogenous BMP4 or by the formation of cellular aggregates called embryoid bodies. While mouse trophoblast stem cells (TSC) have been isolated from blastocyst outgrowths, mouse ESC do not spontaneously differentiate into trophoblast cells. In this review, we focus on addressing the similarities and differences between mouse TSC differentiation and hESC-derived trophoblast differentiation. We discuss the functional and mechanistic diversity that is found in different species models. Of central importance are the unique signaling events that trigger downstream gene expression that create specific cellular fate decisions. We support the idea that we must understand the nuances that hESC differentiation models display so that investigators can choose the appropriate model system to fit experimental needs.
Collapse
Affiliation(s)
- M Giakoumopoulos
- Wisconsin National Primate Research Center, Department of Obstetrics and Gynecology, University of Wisconsin-Madison, 1223 Capitol Court, Madison, Wisconsin 53715-1299, USA
| | | |
Collapse
|
290
|
Schrode N, Xenopoulos P, Piliszek A, Frankenberg S, Plusa B, Hadjantonakis AK. Anatomy of a blastocyst: cell behaviors driving cell fate choice and morphogenesis in the early mouse embryo. Genesis 2013; 51:219-33. [PMID: 23349011 DOI: 10.1002/dvg.22368] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 01/10/2013] [Accepted: 01/13/2013] [Indexed: 01/06/2023]
Abstract
The preimplantation period of mouse early embryonic development is devoted to the specification of two extraembryonic tissues and their spatial segregation from the pluripotent epiblast. During this period two cell fate decisions are made while cells gradually lose their totipotency. The first fate decision involves the segregation of the extraembryonic trophectoderm (TE) lineage from the inner cell mass (ICM); the second occurs within the ICM and involves the segregation of the extraembryonic primitive endoderm (PrE) lineage from the pluripotent epiblast (EPI) lineage, which eventually gives rise to the embryo proper. Multiple determinants, such as differential cellular properties, signaling cues and the activity of transcriptional regulators, influence lineage choice in the early embryo. Here, we provide an overview of our current understanding of the mechanisms governing these cell fate decisions ensuring proper lineage allocation and segregation, while at the same time providing the embryo with an inherent flexibility to adjust when perturbed.
Collapse
Affiliation(s)
- Nadine Schrode
- Developmental Biology Program, Sloan-Kettering Institute, New York, NY, USA
| | | | | | | | | | | |
Collapse
|
291
|
Tiruthani K, Sarkar P, Rao B. Trophoblast differentiation of human embryonic stem cells. Biotechnol J 2013; 8:421-33. [PMID: 23325630 DOI: 10.1002/biot.201200203] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 11/03/2012] [Accepted: 12/06/2012] [Indexed: 11/08/2022]
Abstract
Molecular mechanisms regulating human trophoblast differentiation remain poorly understood due to difficulties in obtaining primary tissues from very early developmental stages in humans. Therefore, the use of human embryonic stem cells (hESCs) as a source for generating trophoblast tissues is of significant interest. Trophoblast-like cells have been obtained through treatment of hESCs with bone morphogenetic protein (BMP) or inhibitors of activin/nodal/transforming growth factor-β signaling, or through protocols involving formation of embryoid bodies (EBs); however, there is controversy over whether hESC-derived cells are indeed analogous to true trophoblasts found in vivo. In this review, we provide an overview of previously described efforts to obtain trophoblasts from hESCs. We also discuss the merits and limitations of hESCs as a source of trophoblast derivatives.
Collapse
Affiliation(s)
- Karthik Tiruthani
- Department of Chemical and Biomolecular Engineering, North Carolina State University, NC 27695, USA
| | | | | |
Collapse
|
292
|
Chen Y, Wang K, Gong YG, Khoo SK, Leach R. Roles of CDX2 and EOMES in human induced trophoblast progenitor cells. Biochem Biophys Res Commun 2013; 431:197-202. [PMID: 23313847 DOI: 10.1016/j.bbrc.2012.12.135] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 12/30/2012] [Indexed: 02/04/2023]
Abstract
Abnormal trophoblast lineage proliferation and differentiation in early pregnancy have been associated with the pathogenesis of placenta diseases of pregnancy. However, there is still a gap in understanding the molecular mechanisms of early placental development due to the limited primary trophoblast cultures and fidelity of immortalized trophoblast lines. Trophoblasts stem (TS) cells, an in vitro model of trophectoderm that can differentiate into syncytiotrophoblasts and extravillous trophoblasts, can be an attractive tool for early pregnancy research. TS cells are well established in mouse but not in humans due to insufficient knowledge of which trophoblast lineage-specific transcription factors are involved in human trophectoderm (TE) proliferation and differentiation. Here, we applied induced pluripotent stem cell technique to investigate the human trophoblast lineage-specific transcription factors. We established human induced trophoblast progenitor (iTP) cells by direct reprogramming the fibroblasts with a pool of mouse trophoblast lineage-specific transcription factors consisting of CDX2, EOMES, and ELF5. The human iTP cells exhibit epithelial morphology and can be maintained in vitro for more than 2 months. Gene expression profile of these cells was tightly clustered with human trophectoderm but not with human neuron progenitor cells, mesenchymal stem cells, or endoderm cells. These cells are capable of differentiating into cells with an invasive capacity, suggesting extravillous trophoblasts. They also form multi-nucleated cells which secrete human chorionic gonadotropin and estradiol, consistent with a syncytiotrophoblast phenotype. Our results provide the evidence that transcription factors CDX2 and EOMES may play critical roles in human iTP cell generation.
Collapse
Affiliation(s)
- Ying Chen
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA.
| | | | | | | | | |
Collapse
|
293
|
Epigenetic regulation of stem cells : the role of chromatin in cell differentiation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 786:307-28. [PMID: 23696364 DOI: 10.1007/978-94-007-6621-1_17] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The specialized cell types of tissues and organs are generated during development and are replenished over lifetime though the process of differentiation. During differentiation the characteristics and identity of cells are changed to meet their functional requirements. Differentiated cells then faithfully maintain their characteristic gene expression patterns. On the molecular level transcription factors have a key role in instructing specific gene expression programs. They act together with chromatin regulators which stabilize expression patterns. Current evidence indicates that epigenetic mechanisms are essential for maintaining stable cell identities. Conversely, the disruption of chromatin regulators is associated with disease and cellular transformation. In mammals, a large number of chromatin regulators have been identified. The Polycomb group complexes and the DNA methylation system have been widely studied in development. Other chromatin regulators remain to be explored. This chapter focuses on recent advances in understanding epigenetic regulation in embryonic and adult stem cells in mammals. The available data illustrate that several chromatin regulators control key lineage specific genes. Different epigenetic systems potentially could provide stability and guard against loss or mutation of individual components. Recent experiments also suggest intervals in cell differentiation and development when new epigenetic patterns are established. Epigenetic patterns have been observed to change at a progenitor state after stem cells commit to differentiation. This finding is consistent with a role of epigenetic regulation in stabilizing expression patterns after their establishment by transcription factors. However, the available data also suggest that additional, presently unidentified, chromatin regulatory mechanisms exist. Identification of these mechanism is an important aim for future research to obtain a more complete framework for understanding stem cell differentiation during tissue homeostasis.
Collapse
|
294
|
All-trans retinoic acid and basic fibroblast growth factor synergistically direct pluripotent human embryonic stem cells to extraembryonic lineages. Stem Cell Res 2012; 10:228-40. [PMID: 23314291 DOI: 10.1016/j.scr.2012.12.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 11/30/2012] [Accepted: 12/01/2012] [Indexed: 11/21/2022] Open
Abstract
Human embryonic stem cells (hESCs) can be used to model the cellular and molecular mechanisms that underlie embryonic development. Understanding the cellular mechanisms and pathways involved in extraembryonic (ExE) differentiation is of great interest because of the important role of this process in maternal health and fertility. Fibroblast growth factor 2 (FGF-2) is widely used to maintain the self-renewal of hESCs and induced pluripotent stem cells, while all trans retinoic acid (RA) is used to facilitate the directed differentiation of hESCs. Here, we monitored the RA induced differentiation of hESCs to the ExE lineage with and without FGF-2 over a 7-day period via global transcriptional profiling. The stemness markers POU5F1, NANOG and TDGF1 were markedly downregulated, whereas an upregulation of the ExE markers KRT7, CGA, DDAH2 and IGFBP3 was observed. Many of the differentially expressed genes were involved in WNT and TGF-β signaling. RA inactivated WNT signaling even in the presence of exogenous FGF-2, which that promotes the maintenance of the pluripotent state. We also show that BMP4 was upregulated and that RA was able to modulate the TGF-β signaling pathway and direct hESCs toward the ExE lineage. In addition, an epigenetic study revealed hypermethylation of the DDAH2, TDGF1 and GATA3 gene promoters, suggesting a role for epigenetic regulation during ExE differentiation. These data reveals that the effect of RA prevails in the presence of exogenous FGF-2 thus resulting in the direction of hESCs toward the ExE lineage.
Collapse
|
295
|
Induction of a trophoblast-like phenotype by hydralazine in the p19 embryonic carcinoma cell line. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012. [PMID: 23195226 DOI: 10.1016/j.bbamcr.2012.11.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chemicals that affect cellular differentiation through epigenetic mechanisms have potential utility in treating a wide range of diseases. Hydralazine decreases DNA methylation in some cell types but its effect on differentiation has not been well explored. After five days of exposure to hydralazine, P19 embryocarcinoma cells displayed a giant cell morphology and were binucleate, indicative of a trophoblast-like morphology. Other trophoblast-like properties included the intermediary filament Troma-1/cytokeratin 8 and the transcription factor Tead4. A decrease in CpG methylation at three sites in the TEAD4 promoter and the B1 repeated sequence was observed. Knocking down expression of Tead4 with siRNA blocked the increase in Troma-1/cytokeratin 8 and over expression of Tead4 induced the expression of Troma-1/cytokeratin 8. Cells treated for 5days with hydralazine were no longer capable of undergoing retinoic acid-mediated neuronal differentiation. An irreversible loss of the pluripotent transcription factor Oct-4 was observed following hydralazine exposure. In summary, hydralazine induces P19 cells to assume a trophoblast-like phenotype by upregulating Tead4 expression through a mechanism involving DNA demethylation.
Collapse
|
296
|
Stephenson RO, Rossant J, Tam PPL. Intercellular interactions, position, and polarity in establishing blastocyst cell lineages and embryonic axes. Cold Spring Harb Perspect Biol 2012; 4:4/11/a008235. [PMID: 23125013 DOI: 10.1101/cshperspect.a008235] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The formation of the three lineages of the mouse blastocyst provides a powerful model system to study interactions among cell behavior, cell signaling, and lineage development. Hippo signaling differences between the inner and outer cells of the early cleavage stages, combined with establishment of a stably polarized outer epithelium, lead to the establishment of the inner cell mass and the trophectoderm, whereas FGF signaling differences among the individual cells of the ICM lead to gradual separation and segregation of the epiblast and primitive endoderm lineages. Events in the late blastocyst lead to the formation of a special subset of cells from the primitive endoderm that are key sources for the signals that establish the subsequent body axis. The slow pace of mouse early development, the ability to culture embryos over this time period, the increasing availability of live cell imaging tools, and the ability to modify gene expression at will are providing increasing insights into the cell biology of early cell fate decisions.
Collapse
Affiliation(s)
- Robert O Stephenson
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | | | | |
Collapse
|
297
|
Zhang K, Dai X, Wallingford MC, Mager J. Depletion of Suds3 reveals an essential role in early lineage specification. Dev Biol 2012; 373:359-72. [PMID: 23123966 DOI: 10.1016/j.ydbio.2012.10.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 10/20/2012] [Accepted: 10/24/2012] [Indexed: 10/27/2022]
Abstract
Preimplantation development culminates with the emergence of three distinct populations: the inner cell mass, primitive endoderm and trophectoderm. Here, we define the mechanisms underlying the requirement of Suds3 in pre/peri-implantation development. Suds3 knockdown blastocysts exhibit a failure of both trophectoderm proliferation as well as a conspicuous lack of primitive endoderm. Expression of essential lineage factors Nanog, Sox2, Cdx2, Eomes, Elf5 and Sox17 are severely reduced in the absence of Suds3. Importantly, we document deficient FGF4/ERK signaling and show that exogenous FGF4 rescues primitive endoderm formation and trophectoderm proliferation in Suds3 knockdown blastocysts. We also show that Hdac1 knockdown reduces Sox2/FGF4/ERK signaling in blastocysts. Collectively, these data define a role for Suds3 in activation of FGF4/ERK signaling and determine an essential molecular role of Suds3/Sin3/HDAC complexes in lineage specification in vivo.
Collapse
Affiliation(s)
- Kun Zhang
- Department of Veterinary and Animal Sciences, University of Massachusetts at Amherst, 455, 661 N. Pleasant Street, Amherst, MA 01003, USA
| | | | | | | |
Collapse
|
298
|
Blij S, Frum T, Akyol A, Fearon E, Ralston A. Maternal Cdx2 is dispensable for mouse development. Development 2012; 139:3969-72. [PMID: 22992952 DOI: 10.1242/dev.086025] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In many invertebrate and vertebrate species, cell fates are assigned through the cellular inheritance of differentially localized maternal determinants. Whether mammalian embryogenesis is also regulated by deterministic mechanisms is highly controversial. The caudal domain transcription factor CDX2 has been reported to act as a maternal determinant regulating cell fate decisions in mouse development. However, this finding is contentious because of reports that maternal Cdx2 is not essential for development. Notably, all of the previously published studies of maternal Cdx2 relied on injected RNA interference constructs, which could introduce experimental variation. Only deletion of the maternal gene can unambiguously resolve its requirement in mouse development. Here, we genetically ablated maternal Cdx2 using a Cre/lox strategy, and we definitively establish that maternal Cdx2 is not essential for mouse development.
Collapse
Affiliation(s)
- Stephanie Blij
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | | | | | | | | |
Collapse
|
299
|
Martínez-Frías ML. Assessing pre-implantation embryo development in mice provides a rationale for understanding potential adverse effects of ART and PGD procedures. Am J Med Genet A 2012; 158A:2526-33. [PMID: 22903927 DOI: 10.1002/ajmg.a.35573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 07/02/2012] [Indexed: 11/07/2022]
Abstract
Although the molecular events controlling human pre-implantation development remain unclear, mechanisms have been identified by analyzing these stages in mice. Through this approach, considerable insight has been gained into the events that operate to determine the first two cell fate decisions, occurring from zygote formation to the blastocyst prior to implantation. These mechanisms are related to cell polarization, cell division, cell-cell contact, and cell spatial position. Two developmental stages are essential for these processes to proceed adequately. Firstly, the second polar body must anchor to the external membrane during the first mitotic divisions of the embryo as its position is strongly biased to determine the plane of polarity. This in turn has important influence on the fate of the early blastomeres. Secondly, in the transition from the 8- to 16-cell stage, the cells that will form the inner cell mass are determined. Moreover, analyses performed on human oocytes and embryos have identified similar processes to those reported in mice and thus are evolutionarily conserved. Therefore, the understanding of mice pre-implantation embryo development provides a rationale to interpret current results of potential long-term adverse outcomes of Assisted Reproductive Technologies and Pre-implantation Genetic Diagnosis (PGD).
Collapse
|
300
|
Abstract
Preimplantation development in mammals encompasses a period from fertilization to implantation and results in formation of a blastocyst composed of three distinct cell lineages: epiblast, trophectoderm and primitive endoderm. The epiblast gives rise to the organism, while the trophectoderm and the primitive endoderm contribute to extraembryonic tissues that support embryo development after implantation. In many vertebrates, such as frog or fish, maternally supplied lineage determinants are partitioned within the egg. Cell cleavage that follows fertilization results in polarization of these factors between the individual blastomeres, which become restricted in their developmental fate. In contrast, the mouse oocyte and zygote lack clear polarity and, until the eight-cell stage, individual blastomeres retain the potential to form all lineages. How are cell lineages specified in the absence of a maternally supplied blueprint? This is a fundamental question in the field of developmental biology. The answer to this question lies in understanding the cell-cell interactions and gene networks involved in embryonic development prior to implantation and using this knowledge to create testable models of the developmental processes that govern cell fates. We provide an overview of classic and contemporary models of early lineage development in the mouse and discuss the emerging body of work that highlights similarities and differences between blastocyst development in the mouse and other mammalian species.
Collapse
Affiliation(s)
- Efrat Oron
- Yale Stem Cell Center, Department of Genetics, Yale University, New Haven, CT, USA.
| | | |
Collapse
|